layoutlm-funsd / README.md
CengizhanAkbudak's picture
End of training
41c6d47 verified
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1103
  • Answer: {'precision': 0.4171539961013645, 'recall': 0.5290482076637825, 'f1': 0.4664850136239782, 'number': 809}
  • Header: {'precision': 0.26595744680851063, 'recall': 0.21008403361344538, 'f1': 0.23474178403755866, 'number': 119}
  • Question: {'precision': 0.5105058365758754, 'recall': 0.615962441314554, 'f1': 0.5582978723404256, 'number': 1065}
  • Overall Precision: 0.4611
  • Overall Recall: 0.5564
  • Overall F1: 0.5043
  • Overall Accuracy: 0.6256

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7545 1.0 10 1.4910 {'precision': 0.04744787922358016, 'recall': 0.0815822002472188, 'f1': 0.06000000000000001, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2316715542521994, 'recall': 0.29671361502347415, 'f1': 0.2601893783449979, 'number': 1065} 0.1386 0.1917 0.1608 0.3843
1.4327 2.0 20 1.3684 {'precision': 0.1908983451536643, 'recall': 0.3992583436341162, 'f1': 0.258296681327469, 'number': 809} {'precision': 0.08333333333333333, 'recall': 0.01680672268907563, 'f1': 0.027972027972027972, 'number': 119} {'precision': 0.2686771761480466, 'recall': 0.36807511737089205, 'f1': 0.3106180665610142, 'number': 1065} 0.2258 0.3598 0.2775 0.4199
1.3 3.0 30 1.2336 {'precision': 0.23386581469648562, 'recall': 0.45241038318912236, 'f1': 0.3083403538331929, 'number': 809} {'precision': 0.23404255319148937, 'recall': 0.09243697478991597, 'f1': 0.13253012048192772, 'number': 119} {'precision': 0.3207196029776675, 'recall': 0.48544600938967136, 'f1': 0.3862532685842361, 'number': 1065} 0.2773 0.4486 0.3427 0.4777
1.1799 4.0 40 1.1284 {'precision': 0.26886145404663925, 'recall': 0.484548825710754, 'f1': 0.3458314953683282, 'number': 809} {'precision': 0.2903225806451613, 'recall': 0.226890756302521, 'f1': 0.25471698113207547, 'number': 119} {'precision': 0.369108049311095, 'recall': 0.4779342723004695, 'f1': 0.41653027823240585, 'number': 1065} 0.3167 0.4656 0.3770 0.5629
1.0681 5.0 50 1.1019 {'precision': 0.2949346405228758, 'recall': 0.446229913473424, 'f1': 0.35514018691588783, 'number': 809} {'precision': 0.3373493975903614, 'recall': 0.23529411764705882, 'f1': 0.2772277227722772, 'number': 119} {'precision': 0.38892345986309895, 'recall': 0.5868544600938967, 'f1': 0.46781437125748504, 'number': 1065} 0.3480 0.5088 0.4133 0.5724
0.9791 6.0 60 1.2060 {'precision': 0.33286810886252616, 'recall': 0.5896168108776267, 'f1': 0.4255129348795718, 'number': 809} {'precision': 0.4, 'recall': 0.20168067226890757, 'f1': 0.2681564245810056, 'number': 119} {'precision': 0.45607476635514016, 'recall': 0.4582159624413146, 'f1': 0.45714285714285713, 'number': 1065} 0.3859 0.4962 0.4342 0.5718
0.9138 7.0 70 1.0604 {'precision': 0.37743589743589745, 'recall': 0.45488257107540175, 'f1': 0.4125560538116592, 'number': 809} {'precision': 0.3333333333333333, 'recall': 0.25210084033613445, 'f1': 0.28708133971291866, 'number': 119} {'precision': 0.4469026548672566, 'recall': 0.5690140845070423, 'f1': 0.5006195786864932, 'number': 1065} 0.4147 0.5038 0.4549 0.5983
