File size: 30,704 Bytes
84b3156
6aabad7
84b3156
 
 
 
 
6aabad7
84b3156
 
 
 
6aabad7
 
84b3156
 
6aabad7
84b3156
 
 
 
6aabad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84b3156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aabad7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
# coding=utf-8
from typing import List, Optional, Union, Callable, Tuple

import torch
import torch.nn.functional as F
from torch import nn

from transformers.cache_utils import Cache, HybridCache, StaticCache
from transformers.generation import GenerationMixin
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import LossKwargs, can_return_tuple, logging

from .configuration_smallthinker import SmallThinkerConfig

logger = logging.get_logger(__name__)

@torch.jit.script
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


def check_is_swa_layer(config, layer_idx):
    """
    Check if the current layer is a sliding window attention layer.
    """
    if not hasattr(config, "sliding_window_layout"):
        return False
    elif config.sliding_window_layout is None:
        return False
    else:
        return config.sliding_window_layout[layer_idx] == 1


class SmallThinkerRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        SmallThinkerRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
    

class SmallThinkerRotaryEmbedding(nn.Module):
    def __init__(self, config: SmallThinkerConfig, device=None):
        super().__init__()
        if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings

        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    @torch.no_grad()
    @dynamic_rope_update  # power user: used with advanced RoPE types (e.g. dynamic rope)
    def forward(self, x, position_ids):
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
        position_ids_expanded = position_ids[:, None, :].float()

        device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):  # Force float32
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos() * self.attention_scaling
            sin = emb.sin() * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


class SmallThinkerExpert(nn.Module):
    def __init__(self, config: SmallThinkerConfig):
        super().__init__()
        self.hidden_dim = config.hidden_size
        self.ffn_dim = config.moe_ffn_hidden_size

        self.up = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
        self.gate = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
        self.down = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
        
    def forward(self, hidden_states: torch.Tensor):
        current_hidden_states = self.up(hidden_states) * F.relu(self.gate(hidden_states))
        batch_size, _ = current_hidden_states.shape
        current_hidden_states = current_hidden_states.view(batch_size, -1)
        current_hidden_states = self.down(current_hidden_states)
        return current_hidden_states


class SmallThinkerMoeBlock(nn.Module):
    def __init__(self, config: SmallThinkerConfig):
        super().__init__()
        self.hidden_dim = config.hidden_size
        self.num_primary_experts = config.moe_num_primary_experts
        self.moe_primary_router_apply_softmax = config.moe_primary_router_apply_softmax
        self.num_active_primary_experts = config.moe_num_active_primary_experts
        self.primary_router = nn.Linear(self.hidden_dim, self.num_primary_experts, bias=False)
        self.experts = nn.ModuleList([SmallThinkerExpert(config) for _ in range(self.num_primary_experts)])

    def forward(self, router_input: torch.Tensor, hidden_states: torch.Tensor) -> torch.Tensor:
        batch_size, sequence_length, hidden_dim = hidden_states.shape
        # Flatten the tokens into (bs * sl, hidden_dim)
        hidden_states = hidden_states.view(-1, hidden_dim)
        router_input = router_input.view(-1, hidden_dim)
        # Primary router logits: (bs * sl, n_experts)
        router_logits = self.primary_router(router_input)

        router_logits, selected_experts = torch.topk(router_logits, self.num_active_primary_experts, dim=-1)

        if self.moe_primary_router_apply_softmax:
            routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
        else:
            routing_weights = F.sigmoid(router_logits)
            routing_weights /= routing_weights.sum(dim=-1, keepdim=True)

        routing_weights = routing_weights.to(hidden_states.dtype)

        # Prepare the final tensor
        final_hidden_states = torch.zeros(
            (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
        )

        # One hot encode the selected experts to create an expert mask
        # this will be used to easily index which expert is going to be sollicitated
        expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_primary_experts).permute(2, 1, 0)
        expert_hitted = (expert_mask.sum(dim=(-1, -2)) > 0).nonzero(as_tuple=True)[0].tolist()

        for expert_idx in expert_hitted:
            expert_layer = self.experts[expert_idx]
            idx, top_x = torch.where(expert_mask[expert_idx])
            # Index the correct hidden states and compute the expert hidden state for
            # the current expert. We need to make sure to multiply the output hidden
            # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
            current_state = hidden_states[top_x].reshape(-1, hidden_dim)
            current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]

