younggi's picture
update model card README.md
d82f812
|
raw
history blame
4.45 kB
metadata
license: cc-by-nc-4.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-ucf101-subset
    results: []

videomae-base-finetuned-ucf101-subset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3841
  • Accuracy: 0.8851

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 3750

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.369 0.02 75 2.2216 0.2973
1.8283 1.02 150 1.7584 0.4865
0.8729 2.02 225 1.0192 0.7027
0.4077 3.02 300 0.4849 0.8378
0.3742 4.02 375 0.1344 0.9730
0.094 5.02 450 0.2449 0.8919
0.1005 6.02 525 1.0794 0.7838
0.0053 7.02 600 0.2364 0.9459
0.0807 8.02 675 0.6659 0.8378
0.0031 9.02 750 0.4496 0.9189
0.0203 10.02 825 0.3399 0.9189
0.0093 11.02 900 0.3725 0.9459
0.0022 12.02 975 0.5498 0.9189
0.0017 13.02 1050 0.1698 0.9730
0.0014 14.02 1125 0.1923 0.9459
0.0014 15.02 1200 0.1571 0.9730
0.0474 16.02 1275 0.5193 0.8919
0.0011 17.02 1350 0.1408 0.9730
0.001 18.02 1425 0.3406 0.9459
0.0034 19.02 1500 0.2516 0.9459
0.0029 20.02 1575 0.2962 0.9189
0.0008 21.02 1650 0.4024 0.9189
0.0008 22.02 1725 0.4644 0.9189
0.1521 23.02 1800 0.4825 0.9189
0.001 24.02 1875 0.6340 0.9189
0.0245 25.02 1950 0.3779 0.9459
0.0007 26.02 2025 0.3376 0.9459
0.0011 27.02 2100 0.2833 0.9459
0.0008 28.02 2175 0.1593 0.9730
0.0008 29.02 2250 0.0856 0.9730
0.0005 30.02 2325 0.1049 0.9730
0.0005 31.02 2400 0.1132 0.9730
0.0005 32.02 2475 0.1164 0.9730
0.0005 33.02 2550 0.1243 0.9730
0.0005 34.02 2625 0.1306 0.9730
0.0005 35.02 2700 0.3919 0.9459
0.0004 36.02 2775 0.3630 0.9459
0.0004 37.02 2850 0.2762 0.9459
0.0005 38.02 2925 0.2368 0.9459
0.0004 39.02 3000 0.1935 0.9730
0.0004 40.02 3075 0.1931 0.9730
0.0004 41.02 3150 0.2139 0.9459
0.0004 42.02 3225 0.1900 0.9730
0.0006 43.02 3300 0.1751 0.9730
0.0004 44.02 3375 0.2978 0.9459
0.0004 45.02 3450 0.2777 0.9459
0.0004 46.02 3525 0.2706 0.9459
0.0004 47.02 3600 0.2638 0.9459
0.0004 48.02 3675 0.2123 0.9459
0.0004 49.02 3750 0.2106 0.9459

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.8.0+cu111
  • Datasets 2.7.1
  • Tokenizers 0.13.2