bhargavi143's picture
bhargavi143/distilbert-base-uncased-lora-text-classification
0ae235a verified
---
library_name: peft
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-lora-text-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8405
- Accuracy: {'accuracy': 0.898}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|
| No log | 1.0 | 250 | 0.7051 | {'accuracy': 0.761} |
| 0.4561 | 2.0 | 500 | 0.9751 | {'accuracy': 0.793} |
| 0.4561 | 3.0 | 750 | 0.4668 | {'accuracy': 0.882} |
| 0.2196 | 4.0 | 1000 | 0.5190 | {'accuracy': 0.895} |
| 0.2196 | 5.0 | 1250 | 0.6079 | {'accuracy': 0.905} |
| 0.0804 | 6.0 | 1500 | 0.7639 | {'accuracy': 0.895} |
| 0.0804 | 7.0 | 1750 | 0.8768 | {'accuracy': 0.892} |
| 0.0119 | 8.0 | 2000 | 0.8436 | {'accuracy': 0.893} |
| 0.0119 | 9.0 | 2250 | 0.8417 | {'accuracy': 0.897} |
| 0.001 | 10.0 | 2500 | 0.8405 | {'accuracy': 0.898} |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3