|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:73392 |
|
- loss:CosineSimilarityLoss |
|
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2 |
|
widget: |
|
- source_sentence: Berapa persen kenaikan Indeks Harga Perdagangan Besar (IHPB) Umum |
|
Nasional pada bulan April 2021? |
|
sentences: |
|
- Statistik Kriminal 2023 |
|
- Ekonomi Indonesia Triwulan I-2021 turun 0,74 persen (y-on-y) |
|
- Survei Biaya Hidup (SBH) 2018 Ambon dan Tual |
|
- source_sentence: Usaha pertanian sampingan di Indonesia tahun 2022 |
|
sentences: |
|
- Analisis Hasil Survei Dampak Covid-19 Terhadap Pelaku Usaha |
|
- Direktori Usaha Pertanian Lainnya 2022 |
|
- EksporImpor September 2018 |
|
- source_sentence: Pertumbuhan industri Indonesia 2006-2009 |
|
sentences: |
|
- Pertumbuhan Produksi IBS Triwulan III 2019 Naik 4,35 Persen |
|
- Indikator Ekonomi April 2000 |
|
- Perkembangan Indeks Produksi Industri Besar dan Sedang 2006 - 2009 |
|
- source_sentence: 'Sensus ekonomi Kalbar 2016: data usaha' |
|
sentences: |
|
- Pertumbuhan ekonomi Indonesia tahun 2022 |
|
- Buletin Statistik Perdagangan Luar Negeri Impor November 2017 |
|
- Data jumlah wisatawan mancanegara 2019 |
|
- source_sentence: Direktori perusahaan pengelola hutan 2015 |
|
sentences: |
|
- Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok Komoditi dan |
|
Negara, April 2017 |
|
- Direktori Perusahaan Kehutanan 2015 |
|
- Indeks Pembangunan Manusia (IPM) Indonesia tahun 2024 mencapai 75,02, meningkat |
|
0,63 poin atau 0,85 persen dibandingkan tahun sebelumnya yang sebesar 74,39. |
|
datasets: |
|
- yahyaabd/bps-semantic-pairs-synthetic-dataset-v1 |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: allstats semantic mpnet v1 eval |
|
type: allstats-semantic-mpnet-v1-eval |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9721680353379998 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8769707416598509 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: allstat semantic mpnet v1 test |
|
type: allstat-semantic-mpnet-v1-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9714701009323166 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8696530606326947 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [bps-semantic-pairs-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/bps-semantic-pairs-synthetic-dataset-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [bps-semantic-pairs-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/bps-semantic-pairs-synthetic-dataset-v1) |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("yahyaabd/allstats-semantic-mpnet-v1") |
|
# Run inference |
|
sentences = [ |
|
'Direktori perusahaan pengelola hutan 2015', |
|
'Direktori Perusahaan Kehutanan 2015', |
|
'Indeks Pembangunan Manusia (IPM) Indonesia tahun 2024 mencapai 75,02, meningkat 0,63 poin atau 0,85 persen dibandingkan tahun sebelumnya yang sebesar 74,39.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Datasets: `allstats-semantic-mpnet-v1-eval` and `allstat-semantic-mpnet-v1-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | allstats-semantic-mpnet-v1-eval | allstat-semantic-mpnet-v1-test | |
|
|:--------------------|:--------------------------------|:-------------------------------| |
