|
--- |
|
base_model: llm-jp/llm-jp-3-13b |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
license: apache-2.0 |
|
language: |
|
- en |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** Gamoooo |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** llm-jp/llm-jp-3-13b |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
!pip uninstall unsloth -y |
|
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" |
|
!pip install --upgrade torch |
|
!pip install --upgrade xformers |
|
|
|
# Install Flash Attention 2 for softcapping support |
|
import torch |
|
if torch.cuda.get_device_capability()[0] >= 8: |
|
!pip install --no-deps packaging ninja einops "flash-attn>=2.6.3" |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
from unsloth import FastLanguageModel |
|
import torch |
|
|
|
max_seq_length = 512 |
|
dtype = None |
|
load_in_4bit = True |
|
|
|
model_id = "llm-jp/llm-jp-3-13b" |
|
new_model_id = "llm-jp-3-13b-last" |
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name=model_id, |
|
dtype=dtype, |
|
load_in_4bit=load_in_4bit, |
|
trust_remote_code=True, |
|
) |
|
|
|
# SFT用のモデルを用意 |
|
model = FastLanguageModel.get_peft_model( |
|
model, |
|
r=32, |
|
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", |
|
"gate_proj", "up_proj", "down_proj"], |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
use_gradient_checkpointing="unsloth", |
|
random_state=3407, |
|
use_rslora=False, |
|
loftq_config=None, |
|
max_seq_length=max_seq_length, |
|
) |
|
|
|
# https://huggingface.co/settings/tokens |
|
HF_TOKEN = "your-token" # @param {type:"string"} |
|
|
|
from datasets import load_dataset, concatenate_datasets |
|
|
|
# データセットのロード |
|
ichikara_dataset = load_dataset("json", data_files="/content/ichikara-instruction-003-001-1.json") |
|
elyza_dataset = load_dataset("elyza/ELYZA-tasks-100") |
|
|
|
EOS_TOKEN = tokenizer.eos_token # |
|
|
|
# 学習時のプロンプトフォーマットの定義 |
|
prompt = """### 指示 |
|
{} |
|
### 回答 |
|
{}""" |
|
|
|
""" |
|
formatting_prompts_func: 各データをプロンプトに合わせた形式に合わせる |
|
""" |
|
def formatting_prompts_func(examples): |
|
input = examples["text"] |
|
output = examples["output"] |
|
text = prompt.format(input, output) + EOS_TOKEN |
|
return {"formatted_text": text} |
|
|
|
# ichikara-instruction のデータフォーマット |
|
ichikara_dataset = ichikara_dataset.map( |
|
formatting_prompts_func, |
|
num_proc=4, |
|
) |
|
|
|
# ELYZA-tasks-100 データセットのフォーマット関数 |
|
def elyza_formatting_prompts_func(examples): |
|
input = examples["input"] |
|
output = examples["output"] |
|
text = prompt.format(input, output) + EOS_TOKEN |
|
return {"formatted_text": text} |
|
|
|
# ELYZA-tasks-100 のデータフォーマット |
|
elyza_dataset = elyza_dataset.map( |
|
elyza_formatting_prompts_func, |
|
num_proc=4 |
|
) |
|
|
|
from datasets import concatenate_datasets |
|
|
|
# ichikara-instruction と ELYZA-tasks-100 を統合 |
|
combined_dataset = concatenate_datasets([ |
|
ichikara_dataset["train"], |
|
elyza_dataset["test"] |
|
]) |
|
|
|
# データ品質チェック |
|
# 1. ランダムサンプルを確認 |
|
import random |
|
sample_indices = random.sample(range(len(combined_dataset)), 10) |
|
for idx in sample_indices: |
|
print(combined_dataset[idx]["formatted_text"]) |
|
|
|
# 2. 自動検査ルール |
|
# 短すぎるデータをチェック(Noneチェックを追加) |
|
short_data = combined_dataset.filter( |
|
lambda x: x["input"] is not None and x["output"] is not None and (len(x["input"]) < 5 or len(x["output"]) < 5) |