0.8555 8.0 80 1.0361 {'precision': 0.3559928443649374, 'recall': 0.4919653893695921, 'f1': 0.4130773222625843, 'number': 809} {'precision': 0.3076923076923077, 'recall': 0.20168067226890757, 'f1': 0.2436548223350254, 'number': 119} {'precision': 0.45045045045045046, 'recall': 0.6103286384976526, 'f1': 0.5183413078149921, 'number': 1065} 0.4062 0.5379 0.4629 0.6104
0.8062 9.0 90 1.0676 {'precision': 0.37511520737327186, 'recall': 0.5030902348578492, 'f1': 0.4297782470960929, 'number': 809} {'precision': 0.31521739130434784, 'recall': 0.24369747899159663, 'f1': 0.27488151658767773, 'number': 119} {'precision': 0.4796310530361261, 'recall': 0.5859154929577465, 'f1': 0.5274725274725274, 'number': 1065} 0.4278 0.5319 0.4742 0.6094
0.7981 10.0 100 1.0901 {'precision': 0.3904109589041096, 'recall': 0.4932014833127318, 'f1': 0.4358274167121791, 'number': 809} {'precision': 0.3132530120481928, 'recall': 0.2184873949579832, 'f1': 0.25742574257425743, 'number': 119} {'precision': 0.47112462006079026, 'recall': 0.5821596244131455, 'f1': 0.5207895842083158, 'number': 1065} 0.4316 0.5243 0.4735 0.6113
0.7159 11.0 110 1.1141 {'precision': 0.3889908256880734, 'recall': 0.5241038318912238, 'f1': 0.4465508162190627, 'number': 809} {'precision': 0.26732673267326734, 'recall': 0.226890756302521, 'f1': 0.24545454545454548, 'number': 119} {'precision': 0.5027844073190135, 'recall': 0.5934272300469483, 'f1': 0.5443583118001722, 'number': 1065} 0.4424 0.5434 0.4877 0.6139
0.7242 12.0 120 1.0786 {'precision': 0.39233576642335766, 'recall': 0.5315203955500618, 'f1': 0.4514435695538058, 'number': 809} {'precision': 0.2926829268292683, 'recall': 0.20168067226890757, 'f1': 0.23880597014925373, 'number': 119} {'precision': 0.5096674400618716, 'recall': 0.6187793427230047, 'f1': 0.5589482612383375, 'number': 1065} 0.4504 0.5585 0.4987 0.6172
0.6895 13.0 130 1.1184 {'precision': 0.4066427289048474, 'recall': 0.5599505562422744, 'f1': 0.4711388455538222, 'number': 809} {'precision': 0.2696629213483146, 'recall': 0.20168067226890757, 'f1': 0.23076923076923078, 'number': 119} {'precision': 0.5230125523012552, 'recall': 0.5868544600938967, 'f1': 0.5530973451327434, 'number': 1065} 0.4595 0.5529 0.5019 0.6134
0.6605 14.0 140 1.1015 {'precision': 0.4114737883283877, 'recall': 0.5142150803461063, 'f1': 0.45714285714285713, 'number': 809} {'precision': 0.2631578947368421, 'recall': 0.21008403361344538, 'f1': 0.23364485981308414, 'number': 119} {'precision': 0.5068702290076336, 'recall': 0.6234741784037559, 'f1': 0.5591578947368421, 'number': 1065} 0.4574 0.5544 0.5012 0.6242
0.6498 15.0 150 1.1103 {'precision': 0.4171539961013645, 'recall': 0.5290482076637825, 'f1': 0.4664850136239782, 'number': 809} {'precision': 0.26595744680851063, 'recall': 0.21008403361344538, 'f1': 0.23474178403755866, 'number': 119} {'precision': 0.5105058365758754, 'recall': 0.615962441314554, 'f1': 0.5582978723404256, 'number': 1065} 0.4611 0.5564 0.5043 0.6256

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2