text
stringlengths
0
601k
let rec fib_aux n a b = if n = 0 then a else fib_aux (n - 1) b (a + b);; let fib_tl n = if n < 0 then domain () else fib_aux n 1 1 ;;
let rec fact (n: int): float = if n = 0 then 1. else float_of_int(n) *. fact(n-1) ;;
let binomial (n: int) (k: int) = if n < 0 || n < k then domain () else fact n /. (fact k *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in (sqrt (float_of_int(dx * dx + dy * dy))) ;;
let is_prime (n : int) : bool = if n <= 1 then domain (); let rec helper n x : bool = if ((x * x) > n) then true else if ((n mod x) == 0) then false else helper n (x + 1) ; in helper n 2 ;;
let rec fib_aux (n : int) (a : int) (b : int) : int = if n = 0 then a else if n = 1 then b else fib_aux (n - 1) b (a+b) ;; let fib_tl (n : int) = fib_aux n 1 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1.0 | _ -> float n*. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain() else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float (dx * dx + dy * dy)) ;; let rec helper((n,x):(int*int)):bool = if x==1 then true else if (n mod x)==0 then false else helper(n,x-1) ;;
let is_prime n = if n<=1 then domain() else if n==2 then true else if n==3 then true else helper(n,n-1) ;;
let rec fib_aux n a b = match n with |0->a |1->b |_-> fib_aux (n-1) b (a+b) ;; let fib_tl n = fib_aux n 1 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact(n-1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else if k > n then domain () else fact n /. ((fact k) *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int x2 -. float_of_int x1 in let dy = float_of_int y2 -. float_of_int y1 in sqrt (dx *. dx +. dy *. dy) ;;
let is_prime n = let rec helper (x: int) = if n mod x != 0 && x == n-1 then true else if(n mod x) == 0 then false else helper(x+1) in if n == 2 then true else if n > 1 then helper 2 else domain();;
let rec fib_aux n a b = match n with | 0 -> b | n -> fib_aux(n-1)(b)(a+b) let fib_tl n = match n with | 0 -> 1 | n -> fib_aux n 0 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact(n-1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else if k > n then domain () else fact n /. ((fact k) *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int x2 -. float_of_int x1 in let dy = float_of_int y2 -. float_of_int y1 in sqrt (dx *. dx +. dy *. dy) ;;
let is_prime n = let rec helper (x: int) = if n mod x != 0 && x == n-1 then true else if(n mod x) == 0 then false else helper(x+1) in if n == 2 then true else if n > 1 then helper 2 else domain();;
let rec fib_aux n a b = match n with | 0 -> b | n -> fib_aux(n-1)(b)(a+b) let fib_tl n = match n with | 0 -> 1 | n -> fib_aux n 0 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact(n-1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else if k > n then domain () else fact n /. ((fact k) *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int x2 -. float_of_int x1 in let dy = float_of_int y2 -. float_of_int y1 in sqrt (dx *. dx +. dy *. dy) ;;
let is_prime n = let rec helper (x: int) = if n mod x != 0 && x == n-1 then true else if(n mod x) == 0 then false else helper(x+1) in if n == 2 then true else if n > 1 then helper 2 else domain();;
let rec fib_aux n a b = match n with | 0 -> b | n -> fib_aux(n-1)(b)(a+b) let fib_tl n = match n with | 0 -> 1 | n -> fib_aux n 0 1;;
let rec fact (n: int): float = match n with 0 -> 1. | _ -> (float_of_int n) *. (fact (n - 1)) ;;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else (fact n) /. (fact k *. fact (n - k)) ) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int ((dx * dx) + (dy * dy))) ;;
let is_prime n = if n <= 1 then domain() else ( let rec noDivisor(curr:int) : bool = curr*curr > n || (n mod curr != 0 && noDivisor(curr+1)) in noDivisor(2) ) ;;
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;;
let rec fact (n: int): float = if (n = 0) then 1. else ( float_of_int n *. fact (n - 1));;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int x2 -. float_of_int x1 in let dy = float_of_int y2 -. float_of_int y1 in sqrt ((dx *. dx) +. (dy *. dy)) ;;
