text
stringlengths
0
601k
let rec fib_aux n a b = if n = 0 then a else fib_aux (n - 1) (a + b) a ;; let fib_tl n = if n >= 0 then fib_aux n 1 0 else if n < 0 then domain () else 0 ;;
let rec fact (n: int): float = if n < 0 then domain () else match n with | 0 -> 1. | _ -> let nf = float_of_int n in nf *. (fact (n - 1)) ;;
let binomial (n: int) (k: int) = if k < 0 then domain () else (if n < k then domain () else fact n /. (fact k *. fact (n - k))) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;;
let is_prime n = let rec helper n i = if i*i > n then true else ( if n mod i == 0 then false else helper n (i+1)) in if n <= 1 then domain () else helper n 2 ;;
let rec fib_aux n a b = if n == 0 then a else let c = b in let b = a + b in let a = c in fib_aux (n-1) a b ;; let fib_tl n = if n < 0 then domain () else fib_aux n 1 1 ;;
let rec fact (n: int): float = if n < 0 then domain () else match n with | 0 -> 1. | _ -> let nf = float_of_int n in nf *. (fact (n - 1)) ;;
let binomial (n: int) (k: int) = if k < 0 then domain () else (if n < k then domain () else fact n /. (fact k *. fact (n - k))) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;;
let is_prime n = let rec helper n i = if i*i > n then true else ( if n mod i = 0 then false else helper n (i+1)) in if n <= 1 then domain () else helper n 2 ;;
let rec fib_aux n a b = if n = 0 then a else let c = b in let b = a + b in let a = c in fib_aux (n-1) a b ;; let fib_tl n = if n < 0 then domain () else fib_aux n 1 1 ;;
let rec fact (n: int): float = if n < 0 then domain() else if n == 0 || n == 1 then 1. else float_of_int(n) *. fact(n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain() else if n = k then 1.0 else let rec choose n k = if k == 0 then 1. else (float_of_int(n) *. (choose(n - 1) (k - 1))) /. float_of_int(k) in choose n k;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 and dy = y1 - y2 in sqrt(float_of_int(dx * dx + dy * dy)) ;;
let is_prime n = if n <= 1 then domain() else match n with | 1 -> false | _ -> let i = 2 in let rec prime n i = if n <= 2 then match n with | 2 -> true | _ -> false else if n mod i == 0 then false else if i * i > n then true else prime n (i + 1) in prime n i ;;
let rec fib_aux n a b = if b == 0 then a else fib_aux a (n + a) (b - 1) ;; let fib_tl n = if n == 0 then 1 else fib_aux 0 1 (n) ;;
let rec fact (n: int): float = if n < 0 then domain() else if n == 0 || n == 1 then 1. else float_of_int(n) *. fact(n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain() else if n = k then 1.0 else let rec choose n k = if k == 0 then 1. else (float_of_int(n) *. (choose(n - 1) (k - 1))) /. float_of_int(k) in choose n k;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 and dy = y1 - y2 in sqrt(float_of_int(dx * dx + dy * dy)) ;;
let is_prime n = if n <= 1 then domain() else match n with | 1 -> false | _ -> let i = 2 in let rec prime n i = if n <= 2 then match n with | 2 -> true | _ -> false else if n mod i == 0 then false else if i * i > n then true else prime n (i + 1) in prime n i ;;
let rec fib_aux n a b = if b == 0 then a else fib_aux a (n + a) (b - 1) ;; let fib_tl n = if n < 0 then domain() else if n == 0 then 1 else fib_aux 0 1 (n) ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx + dy * dy)) ;;
let is_prime n = if n<=1 then domain () else if n = 2 then true else let rec find_divisor c = if c*c > n then true else (if n mod c = 0 then false else find_divisor (c+1)) in find_divisor 2;;
let rec fib_aux n a b = match n with | 0 -> a | 1 -> b | _ -> fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1 ;;
let rec factorial (n: float) : float = if n <= 1. then 1. else n *. (factorial (n -. 1.)) let fact (n: int): float = match n with | 0 -> 1. | _ -> factorial (float_of_int(n));;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k == n then 1. else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x2 - x1) in let dy = float_of_int(y2 - y1) in sqrt (dx *. dx +. dy *. dy) ;; let rec mod_n (n: int) (x: int) = if x <= 1 then true else begin if (n mod x) = 0 then false else mod_n n (x-1) end;;
let is_prime n : bool = if n <= 1 then domain() else let x = int_of_float(sqrt(float_of_int(n))) in mod_n n x;;
let rec fib_aux n a b = if n == 0 then a else if n == 1 then b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;;
let rec factorial (n: float) : float = if n <= 1. then 1. else n *. (factorial (n -. 1.)) let fact (n: int): float = match n with | 0 -> 1. | _ -> factorial (float_of_int(n));;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k == n then 1. else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x2 - x1) in let dy = float_of_int(y2 - y1) in sqrt (dx *. dx +. dy *. dy) ;; let rec mod_n (n: int) (x: int) = if x <= 1 then true else begin if (n mod x) = 0 then false else mod_n n (x-1) end;;
