llm-jp-3-13b-last / README.md
Gamoooo's picture
Update README.md
cee8f38 verified
|
raw
history blame
7.66 kB
---
base_model: llm-jp/llm-jp-3-13b
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Gamoooo
- **License:** apache-2.0
- **Finetuned from model :** llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
!pip uninstall unsloth -y
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --upgrade torch
!pip install --upgrade xformers
# Install Flash Attention 2 for softcapping support
import torch
if torch.cuda.get_device_capability()[0] >= 8:
!pip install --no-deps packaging ninja einops "flash-attn>=2.6.3"
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from unsloth import FastLanguageModel
import torch
max_seq_length = 512
dtype = None
load_in_4bit = True
model_id = "llm-jp/llm-jp-3-13b"
new_model_id = "llm-jp-3-13b-last"
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
dtype=dtype,
load_in_4bit=load_in_4bit,
trust_remote_code=True,
)
# SFT用のモデルを用意
model = FastLanguageModel.get_peft_model(
model,
r=32,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"],
lora_alpha=32,
lora_dropout=0.05,
bias="none",
use_gradient_checkpointing="unsloth",
random_state=3407,
use_rslora=False,
loftq_config=None,
max_seq_length=max_seq_length,
)
# https://huggingface.co/settings/tokens
HF_TOKEN = "your-token" # @param {type:"string"}
from datasets import load_dataset, concatenate_datasets
# データセットのロード
ichikara_dataset = load_dataset("json", data_files="/content/ichikara-instruction-003-001-1.json")
elyza_dataset = load_dataset("elyza/ELYZA-tasks-100")
EOS_TOKEN = tokenizer.eos_token #
# 学習時のプロンプトフォーマットの定義
prompt = """### 指示
{}
### 回答
{}"""
"""
formatting_prompts_func: 各データをプロンプトに合わせた形式に合わせる
"""
def formatting_prompts_func(examples):
input = examples["text"]
output = examples["output"]
text = prompt.format(input, output) + EOS_TOKEN
return {"formatted_text": text}
# ichikara-instruction のデータフォーマット
ichikara_dataset = ichikara_dataset.map(
formatting_prompts_func,
num_proc=4,
)
# ELYZA-tasks-100 データセットのフォーマット関数
def elyza_formatting_prompts_func(examples):
input = examples["input"]
output = examples["output"]
text = prompt.format(input, output) + EOS_TOKEN
return {"formatted_text": text}
# ELYZA-tasks-100 のデータフォーマット
elyza_dataset = elyza_dataset.map(
elyza_formatting_prompts_func,
num_proc=4
)
from datasets import concatenate_datasets
# ichikara-instruction と ELYZA-tasks-100 を統合
combined_dataset = concatenate_datasets([
ichikara_dataset["train"],
elyza_dataset["test"]
])
# データ品質チェック
# 1. ランダムサンプルを確認
import random
sample_indices = random.sample(range(len(combined_dataset)), 10)
for idx in sample_indices:
print(combined_dataset[idx]["formatted_text"])
# 2. 自動検査ルール
# 短すぎるデータをチェック(Noneチェックを追加)
short_data = combined_dataset.filter(
lambda x: x["input"] is not None and x["output"] is not None and (len(x["input"]) < 5 or len(x["output"]) < 5)
)
print(f"\n短すぎるデータ数: {len(short_data)}")
# 指示と回答が同一のデータ(Noneチェックを追加)
duplicate_data = combined_dataset.filter(
lambda x: x["input"] is not None and x["output"] is not None and x["input"].strip() == x["output"].strip()
)
print(f"\n指示と回答が同一のデータ数: {len(duplicate_data)}")
# 問題のあるデータをフィルタリング(Noneチェックを追加)
filtered_dataset = combined_dataset.filter(
lambda x: x["input"] is not None and x["output"] is not None and len(x["input"]) > 5 and len(x["output"]) > 5 and x["input"].strip() != x["output"].strip()
)
print(f"元のデータ数: {len(combined_dataset)}")
print(f"フィルタリング後のデータ数: {len(filtered_dataset)}")
print(f"除外されたデータ数: {len(combined_dataset) - len(filtered_dataset)}")
# フィルタリング後のデータの例を確認
print(filtered_dataset[0])
"""
training_arguments: 学習の設定
"""
from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=filtered_dataset,
max_seq_length=max_seq_length,
dataset_text_field="formatted_text",
packing=False,
args=TrainingArguments(
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
num_train_epochs=3,
logging_steps=10,
warmup_steps=10,
save_steps=50,
save_total_limit=2,
max_steps=200,
learning_rate=2e-4,
fp16=not is_bfloat16_supported(),
bf16=is_bfloat16_supported(),
group_by_length=True,
seed=3407,
output_dir="outputs",
report_to="none",
),
)
#@title 学習実行
trainer_stats = trainer.train()
import json
from datasets import load_dataset
dataset = load_dataset("json", data_files="/content/elyza-tasks-100-TV_0.jsonl", split="train")
datasets = []
with open("/content/elyza-tasks-100-TV_0.jsonl", "r", encoding="utf-8") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
from tqdm import tqdm
import json
# 推論するためにモデルのモードを変更
FastLanguageModel.for_inference(model)
results = []
for dt in tqdm(datasets):
try:
input_text = dt["input"]
# プロンプトを生成
prompt = f"### 指示\n{input_text}\n次の要件を満たしてください:\n1. 簡潔に回答する。\n2. 必要なら箇条書きを使用して要点を整理する。\n3. 指示された内容に忠実に答える。\n### 回答\n"
# トークナイズ
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
# 推論
outputs = model.generate(
**inputs,
max_new_tokens=512,
use_cache=True,
do_sample=False,
repetition_penalty=1.2,
)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
# 結果を保存
results.append({"task_id": dt["task_id"], "input": input_text, "output": prediction})
except Exception as e:
print(f"Error processing task_id {dt.get('task_id', 'Unknown')}: {e}")
results.append({"task_id": dt.get("task_id", "Unknown"), "input": dt.get("input", ""), "output": "Error"})
# 結果をJSONL形式で保存
output_file_jsonl = "/content/llm-jp-3-13b-last.jsonl"
with open(output_file_jsonl, "w", encoding="utf-8") as f:
for result in results:
f.write(json.dumps(result, ensure_ascii=False) + "\n")
model.push_to_hub_merged(
new_model_id,
tokenizer=tokenizer,
save_method="lora",
token=HF_TOKEN,
private=True
)