|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: finetuned-FER2013 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6788575409265064 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# finetuned-FER2013 |
|
|
|
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8812 |
|
- Accuracy: 0.6789 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 1.5466 | 1.0 | 202 | 1.5022 | 0.4500 | |
|
| 1.3372 | 2.0 | 404 | 1.1727 | 0.5632 | |
|
| 1.2372 | 3.0 | 606 | 1.0636 | 0.6075 | |
|
| 1.2096 | 4.0 | 808 | 1.0200 | 0.6116 | |
|
| 1.145 | 5.0 | 1010 | 0.9769 | 0.6325 | |
|
| 1.1589 | 6.0 | 1212 | 0.9515 | 0.6405 | |
|
| 1.0752 | 7.0 | 1414 | 0.9395 | 0.6458 | |
|
| 1.0524 | 8.0 | 1616 | 0.9331 | 0.6458 | |
|
| 1.0829 | 9.0 | 1818 | 0.9173 | 0.6573 | |
|
| 1.0219 | 10.0 | 2020 | 0.9114 | 0.6597 | |
|
| 0.9986 | 11.0 | 2222 | 0.9034 | 0.6580 | |
|
| 1.013 | 12.0 | 2424 | 0.9004 | 0.6656 | |
|
| 1.0133 | 13.0 | 2626 | 0.8940 | 0.6628 | |
|
| 1.0064 | 14.0 | 2828 | 0.8916 | 0.6649 | |
|
| 0.9858 | 15.0 | 3030 | 0.8882 | 0.6733 | |
|
| 0.9863 | 16.0 | 3232 | 0.8850 | 0.6740 | |
|
| 1.0058 | 17.0 | 3434 | 0.8856 | 0.6747 | |
|
| 0.9637 | 18.0 | 3636 | 0.8852 | 0.6722 | |
|
| 0.9803 | 19.0 | 3838 | 0.8829 | 0.6754 | |
|
| 0.9356 | 20.0 | 4040 | 0.8812 | 0.6789 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|