text
stringlengths
0
601k
let rec fib_aux n a b = if n = 0 || n = 1 then a + b else( let prev_a = a in let a = b in let b = prev_a + b in fib_aux (n-1) a b ) let fib_tl n = if n < 0 then domain () else fib_aux n 0 1;;
let rec fact (n: int): float = match n with | 0 | 1 -> 1. | n -> float_of_int(n) *. (fact (n - 1)) ;;
let binomial (n: int) (k: int) = if n < 0 then domain() else (if k > n then domain() else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2-x1 in let dy = y2-y1 in sqrt(float_of_int(dx)**2.0 +. float_of_int(dy)**2.0) ;; let rec prime_recursive n x: bool = if (x * x > n ) then true else if (n mod x == 0) then false else prime_recursive n (x+2);;
let is_prime n : bool = if (n<=1) then raise Domain else if (n <=2 || n mod 2 == 0 ) then n==2 else prime_recursive n 3;;
let rec fib_aux n a b = if n==0 then 1 else if n==1 then b else fib_aux (n-1) b (a+b) let fib_tl n = if n < 0 then domain() else fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n-1);;
let binomial (n: int) (k: int): float = if n < 0 then domain () else if n = 0 then 1. else (if k = n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt ( float_of_int dx *. float_of_int dx +. float_of_int dy *. float_of_int dy) ;;
let is_prime n = if n<=1 then domain() else let rec prime_tail n x = if x*x <=n && n mod x = 0 && x!= n then false else if x*x <= n then prime_tail n (x+1) else true in prime_tail n 2;;
let rec fib_aux n a b = if n = 1 then b else if n = 0 then a else fib_aux (n-1) b (b+a);; let fib_tl n = fib_aux n 1 1 ;;
let rec fact (n: int): float = if n = 0 then 1. else float(n) *. fact(n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else if k > n then domain () else (fact n) /. ((fact k) *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = abs(x2 - x1) in let dy = abs(y2 - y1) in sqrt(float(dx * dx) +. float(dy * dy));;
let is_prime (n: int): bool = if n<2 then domain () else let a = 2 in let b = int_of_float(sqrt(float(n))) in let rec iterate a b = if a>b then true else if n mod a = 0 then false else iterate (a+1) b in iterate a b;;
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);;
let binomial (n: int) (k: int) : float = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;;
let is_prime (n:int) : bool = if n <= 1 then domain() else( let rec helper n x = if x = 1 then true else if n mod x = 0 then false else helper n (x-1) in helper n (n-1) ) ;;
let rec fib_aux n a b = match n with | 0 -> b | 1 -> b | _ -> fib_aux (n-1) b (a+b) ;; let fib_tl n = fib_aux n 1 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);;
let binomial (n: int) (k: int) : float = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;;
let is_prime (n:int) : bool = if n <= 1 then domain() else( let rec helper n x = if x = 1 then true else if n mod x = 0 then false else helper n (x-1) in helper n (n-1) ) ;;
let rec fib_aux n a b = match n with | 0 -> b | 1 -> b | _ -> fib_aux (n-1) b (a+b) ;; let fib_tl n = if n < 0 then domain() else fib_aux n 1 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. (fact (n - 1));;
let binomial (n: int) (k: int) = if n < 0 || k > n then domain() else if k = n then 1. else (fact n) /. (fact k *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = if x1 < 0 || x2 < 0 || y1 < 0 || y2 < 0 then domain() else let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx + dy * dy)) ;;
let is_prime n = if n <= 1 then domain() else let y = int_of_float(sqrt(float_of_int (n))) in let rec helper n y = if n mod y = 0 && y != 1 then false else if y > 2 then helper n (y-1) else true in helper n y ;;
