metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:73392
- loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
- source_sentence: >-
Berapa persen kenaikan Indeks Harga Perdagangan Besar (IHPB) Umum Nasional
pada bulan April 2021?
sentences:
- Statistik Kriminal 2023
- Ekonomi Indonesia Triwulan I-2021 turun 0,74 persen (y-on-y)
- Survei Biaya Hidup (SBH) 2018 Ambon dan Tual
- source_sentence: Usaha pertanian sampingan di Indonesia tahun 2022
sentences:
- Analisis Hasil Survei Dampak Covid-19 Terhadap Pelaku Usaha
- Direktori Usaha Pertanian Lainnya 2022
- EksporImpor September 2018
- source_sentence: Pertumbuhan industri Indonesia 2006-2009
sentences:
- Pertumbuhan Produksi IBS Triwulan III 2019 Naik 4,35 Persen
- Indikator Ekonomi April 2000
- Perkembangan Indeks Produksi Industri Besar dan Sedang 2006 - 2009
- source_sentence: 'Sensus ekonomi Kalbar 2016: data usaha'
sentences:
- Pertumbuhan ekonomi Indonesia tahun 2022
- Buletin Statistik Perdagangan Luar Negeri Impor November 2017
- Data jumlah wisatawan mancanegara 2019
- source_sentence: Direktori perusahaan pengelola hutan 2015
sentences:
- >-
Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok
Komoditi dan Negara, April 2017
- Direktori Perusahaan Kehutanan 2015
- >-
Indeks Pembangunan Manusia (IPM) Indonesia tahun 2024 mencapai 75,02,
meningkat 0,63 poin atau 0,85 persen dibandingkan tahun sebelumnya yang
sebesar 74,39.
datasets:
- yahyaabd/bps-semantic-pairs-synthetic-dataset-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/paraphrase-multilingual-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic mpnet v1 eval
type: allstats-semantic-mpnet-v1-eval
metrics:
- type: pearson_cosine
value: 0.9721680353379998
name: Pearson Cosine
- type: spearman_cosine
value: 0.8769707416598509
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstat semantic mpnet v1 test
type: allstat-semantic-mpnet-v1-test
metrics:
- type: pearson_cosine
value: 0.9714701009323166
name: Pearson Cosine
- type: spearman_cosine
value: 0.8696530606326947
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 on the bps-semantic-pairs-synthetic-dataset-v1 dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-mpnet-v1")
# Run inference
sentences = [
'Direktori perusahaan pengelola hutan 2015',
'Direktori Perusahaan Kehutanan 2015',
'Indeks Pembangunan Manusia (IPM) Indonesia tahun 2024 mencapai 75,02, meningkat 0,63 poin atau 0,85 persen dibandingkan tahun sebelumnya yang sebesar 74,39.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
allstats-semantic-mpnet-v1-eval
andallstat-semantic-mpnet-v1-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | allstats-semantic-mpnet-v1-eval | allstat-semantic-mpnet-v1-test |
---|---|---|
pearson_cosine | 0.9722 | 0.9715 |
spearman_cosine | 0.877 | 0.8697 |
Training Details
Training Dataset
bps-semantic-pairs-synthetic-dataset-v1
- Dataset: bps-semantic-pairs-synthetic-dataset-v1 at 6656af9
- Size: 73,392 training samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 5 tokens
- mean: 11.28 tokens
- max: 34 tokens
- min: 5 tokens
- mean: 14.71 tokens
- max: 58 tokens
- min: 0.0
- mean: 0.48
- max: 1.0
- Samples:
query doc label Data bisnis Kalbar sensus 2016
Indikator Ekonomi Oktober 2012
0.1
Informasi tentang pola pengeluaran masyarakat Bengkulu berdasarkan kelompok pendapatan?
Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Bengkulu, 2018-2023
0.88
Laopran keuagnan lmebaga non proft 20112-013
Neraca Lembaga Non Profit yang Melayani Rumah Tangga 2011-2013
0.93
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
bps-semantic-pairs-synthetic-dataset-v1
- Dataset: bps-semantic-pairs-synthetic-dataset-v1 at 6656af9
- Size: 15,726 evaluation samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 4 tokens
- mean: 11.52 tokens
- max: 37 tokens
- min: 5 tokens
- mean: 14.38 tokens
- max: 61 tokens
- min: 0.0
- mean: 0.49
- max: 1.0
- Samples:
query doc label Data transportasi bulan Februari 2021
Tenaga Kerja Februari 2023
0.08
Sebear berspa prrsen eknaikan Inseks Hraga Predagangan eBsar (IHB) Umym Nasiona di aMret 202?
