|
--- |
|
library_name: transformers |
|
base_model: cardiffnlp/twitter-roberta-base-sentiment-latest |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: twitter-roberta-base-sentiment-latest_12112024T120259 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# twitter-roberta-base-sentiment-latest_12112024T120259 |
|
|
|
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4912 |
|
- F1: 0.8803 |
|
- Learning Rate: 0.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 600 |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Rate | |
|
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:| |
|
| No log | 0.9942 | 86 | 1.7812 | 0.1230 | 0.0000 | |
|
| No log | 2.0 | 173 | 1.6480 | 0.3596 | 0.0000 | |
|
| No log | 2.9942 | 259 | 1.3462 | 0.4748 | 0.0000 | |
|
| No log | 4.0 | 346 | 1.1145 | 0.5480 | 0.0000 | |
|
| No log | 4.9942 | 432 | 0.9935 | 0.5877 | 0.0000 | |
|
| 1.3977 | 6.0 | 519 | 0.9023 | 0.6390 | 0.0000 | |
|
| 1.3977 | 6.9942 | 605 | 0.8538 | 0.6798 | 1e-05 | |
|
| 1.3977 | 8.0 | 692 | 0.7381 | 0.7388 | 1e-05 | |
|
| 1.3977 | 8.9942 | 778 | 0.6558 | 0.7696 | 0.0000 | |
|
| 1.3977 | 10.0 | 865 | 0.6072 | 0.7963 | 0.0000 | |
|
| 1.3977 | 10.9942 | 951 | 0.5771 | 0.8139 | 0.0000 | |
|
| 0.6178 | 12.0 | 1038 | 0.5692 | 0.8270 | 0.0000 | |
|
| 0.6178 | 12.9942 | 1124 | 0.5208 | 0.8513 | 0.0000 | |
|
| 0.6178 | 14.0 | 1211 | 0.5416 | 0.8487 | 0.0000 | |
|
| 0.6178 | 14.9942 | 1297 | 0.5073 | 0.8655 | 0.0000 | |
|
| 0.6178 | 16.0 | 1384 | 0.5052 | 0.8740 | 0.0000 | |
|
| 0.6178 | 16.9942 | 1470 | 0.4912 | 0.8803 | 6e-06 | |
|
| 0.2205 | 18.0 | 1557 | 0.5557 | 0.8700 | 0.0000 | |
|
| 0.2205 | 18.9942 | 1643 | 0.5021 | 0.8845 | 0.0000 | |
|
| 0.2205 | 20.0 | 1730 | 0.5382 | 0.8837 | 0.0000 | |
|
| 0.2205 | 20.9942 | 1816 | 0.6147 | 0.8730 | 0.0000 | |
|
| 0.2205 | 22.0 | 1903 | 0.5978 | 0.8762 | 0.0000 | |
|
| 0.2205 | 22.9942 | 1989 | 0.6037 | 0.8756 | 0.0000 | |
|
| 0.0833 | 24.0 | 2076 | 0.6226 | 0.8755 | 0.0000 | |
|
| 0.0833 | 24.9942 | 2162 | 0.6136 | 0.8777 | 0.0000 | |
|
| 0.0833 | 26.0 | 2249 | 0.5938 | 0.8815 | 7e-07 | |
|
| 0.0833 | 26.9942 | 2335 | 0.6318 | 0.8766 | 4e-07 | |
|
| 0.0833 | 28.0 | 2422 | 0.6302 | 0.8783 | 2e-07 | |
|
| 0.0462 | 28.9942 | 2508 | 0.6325 | 0.8777 | 0.0 | |
|
| 0.0462 | 29.8266 | 2580 | 0.6322 | 0.8777 | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.19.1 |
|
|