|
--- |
|
license: openrail |
|
datasets: |
|
- DarthReca/crisislandmark |
|
language: |
|
- en |
|
library_name: torchgeo |
|
tags: |
|
- remote-sensing |
|
- text-to-image-retrieval |
|
- multimodal |
|
- geospatial |
|
- SAR |
|
- multispectral |
|
- crisis-management |
|
- earth-observation |
|
- contrastive-learning |
|
--- |
|
# CLOSP |
|
|
|
CLOSP (Contrastive Language Optical SAR Pretraining) is a multimodal architecture designed for text-to-image retrieval. |
|
It creates a unified embedding space for text, Sentinel-2 (MSI), and Sentinel-1 (SAR) data. |
|
|
|
This repository contains all the separate visual encoders in PyTorch format. |
|
|
|
## Model Details |
|
The model uses three separate encoders: one for text, one for Sentinel-1 (SAR) data, and one for Sentinel-2 (MSI) data. |
|
During training, it uses a contrastive objective to align the textual embeddings with the corresponding visual embeddings (either SAR or MSI). |
|
|
|
|
|
- **Developed by:** Daniele Rege Cambrin |
|
- **Model type:** CLOSP |
|
- **Language(s) (NLP):** english |
|
- **License:** OpenRAIL |
|
- **Repository:** [GitHub](https://github.com/DarthReca/closp) |
|
- **Paper:** [ArXiv](https://arxiv.org/abs/2507.10403) |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@misc{cambrin2025texttoremotesensingimageretrievalrgbsources, |
|
title={Text-to-Remote-Sensing-Image Retrieval beyond RGB Sources}, |
|
author={Daniele Rege Cambrin and Lorenzo Vaiani and Giuseppe Gallipoli and Luca Cagliero and Paolo Garza}, |
|
year={2025}, |
|
eprint={2507.10403}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2507.10403}, |
|
} |
|
``` |