|
) |
|
print(f"\n短すぎるデータ数: {len(short_data)}") |
|
|
|
# 指示と回答が同一のデータ(Noneチェックを追加) |
|
duplicate_data = combined_dataset.filter( |
|
lambda x: x["input"] is not None and x["output"] is not None and x["input"].strip() == x["output"].strip() |
|
) |
|
print(f"\n指示と回答が同一のデータ数: {len(duplicate_data)}") |
|
|
|
# 問題のあるデータをフィルタリング(Noneチェックを追加) |
|
filtered_dataset = combined_dataset.filter( |
|
lambda x: x["input"] is not None and x["output"] is not None and len(x["input"]) > 5 and len(x["output"]) > 5 and x["input"].strip() != x["output"].strip() |
|
) |
|
|
|
print(f"元のデータ数: {len(combined_dataset)}") |
|
print(f"フィルタリング後のデータ数: {len(filtered_dataset)}") |
|
print(f"除外されたデータ数: {len(combined_dataset) - len(filtered_dataset)}") |
|
|
|
# フィルタリング後のデータの例を確認 |
|
print(filtered_dataset[0]) |
|
|
|
""" |
|
training_arguments: 学習の設定 |
|
""" |
|
from trl import SFTTrainer |
|
from transformers import TrainingArguments |
|
from unsloth import is_bfloat16_supported |
|
|
|
trainer = SFTTrainer( |
|
model=model, |
|
tokenizer=tokenizer, |
|
train_dataset=filtered_dataset, |
|
max_seq_length=max_seq_length, |
|
dataset_text_field="formatted_text", |
|
packing=False, |
|
args=TrainingArguments( |
|
per_device_train_batch_size=2, |
|
gradient_accumulation_steps=4, |
|
num_train_epochs=3, |
|
logging_steps=10, |
|
warmup_steps=10, |
|
save_steps=50, |
|
save_total_limit=2, |
|
max_steps=200, |
|
learning_rate=2e-4, |
|
fp16=not is_bfloat16_supported(), |
|
bf16=is_bfloat16_supported(), |
|
group_by_length=True, |
|
seed=3407, |
|
output_dir="outputs", |
|
report_to="none", |
|
), |
|
) |
|
|
|
#@title 学習実行 |
|
trainer_stats = trainer.train() |
|
|
|
import json |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("json", data_files="/content/elyza-tasks-100-TV_0.jsonl", split="train") |
|
|
|
datasets = [] |
|
with open("/content/elyza-tasks-100-TV_0.jsonl", "r", encoding="utf-8") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
|
|
from tqdm import tqdm |
|
import json |
|
|
|
# 推論するためにモデルのモードを変更 |
|
FastLanguageModel.for_inference(model) |
|
|
|
results = [] |
|
for dt in tqdm(datasets): |
|
try: |
|
input_text = dt["input"] |
|
|
|
# プロンプトを生成 |
|
prompt = f"### 指示\n{input_text}\n次の要件を満たしてください:\n1. 簡潔に回答する。\n2. 必要なら箇条書きを使用して要点を整理する。\n3. 指示された内容に忠実に答える。\n### 回答\n" |
|
|
|
|
|
# トークナイズ |
|
inputs = tokenizer([prompt], return_tensors="pt").to(model.device) |
|
|
|
# 推論 |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=512, |
|
use_cache=True, |
|
do_sample=False, |
|
repetition_penalty=1.2, |
|
) |
|
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] |
|
|
|
# 結果を保存 |
|
results.append({"task_id": dt["task_id"], "input": input_text, "output": prediction}) |
|
except Exception as e: |
|
print(f"Error processing task_id {dt.get('task_id', 'Unknown')}: {e}") |
|
results.append({"task_id": dt.get("task_id", "Unknown"), "input": dt.get("input", ""), "output": "Error"}) |
|
|
|
|
|
# 結果をJSONL形式で保存 |
|
output_file_jsonl = "/content/llm-jp-3-13b-last.jsonl" |
|
with open(output_file_jsonl, "w", encoding="utf-8") as f: |
|
for result in results: |
|
f.write(json.dumps(result, ensure_ascii=False) + "\n") |
|
|
|
model.push_to_hub_merged( |
|
new_model_id, |
|
tokenizer=tokenizer, |
|
save_method="lora", |
|
token=HF_TOKEN, |
|
private=True |
|
) |
|
|