base_model: llm-jp/llm-jp-3-13b
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
Uploaded model
- Developed by: Gamoooo
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
!pip uninstall unsloth -y !pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" !pip install --upgrade torch !pip install --upgrade xformers
Install Flash Attention 2 for softcapping support
import torch if torch.cuda.get_device_capability()[0] >= 8: !pip install --no-deps packaging ninja einops "flash-attn>=2.6.3"
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig from unsloth import FastLanguageModel import torch
max_seq_length = 512
dtype = None
load_in_4bit = True
model_id = "llm-jp/llm-jp-3-13b" new_model_id = "llm-jp-3-13b-last"
model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_id, dtype=dtype, load_in_4bit=load_in_4bit, trust_remote_code=True, )
SFT用のモデルを用意
model = FastLanguageModel.get_peft_model( model, r=32, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], lora_alpha=32, lora_dropout=0.05, bias="none", use_gradient_checkpointing="unsloth", random_state=3407, use_rslora=False, loftq_config=None, max_seq_length=max_seq_length, )
https://huggingface.co/settings/tokens
HF_TOKEN = "your-token" # @param {type:"string"}
from datasets import load_dataset, concatenate_datasets
データセットのロード
ichikara_dataset = load_dataset("json", data_files="/content/ichikara-instruction-003-001-1.json") elyza_dataset = load_dataset("elyza/ELYZA-tasks-100")
EOS_TOKEN = tokenizer.eos_token #
学習時のプロンプトフォーマットの定義
prompt = """### 指示 {}
回答
{}"""
"""
formatting_prompts_func: 各データをプロンプトに合わせた形式に合わせる
"""
def formatting_prompts_func(examples):
input = examples["text"]
output = examples["output"]
text = prompt.format(input, output) + EOS_TOKEN
return {"formatted_text": text}
ichikara-instruction のデータフォーマット
ichikara_dataset = ichikara_dataset.map(
formatting_prompts_func,
num_proc=4,
)
ELYZA-tasks-100 データセットのフォーマット関数
def elyza_formatting_prompts_func(examples):
input = examples["input"]
output = examples["output"]
text = prompt.format(input, output) + EOS_TOKEN
return {"formatted_text": text}
ELYZA-tasks-100 のデータフォーマット
elyza_dataset = elyza_dataset.map(
elyza_formatting_prompts_func,
num_proc=4
)
from datasets import concatenate_datasets
ichikara-instruction と ELYZA-tasks-100 を統合
combined_dataset = concatenate_datasets([
ichikara_dataset["train"],
elyza_dataset["test"]
])
データ品質チェック
1. ランダムサンプルを確認
import random sample_indices = random.sample(range(len(combined_dataset)), 10) for idx in sample_indices: print(combined_dataset[idx]["formatted_text"])
2. 自動検査ルール
短すぎるデータをチェック(Noneチェックを追加)
short_data = combined_dataset.filter( lambda x: x["input"] is not None and x["output"] is not None and (len(x["input"]) < 5 or len(x["output"]) < 5) ) print(f"\n短すぎるデータ数: {len(short_data)}")
指示と回答が同一のデータ(Noneチェックを追加)
duplicate_data = combined_dataset.filter( lambda x: x["input"] is not None and x["output"] is not None and x["input"].strip() == x["output"].strip() ) print(f"\n指示と回答が同一のデータ数: {len(duplicate_data)}")
問題のあるデータをフィルタリング(Noneチェックを追加)
filtered_dataset = combined_dataset.filter( lambda x: x["input"] is not None and x["output"] is not None and len(x["input"]) > 5 and len(x["output"]) > 5 and x["input"].strip() != x["output"].strip() )
print(f"元のデータ数: {len(combined_dataset)}") print(f"フィルタリング後のデータ数: {len(filtered_dataset)}") print(f"除外されたデータ数: {len(combined_dataset) - len(filtered_dataset)}")
フィルタリング後のデータの例を確認
print(filtered_dataset[0])
""" training_arguments: 学習の設定 """ from trl import SFTTrainer from transformers import TrainingArguments from unsloth import is_bfloat16_supported
trainer = SFTTrainer( model=model, tokenizer=tokenizer, train_dataset=filtered_dataset, max_seq_length=max_seq_length, dataset_text_field="formatted_text", packing=False, args=TrainingArguments( per_device_train_batch_size=2, gradient_accumulation_steps=4, num_train_epochs=3, logging_steps=10, warmup_steps=10, save_steps=50, save_total_limit=2, max_steps=200, learning_rate=2e-4, fp16=not is_bfloat16_supported(), bf16=is_bfloat16_supported(), group_by_length=True, seed=3407, output_dir="outputs", report_to="none", ), )
#@title 学習実行 trainer_stats = trainer.train()
import json from datasets import load_dataset
dataset = load_dataset("json", data_files="/content/elyza-tasks-100-TV_0.jsonl", split="train")
datasets = []
with open("/content/elyza-tasks-100-TV_0.jsonl", "r", encoding="utf-8") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
from tqdm import tqdm import json
推論するためにモデルのモードを変更
FastLanguageModel.for_inference(model)
results = [] for dt in tqdm(datasets): try: input_text = dt["input"]
# プロンプトを生成
prompt = f"### 指示\n{input_text}\n次の要件を満たしてください:\n1. 簡潔に回答する。\n2. 必要なら箇条書きを使用して要点を整理する。\n3. 指示された内容に忠実に答える。\n### 回答\n"
# トークナイズ
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
# 推論
outputs = model.generate(
**inputs,
max_new_tokens=512,
use_cache=True,
do_sample=False,
repetition_penalty=1.2,
)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
# 結果を保存
results.append({"task_id": dt["task_id"], "input": input_text, "output": prediction})
except Exception as e:
print(f"Error processing task_id {dt.get('task_id', 'Unknown')}: {e}")
results.append({"task_id": dt.get("task_id", "Unknown"), "input": dt.get("input", ""), "output": "Error"})
結果をJSONL形式で保存
output_file_jsonl = "/content/llm-jp-3-13b-last.jsonl" with open(output_file_jsonl, "w", encoding="utf-8") as f: for result in results: f.write(json.dumps(result, ensure_ascii=False) + "\n")
model.push_to_hub_merged( new_model_id, tokenizer=tokenizer, save_method="lora", token=HF_TOKEN, private=True )