|
| pearson_cosine | 0.9722 | 0.9715 | |
|
| **spearman_cosine** | **0.877** | **0.8697** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### bps-semantic-pairs-synthetic-dataset-v1 |
|
|
|
* Dataset: [bps-semantic-pairs-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/bps-semantic-pairs-synthetic-dataset-v1) at [6656af9](https://huggingface.co/datasets/yahyaabd/bps-semantic-pairs-synthetic-dataset-v1/tree/6656af9b517b88dc1445ccd85e5fa78bd07b08d1) |
|
* Size: 73,392 training samples |
|
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | doc | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 11.28 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.71 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.48</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| query | doc | label | |
|
|:-----------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------| |
|
| <code>Data bisnis Kalbar sensus 2016</code> | <code>Indikator Ekonomi Oktober 2012</code> | <code>0.1</code> | |
|
| <code>Informasi tentang pola pengeluaran masyarakat Bengkulu berdasarkan kelompok pendapatan?</code> | <code>Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Bengkulu, 2018-2023</code> | <code>0.88</code> | |
|
| <code>Laopran keuagnan lmebaga non proft 20112-013</code> | <code>Neraca Lembaga Non Profit yang Melayani Rumah Tangga 2011-2013</code> | <code>0.93</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### bps-semantic-pairs-synthetic-dataset-v1 |
|
|
|
* Dataset: [bps-semantic-pairs-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/bps-semantic-pairs-synthetic-dataset-v1) at [6656af9](https://huggingface.co/datasets/yahyaabd/bps-semantic-pairs-synthetic-dataset-v1/tree/6656af9b517b88dc1445ccd85e5fa78bd07b08d1) |
|
* Size: 15,726 evaluation samples |
|
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | doc | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 11.52 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.38 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| query | doc | label | |
|
|:-----------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:------------------| |
|
| <code>Data transportasi bulan Februari 2021</code> | <code>Tenaga Kerja Februari 2023</code> | <code>0.08</code> | |
|
| <code>Sebear berspa prrsen eknaikan Inseks Hraga Predagangan eBsar (IHB) Umym Nasiona di aMret 202?</code> | <code>Maret 2020, Indeks Harga Perdagangan Besar (IHPB) Umum Nasional naik 0,10 persen</code> | <code>1.0</code> | |
|
| <code>Data ekspor dan moda transportasi tahun 2018-2019</code> | <code>Indikator Pasar Tenaga Kerja Indonesia Agustus 2012</code> | <code>0.08</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `num_train_epochs`: 24 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `dataloader_num_workers`: 4 |
|
- `load_best_model_at_end`: True |
|
- `label_smoothing_factor`: 0.01 |
|
- `eval_on_start`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 24 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 4 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.01 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: True |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mpnet-v1-eval_spearman_cosine | allstat-semantic-mpnet-v1-test_spearman_cosine | |
