avinasht's picture
End of training
d07e186 verified
metadata
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-xsmall
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: Noisy-deberta-v3-xsmall-Label_B-768-epochs-5
    results: []

Noisy-deberta-v3-xsmall-Label_B-768-epochs-5

This model is a fine-tuned version of microsoft/deberta-v3-xsmall on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0850
  • Accuracy: 0.9839
  • F1: 0.9839
  • Precision: 0.9841
  • Recall: 0.9839

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 48
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0801 0.9995 1066 0.1455 0.9542 0.9535 0.9565 0.9542
0.0581 1.9993 2132 0.0792 0.9805 0.9805 0.9807 0.9805
0.0543 2.9991 3198 0.3059 0.9434 0.9423 0.9495 0.9434
0.0003 3.9998 4265 0.0850 0.9839 0.9839 0.9841 0.9839
0.0006 4.9986 5330 0.1618 0.9737 0.9737 0.9747 0.9737

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3