let is_prime n : bool = if n <= 1 then domain() else let x = int_of_float(sqrt(float_of_int(n))) in mod_n n x;;
let rec fib_aux n a b = if n == 0 then a else if n == 1 then b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;;
let rec fact (n: int): float = if n >= 0 then match n with | 0 -> 1. | 1 -> 1. | _ -> float_of_int(n) *. fact( n - 1) else domain();;
let binomial (n: int) (k: int): float = if n < 0 || k > n then domain () else fact n /. (fact k *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = sqrt((float_of_int(x1) -. float_of_int(x2))**2. +. (float_of_int(y1) -. float_of_int(y2))**2.) ;;
let is_prime n = if n <= 1 then domain() else let rec divide (k: int) : bool = if (k*k > n) then true else begin if n mod k == 0 then false else divide (k+1) end in divide 2;;
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux (n-1) b (a+b) let fib_tl n = if n < 0 then domain() else fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact(n - 1);;
let binomial (n: int) (k: int) : float = if n < 0 then domain () else (if k = n then 1. else fact(n) /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt ( float_of_int(dx) *. float_of_int(dx) +. float_of_int(dy) *. float_of_int(dy) ) ;;
let is_prime n = let rec p n acc = if ( acc * acc ) > n then true else if (n mod acc) = 0 then false else p n (acc+1) in if n <= 1 then domain() else p n 2;;
let rec fib_aux n a b = if n = 0 then a else fib_aux (n-1) b (a+b) let fib_tl n = if n <0 then domain () else fib_aux n 1 1;;
let rec fact (n: int): float = if n < 0 then domain () else let n = float_of_int(n) in match n with | 0. -> 1. | _ -> n *. fact (int_of_float(n) - 1);;
let binomial (n: int) (k: int)= if n < 0 || k > n || k < 0 then domain () else (if k = n then 1.0 else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x2) -. float_of_int(x1) in let dy = float_of_int(y2) -. float_of_int(y1) in sqrt (dx *. dx +. dy *. dy) ;; let rec prime_helper n z = if z = 1 then true else let m = n mod z in match m with | 0 -> false; |_ -> prime_helper n (z - 1); ;;
let is_prime n = if n <= 1 then domain () else if n = 2 || n = 3 then true else prime_helper n (n - 1) ;;
let rec fib_aux n a b = if n = 0 then 1 else if n = 1 then b else fib_aux (n-1) b (b+a) ;; let fib_tl n = if n < 0 then raise NotImplemented else fib_aux (n+1) 0 1 ;;
let rec fact (n: int): float = if n < 0 then domain () else let n = float_of_int(n) in match n with | 0. -> 1. | _ -> n *. fact (int_of_float(n) - 1);;
let binomial (n: int) (k: int)= if n < 0 || k > n || k < 0 then domain () else (if k = n then 1.0 else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x2) -. float_of_int(x1) in let dy = float_of_int(y2) -. float_of_int(y1) in sqrt (dx *. dx +. dy *. dy) ;; let rec prime_helper n z = if z = 1 then true else let m = n mod z in match m with | 0 -> false; |_ -> prime_helper n (z - 1); ;;
let is_prime n = if n <= 1 then raise NotImplemented else if n = 2 || n = 3 then true else prime_helper n (n - 1) ;;
let rec fib_aux n a b = if n < 0 then raise NotImplemented else if n = 0 then 1 else if n = 1 then b else fib_aux (n-1) b (b+a) ;; let fib_tl n = if n < 0 then raise NotImplemented else fib_aux (n+1) 0 1 ;;
let rec fact (n: int): float = if n < 0 then domain () else let n = float_of_int(n) in match n with | 0. -> 1. | _ -> n *. fact (int_of_float(n) - 1);;
let binomial (n: int) (k: int)= if n < 0 || k > n || k < 0 then domain () else (if k = n then 1.0 else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x2) -. float_of_int(x1) in let dy = float_of_int(y2) -. float_of_int(y1) in sqrt (dx *. dx +. dy *. dy) ;; let rec prime_helper n z = if z = 1 then true else let m = n mod z in match m with | 0 -> false; |_ -> prime_helper n (z - 1); ;;
let is_prime n = if n <= 1 then raise NotImplemented else if n = 2 || n = 3 then true else prime_helper n (n - 1) ;;
let rec fib_aux n a b = if n < 0 then raise NotImplemented else if n = 0 then 1 else if n = 1 then b else fib_aux (n-1) b (b+a) ;; let fib_tl n = if n < 0 then raise NotImplemented else fib_aux (n+1) 0 1 ;;
let rec fact (n: int): float = if n < 0 then domain () else let n = float_of_int(n) in match n with | 0. -> 1. | _ -> n *. fact (int_of_float(n) - 1);;
let binomial (n: int) (k: int)= if n < 0 || k > n || k < 0 then domain () else if k = n then 1.0 else fact n /. (fact k *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x2) -. float_of_int(x1) in let dy = float_of_int(y2) -. float_of_int(y1) in sqrt (dx *. dx +. dy *. dy) ;; let rec prime_helper n z = if z = 1 then true else let m = n mod z in match m with | 0 -> false; |_ -> prime_helper n (z - 1); ;;
