|
--- |
|
base_model: SI2M-Lab/DarijaBERT-arabizi |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: ner-DarijaBERT-arabizi |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ner-DarijaBERT-arabizi |
|
|
|
This model is a fine-tuned version of [SI2M-Lab/DarijaBERT-arabizi](https://huggingface.co/SI2M-Lab/DarijaBERT-arabizi) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1011 |
|
- Precision: 0.7475 |
|
- Recall: 0.7753 |
|
- F1: 0.7611 |
|
- Accuracy: 0.9681 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 32 | 0.3240 | 0.5397 | 0.3251 | 0.4058 | 0.8996 | |
|
| No log | 2.0 | 64 | 0.2541 | 0.5593 | 0.4720 | 0.5120 | 0.9203 | |
|
| No log | 3.0 | 96 | 0.2062 | 0.5697 | 0.5828 | 0.5762 | 0.9350 | |
|
| No log | 4.0 | 128 | 0.1791 | 0.6162 | 0.6313 | 0.6236 | 0.9426 | |
|
| No log | 5.0 | 160 | 0.1528 | 0.6504 | 0.6803 | 0.6650 | 0.9509 | |
|
| No log | 6.0 | 192 | 0.1308 | 0.6880 | 0.7262 | 0.7066 | 0.9582 | |
|
| No log | 7.0 | 224 | 0.1189 | 0.7126 | 0.7270 | 0.7198 | 0.9612 | |
|
| No log | 8.0 | 256 | 0.1100 | 0.7307 | 0.7661 | 0.7480 | 0.9651 | |
|
| No log | 9.0 | 288 | 0.1037 | 0.7423 | 0.7567 | 0.7494 | 0.9667 | |
|
| No log | 10.0 | 320 | 0.1011 | 0.7475 | 0.7753 | 0.7611 | 0.9681 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|