andrecastro's picture
Model save
4b081eb
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9966577540106952

swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0271
  • Accuracy: 0.9967

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0898 1.0 327 0.0707 0.9757
0.0221 2.0 654 0.0278 0.9920
0.06 3.0 981 0.0345 0.9913
0.0094 4.0 1309 0.0300 0.9947
0.0004 5.0 1636 0.0398 0.9942
0.0035 6.0 1963 0.0136 0.9975
0.0246 7.0 2290 0.0339 0.9940
0.0012 8.0 2618 0.0316 0.9958
0.0 9.0 2945 0.0302 0.9964
0.0 10.0 3272 0.0201 0.9973
0.0003 11.0 3599 0.0222 0.9955
0.0 12.0 3927 0.0218 0.9962
0.0001 13.0 4254 0.0293 0.9962
0.0002 14.0 4581 0.0272 0.9962
0.0 14.99 4905 0.0271 0.9967

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0