let rec fib_aux n a b = match n with | 0 | 1 -> a | _ -> fib_aux (n-1) (a+b) (a) ;; let fib_tl n = if n < 0 then domain() else fib_aux n 1 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 || k < 0 || n < k then domain () else fact n /. (fact k *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int x2 -. float_of_int x1 in let dy = float_of_int y2 -. float_of_int y1 in sqrt (dx *. dx +. dy *. dy) ;;
let is_prime n = if n <= 1 then domain () else if n = 2 then true else let rec check_prime x = match n mod x with | 0 -> false | _ -> if x > 2 then check_prime (x - 1) else true in check_prime (n - 1);;
let rec fib_aux n a b = match n with | 0 | 1 -> a + b | _ -> fib_aux (n - 1) (a + b) a let fib_tl n = fib_aux n 1 0;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n)*.fact(n-1);;
let binomial (n:int) (k:int): float = if n < 0 then domain() else if n<k then domain() else if k<0 then domain() else fact(n) /. (fact(k) *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1-x2 in let dy = y1-y2 in sqrt(float_of_int(dx * dx + dy * dy)) ;;
let is_prime n = if n<=1 then domain() else let rec helper n x = if x*x <=n then if n mod x = 0 && x!=n then false else helper n (x+1) else true in helper n 2 ;;
let rec fib_aux n a b = if n=0 then a else if n=1 then b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int (n) *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;;
let is_prime (n: int) : bool = if n < 2 then domain () else let rec helper n x = match x with | 1 -> true | _ -> match n mod x with | 0 -> false | _ -> helper n (x-1) in helper n (n-1) ;;
let rec fib_aux n a b = if n <= 1 then a else fib_aux (n-1) (a+b) (a) let fib_tl n = fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int (n) *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;;
let is_prime (n: int) : bool = if n < 2 then domain () else let rec helper n x = match x with | 1 -> true | _ -> match n mod x with | 0 -> false | _ -> helper n (x-1) in helper n (n-1) ;;
let rec fib_aux n a b = if n <= 1 then a else fib_aux (n-1) (a+b) (a) let fib_tl n = fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> n * fact (float_of_int (n - 1));;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then domain () else fact k /. (fact n *. fact (k - n)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dx = x2 - y2 in return sqrt (dx * dx + dx * dy) ;;
let is_prime n = raise NotImplemented;;
let rec fib_aux n a b = raise NotImplemented let fib_tl n = raise NotImplemented;;
let rec fact ( n: int ) : float = match n with | 0 -> 1. | _ -> float_of_int n *. (fact ( n - 1));;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if n < k then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int((dx * dx) + (dy * dy))) ;;
let is_prime : int -> bool = function n -> if n <= 1 then raise NotImplemented else let rec divisor(x: int) : bool = x > int_of_float(sqrt (float_of_int(n))) || ( n mod x != 0 && divisor(x+1)) in divisor 2;;
let rec fib_aux (n: int) (a: int) (b: int) : int = if n < 0 then raise NotImplemented else match n with |0 -> a |1 -> b |_ -> fib_aux (n-1) b (a+b);; let fib_tl (n: int) : int = fib_aux n 1 1;;
let rec fact (n: int): float = if n = 0 then 1. else float_of_int n *. fact (n-1) ;;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k))) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int ((dx * dx) + (dy * dy))) ;;
let is_prime n = let rec is_prime_rec x n = if x * x <= n then (if n mod x = 0 then false else is_prime_rec (x + 1) n) else true in if n <= 1 then domain () else is_prime_rec 2 n ;;
let rec fib_aux n a b = if n <= 0 then b else fib_aux (n - 1) b (a + b) ;; let fib_tl n = fib_aux (n - 1) 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 || k < 0 then domain () else fact n /. (fact k *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx + dy * dy)) ;;
let is_prime n = if n <= 1 then domain() else let rec div (n:int) (x:int) = if x * x > n then true else if (n / x) * x = n then false else div n (x + 1) in div n 2;;
