Safurai-Csharp-34B / README.md
davide221's picture
Update README.md
b2312cb
|
raw
history blame
3.1 kB
---
license: apache-2.0
pipeline_tag: text-generation
---
# πŸ¦™πŸ’» Safurai-Csharp-34B
πŸ“ [Article](https://www.safurai.com/blog/introducing-safurai-csharp)
<center><img src="https://media.discordapp.net/attachments/1071900237414801528/1165927645469478942/mrciffa_A_cartoon_samurai_wearing_a_black_jacket_as_a_chemistry_d4c17e16-567a-41da-9e0e-2902e93def2c.png?ex=6548a1bc&is=65362cbc&hm=5721b5c15d8f97374212970a7d01f17923ef5015d385230b8ae5542fd2d0df21&=&width=1224&height=1224" width="300"></center>
This is a [`codellama/CodeLlama-7b-hf`](https://huggingface.co/codellama/CodeLlama-7b-hf) model fine-tuned using QLoRA (4-bit precision) on the [`mlabonne/Evol-Instruct-Python-1k`](https://huggingface.co/datasets/mlabonne/Evol-Instruct-Python-1k).
## πŸ”§ Training
It was trained on an in 1h 11m 44s with the following configuration file:
```yaml
base_model: codellama/CodeLlama-34b-hf
base_model_config: codellama/CodeLlama-34b-hf
model_type: LlamaForCausalLM
tokenizer_type: CodeLlamaTokenizer
is_llama_derived_model: true
hub_model_id: "Safurai/Evol-csharp-v1"
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: Safurai/EvolInstruct-csharp-16k-13B-Alpaca
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./qlora-out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: codellama-csharp
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0003
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 40
eval_steps: 40
save_steps:
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
Here are the loss curves:
![](https://i.imgur.com/zrBq01N.png)
It is mainly designed for experimental purposes, not for inference.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
## πŸ’» Usage
``` python
# pip install transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/EvolCodeLlama-7b"
prompt = "Your csharp request"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
sequences = pipeline(
f'{prompt}',
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=1000,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```