metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:123637
- loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
- source_sentence: Analisis biaya hidup di tiga kota Banten thn 2018
sentences:
- Indikator Konstruksi Triwulan I-2007
- Survei Biaya Hidup (SBH) 2018 Bengkulu
- Indikator Ekonomi Februari 2002
- source_sentence: >-
Grafik ekspor hasil minyak Indonesia ke berbagai negara dari tahun 2000
hingga 2023.
sentences:
- >-
Sistem Neraca Sosial Ekonomi Indonesia Tahun 2022 dalam Format SNA 1968
(65x65)
- Harga Produsen Gabah dan Beras Januari 2020
- Profil Usaha Konstruksi Perorangan Provinsi Papua 2016
- source_sentence: Tren konstruksi Indonesia tahun 2007 Q4
sentences:
- Laporan Bulanan Data Sosial Ekonomi Desember 2018
- Indeks Unit Value Ekspor Menurut Kode SITC Bulan Februari 2023
- Inflasi Februari 2008 sebesar 0,5 persen
- source_sentence: >-
Informasi tentang kepemilikan dan penggunaan AC di rumah tangga Indonesia
tahun 2013?
sentences:
- Data dan Informasi Kemiskinan Kabupaten/Kota Tahun 2014
- >-
Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut
Kelompok Umur dan Jenis Pekerjaan, 2022-2023
- Indikator Konstruksi, Triwulan II-2022
- source_sentence: Statistik harga Ternate 2012
sentences:
- Statistik Perhubungan 2005
- Indeks Unit Value Ekspor Menurut Kode SITC Bulan Januari 2019
- Indikator Ekonomi Agustus 2002
datasets:
- yahyaabd/allstats-semantic-synthetic-dataset-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/paraphrase-multilingual-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic base v1 eval
type: allstats-semantic-base-v1-eval
metrics:
- type: pearson_cosine
value: 0.9868927327091045
name: Pearson Cosine
- type: spearman_cosine
value: 0.9277441071536588
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstat semantic base v1 test
type: allstat-semantic-base-v1-test
metrics:
- type: pearson_cosine
value: 0.9867639981224826
name: Pearson Cosine
- type: spearman_cosine
value: 0.9256998894451143
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 on the allstats-semantic-synthetic-dataset-v1 dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-base-v1-2")
# Run inference
sentences = [
'Statistik harga Ternate 2012',
'Indikator Ekonomi Agustus 2002',
'Indeks Unit Value Ekspor Menurut Kode SITC Bulan Januari 2019',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
allstats-semantic-base-v1-eval
andallstat-semantic-base-v1-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | allstats-semantic-base-v1-eval | allstat-semantic-base-v1-test |
---|---|---|
pearson_cosine | 0.9869 | 0.9868 |
spearman_cosine | 0.9277 | 0.9257 |
Training Details
Training Dataset
allstats-semantic-synthetic-dataset-v1
- Dataset: allstats-semantic-synthetic-dataset-v1 at e73718f
- Size: 123,637 training samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 5 tokens
- mean: 10.59 tokens
- max: 34 tokens
- min: 5 tokens
- mean: 14.29 tokens
- max: 56 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
query doc label Analisis upah tenaga kerja ekonomi kreatif
Upah Tenaga Kerja Ekonomi Kreatif 2011-2016
0.88
cari data persentase rumah tangga yang menggunakan listrik pln menurut provinsi dari 1993 sampai 2022.
Persentase Rumah Tangga menurut Provinsi dan Sumber Penerangan Listrik PLN, 1993-2022
0.93
apakah ada tabel yang menunjukkan ekspor minyak mentah ke negara tujuan utama tahun 2000-2023?
