text
stringlengths
2
1.42k
label
int64
0
1
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. flag varieties; spherical varieties; cluster algebras; toric degenerations Fang, X.; Fourier, G.; Littelmann, P., Representation Theory -- Current Trends and Perspectives, 11, On toric degenerations of flag varieties, 187-232, (2017), European Mathematical Society Publishing House
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Siegel modular variety; Reduction of Shimura varieties; Iwahori level structure Hartwig, P, On the reduction of the Siegel moduli space of abelian varieties of dimension 3 with Iwahori level structure, Münster J. Math., 4, 185-226, (2011)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. rigid analytic group; stable reduction of abelian varieties; Raynaud representation
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. survey; module categories over finite-dimensional algebras; representation theory of tame algebras; tameness; wildness; quivers; Galois coverings; Auslander-Reiten quivers; component quivers; affine varieties of modules; degenerations of algebras; finite-dimensional modules; integral quadratic forms; representation types; tame quasitilted algebras; tame simply connected algebras
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. polynomials constant on a hyperplane; CR mappings of spheres and hyperquadrics; monomial mappings; degree estimates; Newton diagram Lebl, J., Peters, H.: Polynomials constant on a hyperplane and CR maps of hyperquadrics. arXiv: 0910.2673
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. character sums; exponential sums; absolutely irreducible equations; equations in many variables; number of points in varieties over finite fields W. M. Schmidt, \textit{Equations over Finite Fields: An Elementary Approach}, Springer-Verlag, Berlin, New York, 1976.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. hypergeometric functions; toric varieties E. Cattani, A. Dickenstein, and B. Sturmfels, ''Rational hypergeometric functions,'' Compositio Math. 128(2) (2001), 217--239.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Chowla's conjecture; \(L\)-functions; zeta functions of curves; Carlitz extensions; cyclotomic function fields; abelian varieties over finite fields
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. real singularity; blow analytic homeomorphism; bianalytic isomorphisms; classification of real singularities; arc analytic functions; blow-up; modifications; analytic arcs; Lipschitz map Paunescu, L.: An example of blow analytic homeomorphism. Pitman res. Notes math. Ser. 381, 62-63 (1998)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of smooth congruences of lines of \(\deg ree\quad 9\); grassmannian Verra, A.: Smooth Surfaces of Degree 9 inG(1, 3). Manuscr. Math.62, 417--435 (1988)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric variety; convex geometry; automorphism; group actions on varieties Bazhov, I., On orbits of the automorphism group on a complete toric variety, \textit{Beiträge zur Algebra und Geometrie}, 54, 2, 471-481, (2013)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Rees ring; special fiber; determinantal ideal; variety of minimal degree; Gröbner basis; Koszul algebra; simplicial complex; non-crossing sets; Catalan numbers
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Morse lemma; classification of singularities
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Stanley's algorithm; toric varieties; group embeddings
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. locally bounded categories; covering functors; Galois coverings; dimensions of module varieties; degenerations of algebras; representation types Dowbor, P.; Hajduk, A.: On module variety dimension for coverings and degenerations of algebras. J. pure appl. Algebra 215, No. 10, 2385-2395 (2011)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of coverings of Brauer graph algebras Green, Edward L.; Schroll, Sibylle; Snashall, Nicole, Group actions and coverings of Brauer graph algebras, Glasg. Math. J., 56, 2, 439-464, (2014)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. family of Hodge structures; moduli space; principally polarized abelian varieties; abelian subvariety; Shimura variety; Hodge cycles; Mumford-Tate group
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toroidal compactification; moduli of abelian varieties; quadratic form; matroid; Torelli; Voronoi M. Melo and F. Viviani, Comparing perfect and 2nd Voronoi decompositions: The matroidal locus, Math. Ann. 354 (2012), no. 4, 1521-1554.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. derived category; coherent sheaves; projective space; classification of algebraic vector bundles; exterior algebra I.N. Bernstein, I.M. Gelfand and S.I. Gelfand, \textit{Algebraic vector bundles on P}\^{}\{\(N\)\}\textit{and problems of linear algebra}, \textit{Funct. Anal. Appl.}\textbf{12} (1978) 212 [\textit{Funkt. Anal. Pril.}\textbf{12} (1978) 66].
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. mirror symmetry; Gromov-Witten theory; Calabi-Yau varieties; moduli of curves
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. chain of spheres; polynomial endomorphism; Jacobian conjecture; test sphere A. G. Vitushkin, ''Criterion for a chain of {\(\sigma\)}-processes to be a composition of triangular chains,''Mat. Zametki [Math. Notes] (to appear).
