metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: The two patent families both expire in the United States in 2029.
sentences:
- >-
What method is used to record amortization and costs for owned content
that is predominantly monetized on an individual basis?
- >-
What year do the patent families related to DARZALEX expire in the
United States?
- >-
What was the primary reason for the net cash used in investing
activities in 2022?
- source_sentence: >-
In October 2020, Fortis Advisors LLC filed a complaint against Ethicon
Inc. and others in Delaware's Court of Chancery. The lawsuit alleges
breach of contract and fraud related to Ethicon's acquisition of Auris
Health Inc. in 2019. The case underwent a partial dismissal in December
2021, and as of January 2024, the trial's decision is pending.
sentences:
- >-
What types of payment rates are used for dialysis treatments and
associated pharmaceuticals?
- >-
What legal claims does Fortis Advisors LLC allege against Ethicon Inc.
in the lawsuit related to the acquisition of Auris Health Inc.?
- >-
What were the key components of the acquisition deal between ICE and
Black Knight completed on September 5, 2023?
- source_sentence: >-
Net cash provided by operating activities was $712.2 million and $223.7
million for the year ended December 31, 2023 and 2022, respectively. The
increase was primarily driven by timing of payments to vendors and timing
of the receipt of payments from our customers, as well as an increase in
interest income.
sentences:
- >-
What caused the increase in net cash provided by operating activities
between 2022 and 2023?
- >-
How long did Joanne D. Smith serve as the Vice President - Marketing at
Delta?
- >-
How does the management experience of Mr. Robert G. Goldstein benefit
the company?
- source_sentence: >-
We believe that, to varying degrees, our trademarks, trade names,
copyrights, proprietary processes, trade secrets, trade dress, domain
names and similar intellectual property add significant value to our
business
sentences:
- >-
What were the net interest expense on pre-acquisition-related debt and
the cost associated with the extinguishment of senior notes for 2022 as
part of non-GAAP adjustments?
- >-
How did the fluctuation in foreign currency exchange rates impact the
consolidated net operating revenues in 2023?
- >-
What does the company believe adds significant value to its business
regarding intellectual property?
- source_sentence: >-
The consolidated financial statements are incorporated by reference in the
Annual Report on Form 10-K, indicating they are treated as part of the
document for legal and reporting purposes.
sentences:
- >-
What does it mean for financial statements to be incorporated by
reference?
- What is contained within the pages 163-309 of the financial section?
- >-
What were the key business segments of The Goldman Sachs Group, Inc. as
reported in their 2023 financial disclosures?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7014285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8271428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8714285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9028571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7014285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2757142857142857
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17428571428571427
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09028571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7014285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8271428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8714285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9028571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8043195367351605
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7724552154195008
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7766441682397275
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8328571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8685714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9042857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2776190476190476
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17371428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09042857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8328571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8685714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9042857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.804097602951568
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.771829365079365
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7756860707173107
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8214285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8557142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.89
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27380952380952384
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17114285714285712
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08899999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8214285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8557142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.89
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7977242461477416
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7678412698412698
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7726663884946474
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6785714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8257142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8528571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8857142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6785714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2752380952380953