IHK dan Rata-rata Upah per Bulan Buruh Peternakan dan Perikanan di Bawah Mandor (Supervisor), 2012-2014 (2012=100)
0.13
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
allstats-semantic-synthetic-dataset-v1
- Dataset: allstats-semantic-synthetic-dataset-v1 at e73718f
- Size: 26,494 evaluation samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 5 tokens
- mean: 10.66 tokens
- max: 31 tokens
- min: 4 tokens
- mean: 13.94 tokens
- max: 70 tokens
- min: 0.0
- mean: 0.49
- max: 1.0
- Samples:
query doc label SBH Aceh 2018: Meulaboh, Banda Aceh, Lhokseumawe
Survei Biaya Hidup (SBH) 2018 Meulaboh, Banda Aceh, dan Lhokseumawe
0.9
ekspor produk indonesia juli 2018 per negara
Direktori Perusahaan Pertambangan Besar 2013
0.07
peternakan sapi di jawa tengah 2011
Laporan Bulanan Data Sosial Ekonomi Juli 2024
0.07
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 24warmup_ratio
: 0.1fp16
: Truedataloader_num_workers
: 4load_best_model_at_end
: Truelabel_smoothing_factor
: 0.1eval_on_start
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 24max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.1optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | allstats-semantic-base-v1-eval_spearman_cosine | allstat-semantic-base-v1-test_spearman_cosine |
---|---|---|---|---|---|
0 | 0 | - | 0.0942 | 0.6574 | - |
0.2588 | 500 | 0.0449 | 0.0262 | 0.7353 | - |
0.5176 | 1000 | 0.0232 | 0.0185 | 0.7592 | - |
0.7764 | 1500 | 0.0172 | 0.0154 | 0.7760 | - |
1.0352 | 2000 | 0.0153 | 0.0137 | 0.7905 | - |
1.2940 | 2500 | 0.0124 | 0.0130 | 0.7920 | - |
1.5528 | 3000 | 0.0119 | 0.0120 | 0.8048 | - |
1.8116 | 3500 | 0.0121 | 0.0121 | 0.8021 | - |
2.0704 | 4000 | 0.0114 | 0.0112 | 0.8018 | - |
2.3292 | 4500 | 0.0093 | 0.0117 | 0.7996 | - |
2.5880 | 5000 | 0.0097 | 0.0105 | 0.8133 | - |
2.8468 | 5500 | 0.0092 | 0.0103 | 0.8137 | - |
3.1056 | 6000 | 0.0085 | 0.0094 | 0.8247 | - |
3.3644 | 6500 | 0.0068 | 0.0090 | 0.8326 | - |
3.6232 | 7000 | 0.0073 | 0.0092 | 0.8273 | - |
3.8820 | 7500 | 0.007 | 0.0084 | 0.8404 | - |
4.1408 | 8000 | 0.0061 | 0.0083 | 0.8381 | - |
4.3996 | 8500 | 0.0057 | 0.0082 | 0.8382 | - |
4.6584 | 9000 | 0.0056 | 0.0074 | 0.8458 | - |
4.9172 | 9500 | 0.0057 | 0.0073 | 0.8468 | - |
5.1760 | 10000 | 0.0045 | 0.0071 | 0.8508 | - |
5.4348 | 10500 | 0.0041 | 0.0069 | 0.8579 | - |
5.6936 | 11000 | 0.0047 | 0.0069 | 0.8471 | - |
5.9524 | 11500 | 0.0046 | 0.0067 | 0.8554 | - |
6.2112 | 12000 | 0.0034 | 0.0062 | 0.8616 | - |
6.4700 | 12500 | 0.0034 | 0.0063 | 0.8636 | - |
6.7288 | 13000 | 0.0036 | 0.0062 | 0.8649 | - |
6.9876 | 13500 | 0.0037 | 0.0063 | 0.8641 | - |
7.2464 | 14000 | 0.0027 | 0.0059 | 0.8691 | - |
7.5052 | 14500 | 0.0027 | 0.0060 | 0.8733 | - |
7.7640 | 15000 | 0.0031 | 0.0060 | 0.8748 | - |
8.0228 | 15500 | 0.0028 | 0.0058 | 0.8736 | - |
8.2816 | 16000 | 0.0023 | 0.0055 | 0.8785 | - |
8.5404 | 16500 | 0.0025 | 0.0054 | 0.8801 | - |
8.7992 | 17000 | 0.0024 | 0.0058 | 0.8809 | - |
