Kushagra07's picture
Training in progress, epoch 1
50c00a4 verified
|
raw
history blame
3.13 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - recall
  - f1
  - precision
model-index:
  - name: vit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask-new-parameter
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8339719029374202
          - name: Recall
            type: recall
            value: 0.8339719029374202
          - name: F1
            type: f1
            value: 0.8319571049551264
          - name: Precision
            type: precision
            value: 0.8325133593723552

vit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask-new-parameter

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3507
  • Accuracy: 0.8340
  • Recall: 0.8340
  • F1: 0.8320
  • Precision: 0.8325

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall F1 Precision
No log 0.9974 293 0.6168 0.7923 0.7923 0.7737 0.7684
No log 1.9983 587 0.4599 0.8110 0.8110 0.8056 0.8085
No log 2.9991 881 0.4305 0.8233 0.8233 0.8211 0.8250
No log 4.0 1175 0.3966 0.8365 0.8365 0.8323 0.8452
No log 4.9974 1468 0.4100 0.8221 0.8221 0.8195 0.8219
No log 5.9983 1762 0.3890 0.8412 0.8412 0.8375 0.8466
No log 6.9991 2056 0.3659 0.8357 0.8357 0.8335 0.8386
No log 8.0 2350 0.3562 0.8395 0.8395 0.8379 0.8403
No log 8.9974 2643 0.3613 0.8382 0.8382 0.8373 0.8391
0.4339 9.9745 2930 0.3405 0.8455 0.8455 0.8447 0.8467

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.0a0+81ea7a4
  • Datasets 2.19.0
  • Tokenizers 0.19.1