let rec fib_aux n a b = if n = 0 then a else fib_aux (n - 1) b (a + b) let fib_tl n = fib_aux (n+1) 0 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int (n) *. (fact (n - 1));;
let binomial (n: int) (k: int) = if n < 0 || k < 0 then domain () else ( fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int(dx * dx + dy * dy)) ;;
let is_prime n = if n<=1 then domain() else let rec prime n x = if x * x > n then true else if n/x*x = n then false else prime n (x+1) in prime n 2;;
let rec fib_aux n a b = if n=0 then a else fib_aux (n-1) b (a+b);; let fib_tl n = fib_aux (n+1) 0 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else (fact n) /. ((fact k) *. (fact (n - k))));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int (x1 - x2) in let dy = float_of_int (y1 - y2) in sqrt ((dx *. dx) +. (dy *. dy)) ;;
let is_prime n = let rec not_divisor x = x * x > n || (n mod x <> 0 && not_divisor (x + 1)) in if n > 1 then not_divisor 2 else domain();;
let rec fib_aux n a b = if n >= 1 then fib_aux (n-1) b (a+b) else b let fib_tl n = fib_aux n 0 1;;
let rec fact(n: int) : float = match n with | 0 -> 1. | _ -> float(n) *. fact (n-1) ;;
let binomial (n:int)(k:int)= if n < 0 || k < 0 then domain () else ( if k > n then domain () else fact n /. (fact k *. fact(n - k))) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float((dx * dx) + (dy * dy))) ;;
let is_prime n = if n <= 1 then domain() else let rec prime n x = if x * x > n then true else if n / x * x = n then false else prime n (x + 1) in prime n 2 ;;
let rec fib_aux n x y = if n = 0 then x else fib_aux (n - 1)(y)(x + y) let fib_tl n = fib_aux (n + 1) 0 1 ;;
let rec fact (n: int): float = if n < 0 then domain() else match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k < 0 then domain () else (if n < k then domain () else fact n /. (fact k *. fact (n - k))));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx : float = float_of_int(x2 - x1) in let dy : float = float_of_int(y2 - y1) in sqrt (dx *. dx +. dy *. dy) ;; let rec helper (n:int) (x:int) = match x with | 1 -> true | _ -> if (n mod x) = 0 then false else helper n (x-1);;
let is_prime n = if n <= 1 then domain() else helper n (int_of_float(sqrt(float_of_int(n))));;
let rec fib_aux n a b = match n with | 0 -> a | 1 -> b | _ -> fib_aux (n-1) b (a+b) let fib_tl n = if n < 0 then domain() else fib_aux n 1 1;;
let rec fact (n: int): float = if n < 0 then domain() else match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else if k < 0 then domain () else if k > n then domain () else fact n /. (fact k *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx : float = float_of_int(x2 - x1) in let dy : float = float_of_int(y2 - y1) in sqrt (dx *. dx +. dy *. dy) ;; let rec helper (n:int) (x:int) = match x with | 1 -> true | _ -> if (n mod x) = 0 then false else helper n (x-1);;
let is_prime n = if n <= 1 then domain() else helper n (int_of_float(sqrt(float_of_int(n))));;
let rec fib_aux n a b = match n with | 0 -> a | 1 -> b | _ -> fib_aux (n-1) b (a+b) let fib_tl n = if n < 0 then domain() else fib_aux n 1 1;;
let rec fact (n: int): float = if n = 0 then 1.0 else (float_of_int n) *. fact (n - 1);;
let binomial (n: int) (k: int) = if k > n then domain () else if k < 0 then domain () else (fact n) /. ((fact k) *. (fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = ((float_of_int x2) -. (float_of_int x1))**2. in let dy = ((float_of_int y2) -. (float_of_int y1))**2. in sqrt (dx +. dy);;
let is_prime n = if n <= 1 then domain () else let rec check_prime initial num = if initial * initial > num then true else if num mod initial = 0 then false else check_prime (initial + 1) num in check_prime 2 n;;