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Dwork's conjecture; \(p\)-adic meromorphic continuation; unit root \(L\)-function; algebraic varieties; finite field of characteristic \(p\); arithmetic of modular forms; Gouvêa-Mazur conjecture Wan, D, A quick introduction to dwork's conjecture, Contem Math., 245, 147-163, (1999)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. solving polynomial systems; sparse polynomial systems; toric varieties; Cox rings; eigenvalue theorem; symbolic-numeric algorithm
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. theta functions; Jacobi varieties of compact Riemann surfaces; Fay's trisecant identities; Riemann-Schottky problem
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. mirror symmetry; Gromov-Witten invariants; toric varieties; complete intersections; quantum cohomology
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Del Pezzo varieties; toric Fano varieties; vector bundles
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. curves in projective 3-space; degree; maximum genus of a non singular connected curve [HH 2] Hartshorne, R., Hirschowitz, A.: Nouvelles courbes de genre éléve dans ?3 (en préparation)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. direct images; pluricanonical bundles; abelian varieties; non-vanishing loci; singular Hermitian metrics; pluricanonical systems
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Lang conjecture; rational point; Mordell conjecture; arithmetic abelian varieties; subvarieties; translates of abelian subvarieties Faltings, G.; The general case of S. Lang's conjecture; Barsotti Symposium in Algebraic Geometry: San Diego, CA, USA 1994; ,175-182.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. representation varieties; metabelian representations; algebraic varieties; numbers of irreducible components; character varieties Martín-Morales, Jorge; Oller-Marcén, Antonio M.: On the varieties of representations and characters of a family of one-relator subgroups. Their irreducible components
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Schur index; essential dimension; canonical dimension; representations of finite groups; Severi-Brauer varieties; central simple algebras
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Weierstrass \(n\)-semigroup; smooth curve; semigroup of non-gaps
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. non-Archimedean geometry; Monge-Ampère equation; volumes of line bundles
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. homological mirror symmetry; partially wrapped Fukaya category; symmetric products of surfaces; higher-dimensional pairs of pants; modules over non-commutative orders
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Gauss-Manin connection; Bombieri-Dwork conjecture; arithmetic results; values of G-functions at algebraic points; applications of G-function theory; geometric differential equations; Fuchsian differential systems; heights; linear independence; global relations; Grothendieck's conjecture; algebraic relations between periods of algebraic varieties; bound for the heights of certain abelian varieties with a large endomorphism ring; transcendence André, Y.: G-functions and Geometry, Aspects of Mathematics, vol. E13. Friedr. Vieweg & Sohn, Braunschweig (1989)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. plane curves; multiplicity of a singular point; degree of curve; genus formula; number of non-cuspidal singular points Yoshihara, H.: A note on the existence of some curves, 801-804 (1988)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. abelian varieties; construction of singular divisors; Koszul rings; Newton-Okounkov bodies; syzygies of line bundles
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. singularities; Riemann-Kempf singularity theorem; non-hyperelliptic curve; linear equivalence classes of positive divisors; index of speciality
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of 3-folds of general type; numerically effective canonical divisor; crepant resolution; canonical models; partial resolution; exceptional prime divisor; terminal singularity; quick singularities M. Reid, \textit{Minimal models of canonical} 3\textit{-folds}, in \textit{Algebraic varieties and analytic varieties (Tokyo, 1981)}, \textit{Adv. Stud. Pure Math.}\textbf{1} (1983) 131, North-Holland, Amsterdam, The Netherlands.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of codimension-2 arithmetically Buchsbaum subschemes; degree; number of minimal generators; regularity Chang, MC, Characterization of arithmetically Buchsbaum subschemes of codimension 2 in \({\mathbb{P}}^n\), J. Differ. Geom., 31, 323-341, (1990)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Gorenstein liaison; toric ideals of graphs; binomial ideals
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Euclidean algorithm; generalised Jacobian varieties; algebras of finite type over a field; Euclidean domains; Diophantine geometry; integral points on curves Brown, M.L., Euclidean rings of affine curves, Math. Z., 208, 3, 467-488, (1991)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of complex projective smooth surface with an ample; line bundle; Chern classes of the Tschirnhaus bundle
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Hasse-Weil zeta-functions of Shimura varieties; endoscopy; stable trace formula R.\ E. Kottwitz, Shimura varieties and \({\lambda}\)-adic representations, Automorphic forms, Shimura varieties, and \textit{L}-functions. Vol. I (Ann Arbor 1988), Perspect. Math. 10, Academic Press, Boston (1990), 161-209.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. canonical ring of a non-hyperelliptic; minimal free resolution; 2-linear projective dimension; genus; Clifford index Eisenbud, D.: Green's conjecture: an orientation for algebraists, (Sundance, UT, 1990). Research Notes Mathematics, vol. 2, pp. 51-78. Jones and Bartlett, Boston, MA (1992)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. automorphism groups of the family of non-symmetric homogeneous bounded domains Geatti L.,Holomorphic Automorphisms of bounded homogeneous non-symmetric domains, Rend. Sem. Mat. Torino, (41)3 (1983), 203--218.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Donaldson's classification of 4-manifolds; moduli spaces of vector bundles
