|
--- |
|
library_name: peft |
|
license: llama3.1 |
|
base_model: meta-llama/Llama-3.1-8B-Instruct |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: llama-7b-sst-5 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama-7b-sst-5 |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3537 |
|
- Accuracy: 0.4387 |
|
- Precision: 0.4393 |
|
- Recall: 0.4264 |
|
- F1: 0.4300 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| No log | 1.4944 | 100 | 1.7838 | 0.3397 | 0.3352 | 0.3371 | 0.3321 | |
|
| No log | 2.9888 | 200 | 1.5155 | 0.3960 | 0.3916 | 0.3767 | 0.3782 | |
|
| No log | 4.4794 | 300 | 1.4366 | 0.4169 | 0.4313 | 0.4031 | 0.4106 | |
|
| No log | 5.9738 | 400 | 1.3832 | 0.4287 | 0.4224 | 0.4207 | 0.4198 | |
|
| 5.8948 | 7.4644 | 500 | 1.3675 | 0.4369 | 0.4489 | 0.4266 | 0.4345 | |
|
| 5.8948 | 8.9588 | 600 | 1.3537 | 0.4387 | 0.4393 | 0.4264 | 0.4300 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |