TrevorJS's picture
Update README.md
e046034 verified
metadata
library_name: transformers
license: apache-2.0
base_model: HuggingFaceTB/SmolLM2-135M-Instruct
tags:
  - generated_from_trainer
  - finance
model-index:
  - name: check-amount-deverbalizer-smollm2
    results: []
datasets:
  - TrevorJS/check-amount-verbalizer-synthetic-data
language:
  - en
pipeline_tag: text-generation

check-amount-deverbalizer-smollm2

This model is a fine-tuned version of HuggingFaceTB/SmolLM2-135M-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1520
  • Json Parse Rate: 0.96
  • Dollar Accuracy: 0.96
  • Cents Accuracy: 0.96
  • Digit Count Accuracy: 0.96
  • Perfect Match: 0.96

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Json Parse Rate Dollar Accuracy Cents Accuracy Digit Count Accuracy Perfect Match
0.1588 0.2128 200 0.1580 0.9571 0.9271 0.9529 0.95 0.9186
0.1576 0.4255 400 0.1549 0.96 0.9557 0.96 0.96 0.9557
0.1546 0.6383 600 0.1539 0.96 0.9571 0.96 0.96 0.9571
0.154 0.8511 800 0.1541 0.9586 0.95 0.9586 0.9586 0.95
0.1539 1.0638 1000 0.1536 0.96 0.9557 0.96 0.96 0.9557
0.1544 1.2766 1200 0.1524 0.96 0.96 0.96 0.96 0.96
0.1535 1.4894 1400 0.1529 0.96 0.9571 0.96 0.96 0.9571
0.1537 1.7021 1600 0.1525 0.96 0.9586 0.96 0.96 0.9586
0.1548 1.9149 1800 0.1527 0.96 0.9586 0.96 0.96 0.9586
0.1545 2.1277 2000 0.1524 0.96 0.96 0.96 0.96 0.96
0.1534 2.3404 2200 0.1526 0.96 0.96 0.96 0.96 0.96
0.1533 2.5532 2400 0.1522 0.96 0.96 0.96 0.96 0.96
0.1524 2.7660 2600 0.1521 0.96 0.96 0.96 0.96 0.96
0.1527 2.9787 2800 0.1520 0.96 0.96 0.96 0.96 0.96

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0