librarian-bot's picture
Librarian Bot: Add base_model information to model
11e8511
|
raw
history blame
3.47 kB
metadata
language:
  - mn
license: apache-2.0
tags:
  - automatic-speech-recognition
  - generated_from_trainer
  - hf-asr-leaderboard
  - robust-speech-event
  - mozilla-foundation/common_voice_8_0
  - robust-speech-event
datasets:
  - mozilla-foundation/common_voice_8_0
base_model: facebook/wav2vec2-xls-r-300m
model-index:
  - name: wav2vec2-large-xls-r-300m-mn
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 8
          type: mozilla-foundation/common_voice_8_0
          args: mn
        metrics:
          - type: wer
            value: 31.3919
            name: Test WER using LM
          - type: cer
            value: 10.2565
            name: Test CER using LM
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: mn
        metrics:
          - type: wer
            value: 65.26
            name: Test WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Robust Speech Event - Test Data
          type: speech-recognition-community-v2/eval_data
          args: mn
        metrics:
          - type: wer
            value: 63.09
            name: Test WER

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5502
  • Wer: 0.4042

Training and evaluation data

Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_mn.ipynb"

Test WER without LM wer = 58.2171 % cer = 16.0670 %

Test WER using wer = 31.3919 % cer = 10.2565 %

How to use eval.py

huggingface-cli login #login to huggingface for getting auth token to access the common voice v8
#running with LM
python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test

# running without LM
python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test --greedy

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 40.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 6.35 400 0.9380 0.7902
3.2674 12.7 800 0.5794 0.5309
0.7531 19.05 1200 0.5749 0.4815
0.5382 25.4 1600 0.5530 0.4447
0.4293 31.75 2000 0.5709 0.4237
0.4293 38.1 2400 0.5476 0.4059

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.18.3
  • Tokenizers 0.11.0