|
|
|
--- |
|
language: en |
|
tags: |
|
- image-classification |
|
- ai-detection |
|
- vit |
|
license: mit |
|
--- |
|
|
|
# AI Image Detector |
|
|
|
## Model Description |
|
This model is designed to detect whether an image is real or AI-generated. It uses Vision Transformer (ViT) architecture to provide accurate classification. |
|
|
|
## Model Usage |
|
```python |
|
from transformers import ViTImageProcessor, ViTForImageClassification |
|
from PIL import Image |
|
import torch |
|
|
|
# تحميل النموذج والمعالج |
|
processor = ViTImageProcessor.from_pretrained("C:/Users/SUPREME TECH/Desktop/SAM3/ai-image-detector") |
|
model = ViTForImageClassification.from_pretrained("C:/Users/SUPREME TECH/Desktop/SAM3/ai-image-detector") |
|
|
|
def detect_image(image_path): |
|
# فتح وتجهيز الصورة |
|
image = Image.open(image_path) |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
|
|
# معالجة الصورة |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
# الحصول على التنبؤات |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
predictions = outputs.logits.softmax(dim=-1) |
|
|
|
# تحليل النتائج |
|
scores = predictions[0].tolist() |
|
results = [ |
|
{"label": "REAL", "score": scores[0]}, |
|
{"label": "FAKE", "score": scores[1]} |
|
] |
|
|
|
# ترتيب النتائج حسب درجة الثقة |
|
results.sort(key=lambda x: x["score"], reverse=True) |
|
|
|
return { |
|
"prediction": results[0]["label"], |
|
"confidence": f"{results[0]['score']*100:.2f}%", |
|
"detailed_scores": [ |
|
f"{r['label']}: {r['score']*100:.2f}%" |
|
for r in results |
|
] |
|
} |
|
|
|
# كود للاختبار |
|
if __name__ == "__main__": |
|
# يمكنك تغيير مسار الصورة هنا |
|
image_path = "path/to/your/image.jpg" |
|
|
|
try: |
|
result = detect_image(image_path) |
|
print("\nنتائج تحليل الصورة:") |
|
print(f"التصنيف: {result['prediction']}") |
|
print(f"درجة الثقة: {result['confidence']}") |
|
print("\nالتفاصيل:") |
|
for score in result['detailed_scores']: |
|
print(f"- {score}") |
|
|
|
except Exception as e: |
|
print(f"حدث خطأ: {str(e)}") |
|
``` |
|
|
|
## Classes |
|
The model classifies images into two categories: |
|
|
|
- **Real Image (0)**: The image is real and not AI-generated. |
|
- **AI Generated (1)**: The image is generated by AI. |
|
|
|
## Technical Details |
|
- **Model Architecture**: Vision Transformer (ViT) |
|
- **Input**: Images (RGB) |
|
- **Output**: Binary classification with confidence score |
|
- **Max Image Size**: 224x224 (automatically resized) |
|
|
|
## Requirements |
|
- `transformers>=4.30.0` |
|
- `torch>=2.0.0` |
|
- `Pillow>=9.0.0` |
|
|
|
## Limitations |
|
- Best performance with clear, high-quality images. |
|
- May have reduced accuracy with heavily edited photos. |
|
- Designed for general image detection. |
|
|
|
## Web Integration Example |
|
```javascript |
|
async function detectImage(imageFile) { |
|
const formData = new FormData(); |
|
formData.append('image', imageFile); |
|
|
|
const response = await fetch('YOUR_API_ENDPOINT', { |
|
method: 'POST', |
|
body: formData |
|
}); |
|
|
|
return await response.json(); |
|
} |
|
``` |
|
|
|
## Developer |
|
- **Created by**: yaya36095 |
|
- **License**: MIT |
|
- **Repository**: [https://huggingface.co/yaya36095/ai-image-detector](https://huggingface.co/yaya36095/ai-image-detector) |
|
|