nlp_1 / README.md
BDAIO's picture
End of training
87aaad1 verified
metadata
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: nlp_1
    results: []

nlp_1

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4215
  • Accuracy: 0.9037
  • Precision: 0.8944
  • Recall: 0.9025
  • F1: 0.8968

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.3252 1.0 48 0.4194 0.8670 0.8671 0.8619 0.8617
0.1803 2.0 96 0.3779 0.8853 0.8807 0.8788 0.8773
0.1713 3.0 144 0.4097 0.8945 0.8864 0.8924 0.8857
0.1359 4.0 192 0.4012 0.8945 0.8919 0.8841 0.8873
0.1201 5.0 240 0.3770 0.8899 0.8809 0.8876 0.8818
0.0735 6.0 288 0.4204 0.8991 0.8934 0.8975 0.8921
0.0807 7.0 336 0.4092 0.9083 0.9059 0.9020 0.9024
0.1066 8.0 384 0.4181 0.8991 0.8894 0.8928 0.8903
0.0615 9.0 432 0.4212 0.9083 0.8988 0.9066 0.9014
0.071 10.0 480 0.4215 0.9037 0.8944 0.9025 0.8968

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1