test_ver5 / README.md
Jpep26's picture
Upload processor
8dad5d4 verified
metadata
base_model: openai/whisper-base
datasets:
  - Jpep26/NoErrorDataset
language:
  - ko
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Test
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: NoErrorDataset
          type: Jpep26/NoErrorDataset
          args: 'config: ko, split: valid'
        metrics:
          - type: wer
            value: 0.48766120044578887
            name: Wer

Test

This model is a fine-tuned version of openai/whisper-base on the NoErrorDataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6020
  • Cer: 0.4962
  • Wer: 0.4877
  • Mean: 0.4919

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer Mean
2.3893 0.3817 50 2.0607 0.4421 0.7020 0.5720
1.2402 0.7634 100 1.0999 0.3408 0.5773 0.4591
0.7512 1.1450 150 0.7303 0.7268 0.5418 0.6343
0.593 1.5267 200 0.6020 0.4962 0.4877 0.4919

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.19.1