yahyaabd's picture
Add new SentenceTransformer model
c3eb520 verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:25580
- loss:OnlineContrastiveLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
- source_sentence: ikhtisar arus kas triwulan 1, 2004 (miliar)
sentences:
- Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005
- Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar Pulau
Jawa dan Sumatera dengan Nasional (2018=100)
- Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tengah, 2018-2023
- source_sentence: BaIgaimana gambaran neraca arus dana dUi Indonesia pada kuartal
kedua tahun 2015?
sentences:
- Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Pertama (SMP) di Bawah Kementrian
Pendidikan dan Kebudayaan Menurut Provinsi 2011/2012-2015/2016
- Ringkasan Neraca Arus Dana Triwulan III Tahun 2003 (Miliar Rupiah)
- Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tenggara, 2018-2023
- source_sentence: Berapa persen pengeluaran orang di kotaa untuk makanan vs non-makanan,
per provinsi, 2018?
sentences:
- Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan Utama,
2012-2023
- Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Pendidikan Tertinggi
yang Ditamatkan (ribu rupiah), 2017
- IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor),
1996-2014 (1996=100)
- source_sentence: Negara-negara asal impor crude oil dan produk turunannya tahun
2002-2023
sentences:
- Persentase Pengeluaran Rata-rata per Kapita Sebulan Menurut Kelompok Barang, Indonesia,
1999, 2002-2023
- Rata-rata Pendapatan Bersih Berusaha Sendiri menurut Provinsi dan Pendidikan yang
Ditamatkan (ribu rupiah), 2016
- Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas Dasar
Harga Berlaku, 2010-2016
- source_sentence: Arus dana Q3 2006
sentences:
- Posisi Simpanan Berjangka Rupiah pada Bank Umum dan BPR Menurut Golongan Pemilik
(miliar rupiah), 2005-2018
- Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)
- Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok
Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012
datasets:
- yahyaabd/query-hard-pos-neg-doc-pairs-statictable
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allstats semantic mini v1 test
type: allstats-semantic-mini-v1_test
metrics:
- type: cosine_accuracy
value: 0.9770031027559773
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7470195889472961
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9648633575013944
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7452057600021362
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9552733296521259
name: Cosine Precision
- type: cosine_recall
value: 0.9746478873239437
name: Cosine Recall
- type: cosine_ap
value: 0.9927055758758331
name: Cosine Ap
- type: cosine_mcc
value: 0.9478797507864009
name: Cosine Mcc
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allstats semantic mini v1 dev
type: allstats-semantic-mini-v1_dev
metrics:
- type: cosine_accuracy
value: 0.9770031027559773
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7470195889472961
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9648633575013944
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7452057600021362
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9552733296521259
name: Cosine Precision
- type: cosine_recall
value: 0.9746478873239437
name: Cosine Recall
- type: cosine_ap
value: 0.9927055758758331
name: Cosine Ap
- type: cosine_mcc
value: 0.9478797507864009
name: Cosine Mcc
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1-5")
# Run inference
sentences = [
'Arus dana Q3 2006',
'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Datasets: `allstats-semantic-mini-v1_test` and `allstats-semantic-mini-v1_dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | allstats-semantic-mini-v1_test | allstats-semantic-mini-v1_dev |
