lettuce-npk-vit / README.md
AbdoulayeDIOP's picture
End of training
1b88803 verified
|
raw
history blame
3.21 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: lettuce-npk-vit
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8095238095238095

Visualize in Weights & Biases Visualize in Weights & Biases

lettuce-npk-vit

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7449
  • Accuracy: 0.8095

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.7273 2 1.3774 0.2143
No log 1.8182 5 1.2738 0.4524
No log 2.9091 8 1.1874 0.6190
1.2511 4.0 11 1.1162 0.7619
1.2511 4.7273 13 1.0780 0.7143
1.2511 5.8182 16 1.0037 0.7857
1.2511 6.9091 19 0.9342 0.8095
0.9308 8.0 22 0.8653 0.8095
0.9308 8.7273 24 0.8485 0.8095
0.9308 9.8182 27 0.8264 0.8333
0.7204 10.9091 30 0.8243 0.7857
0.7204 12.0 33 0.7299 0.8571
0.7204 12.7273 35 0.7376 0.8095
0.7204 13.8182 38 0.7358 0.8333
0.6101 14.5455 40 0.7449 0.8095

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1