let is_prime n = if n <= 1 then raise NotImplemented else prime_helper n (n - 1) ;;
let rec fib_aux n a b = if n < 0 then raise NotImplemented else if n = 0 then 1 else if n = 1 then b else fib_aux (n-1) b (b+a) ;; let fib_tl n = if n < 0 then raise NotImplemented else fib_aux (n+1) 0 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact(n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if n<k || k<0 then domain () else fact(n)/. (fact(k) *. fact(n-k)) );;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;; let rec iter (x : int) (n : int)= if n mod x = 0 then false else if x*x>n then true else iter (x+1) n;;
let is_prime n = if n=0 || n=1 then domain() else if n=2 || n=3 then true else iter 2 n;;
let rec fib_aux n a b = if n==0 then b else fib_aux (n - 1) b (a + b) let fib_tl n = fib_aux n 0 1;;;
let rec fact (n: int): float = if n = 0 then 1. else (float_of_int n) *. (fact (n - 1));;
let binomial (n: int) (k: int) : float = if n < 0 then domain () else (if k = n then 1. else (fact n /. (fact k *. fact (n - k)))) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int (dx)**2.+. float_of_int (dy)**2.) ;;
let is_prime (n: int) : bool = if n <= 1 then domain() else let x = int_of_float(sqrt(float_of_int(n))) in let rec check_prime n x= if x = 1 then true else match n mod x with | 0 -> false | _ -> check_prime (n) (x-1) in check_prime (n) (x) ;;
let rec fib_aux n a b = if n=0 then b else if n=1 then b else fib_aux (n-1) (b) (a+b) ;; let fib_tl n = fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int (n) *. ( fact (n - 1) );;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt ( float_of_int (dx * dx + dy * dy)) ;;
let is_prime n = if n < 2 then domain () else (let rec helper m = if m * m > n then true else ( if n mod m = 0 then false else helper (m + 1)) in helper 2 );;
let rec fib_aux n a b = if n > 2 then fib_aux (n-1) b (a + b) else a + b;; let fib_tl n = if n = 0 then 1 else if n = 1 then 1 else fib_aux n 1 1 ;;
let fact (n: int): float = let rec facthelper (n: int) (acc: float): float = if n = 0 then acc else facthelper (n-1) (float_of_int(n) *. acc) in facthelper n 1. ;;
let binomial (n: int) (k: int): float = if n < 0 then domain () else if k < 0 then domain () else (if k > n then domain () else let a = (fact k *. fact(n-k)) in let b = (fact n) in ( b /. a ) );;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt(float_of_int(dy*dy+dx*dx)) ;;
let is_prime (n: int): bool = if n <= 1 then domain() else ( let value = n-1 in let rec increment n value = if value == 1 then true else ( if n mod value == 0 then false else (increment n (value-1))) in increment n value ) ;;
let rec fib_aux n a b = if n > 0 then fib_aux (n-1) (b) (a+b) else a let fib_tl n = fib_aux n 1 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | 1 -> 1. | _ -> float_of_int n *. fact(n - 1);;
let binomial (n: int) (k: int) = if n < 0 || n < k || k < 0 then domain() else (fact n) /. ((fact k) *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt(float_of_int(dx * dx + dy * dy)) ;;
let is_prime n = let rec helper x = if x*x > n then true else if (n mod x) == 0 then false else helper (x+1) in if n > 1 then helper 2 else domain();;
let rec fib_aux n a b = if n == 0 then b else fib_aux (n-1) b (a+b) let fib_tl n = if n>=0 then fib_aux n 0 1 else domain();;
let rec fact (n: int): float = match n with | 0 -> 1. | 1 -> 1. | _ -> float_of_int n *. fact(n - 1);;
let binomial (n: int) (k: int) = if n < 0 || n < k || k < 0 then domain() else (fact n) /. ((fact k) *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt(float_of_int(dx * dx + dy * dy)) ;;
let is_prime n = let rec helper x = if x*x > n then true else if (n mod x) = 0 then false else helper (x+1) in if n > 1 then helper 2 else domain();;
let rec fib_aux n a b = if n = 0 then b else fib_aux (n-1) b (a+b) let fib_tl n = if n>=0 then fib_aux n 0 1 else domain();;
let rec fact (n: int): float = if n < 0 then domain () else match n with | 0 -> 1. | _ -> float_of_int(n) *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 || k < 0 || k > n then domain () else (if k = n || k = 0 then 1. else if k = 1 then float_of_int(n) else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int((dx * dx + dy * dy)));;
let is_prime n = let rec is_prime_tr n acc = if n <= 1 then domain () else (if acc * acc > n then true else if acc != 1 && acc != n && float_of_int(n/acc) = float_of_int(n) /. float_of_int(acc) then false else is_prime_tr (n) (acc+1)) in is_prime_tr n 2;;