9.0580 | 17500 | 0.0026 | 0.0058 | 0.8811 | - |
9.3168 | 18000 | 0.002 | 0.0055 | 0.8824 | - |
9.5756 | 18500 | 0.002 | 0.0053 | 0.8859 | - |
9.8344 | 19000 | 0.0021 | 0.0053 | 0.8851 | - |
10.0932 | 19500 | 0.0019 | 0.0055 | 0.8904 | - |
10.3520 | 20000 | 0.0016 | 0.0052 | 0.8946 | - |
10.6108 | 20500 | 0.0017 | 0.0057 | 0.8884 | - |
10.8696 | 21000 | 0.0019 | 0.0055 | 0.8889 | - |
11.1284 | 21500 | 0.0016 | 0.0052 | 0.8942 | - |
11.3872 | 22000 | 0.0014 | 0.0053 | 0.8961 | - |
11.6460 | 22500 | 0.0016 | 0.0053 | 0.8928 | - |
11.9048 | 23000 | 0.0017 | 0.0051 | 0.8947 | - |
12.1636 | 23500 | 0.0013 | 0.0050 | 0.9015 | - |
12.4224 | 24000 | 0.0012 | 0.0059 | 0.8886 | - |
12.6812 | 24500 | 0.0014 | 0.0051 | 0.9030 | - |
12.9400 | 25000 | 0.0014 | 0.0051 | 0.9012 | - |
13.1988 | 25500 | 0.0011 | 0.0050 | 0.9037 | - |
13.4576 | 26000 | 0.0011 | 0.0050 | 0.9053 | - |
13.7164 | 26500 | 0.0011 | 0.0049 | 0.9060 | - |
13.9752 | 27000 | 0.0011 | 0.0049 | 0.9086 | - |
14.2340 | 27500 | 0.001 | 0.0048 | 0.9063 | - |
14.4928 | 28000 | 0.001 | 0.0051 | 0.9056 | - |
14.7516 | 28500 | 0.001 | 0.0051 | 0.9079 | - |
15.0104 | 29000 | 0.0011 | 0.0049 | 0.9080 | - |
15.2692 | 29500 | 0.0008 | 0.0048 | 0.9126 | - |
15.5280 | 30000 | 0.0008 | 0.0049 | 0.9112 | - |
15.7867 | 30500 | 0.0008 | 0.0049 | 0.9123 | - |
16.0455 | 31000 | 0.0008 | 0.0048 | 0.9133 | - |
16.3043 | 31500 | 0.0006 | 0.0048 | 0.9103 | - |
16.5631 | 32000 | 0.0007 | 0.0049 | 0.9144 | - |
16.8219 | 32500 | 0.0008 | 0.0048 | 0.9143 | - |
17.0807 | 33000 | 0.0007 | 0.0048 | 0.9159 | - |
17.3395 | 33500 | 0.0007 | 0.0047 | 0.9174 | - |
17.5983 | 34000 | 0.0006 | 0.0048 | 0.9175 | - |
17.8571 | 34500 | 0.0007 | 0.0047 | 0.9163 | - |
18.1159 | 35000 | 0.0006 | 0.0046 | 0.9195 | - |
18.3747 | 35500 | 0.0006 | 0.0047 | 0.9190 | - |
18.6335 | 36000 | 0.0006 | 0.0047 | 0.9192 | - |
18.8923 | 36500 | 0.0006 | 0.0047 | 0.9204 | - |
19.1511 | 37000 | 0.0005 | 0.0047 | 0.9219 | - |
19.4099 | 37500 | 0.0004 | 0.0046 | 0.9218 | - |
19.6687 | 38000 | 0.0005 | 0.0047 | 0.9221 | - |
19.9275 | 38500 | 0.0005 | 0.0046 | 0.9230 | - |
20.1863 | 39000 | 0.0005 | 0.0046 | 0.9233 | - |
20.4451 | 39500 | 0.0004 | 0.0046 | 0.9240 | - |
20.7039 | 40000 | 0.0005 | 0.0047 | 0.9234 | - |
20.9627 | 40500 | 0.0004 | 0.0047 | 0.9241 | - |
21.2215 | 41000 | 0.0004 | 0.0046 | 0.9253 | - |
21.4803 | 41500 | 0.0004 | 0.0046 | 0.9259 | - |
21.7391 | 42000 | 0.0004 | 0.0046 | 0.9262 | - |
21.9979 | 42500 | 0.0004 | 0.0046 | 0.9263 | - |
22.2567 | 43000 | 0.0003 | 0.0046 | 0.9266 | - |
22.5155 | 43500 | 0.0003 | 0.0046 | 0.9266 | - |
22.7743 | 44000 | 0.0003 | 0.0046 | 0.9273 | - |
23.0331 | 44500 | 0.0003 | 0.0046 | 0.9273 | - |
23.2919 | 45000 | 0.0003 | 0.0046 | 0.9274 | - |
23.5507 | 45500 | 0.0003 | 0.0046 | 0.9277 | - |
23.8095 | 46000 | 0.0003 | 0.0046 | 0.9277 | - |
24.0 | 46368 | - | - | - | 0.9257 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}