llama-7b-sst-5 / README.md
BayanDuygu's picture
Model save
944c56c verified
metadata
library_name: peft
license: llama3.1
base_model: meta-llama/Llama-3.1-8B-Instruct
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: llama-7b-sst-5
    results: []

llama-7b-sst-5

This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3537
  • Accuracy: 0.4387
  • Precision: 0.4393
  • Recall: 0.4264
  • F1: 0.4300

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.4944 100 1.7838 0.3397 0.3352 0.3371 0.3321
No log 2.9888 200 1.5155 0.3960 0.3916 0.3767 0.3782
No log 4.4794 300 1.4366 0.4169 0.4313 0.4031 0.4106
No log 5.9738 400 1.3832 0.4287 0.4224 0.4207 0.4198
5.8948 7.4644 500 1.3675 0.4369 0.4489 0.4266 0.4345
5.8948 8.9588 600 1.3537 0.4387 0.4393 0.4264 0.4300

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0