finetuned-FER2013 / README.md
3una's picture
Model save
f3fbb51
|
raw
history blame
3.02 kB
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: finetuned-FER2013
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6788575409265064

finetuned-FER2013

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8812
  • Accuracy: 0.6789

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5466 1.0 202 1.5022 0.4500
1.3372 2.0 404 1.1727 0.5632
1.2372 3.0 606 1.0636 0.6075
1.2096 4.0 808 1.0200 0.6116
1.145 5.0 1010 0.9769 0.6325
1.1589 6.0 1212 0.9515 0.6405
1.0752 7.0 1414 0.9395 0.6458
1.0524 8.0 1616 0.9331 0.6458
1.0829 9.0 1818 0.9173 0.6573
1.0219 10.0 2020 0.9114 0.6597
0.9986 11.0 2222 0.9034 0.6580
1.013 12.0 2424 0.9004 0.6656
1.0133 13.0 2626 0.8940 0.6628
1.0064 14.0 2828 0.8916 0.6649
0.9858 15.0 3030 0.8882 0.6733
0.9863 16.0 3232 0.8850 0.6740
1.0058 17.0 3434 0.8856 0.6747
0.9637 18.0 3636 0.8852 0.6722
0.9803 19.0 3838 0.8829 0.6754
0.9356 20.0 4040 0.8812 0.6789

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0