let is_prime (n: int): bool = let rec prime_divisor (n: int) (d: int): bool = if (n mod d = 0) then false else (if (d * d <= n) then prime_divisor n (d + 1) else true) in if (n < 2) then domain() else ((n = 2) || (prime_divisor n 2));;
let rec fib_aux n a b = if (n = 1) then (a + b) else fib_aux (n - 1) b (a + b) let fib_tl n = if (n < 0) then domain() else (if (n = 0) then 1 else (fib_aux n 0 1));;
let rec fact (n): float = match n with | 0 -> 1. | 1 -> 1. | _ -> ((float_of_int n) *. fact (n - 1));;
let binomial (n: int) (k: int) = if n < 0 then domain () else if k = 0 then fact 0 else if k = n then domain () else fact n /. (fact k *. fact (n - k)) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt ((float_of_int dx *. float_of_int dx) +. (float_of_int dy *. float_of_int dy)) ;;
let is_prime n : bool = let rec check a b = match b with | 1 -> true | _ -> (a mod b <> 0) && check a (b-1) in match n with | 0 -> false | 1 -> false | _ -> check n (n-1) ;;
let rec fib_aux (n:int) :int = let rec aux (n:int) (a:int) (b:int) :int = if n = 0 then a else if n = 1 then b else aux (n-1) (b) (a+b) in aux n 1 1;; let fib_tl n = if n = 0 then 1 else if n = 1 then 1 else fib_aux (n-1) + fib_aux (n-2);;
let rec fact (n: int): float = match n with | 0 -> 1. | 1 -> 1. | _ -> float_of_int(n) *. fact (n - 1);;
let binomial (n: int) (k: int):float = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x1) -. float_of_int(x2) in let dy = float_of_int(y1) -. float_of_int(y2) in sqrt (dx *. dx +. dy *.dy) ;;
let is_prime (n: int):bool = if n <= 1 then domain() else let rec prime n k: bool = if k=1 then true else if (n mod k=0 && n<>k) then false else prime (n) (k-1) in prime n n ;;
let rec fib_aux n a b = if(n<=1) then b else fib_aux (n-1)(b)(a+b) let fib_tl n = fib_aux n 1 1;;
let rec fact (n : int): float = match n with | 0 -> 1. | _ -> float n *. fact (n - 1) ;;
let binomial (n : int) (k : int) : float = if n <= 0 && k != 0 then domain() else if k > n then domain() else fact(n) /. (fact(k) *. fact(n-k)) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float x1 -. float x2 in let dy = float y1 -. float y2 in sqrt (dx *. dx +. dy *. dy) ;;
let is_prime (n : int) = if n <= 1 then domain() else if n == 2 then true else let rec prime k num = if k mod num == 0 then false else if num*num >= k then true else prime k (num+1) in prime n 2 ;;
let rec fib_aux n a b = if n == 0 then b else fib_aux (n-1) (a+b) a ;; let fib_tl n = fib_aux n 1 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float n *. fact (n - 1);;
let binomial (n: int) (k: int) = if n >= k && k >= 0 then (fact n) /. ((fact k) *. (fact (n-k))) else domain();;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float (dx * dx + dy * dy));;
let is_prime n = if n > 1 then let rec largest_divisor n d = if d * d <= n && (n mod d) == 0 then d else largest_divisor n (d - 1) in largest_divisor n (n-1) == 1 else domain ();;
let rec fib_aux n a b = if n == 0 then a else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. (fact (n - 1)) ;;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n - k))) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;;
let is_prime n = if n <= 1 then domain () else if n = 2 then true else if (n mod 2) = 0 then false else let rec prime_helper num div = if div > int_of_float (sqrt (float_of_int num)) then true else if (num mod div) = 0 then false else prime_helper num (div + 2) in prime_helper n 3 ;;
let rec fib_aux n a b = if n <= 1 then a else (fib_aux (n-1) (a+b) a) ;; let fib_tl n = fib_aux n 1 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. (fact (n - 1)) ;;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n - k))) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;;
let is_prime n = if n <= 1 then domain () else if n = 2 then true else if (n mod 2) = 0 then false else let rec prime_helper num div = if div > int_of_float (sqrt (float_of_int num)) then true else if (num mod div) = 0 then false else prime_helper num (div + 2) in prime_helper n 3 ;;