|
|:-----------:|:---------:|:-------------:|:---------------:|:-----------------------------------------------:|:----------------------------------------------:| |
|
| 0 | 0 | - | 0.1031 | 0.6244 | - | |
|
| 0.2180 | 250 | 0.064 | 0.0413 | 0.6958 | - | |
|
| 0.4359 | 500 | 0.0381 | 0.0305 | 0.7301 | - | |
|
| 0.6539 | 750 | 0.0284 | 0.0243 | 0.7651 | - | |
|
| 0.8718 | 1000 | 0.025 | 0.0213 | 0.7656 | - | |
|
| 1.0898 | 1250 | 0.0207 | 0.0201 | 0.7822 | - | |
|
| 1.3078 | 1500 | 0.0188 | 0.0194 | 0.7805 | - | |
|
| 1.5257 | 1750 | 0.0182 | 0.0177 | 0.7918 | - | |
|
| 1.7437 | 2000 | 0.0177 | 0.0168 | 0.8098 | - | |
|
| 1.9616 | 2250 | 0.0173 | 0.0173 | 0.7979 | - | |
|
| 2.1796 | 2500 | 0.0151 | 0.0174 | 0.8010 | - | |
|
| 2.3976 | 2750 | 0.014 | 0.0163 | 0.8005 | - | |
|
| 2.6155 | 3000 | 0.0142 | 0.0159 | 0.8027 | - | |
|
| 2.8335 | 3250 | 0.0137 | 0.0154 | 0.8074 | - | |
|
| 3.0514 | 3500 | 0.013 | 0.0146 | 0.8173 | - | |
|
| 3.2694 | 3750 | 0.0099 | 0.0138 | 0.8179 | - | |
|
| 3.4874 | 4000 | 0.0105 | 0.0135 | 0.8138 | - | |
|
| 3.7053 | 4250 | 0.0109 | 0.0145 | 0.8138 | - | |
|
| 3.9233 | 4500 | 0.011 | 0.0145 | 0.8244 | - | |
|
| 4.1412 | 4750 | 0.0086 | 0.0132 | 0.8327 | - | |
|
| 4.3592 | 5000 | 0.0077 | 0.0129 | 0.8307 | - | |
|
| 4.5772 | 5250 | 0.0081 | 0.0124 | 0.8380 | - | |
|
| 4.7951 | 5500 | 0.0087 | 0.0128 | 0.8358 | - | |
|
| 5.0131 | 5750 | 0.0076 | 0.0135 | 0.8280 | - | |
|
| 5.2310 | 6000 | 0.0061 | 0.0122 | 0.8399 | - | |
|
| 5.4490 | 6250 | 0.0062 | 0.0119 | 0.8344 | - | |
|
| 5.6670 | 6500 | 0.007 | 0.0113 | 0.8432 | - | |
|
| 5.8849 | 6750 | 0.0069 | 0.0117 | 0.8353 | - | |
|
| 6.1029 | 7000 | 0.0056 | 0.0117 | 0.8333 | - | |
|
| 6.3208 | 7250 | 0.0047 | 0.0114 | 0.8438 | - | |
|
| 6.5388 | 7500 | 0.0059 | 0.0114 | 0.8429 | - | |
|
| 6.7568 | 7750 | 0.0054 | 0.0113 | 0.8452 | - | |
|
| 6.9747 | 8000 | 0.0059 | 0.0118 | 0.8477 | - | |
|
| 7.1927 | 8250 | 0.0045 | 0.0109 | 0.8474 | - | |
|
| 7.4106 | 8500 | 0.0042 | 0.0111 | 0.8532 | - | |
|
| 7.6286 | 8750 | 0.0045 | 0.0114 | 0.8385 | - | |
|
| 7.8466 | 9000 | 0.005 | 0.0111 | 0.8502 | - | |
|
| 8.0645 | 9250 | 0.0045 | 0.0111 | 0.8496 | - | |
|
| 8.2825 | 9500 | 0.0035 | 0.0109 | 0.8490 | - | |
|
| 8.5004 | 9750 | 0.0038 | 0.0112 | 0.8519 | - | |
|
| 8.7184 | 10000 | 0.0038 | 0.0112 | 0.8463 | - | |
|
| 8.9364 | 10250 | 0.0039 | 0.0109 | 0.8556 | - | |
|
| 9.1543 | 10500 | 0.0035 | 0.0110 | 0.8534 | - | |
|
| 9.3723 | 10750 | 0.003 | 0.0111 | 0.8525 | - | |
|
| 9.5902 | 11000 | 0.0039 | 0.0108 | 0.8593 | - | |
|
| 9.8082 | 11250 | 0.0038 | 0.0112 | 0.8537 | - | |
|
| 10.0262 | 11500 | 0.0033 | 0.0108 | 0.8553 | - | |
|
| 10.2441 | 11750 | 0.0023 | 0.0104 | 0.8601 | - | |
|
| 10.4621 | 12000 | 0.0025 | 0.0104 | 0.8571 | - | |
|
| 10.6800 | 12250 | 0.0026 | 0.0106 | 0.8594 | - | |
|
| 10.8980 | 12500 | 0.0026 | 0.0106 | 0.8627 | - | |
|
| 11.1160 | 12750 | 0.0024 | 0.0105 | 0.8623 | - | |
|
| 11.3339 | 13000 | 0.002 | 0.0104 | 0.8614 | - | |
|
| 11.5519 | 13250 | 0.0021 | 0.0103 | 0.8622 | - | |
|
| 11.7698 | 13500 | 0.0025 | 0.0106 | 0.8580 | - | |
|
| 11.9878 | 13750 | 0.0023 | 0.0108 | 0.8613 | - | |
|
| 12.2058 | 14000 | 0.0019 | 0.0106 | 0.8618 | - | |
