|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: HuggingFaceTB/SmolLM2-135M-Instruct |
|
tags: |
|
- generated_from_trainer |
|
- finance |
|
model-index: |
|
- name: check-amount-deverbalizer-smollm2 |
|
results: [] |
|
datasets: |
|
- TrevorJS/check-amount-verbalizer-synthetic-data |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# check-amount-deverbalizer-smollm2 |
|
|
|
This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1520 |
|
- Json Parse Rate: 0.96 |
|
- Dollar Accuracy: 0.96 |
|
- Cents Accuracy: 0.96 |
|
- Digit Count Accuracy: 0.96 |
|
- Perfect Match: 0.96 |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Json Parse Rate | Dollar Accuracy | Cents Accuracy | Digit Count Accuracy | Perfect Match | |
|
|:-------------:|:------:|:----:|:---------------:|:---------------:|:---------------:|:--------------:|:--------------------:|:-------------:| |
|
| 0.1588 | 0.2128 | 200 | 0.1580 | 0.9571 | 0.9271 | 0.9529 | 0.95 | 0.9186 | |
|
| 0.1576 | 0.4255 | 400 | 0.1549 | 0.96 | 0.9557 | 0.96 | 0.96 | 0.9557 | |
|
| 0.1546 | 0.6383 | 600 | 0.1539 | 0.96 | 0.9571 | 0.96 | 0.96 | 0.9571 | |
|
| 0.154 | 0.8511 | 800 | 0.1541 | 0.9586 | 0.95 | 0.9586 | 0.9586 | 0.95 | |
|
| 0.1539 | 1.0638 | 1000 | 0.1536 | 0.96 | 0.9557 | 0.96 | 0.96 | 0.9557 | |
|
| 0.1544 | 1.2766 | 1200 | 0.1524 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | |
|
| 0.1535 | 1.4894 | 1400 | 0.1529 | 0.96 | 0.9571 | 0.96 | 0.96 | 0.9571 | |
|
| 0.1537 | 1.7021 | 1600 | 0.1525 | 0.96 | 0.9586 | 0.96 | 0.96 | 0.9586 | |
|
| 0.1548 | 1.9149 | 1800 | 0.1527 | 0.96 | 0.9586 | 0.96 | 0.96 | 0.9586 | |
|
| 0.1545 | 2.1277 | 2000 | 0.1524 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | |
|
| 0.1534 | 2.3404 | 2200 | 0.1526 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | |
|
| 0.1533 | 2.5532 | 2400 | 0.1522 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | |
|
| 0.1524 | 2.7660 | 2600 | 0.1521 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | |
|
| 0.1527 | 2.9787 | 2800 | 0.1520 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.2 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |