metadata
library_name: transformers
tags: []
yokoe/llm-jp-3-13b-finetuned-tengentoppa-ds-wo-unsloth
How to use
import json
import os
from pathlib import Path
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from peft import PeftModel
from tqdm import tqdm
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
'llm-jp/llm-jp-3-13b',
quantization_config=bnb_config,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(
'llm-jp/llm-jp-3-13b',
trust_remote_code=True,
)
model = PeftModel.from_pretrained(
model,
'yokoe/llm-jp-3-13b-finetuned-tengentoppa-ds-wo-unsloth',
)
# 推論対象データのロード
loaded_data = []
with open('./elyza-tasks-100-TV_0.jsonl', 'r') as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
loaded_data.append(json.loads(item))
item = ""
# 推論
results = []
for i, data in enumerate(tqdm(loaded_data)):
input = data["input"]
prompt = f"""### 指示
{input}
### 回答
"""
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
attention_mask = torch.ones_like(tokenized_input)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=1024,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
with open('./elyza-tasks-100-TV_0_preds.jsonl', 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
f.write('\n')