|
| 12.4237 | 14250 | 0.0017 | 0.0104 | 0.8641 | - | |
|
| 12.6417 | 14500 | 0.0019 | 0.0103 | 0.8620 | - | |
|
| 12.8596 | 14750 | 0.002 | 0.0104 | 0.8649 | - | |
|
| 13.0776 | 15000 | 0.002 | 0.0102 | 0.8620 | - | |
|
| 13.2956 | 15250 | 0.0014 | 0.0103 | 0.8631 | - | |
|
| 13.5135 | 15500 | 0.0018 | 0.0104 | 0.8635 | - | |
|
| 13.7315 | 15750 | 0.0018 | 0.0102 | 0.8661 | - | |
|
| 13.9494 | 16000 | 0.0018 | 0.0104 | 0.8683 | - | |
|
| 14.1674 | 16250 | 0.0014 | 0.0104 | 0.8691 | - | |
|
| 14.3854 | 16500 | 0.0014 | 0.0103 | 0.8668 | - | |
|
| 14.6033 | 16750 | 0.0015 | 0.0102 | 0.8673 | - | |
|
| 14.8213 | 17000 | 0.0016 | 0.0102 | 0.8679 | - | |
|
| 15.0392 | 17250 | 0.0016 | 0.0101 | 0.8688 | - | |
|
| 15.2572 | 17500 | 0.0012 | 0.0102 | 0.8676 | - | |
|
| 15.4752 | 17750 | 0.0012 | 0.0102 | 0.8712 | - | |
|
| 15.6931 | 18000 | 0.0014 | 0.0102 | 0.8702 | - | |
|
| 15.9111 | 18250 | 0.0013 | 0.0101 | 0.8718 | - | |
|
| 16.1290 | 18500 | 0.0011 | 0.0100 | 0.8727 | - | |
|
| 16.3470 | 18750 | 0.001 | 0.0101 | 0.8729 | - | |
|
| 16.5650 | 19000 | 0.0012 | 0.0099 | 0.8714 | - | |
|
| 16.7829 | 19250 | 0.0011 | 0.0101 | 0.8723 | - | |
|
| 17.0009 | 19500 | 0.0012 | 0.0101 | 0.8679 | - | |
|
| 17.2188 | 19750 | 0.0009 | 0.0103 | 0.8706 | - | |
|
| 17.4368 | 20000 | 0.0009 | 0.0101 | 0.8722 | - | |
|
| 17.6548 | 20250 | 0.0009 | 0.0100 | 0.8710 | - | |
|
| 17.8727 | 20500 | 0.001 | 0.0101 | 0.8719 | - | |
|
| 18.0907 | 20750 | 0.0009 | 0.0100 | 0.8728 | - | |
|
| 18.3086 | 21000 | 0.0009 | 0.0100 | 0.8738 | - | |
|
| 18.5266 | 21250 | 0.0008 | 0.0100 | 0.8720 | - | |
|
| 18.7446 | 21500 | 0.0009 | 0.0100 | 0.8731 | - | |
|
| **18.9625** | **21750** | **0.0009** | **0.0098** | **0.8738** | **-** | |
|
| 19.1805 | 22000 | 0.0007 | 0.0100 | 0.8750 | - | |
|
| 19.3984 | 22250 | 0.0007 | 0.0099 | 0.8730 | - | |
|
| 19.6164 | 22500 | 0.0007 | 0.0100 | 0.8753 | - | |
|
| 19.8344 | 22750 | 0.0007 | 0.0099 | 0.8753 | - | |
|
| 20.0523 | 23000 | 0.0008 | 0.0100 | 0.8755 | - | |
|
| 20.2703 | 23250 | 0.0006 | 0.0100 | 0.8747 | - | |
|
| 20.4882 | 23500 | 0.0006 | 0.0101 | 0.8753 | - | |
|
| 20.7062 | 23750 | 0.0007 | 0.0101 | 0.8738 | - | |
|
| 20.9241 | 24000 | 0.0007 | 0.0101 | 0.8750 | - | |
|
| 21.1421 | 24250 | 0.0006 | 0.0101 | 0.8760 | - | |
|
| 21.3601 | 24500 | 0.0006 | 0.0101 | 0.8753 | - | |
|
| 21.5780 | 24750 | 0.0006 | 0.0101 | 0.8759 | - | |
|
| 21.7960 | 25000 | 0.0006 | 0.0100 | 0.8759 | - | |
|
| 22.0139 | 25250 | 0.0006 | 0.0100 | 0.8762 | - | |
|
| 22.2319 | 25500 | 0.0005 | 0.0100 | 0.8767 | - | |
|
| 22.4499 | 25750 | 0.0005 | 0.0100 | 0.8772 | - | |
|
| 22.6678 | 26000 | 0.0005 | 0.0099 | 0.8771 | - | |
|
| 22.8858 | 26250 | 0.0005 | 0.0100 | 0.8769 | - | |
|
| 23.1037 | 26500 | 0.0005 | 0.0100 | 0.8770 | - | |
|
| 23.3217 | 26750 | 0.0005 | 0.0100 | 0.8769 | - | |
|
| 23.5397 | 27000 | 0.0004 | 0.0100 | 0.8769 | - | |
|
| 23.7576 | 27250 | 0.0005 | 0.0100 | 0.8769 | - | |
|
| 23.9756 | 27500 | 0.0005 | 0.0100 | 0.8770 | - | |
|
| 24.0 | 27528 | - | - | - | 0.8697 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.47.1 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.2.1 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |