|
--- |
|
base_model: intfloat/multilingual-e5-base |
|
license: mit |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: multilingual-e5-base_censor_v0.1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# multilingual-e5-base_censor_v0.1 |
|
|
|
This model is a fine-tuned version of [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5077 |
|
- Accuracy: 0.7695 |
|
- Precision: 0.7729 |
|
- Recall: 0.7695 |
|
- F1: 0.7708 |
|
- Roc Auc: 0.8424 |
|
- Per Class F1: [0.8104358705451601, 0.7061407261629732] |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc | Per Class F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|:----------------------------------------:| |
|
| 0.5485 | 1.0 | 2795 | 0.5249 | 0.7349 | 0.7498 | 0.7349 | 0.7383 | 0.8169 | [0.7723692804179954, 0.6827648980028912] | |
|
| 0.4871 | 2.0 | 5590 | 0.5059 | 0.7610 | 0.7667 | 0.7610 | 0.7629 | 0.8362 | [0.8013980033834657, 0.7000926419808541] | |
|
| 0.4392 | 3.0 | 8385 | 0.5077 | 0.7695 | 0.7729 | 0.7695 | 0.7708 | 0.8424 | [0.8104358705451601, 0.7061407261629732] | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.43.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|