|
|
|
--- |
|
tags: |
|
- bertopic |
|
library_name: bertopic |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# MARTINI_enrich_BERTopic_awakenedworlduk |
|
|
|
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. |
|
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. |
|
|
|
## Usage |
|
|
|
To use this model, please install BERTopic: |
|
|
|
``` |
|
pip install -U bertopic |
|
``` |
|
|
|
You can use the model as follows: |
|
|
|
```python |
|
from bertopic import BERTopic |
|
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_awakenedworlduk") |
|
|
|
topic_model.get_topic_info() |
|
``` |
|
|
|
## Topic overview |
|
|
|
* Number of topics: 17 |
|
* Number of training documents: 1610 |
|
|
|
<details> |
|
<summary>Click here for an overview of all topics.</summary> |
|
|
|
| Topic ID | Topic Keywords | Topic Frequency | Label | |
|
|----------|----------------|-----------------|-------| |
|
| -1 | trauma - eyes - dr - helps - everyone | 20 | -1_trauma_eyes_dr_helps | |
|
| 0 | vaccinated - pfizer - jabs - monkeypox - mandates | 882 | 0_vaccinated_pfizer_jabs_monkeypox | |
|
| 1 | canning - pantry - cooker - survival - lentils | 151 | 1_canning_pantry_cooker_survival | |
|
| 2 | awakening - consciousness - souls - reality - darkness | 76 | 2_awakening_consciousness_souls_reality | |
|
| 3 | safeguarding - abused - offences - chancellor - libraries | 54 | 3_safeguarding_abused_offences_chancellor | |
|
| 4 | brainwashed - bonkers - watched - sovereign - cnn | 49 | 4_brainwashed_bonkers_watched_sovereign | |
|
| 5 | channel - banned - subscribers - awakened - lol | 49 | 5_channel_banned_subscribers_awakened | |
|
| 6 | mugwort - echinacea - tinctures - antioxidants - medicinal | 47 | 6_mugwort_echinacea_tinctures_antioxidants | |
|
| 7 | vegetables - cabbages - radishes - lettuces - sowing | 39 | 7_vegetables_cabbages_radishes_lettuces | |
|
| 8 | ukraine - shortages - petrol - skyrocketing - electricity | 38 | 8_ukraine_shortages_petrol_skyrocketing | |
|
| 9 | methylfolate - statins - niacin - magnesium - mitochondria | 37 | 9_methylfolate_statins_niacin_magnesium | |
|
| 10 | toothpaste - shampoo - rinse - peppermint - ingredients | 34 | 10_toothpaste_shampoo_rinse_peppermint | |
|
| 11 | nhs - carers - euthanasia - consent - mca | 30 | 11_nhs_carers_euthanasia_consent | |
|
| 12 | transglutaminase - additives - carcinogenic - meat - benzalkonium | 29 | 12_transglutaminase_additives_carcinogenic_meat | |
|
| 13 | savetheseeds - gmo - allotment - farmers - shropshire | 29 | 13_savetheseeds_gmo_allotment_farmers | |
|
| 14 | kwh - gas - charges - october - suppliers | 25 | 14_kwh_gas_charges_october | |
|
| 15 | propolis - antimicrobial - ointment - wound - candida | 21 | 15_propolis_antimicrobial_ointment_wound | |
|
|
|
</details> |
|
|
|
## Training hyperparameters |
|
|
|
* calculate_probabilities: True |
|
* language: None |
|
* low_memory: False |
|
* min_topic_size: 10 |
|
* n_gram_range: (1, 1) |
|
* nr_topics: None |
|
* seed_topic_list: None |
|
* top_n_words: 10 |
|
* verbose: False |
|
* zeroshot_min_similarity: 0.7 |
|
* zeroshot_topic_list: None |
|
|
|
## Framework versions |
|
|
|
* Numpy: 1.26.4 |
|
* HDBSCAN: 0.8.40 |
|
* UMAP: 0.5.7 |
|
* Pandas: 2.2.3 |
|
* Scikit-Learn: 1.5.2 |
|
* Sentence-transformers: 3.3.1 |
|
* Transformers: 4.46.3 |
|
* Numba: 0.60.0 |
|
* Plotly: 5.24.1 |
|
* Python: 3.10.12 |
|
|