let rec fib_aux n a b = if n <= 1 then a else (fib_aux (n-1) (a+b) a) ;; let fib_tl n = fib_aux n 1 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | n -> float n *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float dx *. float dx +. float dy *. float dy) ;;
let is_prime (n:int) : bool = let x = n/2 in let rec check (x:int) : bool = match x with | 0 -> domain() | 1 -> true | x -> if n mod x = 0 then false else check (x-1) in check x;;
let rec fib_aux n a b = match n with | 1 -> a + b | n -> fib_aux (n-1) b (a+b) let fib_tl n = match n with | 0 -> 1 | 1 -> 1 | n -> fib_aux (n-1) 1 1;;
let rec fact (n: int): float = if n < 0 then domain() else (if n=0 then 1. else float_of_int n *. fact (n-1));;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy));;
let is_prime (n : int): bool = if n < 2 then domain() else let rec checkDivisors (i : int): bool = i * i < n || ( n mod i != 0 && checkDivisors(i-1)) in checkDivisors (n/2);;
let rec fib_aux ((n: int),(a: int),(b: int)):int = if n == 0 then a else if n == 1 then b else fib_aux(n-1, b, a+b) let fib_tl (n: int):int = if n < 0 then domain () else fib_aux(n, 1, 1);;
let fact (n : int) : float = let n = float_of_int n in let rec fact_helper (n : float) (acc : float) = if n = 0. then acc else fact_helper (n -. 1.) (n *. acc) in fact_helper n 1. ;;
let binomial (n: int) (k: int) = fact n /. (fact k *. fact (n - k)) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = (float_of_int x1 -. float_of_int x2) in let dy = (float_of_int y1 -. float_of_int y2) in sqrt (dx *. dx +. dy *. dy) ;; let rec is_prime_rec (n: int) (min: int) (product: int) : bool = if float_of_int min > sqrt (float_of_int n) then true else if product = n then false else is_prime_rec n (min + 1) (n / (min + 1) * (min + 1)) ;;
let is_prime (n : int) : bool = if n <= 1 then domain () else is_prime_rec n 2 (n / 2 * 2) ;;
let rec fib_aux (n : int) (a : int) (b : int) : int = if n = 1 then b else if n = 0 then 1 else fib_aux (n - 1) b (a +b) ;; let fib_tl n = fib_aux n 1 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float n) *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n-k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float (dx * dx + dy * dy)) ;;
let is_prime (n: int) = if n <= 0 then domain () else( let rec p n x= if x=1 then true else(if n mod x = 0 then false else p n (x-1)) in p n (int_of_float (sqrt(float n))));;
let rec fib_aux n a b = if n = 0 then a else fib_aux (n-1) b (a+b) let fib_tl n = if n<2 then 1 else fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = (let dx = x1 - x2 in (let dy = y1 - y2 in sqrt (((float_of_int dx) *. (float_of_int dx)) +. ((float_of_int dy) *. (float_of_int dy))))) ;;
let is_prime n = if n > 1 then ( let y = n-1 in let rec check_prime n y = if y > 1 then match n mod y with | 0 -> false | _ -> check_prime n (y-1) else true in check_prime n y ) else false ;;
let rec fib_aux n a b = match n with | (0|1) -> a | _ -> fib_aux (n-1) (a+b) a let fib_tl n = fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = (let dx = x1 - x2 in (let dy = y1 - y2 in sqrt (((float_of_int dx) *. (float_of_int dx)) +. ((float_of_int dy) *. (float_of_int dy))))) ;;
let is_prime n = if n > 1 then ( let y = n-1 in let rec check_prime n y = if y > 1 then match n mod y with | 0 -> false | _ -> check_prime n (y-1) else true in check_prime n y ) else false ;;
let rec fib_aux n a b = match n with | (0|1) -> a | _ -> fib_aux (n-1) (a+b) a let fib_tl n = fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 | 1 -> 1. | _ -> float_of_int n *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = abs (x1 - x2) in let dy = abs (y1 - y2) in sqrt (float_of_int(dx * dx) +. float_of_int (dy * dy)) ;;
let is_prime n = if n <= 1 then domain () else let rec helper n x = if x = n then true else if(((x * x) <= n) && (n mod x = 0)) then false else helper n (x + 1) in helper n 2;;