File size: 7,913 Bytes
c4adc54 9a35fa7 e4915d1 c4adc54 a05646f c4adc54 9a35fa7 c4adc54 e4915d1 c4adc54 a05646f c4adc54 9a35fa7 e4915d1 9a35fa7 c4adc54 e4915d1 c4adc54 e4915d1 c4adc54 9a35fa7 9b7f11f 9a35fa7 c4adc54 9a35fa7 c4adc54 9a35fa7 c4adc54 e4915d1 c4adc54 9a35fa7 e4915d1 c4adc54 e4915d1 c4adc54 e4915d1 c4adc54 9a35fa7 e4915d1 c4adc54 e4915d1 c4adc54 9a35fa7 e4915d1 9a35fa7 c4adc54 e4915d1 a05646f e4915d1 a05646f e4915d1 a05646f e4915d1 c4adc54 9a35fa7 c4adc54 e4915d1 c4adc54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import argparse
import logging
import sys
import datetime
import os
import pandas as pd
from transformers import pipeline
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from datasets import load_dataset, Audio
import evaluate
import jiwer
from belarusian_text_normalizer import BelarusianTextNormalizer
now_str = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
logger = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[
logging.StreamHandler(sys.stdout),
logging.FileHandler(filename=f'eval_{now_str}.log', mode='w')
],
)
logger.setLevel(logging.INFO)
wer_metric = evaluate.load("wer")
text_normalizer = BelarusianTextNormalizer()
def pull_columns(df: pd.DataFrame, cols) -> pd.DataFrame:
""" Pull columns to the beginning of the dataframe """
if isinstance(cols, str):
cols = [cols]
cols = list(cols)
absent_cols = list(set(cols).difference(df.columns))
assert len(absent_cols) == 0, f'{absent_cols} columns are absent in df'
cols_rest = [c for c in df.columns if c not in cols]
new_df = df[cols + cols_rest].copy()
assert new_df.shape[1] == df.shape[1]
return new_df
def is_target_text_in_range(ref):
if ref.strip() == "ignore time segment in scoring":
return False
else:
return ref.strip() != ""
def normalise(sample, text_column: str):
sample["reference_norm"] = text_normalizer(sample[text_column])
return sample
def data(dataset,text_column: str):
for i, item in enumerate(dataset):
yield {**item["audio"], "reference_norm": item["reference_norm"], 'reference': item[text_column]}
def clean_filename(filename: str):
return filename.replace(os.path.sep, '_')
def main(args):
logger.info(f'running evaluation script with following parameters: {args}')
logger.info(f'using following text normalizer: {text_normalizer}')
batch_size = args.batch_size
whisper_asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
whisper_asr.model.config.forced_decoder_ids = (
whisper_asr.tokenizer.get_decoder_prompt_ids(
language=args.language, task="transcribe"
)
)
logger.info('loading dataset')
dataset = load_dataset(
args.dataset,
args.config,
split=args.split,
streaming=args.streaming,
use_auth_token=True,
)
# Only uncomment for debugging
dataset = dataset.take(args.max_eval_samples)
# TODO: probably no need in cast, because pipelien migh handle resampling internally. need to check
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
dataset = dataset.map(normalise, fn_kwargs=dict(text_column=args.text_column))
dataset = dataset.filter(is_target_text_in_range, input_columns=["reference_norm"])
predictions = []
predictions_norm = []
references = []
references_norm = []
audio_paths = []
logger.info('running inference')
for out in whisper_asr(data(dataset, text_column=args.text_column), batch_size=batch_size):
predictions.append(out["text"])
predictions_norm.append(text_normalizer(out["text"]))
references.append(out["reference"][0])
references_norm.append(out["reference_norm"][0])
audio_paths.append(out['path'][0])
logger.info('computing metrics')
wer = wer_metric.compute(references=references_norm, predictions=predictions_norm)
wer = wer * 100
logger.info('metrics computed')
logger.info(f'WER: {wer}')
if args.save_predictions is True:
preds_fp = f'preds_{args.dataset}_{args.config}_{args.split}_{now_str}.xlsx'
preds_fp = clean_filename(preds_fp)
logger.info(f'saving predictions to: "{preds_fp}"')
preds_df = pd.DataFrame({
'audio_path': audio_paths,
'prediction_norm': predictions_norm, 'reference_norm': references_norm,
'prediction': predictions, 'reference': references,
})
logger.info('computing WER for each item individually')
preds_df['wer'] = preds_df.apply(
lambda row: 100 * jiwer.wer(
truth=row['reference_norm'], hypothesis=row['prediction_norm']),
axis=1
)
preds_df.sort_values('wer', ascending=False, inplace=True)
# use pull_columns instead of direct dataframe indexing
# not to delete any columns that could be added to dataframe in future.
cols_order = ['audio_path', 'wer', 'prediction_norm', 'reference_norm', 'prediction', 'reference']
preds_df = pull_columns(preds_df, cols=cols_order)
preds_df.to_excel(preds_fp, index=False)
else:
logger.info('save_predictions is False. will not save predictions to a file')
if args.push_to_hub is True:
logger.info(f'updating model card and pushing to HuggingFace Hub')
evaluate.push_to_hub(
model_id=args.model_id,
metric_value=wer,
metric_type="wer",
metric_name="WER",
dataset_name=args.dataset,
dataset_type=args.dataset,
dataset_config=args.config,
dataset_split=args.split,
task_type="automatic-speech-recognition",
task_name="Automatic Speech Recognition"
)
else:
logger.info('push_to_hub is False. will not update model card and push to HuggingFace Hub')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_id",
type=str,
required=True,
help="Model identifier. Should be loadable with 🤗 Transformers",
)
parser.add_argument(
"--dataset",
type=str,
default="mozilla-foundation/common_voice_11_0",
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
)
parser.add_argument(
"--config",
type=str,
required=True,
help="Config of the dataset. *E.g.* `'en'` for the English split of Common Voice",
)
parser.add_argument(
"--split",
type=str,
default="test",
help="Split of the dataset. *E.g.* `'test'`",
)
parser.add_argument(
"--text_column",
type=str,
required=True,
help="Dataset column name containing target transcription of an audiofile"
)
parser.add_argument(
"--device",
type=int,
default=-1,
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
)
parser.add_argument(
"--batch_size",
type=int,
default=16,
help="Number of samples to go through each streamed batch.",
)
parser.add_argument(
"--max_eval_samples",
type=int,
default=None,
help="Number of samples to be evaluated. Put a lower number e.g. 64 for testing this script.",
)
parser.add_argument(
"--streaming",
type=bool,
default=True,
help="Choose whether you'd like to download the entire dataset or stream it during the evaluation.",
)
parser.add_argument(
"--language",
type=str,
required=True,
help="Two letter language code for the transcription language, e.g. use 'en' for English.",
)
parser.add_argument(
'--push_to_hub',
type=bool,
default=True,
help="Whether to update model card and push changes to HuggingFace Hub"
)
parser.add_argument(
'--save_predictions',
type=bool,
default=True,
help="Whether to store predictions and target transcriptions to a file"
)
args = parser.parse_args()
main(args)
|