Maret 2020, Indeks Harga Perdagangan Besar (IHPB) Umum Nasional naik 0,10 persen
1.0
Data ekspor dan moda transportasi tahun 2018-2019
Indikator Pasar Tenaga Kerja Indonesia Agustus 2012
0.08
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 24warmup_ratio
: 0.1fp16
: Truedataloader_num_workers
: 4load_best_model_at_end
: Truelabel_smoothing_factor
: 0.01eval_on_start
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 24max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.01optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mpnet-v1-eval_spearman_cosine | allstat-semantic-mpnet-v1-test_spearman_cosine |
---|---|---|---|---|---|
0 | 0 | - | 0.1031 | 0.6244 | - |
0.2180 | 250 | 0.064 | 0.0413 | 0.6958 | - |
0.4359 | 500 | 0.0381 | 0.0305 | 0.7301 | - |
0.6539 | 750 | 0.0284 | 0.0243 | 0.7651 | - |
0.8718 | 1000 | 0.025 | 0.0213 | 0.7656 | - |
1.0898 | 1250 | 0.0207 | 0.0201 | 0.7822 | - |
1.3078 | 1500 | 0.0188 | 0.0194 | 0.7805 | - |
1.5257 | 1750 | 0.0182 | 0.0177 | 0.7918 | - |
1.7437 | 2000 | 0.0177 | 0.0168 | 0.8098 | - |
1.9616 | 2250 | 0.0173 | 0.0173 | 0.7979 | - |
2.1796 | 2500 | 0.0151 | 0.0174 | 0.8010 | - |
2.3976 | 2750 | 0.014 | 0.0163 | 0.8005 | - |
2.6155 | 3000 | 0.0142 | 0.0159 | 0.8027 | - |
2.8335 | 3250 | 0.0137 | 0.0154 | 0.8074 | - |
3.0514 | 3500 | 0.013 | 0.0146 | 0.8173 | - |
3.2694 | 3750 | 0.0099 | 0.0138 | 0.8179 | - |
3.4874 | 4000 | 0.0105 | 0.0135 | 0.8138 | - |
3.7053 | 4250 | 0.0109 | 0.0145 | 0.8138 | - |
3.9233 | 4500 | 0.011 | 0.0145 | 0.8244 | - |
4.1412 | 4750 | 0.0086 | 0.0132 | 0.8327 | - |
4.3592 | 5000 | 0.0077 | 0.0129 | 0.8307 | - |
4.5772 | 5250 | 0.0081 | 0.0124 | 0.8380 | - |
4.7951 | 5500 | 0.0087 | 0.0128 | 0.8358 | - |
5.0131 | 5750 | 0.0076 | 0.0135 | 0.8280 | - |
5.2310 | 6000 | 0.0061 | 0.0122 | 0.8399 | - |
5.4490 | 6250 | 0.0062 | 0.0119 | 0.8344 | - |
5.6670 | 6500 | 0.007 | 0.0113 | 0.8432 | - |
5.8849 | 6750 | 0.0069 | 0.0117 | 0.8353 | - |
6.1029 | 7000 | 0.0056 | 0.0117 | 0.8333 | - |
6.3208 | 7250 | 0.0047 | 0.0114 | 0.8438 | - |
6.5388 | 7500 | 0.0059 | 0.0114 | 0.8429 | - |
6.7568 | 7750 | 0.0054 | 0.0113 | 0.8452 | - |
6.9747 | 8000 | 0.0059 | 0.0118 | 0.8477 | - |
7.1927 | 8250 | 0.0045 | 0.0109 | 0.8474 | - |
7.4106 | 8500 | 0.0042 | 0.0111 | 0.8532 | - |
7.6286 | 8750 | 0.0045 | 0.0114 | 0.8385 | - |
7.8466 | 9000 | 0.005 | 0.0111 | 0.8502 | - |
8.0645 | 9250 | 0.0045 | 0.0111 | 0.8496 | - |
8.2825 | 9500 | 0.0035 | 0.0109 | 0.8490 | - |
8.5004 | 9750 | 0.0038 | 0.0112 | 0.8519 | - |
8.7184 | 10000 | 0.0038 | 0.0112 | 0.8463 | - |
8.9364 | 10250 | 0.0039 | 0.0109 | 0.8556 | - |
9.1543 | 10500 | 0.0035 | 0.0110 | 0.8534 | - |
9.3723 | 10750 | 0.003 | 0.0111 | 0.8525 | - |
9.5902 | 11000 | 0.0039 | 0.0108 | 0.8593 | - |
9.8082 | 11250 | 0.0038 | 0.0112 | 0.8537 | - |
10.0262 | 11500 | 0.0033 | 0.0108 | 0.8553 | - |
10.2441 | 11750 | 0.0023 | 0.0104 | 0.8601 | - |
10.4621 | 12000 | 0.0025 | 0.0104 | 0.8571 | - |
10.6800 | 12250 | 0.0026 | 0.0106 | 0.8594 | - |
10.8980 | 12500 | 0.0026 | 0.0106 | 0.8627 | - |
