|
--- |
|
language: |
|
- zh |
|
tags: |
|
- bert |
|
- financial-sentiment-analysis |
|
- sentiment-analysis |
|
license: "apache-2.0" |
|
widget: |
|
- text: "此外宁德时代上半年实现出口约2GWh,同比增加200%+。" |
|
|
|
--- |
|
|
|
# Financial Sentiment Analysis in Chinese |
|
This is a fine-tuned version of FinBERT, based on [bert-base-chinese](https://huggingface.co/bert-base-chinese), on a private dataset (around ~8k analyst report sentences) for sentiment analysis. |
|
|
|
* Test Accuracy = 0.88 |
|
* Test Macro F1 = 0.87 |
|
* **Labels**: 0 -> Neutral; 1 -> Positive; 2 -> Negative |
|
|
|
# Usage |
|
``` |
|
from transformers import TextClassificationPipeline |
|
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer |
|
from transformers import BertTokenizerFast |
|
model_path="./fin_sentiment_bert_zh/" |
|
new_model = AutoModelForSequenceClassification.from_pretrained(model_path,output_attentions=True) |
|
tokenizer = BertTokenizerFast.from_pretrained(model_path) |
|
PipelineInterface = TextClassificationPipeline(model=new_model, tokenizer=tokenizer, return_all_scores=True) |
|
label = PipelineInterface("此外宁德时代上半年实现出口约2GWh,同比增加200%+。") |
|
print(label) |
|
``` |
|
``` |
|
[[{'label': 'LABEL_0', 'score': 0.0007030126871541142}, {'label': 'LABEL_1', 'score': 0.9989339709281921}, {'label': 'LABEL_2', 'score': 0.000363016442861408}]] |
|
``` |
|
|