|:--------------------------|:-------------------------------|:------------------------------|
| cosine_accuracy | 0.977 | 0.977 |
| cosine_accuracy_threshold | 0.747 | 0.747 |
| cosine_f1 | 0.9649 | 0.9649 |
| cosine_f1_threshold | 0.7452 | 0.7452 |
| cosine_precision | 0.9553 | 0.9553 |
| cosine_recall | 0.9746 | 0.9746 |
| **cosine_ap** | **0.9927** | **0.9927** |
| cosine_mcc | 0.9479 | 0.9479 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### query-hard-pos-neg-doc-pairs-statictable
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
* Size: 25,580 training samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 7 tokens</li><li>mean: 20.14 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 24.9 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>0: ~70.80%</li><li>1: ~29.20%</li></ul> |
* Samples:
| query | doc | label |
|:-------------------------------------------------------------------------|:----------------------------------------------|:---------------|
| <code>Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
| <code>status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
| <code>STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Evaluation Dataset
#### query-hard-pos-neg-doc-pairs-statictable
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
* Size: 5,479 evaluation samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 7 tokens</li><li>mean: 20.78 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.28 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>0: ~71.50%</li><li>1: ~28.50%</li></ul> |
* Samples:
| query | doc | label |
|:-----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
| <code>bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
| <code>BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 24
- `per_device_eval_batch_size`: 24
- `num_train_epochs`: 2
- `warmup_ratio`: 0.2
- `fp16`: True
- `load_best_model_at_end`: True
- `eval_on_start`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 24
- `per_device_eval_batch_size`: 24
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mini-v1_test_cosine_ap | allstats-semantic-mini-v1_dev_cosine_ap |
|:----------:|:--------:|:-------------:|:---------------:|:----------------------------------------:|:---------------------------------------:|
| -1 | -1 | - | - | 0.8789 | - |
| 0 | 0 | - | 0.7267 | - | 0.8789 |
| 0.0188 | 20 | 0.668 | 0.6453 | - | 0.8848 |
| 0.0375 | 40 | 0.6117 | 0.4411 | - | 0.9003 |
| 0.0563 | 60 | 0.3108 | 0.3592 | - | 0.9130 |
| 0.0750 | 80 | 0.3824 | 0.2899 | - | 0.9336 |
| 0.0938 | 100 | 0.2118 | 0.2530 | - | 0.9442 |
| 0.1126 | 120 | 0.232 | 0.1945 | - | 0.9582 |
| 0.1313 | 140 | 0.1233 | 0.1663 | - | 0.9656 |
| 0.1501 | 160 | 0.1293 | 0.1655 | - | 0.9654 |
| 0.1689 | 180 | 0.0714 | 0.2142 | - | 0.9578 |
| 0.1876 | 200 | 0.1198 | 0.1455 | - | 0.9702 |
| 0.2064 | 220 | 0.1081 | 0.1258 | - | 0.9766 |
| 0.2251 | 240 | 0.0484 | 0.1210 | - | 0.9753 |
| 0.2439 | 260 | 0.1463 | 0.1100 | - | 0.9792 |
| 0.2627 | 280 | 0.0422 | 0.1228 | - | 0.9777 |
| 0.2814 | 300 | 0.1187 | 0.1302 | - | 0.9725 |
| 0.3002 | 320 | 0.0635 | 0.1257 | - | 0.9733 |
| 0.3189 | 340 | 0.0422 | 0.1125 | - | 0.9736 |
| 0.3377 | 360 | 0.0479 | 0.0882 | - | 0.9796 |
| 0.3565 | 380 | 0.119 | 0.1319 | - | 0.9697 |
| 0.3752 | 400 | 0.099 | 0.1445 | - | 0.9702 |
| 0.3940 | 420 | 0.0409 | 0.1434 | - | 0.9706 |
| 0.4128 | 440 | 0.1053 | 0.1520 | - | 0.9686 |
| 0.4315 | 460 | 0.1035 | 0.1382 | - | 0.9727 |
| 0.4503 | 480 | 0.0848 | 0.1150 | - | 0.9789 |
| 0.4690 | 500 | 0.0387 | 0.0944 | - | 0.9826 |
| 0.4878 | 520 | 0.0097 | 0.1041 | - | 0.9811 |
| 0.5066 | 540 | 0.0667 | 0.1041 | - | 0.9783 |
| 0.5253 | 560 | 0.1028 | 0.1386 | - | 0.9736 |
| 0.5441 | 580 | 0.0543 | 0.1350 | - | 0.9769 |
