younggi's picture
update model card README.md
7ddec4b
|
raw
history blame
4.45 kB
metadata
license: cc-by-nc-4.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-ucf101-subset
    results: []

videomae-base-finetuned-ucf101-subset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1834
  • Accuracy: 0.9290

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 3750

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2357 0.02 75 2.1952 0.3429
1.8271 1.02 150 1.8570 0.3571
0.8947 2.02 225 0.8397 0.7286
0.5347 3.02 300 0.5632 0.8286
0.4101 4.02 375 0.6908 0.8
0.0855 5.02 450 0.1541 0.9571
0.2286 6.02 525 0.2762 0.9
0.2905 7.02 600 0.2306 0.9
0.0051 8.02 675 0.2054 0.9571
0.1142 9.02 750 0.7049 0.8714
0.0022 10.02 825 0.1919 0.9429
0.0019 11.02 900 0.5478 0.8857
0.0021 12.02 975 0.4232 0.9286
0.0019 13.02 1050 0.5437 0.8857
0.002 14.02 1125 1.0354 0.7857
0.0028 15.02 1200 0.1039 0.9714
0.0013 16.02 1275 0.1552 0.9714
0.2309 17.02 1350 0.2720 0.9286
0.1662 18.02 1425 0.0312 0.9857
0.0199 19.02 1500 0.1478 0.9571
0.001 20.02 1575 0.2189 0.9714
0.0009 21.02 1650 0.1568 0.9714
0.0008 22.02 1725 0.2136 0.9429
0.0007 23.02 1800 0.1032 0.9714
0.0007 24.02 1875 0.1026 0.9714
0.0006 25.02 1950 0.1130 0.9571
0.0006 26.02 2025 0.1147 0.9714
0.0006 27.02 2100 0.0858 0.9857
0.0006 28.02 2175 0.0868 0.9857
0.0006 29.02 2250 0.0880 0.9857
0.0005 30.02 2325 0.0872 0.9857
0.0005 31.02 2400 0.0901 0.9857
0.0005 32.02 2475 0.0894 0.9857
0.0005 33.02 2550 0.0858 0.9857
0.0005 34.02 2625 0.0912 0.9857
0.0005 35.02 2700 0.3303 0.9429
0.0004 36.02 2775 0.1737 0.9429
0.0004 37.02 2850 0.1534 0.9714
0.0004 38.02 2925 0.1350 0.9714
0.0004 39.02 3000 0.1270 0.9714
0.0004 40.02 3075 0.1253 0.9714
0.0004 41.02 3150 0.1241 0.9714
0.0004 42.02 3225 0.1247 0.9714
0.0004 43.02 3300 0.1262 0.9714
0.0004 44.02 3375 0.1266 0.9571
0.0004 45.02 3450 0.1741 0.9714
0.0004 46.02 3525 0.1753 0.9714
0.0004 47.02 3600 0.1634 0.9714
0.0004 48.02 3675 0.1603 0.9714
0.0004 49.02 3750 0.1602 0.9714

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.8.0+cu111
  • Datasets 2.7.1
  • Tokenizers 0.13.2