            # However `index_add_` only support torch tensors for indexing so we'll use the `top_x` tensor here.
            final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
        final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
        return final_hidden_states, router_logits
    

def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs,
):
    key_states = repeat_kv(key, module.num_key_value_groups)
    value_states = repeat_kv(value, module.num_key_value_groups)

    attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
    if attention_mask is not None:
        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask

    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights


class SmallThinkerAttention(nn.Module):
    def __init__(self, config: SmallThinkerConfig, layer_idx: int):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.head_dim = config.head_dim
        self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
        self.scaling = self.head_dim**-0.5
        self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
        self.sliding_window = config.sliding_window_size if config.sliding_window_layout[layer_idx] else None

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: Tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        past_key_value: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:

        input_shape = hidden_states.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)

        query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        
        if position_embeddings:
            cos, sin = position_embeddings
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
        else:
            cos, sin = None, None

        if past_key_value is not None:
            cache_kwargs = {
                "sin": sin,
                "cos": cos,
                "cache_position": cache_position,
                "sliding_window": self.sliding_window,
            }
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
                logger.warning_once(
                    "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
                    'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
                )
            else:
                attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0,
            scaling=self.scaling,
            sliding_window=self.sliding_window,
            **kwargs,
        )

        attn_output = attn_output.reshape(*input_shape, -1).contiguous()
        attn_output = self.o_proj(attn_output)
        return attn_output, attn_weights
    

class SmallThinkerDecoderLayer(nn.Module):
    def __init__(self, config: SmallThinkerConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = SmallThinkerAttention(config, layer_idx)
        self.block_sparse_moe = SmallThinkerMoeBlock(config)
        self.input_layernorm = SmallThinkerRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = SmallThinkerRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.is_swa = check_is_swa_layer(config, layer_idx)

        if self.is_swa and config._attn_implementation == "sdpa":
            logger.warning_once(
                f"Sliding Window Attention is enabled but not optimized for `{config._attn_implementation}`; "
                "unexpected results may be encountered."
            )

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        output_router_logits: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, sequence_length)` where padding elements are indicated by 0.
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_router_logits (`bool`, *optional*):
                Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
                should not be returned during inference.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
                Indices depicting the position of the input sequence tokens in the sequence.
            kwargs (`dict`, *optional*):
                Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
                into the model
        """
        residual = hidden_states
        router_input = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        # Self Attention 
        hidden_states, self_attn_weights = self.self_attn(
            hidden_states=hidden_states,
            position_embeddings=position_embeddings,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            **kwargs,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states, router_logits = self.block_sparse_moe(router_input, hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)
        if output_attentions:
            outputs += (self_attn_weights,)
        if output_router_logits:
            outputs += (router_logits,)
        return outputs
    

class SmallThinkerPreTrainedModel(PreTrainedModel):
    config_class = SmallThinkerConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = False
    _no_split_modules = ["SmallThinkerDecoderLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_flex_attn = False
    _supports_cache_class = True
    _supports_quantized_cache = True
    _supports_static_cache = False
    _supports_attention_backend = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, SmallThinkerRMSNorm):
            module.weight.data.fill_(1.0)


class SmallThinkerModel(SmallThinkerPreTrainedModel):
    def __init__(self, config: SmallThinkerConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [SmallThinkerDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = SmallThinkerRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = SmallThinkerRotaryEmbedding(config=config)
        self.gradient_checkpointing = False
        self.rope_layout = config.rope_layout
        self.config = config

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    @can_return_tuple
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_router_logits: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
    ) -> MoeModelOutputWithPast:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_router_logits = (
            output_router_logits if output_router_logits is not None else self.config.output_router_logits
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
        