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17057142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08857142857142856
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6785714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8257142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8528571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8857142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7864311013349103
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.754115079365079
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7585731100549844
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6642857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7828571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8157142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8642857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6642857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26095238095238094
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16314285714285712
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08642857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6642857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7828571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8157142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8642857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7634746514041137
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7313633786848066
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7360563668571922
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Yohhei/bge-base-financial-matryoshka")
sentences = [
'The consolidated financial statements are incorporated by reference in the Annual Report on Form 10-K, indicating they are treated as part of the document for legal and reporting purposes.',
'What does it mean for financial statements to be incorporated by reference?',
'What is contained within the pages 163-309 of the financial section?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7014 |
cosine_accuracy@3 |
0.8271 |
cosine_accuracy@5 |
0.8714 |
cosine_accuracy@10 |
0.9029 |
cosine_precision@1 |
0.7014 |
cosine_precision@3 |
0.2757 |
cosine_precision@5 |
0.1743 |
cosine_precision@10 |
0.0903 |
cosine_recall@1 |
0.7014 |
cosine_recall@3 |
0.8271 |
cosine_recall@5 |
0.8714 |
cosine_recall@10 |
0.9029 |
cosine_ndcg@10 |
0.8043 |
cosine_mrr@10 |
0.7725 |
cosine_map@100 |
0.7766 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7 |
cosine_accuracy@3 |
0.8329 |
cosine_accuracy@5 |
0.8686 |
cosine_accuracy@10 |
0.9043 |
cosine_precision@1 |
0.7 |
cosine_precision@3 |
0.2776 |
cosine_precision@5 |
0.1737 |
cosine_precision@10 |
0.0904 |
cosine_recall@1 |
0.7 |
cosine_recall@3 |
0.8329 |
cosine_recall@5 |
0.8686 |
cosine_recall@10 |
0.9043 |
cosine_ndcg@10 |
0.8041 |
cosine_mrr@10 |
0.7718 |
cosine_map@100 |
0.7757 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7 |
cosine_accuracy@3 |
0.8214 |
cosine_accuracy@5 |
0.8557 |
cosine_accuracy@10 |
0.89 |
cosine_precision@1 |
0.7 |
cosine_precision@3 |
0.2738 |
cosine_precision@5 |
0.1711 |
cosine_precision@10 |
0.089 |
cosine_recall@1 |
0.7 |
cosine_recall@3 |
0.8214 |
cosine_recall@5 |
0.8557 |
cosine_recall@10 |
0.89 |
cosine_ndcg@10 |
0.7977 |
cosine_mrr@10 |
0.7678 |
cosine_map@100 |
0.7727 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6786 |
cosine_accuracy@3 |
0.8257 |
cosine_accuracy@5 |
0.8529 |
cosine_accuracy@10 |
0.8857 |
cosine_precision@1 |
0.6786 |
cosine_precision@3 |
0.2752 |
cosine_precision@5 |
0.1706 |
cosine_precision@10 |
0.0886 |
cosine_recall@1 |
0.6786 |
cosine_recall@3 |
0.8257 |
cosine_recall@5 |
0.8529 |
cosine_recall@10 |
0.8857 |
cosine_ndcg@10 |
0.7864 |
cosine_mrr@10 |
0.7541 |
cosine_map@100 |
0.7586 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6643 |
cosine_accuracy@3 |
0.7829 |
cosine_accuracy@5 |
0.8157 |
cosine_accuracy@10 |
0.8643 |
cosine_precision@1 |
0.6643 |
cosine_precision@3 |
0.261 |
cosine_precision@5 |
0.1631 |
cosine_precision@10 |
0.0864 |
cosine_recall@1 |
0.6643 |
cosine_recall@3 |
0.7829 |
cosine_recall@5 |
0.8157 |
cosine_recall@10 |
0.8643 |
cosine_ndcg@10 |
0.7635 |
cosine_mrr@10 |
0.7314 |
cosine_map@100 |
0.7361 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 8 tokens
- mean: 45.16 tokens
- max: 512 tokens
|
- min: 7 tokens
- mean: 20.44 tokens
- max: 45 tokens
|
- Samples:
positive |
anchor |
Highlights during fiscal year 2023 include the following: We generated $18,085 million of cash from operations. |
What was the amount of cash generated from operations by the company in fiscal year 2023? |
U.S. government and agency securities |
$ |
For assets under development, assets are grouped and assessed for impairment by estimating the undiscounted cash flows, which include remaining construction costs, over the asset's remaining useful life. If cash flows do not exceed the carrying amount, impairment based on fair value versus carrying value is considered. |
How is the impairment of assets assessed for projects still under development? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.5313 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7416 |
0.7521 |
0.7554 |
0.7079 |
0.7609 |
1.6244 |
20 |
0.6553 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7549 |
0.7693 |
0.7732 |
0.7318 |
0.7716 |
2.4365 |
30 |
0.445 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7565 |
0.7738 |
0.7746 |
0.7367 |
0.7763 |
3.2487 |
40 |
0.3917 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7586 |
0.7727 |
0.7757 |
0.7361 |
0.7766 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}