metadata
license: mit
datasets:
- Xmaster6y/stockfish-debug
name: Xmaster6y/gpt2-stockfish-debug
results:
- task: train
metrics:
- name: train-loss
type: loss
value: 0.151
verified: false
- name: eval-loss
type: loss
value: 0.138
verified: false
widget:
- text: |-
FEN: rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1
MOVE:
example_title: Init Board
- text: |-
FEN: r2q1rk1/1p3ppp/4bb2/p2p4/5B2/1P1P4/1PPQ1PPP/R3R1K1 w - - 1 17
MOVE:
example_title: Middle Board
- text: |-
FEN: 4r1k1/1p1b1ppp/8/8/3P4/2P5/1q3PPP/6K1 b - - 0 28
MOVE:
example_title: Checkmate Possible
Model Card for gpt2-stockfish-debug
See my blog post for additional details.
Training Details
The model was trained during 1 epoch on the Xmaster6y/stockfish-debug dataset (no hyperparameter tuning done). The samples are:
{"prompt":"FEN: {fen}\nMOVE:", "completion": " {move}"}
Two possible simple extensions:
- Expand the FEN string:
r2qk3/...
->r11qk111/...
or equivalent - Condition with the result (ELO not available in the dataset):
{"prompt":"RES: {res}\nFEN: {fen}\nMOVE:", "completion": " {move}"}
Use the Model
The following code requires python-chess
(in addition to transformers
) which you can install using pip install python-chess
.
import chess
from transformers import AutoModelForCausalLM, AutoTokenizer
def next_move(model, tokenizer, fen):
input_ids = tokenizer(f"FEN: {fen}\nMOVE:", return_tensors="pt")
input_ids = {k: v.to(model.device) for k, v in input_ids.items()}
out = model.generate(
**input_ids,
max_new_tokens=10,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
temperature=0.1,
)
out_str = tokenizer.batch_decode(out)[0]
return out_str.split("MOVE:")[-1].replace("<|endoftext|>", "").strip()
board = chess.Board()
model = AutoModelForCausalLM.from_pretrained("Xmaster6y/gpt2-stockfish-debug")
tokenizer = AutoTokenizer.from_pretrained("Xmaster6y/gpt2-stockfish-debug") # or "gpt2"
tokenizer.pad_token = tokenizer.eos_token
for i in range(100):
fen = board.fen()
move_uci = next_move(model, tokenizer, fen)
try:
print(move_uci)
move = chess.Move.from_uci(move_uci)
if move not in board.legal_moves:
raise chess.IllegalMoveError
board.push(move)
outcome = board.outcome()
if outcome is not None:
print(board)
print(outcome.result())
break
except chess.IllegalMoveError:
print(board)
print("Illegal move", i)
break
else:
print(board)