| 0.5629 | 600 | 0.0859 | 0.1254 | - | 0.9776 |
| 0.5816 | 620 | 0.0853 | 0.1483 | - | 0.9728 |
| 0.6004 | 640 | 0.024 | 0.1159 | - | 0.9781 |
| 0.6191 | 660 | 0.0762 | 0.1046 | - | 0.9784 |
| 0.6379 | 680 | 0.0433 | 0.1275 | - | 0.9686 |
| 0.6567 | 700 | 0.0772 | 0.0592 | - | 0.9882 |
| 0.6754 | 720 | 0.0185 | 0.0542 | - | 0.9889 |
| 0.6942 | 740 | 0.0376 | 0.1123 | - | 0.9801 |
| 0.7129 | 760 | 0.0612 | 0.1002 | - | 0.9817 |
| 0.7317 | 780 | 0.0156 | 0.0948 | - | 0.9809 |
| 0.7505 | 800 | 0.0474 | 0.0778 | - | 0.9817 |
| 0.7692 | 820 | 0.0427 | 0.0824 | - | 0.9828 |
| 0.7880 | 840 | 0.0289 | 0.0911 | - | 0.9833 |
| 0.8068 | 860 | 0.0175 | 0.0991 | - | 0.9827 |
| 0.8255 | 880 | 0.0241 | 0.0951 | - | 0.9824 |
| 0.8443 | 900 | 0.0527 | 0.0816 | - | 0.9860 |
| 0.8630 | 920 | 0.0535 | 0.0707 | - | 0.9875 |
| 0.8818 | 940 | 0.0211 | 0.0767 | - | 0.9868 |
| 0.9006 | 960 | 0.013 | 0.0758 | - | 0.9872 |
| 0.9193 | 980 | 0.0079 | 0.0781 | - | 0.9848 |
| 0.9381 | 1000 | 0.0406 | 0.0820 | - | 0.9845 |
| 0.9568 | 1020 | 0.0277 | 0.0685 | - | 0.9874 |
| 0.9756 | 1040 | 0.0132 | 0.0760 | - | 0.9859 |
| 0.9944 | 1060 | 0.0268 | 0.0881 | - | 0.9833 |
| 1.0131 | 1080 | 0.0089 | 0.0772 | - | 0.9857 |
| 1.0319 | 1100 | 0.0276 | 0.0773 | - | 0.9850 |
| 1.0507 | 1120 | 0.0181 | 0.0729 | - | 0.9860 |
| 1.0694 | 1140 | 0.0065 | 0.0683 | - | 0.9867 |
| 1.0882 | 1160 | 0.01 | 0.0639 | - | 0.9873 |
| 1.1069 | 1180 | 0.0068 | 0.0662 | - | 0.9870 |
| 1.1257 | 1200 | 0.0 | 0.0722 | - | 0.9863 |
| 1.1445 | 1220 | 0.0067 | 0.0710 | - | 0.9866 |
| 1.1632 | 1240 | 0.0069 | 0.0666 | - | 0.9877 |
| 1.1820 | 1260 | 0.0 | 0.0639 | - | 0.9880 |
| 1.2008 | 1280 | 0.0244 | 0.0610 | - | 0.9882 |
| 1.2195 | 1300 | 0.0143 | 0.0630 | - | 0.9877 |
| 1.2383 | 1320 | 0.0173 | 0.0530 | - | 0.9896 |
| 1.2570 | 1340 | 0.0171 | 0.0496 | - | 0.9907 |
| 1.2758 | 1360 | 0.0225 | 0.0521 | - | 0.9909 |
| 1.2946 | 1380 | 0.011 | 0.0569 | - | 0.9900 |
| 1.3133 | 1400 | 0.0088 | 0.0605 | - | 0.9898 |
| 1.3321 | 1420 | 0.0 | 0.0619 | - | 0.9897 |
| 1.3508 | 1440 | 0.0135 | 0.0608 | - | 0.9894 |
| 1.3696 | 1460 | 0.0 | 0.0593 | - | 0.9892 |
| 1.3884 | 1480 | 0.0145 | 0.0578 | - | 0.9894 |
| 1.4071 | 1500 | 0.0 | 0.0608 | - | 0.9896 |
| 1.4259 | 1520 | 0.0069 | 0.0567 | - | 0.9906 |
| 1.4447 | 1540 | 0.0 | 0.0561 | - | 0.9907 |
| 1.4634 | 1560 | 0.0224 | 0.0531 | - | 0.9912 |
| 1.4822 | 1580 | 0.0 | 0.0523 | - | 0.9911 |
| 1.5009 | 1600 | 0.0066 | 0.0503 | - | 0.9912 |
| 1.5197 | 1620 | 0.0 | 0.0472 | - | 0.9915 |
| 1.5385 | 1640 | 0.018 | 0.0452 | - | 0.9923 |
| 1.5572 | 1660 | 0.0117 | 0.0449 | - | 0.9925 |
| 1.5760 | 1680 | 0.0 | 0.0456 | - | 0.9925 |
| 1.5947 | 1700 | 0.0 | 0.0448 | - | 0.9925 |
| 1.6135 | 1720 | 0.0 | 0.0448 | - | 0.9925 |
| 1.6323 | 1740 | 0.0072 | 0.0458 | - | 0.9924 |
| 1.6510 | 1760 | 0.0 | 0.0456 | - | 0.9923 |
| 1.6698 | 1780 | 0.0163 | 0.0482 | - | 0.9925 |
| 1.6886 | 1800 | 0.0063 | 0.0463 | - | 0.9926 |
| 1.7073 | 1820 | 0.0078 | 0.0482 | - | 0.9925 |
| 1.7261 | 1840 | 0.0179 | 0.0472 | - | 0.9927 |
| 1.7448 | 1860 | 0.0 | 0.0477 | - | 0.9927 |
| 1.7636 | 1880 | 0.0 | 0.0477 | - | 0.9927 |
| 1.7824 | 1900 | 0.0065 | 0.0461 | - | 0.9926 |
| 1.8011 | 1920 | 0.0077 | 0.0458 | - | 0.9926 |
| 1.8199 | 1940 | 0.0065 | 0.0453 | - | 0.9927 |
| 1.8386 | 1960 | 0.0 | 0.0451 | - | 0.9927 |
| 1.8574 | 1980 | 0.0 | 0.0451 | - | 0.9927 |
| 1.8762 | 2000 | 0.0 | 0.0451 | - | 0.9927 |
| 1.8949 | 2020 | 0.0 | 0.0451 | - | 0.9927 |
| 1.9137 | 2040 | 0.0 | 0.0451 | - | 0.9927 |
| 1.9325 | 2060 | 0.0 | 0.0451 | - | 0.9927 |
| 1.9512 | 2080 | 0.0 | 0.0451 | - | 0.9927 |
| 1.9700 | 2100 | 0.007 | 0.0442 | - | 0.9927 |
| **1.9887** | **2120** | **0.0067** | **0.0441** | **-** | **0.9927** |
| -1 | -1 | - | - | 0.9927 | - |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->