        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if use_cache and past_key_values is None:
            batch_size, seq_len, _ = inputs_embeds.shape
            # NOTE: ideally, `HybridCache` should be initialized outside the model with `layer_device_map`
            if not hasattr(self.config, "sliding_window_layout") or self.config.sliding_window_layout is None or not any(self.config.sliding_window_layout):
                past_key_values = StaticCache(
                    self.config,
                    max_batch_size=batch_size,
                    max_cache_len=seq_len,
                    dtype=inputs_embeds.dtype,
                    device=self.device,
                )
            else:
                past_key_values = HybridCache(
                    self.config,
                    max_batch_size=batch_size,
                    max_cache_len=seq_len,
                    dtype=inputs_embeds.dtype,
                    device=self.device,
                )

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )
    
        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = create_causal_mask(
            config=self.config, 
            input_embeds=inputs_embeds, 
            attention_mask=attention_mask, 
            cache_position=cache_position, 
            past_key_values=past_key_values, 
            position_ids=position_ids,
        )
        if hasattr(self.config, "sliding_window_layout") and self.config.sliding_window_layout is not None and any(self.config.sliding_window_layout):
            swa_mask = create_sliding_window_causal_mask(
                config=self.config, 
                input_embeds=inputs_embeds, 
                attention_mask=attention_mask, 
                cache_position=cache_position, 
                past_key_values=past_key_values, 
                position_ids=position_ids,
            )

        hidden_states = inputs_embeds
        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_router_logits = () if output_router_logits else None

        for layer_idx, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if hasattr(self.config, "sliding_window_layout") and self.config.sliding_window_layout is not None:
                if self.config.sliding_window_layout[layer_idx] == 1:
                    layer_outputs = decoder_layer(
                        hidden_states,
                        attention_mask=swa_mask,
                        position_ids=position_ids,
                        past_key_value=past_key_values,
                        output_attentions=output_attentions,
                        output_router_logits=output_router_logits,
                        use_cache=use_cache,
                        cache_position=cache_position,
                        position_embeddings=position_embeddings if self.rope_layout[layer_idx] else None,
                        **flash_attn_kwargs,
                    )
                else:
                    layer_outputs = decoder_layer(
                        hidden_states,
                        attention_mask=causal_mask,
                        position_ids=position_ids,
                        past_key_value=past_key_values,
                        output_attentions=output_attentions,
                        output_router_logits=output_router_logits,
                        use_cache=use_cache,
                        cache_position=cache_position,
                        position_embeddings=position_embeddings if self.rope_layout[layer_idx] else None,
                        **flash_attn_kwargs,
                    )
            else:
                layer_outputs = decoder_layer(
                        hidden_states,
                        attention_mask=causal_mask,
                        position_ids=position_ids,
                        past_key_value=past_key_values,
                        output_attentions=output_attentions,
                        output_router_logits=output_router_logits,
                        use_cache=use_cache,
                        cache_position=cache_position,
                        position_embeddings=position_embeddings if self.rope_layout[layer_idx] else None,
                        **flash_attn_kwargs,
                    )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

            if output_router_logits:
                all_router_logits += (layer_outputs[-1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        return MoeModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values if use_cache else None,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...

class SmallThinkerForCausalLM(SmallThinkerPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]
    def __init__(self, config):
        super().__init__(config)
        self.model = SmallThinkerModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @can_return_tuple
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_router_logits: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **kwargs: Unpack[KwargsForCausalLM],
    ) -> MoeCausalLMOutputWithPast:

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_router_logits = (
            output_router_logits if output_router_logits is not None else self.config.output_router_logits
        )

        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs: MoeModelOutputWithPast = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_router_logits=output_router_logits,
            cache_position=cache_position,
            **kwargs,
        )

        hidden_states = outputs.last_hidden_state
        # Only compute necessary logits, and do not upcast them to float
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(hidden_states[:, slice_indices, :])

        return MoeCausalLMOutputWithPast(
            loss=None,
            aux_loss=None,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            router_logits=outputs.router_logits,
        )

__all__ = [
    "SmallThinkerForCausalLM",
    "SmallThinkerModel",
    "SmallThinkerPreTrainedModel"
]