|
--- |
|
license: apache-2.0 |
|
base_model: google-bert/bert-base-multilingual-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: nlp_1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# nlp_1 |
|
|
|
This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4215 |
|
- Accuracy: 0.9037 |
|
- Precision: 0.8944 |
|
- Recall: 0.9025 |
|
- F1: 0.8968 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.3252 | 1.0 | 48 | 0.4194 | 0.8670 | 0.8671 | 0.8619 | 0.8617 | |
|
| 0.1803 | 2.0 | 96 | 0.3779 | 0.8853 | 0.8807 | 0.8788 | 0.8773 | |
|
| 0.1713 | 3.0 | 144 | 0.4097 | 0.8945 | 0.8864 | 0.8924 | 0.8857 | |
|
| 0.1359 | 4.0 | 192 | 0.4012 | 0.8945 | 0.8919 | 0.8841 | 0.8873 | |
|
| 0.1201 | 5.0 | 240 | 0.3770 | 0.8899 | 0.8809 | 0.8876 | 0.8818 | |
|
| 0.0735 | 6.0 | 288 | 0.4204 | 0.8991 | 0.8934 | 0.8975 | 0.8921 | |
|
| 0.0807 | 7.0 | 336 | 0.4092 | 0.9083 | 0.9059 | 0.9020 | 0.9024 | |
|
| 0.1066 | 8.0 | 384 | 0.4181 | 0.8991 | 0.8894 | 0.8928 | 0.8903 | |
|
| 0.0615 | 9.0 | 432 | 0.4212 | 0.9083 | 0.8988 | 0.9066 | 0.9014 | |
|
| 0.071 | 10.0 | 480 | 0.4215 | 0.9037 | 0.8944 | 0.9025 | 0.8968 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|