11.1160 | 12750 | 0.0024 | 0.0105 | 0.8623 | - |
11.3339 | 13000 | 0.002 | 0.0104 | 0.8614 | - |
11.5519 | 13250 | 0.0021 | 0.0103 | 0.8622 | - |
11.7698 | 13500 | 0.0025 | 0.0106 | 0.8580 | - |
11.9878 | 13750 | 0.0023 | 0.0108 | 0.8613 | - |
12.2058 | 14000 | 0.0019 | 0.0106 | 0.8618 | - |
12.4237 | 14250 | 0.0017 | 0.0104 | 0.8641 | - |
12.6417 | 14500 | 0.0019 | 0.0103 | 0.8620 | - |
12.8596 | 14750 | 0.002 | 0.0104 | 0.8649 | - |
13.0776 | 15000 | 0.002 | 0.0102 | 0.8620 | - |
13.2956 | 15250 | 0.0014 | 0.0103 | 0.8631 | - |
13.5135 | 15500 | 0.0018 | 0.0104 | 0.8635 | - |
13.7315 | 15750 | 0.0018 | 0.0102 | 0.8661 | - |
13.9494 | 16000 | 0.0018 | 0.0104 | 0.8683 | - |
14.1674 | 16250 | 0.0014 | 0.0104 | 0.8691 | - |
14.3854 | 16500 | 0.0014 | 0.0103 | 0.8668 | - |
14.6033 | 16750 | 0.0015 | 0.0102 | 0.8673 | - |
14.8213 | 17000 | 0.0016 | 0.0102 | 0.8679 | - |
15.0392 | 17250 | 0.0016 | 0.0101 | 0.8688 | - |
15.2572 | 17500 | 0.0012 | 0.0102 | 0.8676 | - |
15.4752 | 17750 | 0.0012 | 0.0102 | 0.8712 | - |
15.6931 | 18000 | 0.0014 | 0.0102 | 0.8702 | - |
15.9111 | 18250 | 0.0013 | 0.0101 | 0.8718 | - |
16.1290 | 18500 | 0.0011 | 0.0100 | 0.8727 | - |
16.3470 | 18750 | 0.001 | 0.0101 | 0.8729 | - |
16.5650 | 19000 | 0.0012 | 0.0099 | 0.8714 | - |
16.7829 | 19250 | 0.0011 | 0.0101 | 0.8723 | - |
17.0009 | 19500 | 0.0012 | 0.0101 | 0.8679 | - |
17.2188 | 19750 | 0.0009 | 0.0103 | 0.8706 | - |
17.4368 | 20000 | 0.0009 | 0.0101 | 0.8722 | - |
17.6548 | 20250 | 0.0009 | 0.0100 | 0.8710 | - |
17.8727 | 20500 | 0.001 | 0.0101 | 0.8719 | - |
18.0907 | 20750 | 0.0009 | 0.0100 | 0.8728 | - |
18.3086 | 21000 | 0.0009 | 0.0100 | 0.8738 | - |
18.5266 | 21250 | 0.0008 | 0.0100 | 0.8720 | - |
18.7446 | 21500 | 0.0009 | 0.0100 | 0.8731 | - |
18.9625 | 21750 | 0.0009 | 0.0098 | 0.8738 | - |
19.1805 | 22000 | 0.0007 | 0.0100 | 0.8750 | - |
19.3984 | 22250 | 0.0007 | 0.0099 | 0.8730 | - |
19.6164 | 22500 | 0.0007 | 0.0100 | 0.8753 | - |
19.8344 | 22750 | 0.0007 | 0.0099 | 0.8753 | - |
20.0523 | 23000 | 0.0008 | 0.0100 | 0.8755 | - |
20.2703 | 23250 | 0.0006 | 0.0100 | 0.8747 | - |
20.4882 | 23500 | 0.0006 | 0.0101 | 0.8753 | - |
20.7062 | 23750 | 0.0007 | 0.0101 | 0.8738 | - |
20.9241 | 24000 | 0.0007 | 0.0101 | 0.8750 | - |
21.1421 | 24250 | 0.0006 | 0.0101 | 0.8760 | - |
21.3601 | 24500 | 0.0006 | 0.0101 | 0.8753 | - |
21.5780 | 24750 | 0.0006 | 0.0101 | 0.8759 | - |
21.7960 | 25000 | 0.0006 | 0.0100 | 0.8759 | - |
22.0139 | 25250 | 0.0006 | 0.0100 | 0.8762 | - |
22.2319 | 25500 | 0.0005 | 0.0100 | 0.8767 | - |
22.4499 | 25750 | 0.0005 | 0.0100 | 0.8772 | - |
22.6678 | 26000 | 0.0005 | 0.0099 | 0.8771 | - |
22.8858 | 26250 | 0.0005 | 0.0100 | 0.8769 | - |
23.1037 | 26500 | 0.0005 | 0.0100 | 0.8770 | - |
23.3217 | 26750 | 0.0005 | 0.0100 | 0.8769 | - |
23.5397 | 27000 | 0.0004 | 0.0100 | 0.8769 | - |
23.7576 | 27250 | 0.0005 | 0.0100 | 0.8769 | - |
23.9756 | 27500 | 0.0005 | 0.0100 | 0.8770 | - |
24.0 | 27528 | - | - | - | 0.8697 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}