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. curves in genus 2; moduli space; Teichmüller theory; ergodic action of \({\text{ SL}}_2({\mathbb R})\); orbit classification C. T. McMullen, Dynamics of SL\begin{document}\(_2(\mathbb{R})\)\end{document} over moduli space in genus two, Ann. of Math., 165, 397, (2007)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Waring problem; rational varieties; rational connection; varieties of sums of powers Massarenti, Alex; Mella, Massimiliano, Birational aspects of the geometry of varieties of sums of powers, Adv. Math., 243, 187-202, (2013)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. affine algebras; actions of finite dimensional cocommutative Hopf algebras; Noether's theorem; finite groups of automorphisms; triangular Hopf algebras; quantum-commutative modules; non-commutative determinant functions; symmetric braidings; twist maps; categories of modules; Grassmann algebras; group gradings Cohen, M.; Westreich, S.; Zhu, S., Determinants, integrality and Noether's theorem for quantum commutative algebras, Israel J. math., 96, 185-222, (1996)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. \(dg\)-operads; gravity algebras; polycommutative; punctured Riemann spheres; stratification of compactified moduli space; homology characters; moduli spaces; quantum cohomology; compact Kähler manifolds; Knudsen-Deligne-Mumford compactification; spectral sequence; mixed Hodge theory Getzler, E.: Operads and moduli spaces of genus \(0\) Riemann surfaces. In Dijkgraaf, R., Faber, C., van der Gerr, G. (eds.) The Moduli Space of Curves, volume 129 of \textit{Progress in Mathematics}, pp. 199-230. Birkhäuser, Basel (1995)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. flag varieties; algebraic groups of type \(D_4\); triality; central simple algebras; orthogonal involutions; Clifford algebras Garibaldi, R. S.: Twisted flag varieties of trialitarian groups. Commun algebra 27, No. 2, 841-856 (1999)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. textbook (algebraic geometry); algebraic curves; projective varieties; abelian categories; schemes; cohomology of schemes; intersection theory; duality theory
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. monomials ideals; multiplicity; toric varieties Teissier, B., Monômes, volumes et multiplicités, (Introduction à la théorie des singularités, II, Travaux en cours, vol. 37, (1988), Hermann), 127-141
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Balanced line bundles; flag varieties; del Pezzo surface; toric varieties Hassett, B; Tanimoto, S; Tschinkel, Y, Balanced line bundles and equivariant compactifications of homogeneous spaces, Int. Math. Res. Not., 2015, 6375-6410, (2015)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Dirichlet series; Gauss sums; formal group; non-quadratic characters; higher dimensional analogues of Honda's groups Nancy Childress and Jeffrey Stopple, Formal groups and Dirichlet \?-functions. I, II, J. Number Theory 41 (1992), no. 3, 283 -- 294, 295 -- 302.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Hilbert schemes of points; torus action; \((q,t)\)-Catalan numbers; quiver varieties A. Buryak, ''The classes of the quasihomogeneous Hilbert schemes of points on the plane,'' Mosc. Math. J., 12:1, 21--36; http://arxiv.org/abs/1011.4459 .
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. resolution of singularities; algebroidal varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. dual toric varieties; Cayley polytopes
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. singularities of complex algebraic varieties; weight filtration; dual complex Arapura, D; Bakhtary, P; Włodarczyk, J, Weights on cohomology, invariants of singularities, and dual complexes, Math. Ann., 357, 513-550, (2013)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. geometric Satake equivalence; Hodge-type Shimura varieties; Jacquet-Langlands transfer; moduli of local Shtukas
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. arithmetic variety; volume function; theta invariants; arithmetic degree; toric varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Grothendieck group of varieties; Deligne-Mumford stack; destackification; weak factorization
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic cycles; Bloch-Beilinson filtration; Bloch's conjecture; Chow groups; (double) EPW cubes; hyperkähler varieties; \(K3\) surfaces; motives; multiplicative Chow-Künneth decomposition; non-symplectic involution; splitting property
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; Todd class; counting lattice points Pommersheim, Barvinok's algorithm and the Todd class of a toric variety. Algorithms for algebra (Eindhoven, 1996), J. Pure Appl. Algebra 117/118 pp 519-- (1997)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of smooth surface in projective 5-space; embedding in Grassmann variety; Chern class; canonical divisor; hyperplane section [P] Papantonopoulou, A.: Embeddings in G(1,3). Proc. Am. Math. Soc.89, 583-586 (1983); Corrigendum, Ibidem, Proc. Am. Math. Soc.95 (1985)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; Mori theory; Fano manifold; minimal model program; flips and flops J. A. Wiśniewski, Toric Mori theory and fano manifolds, Geometry of toric varieties, 249--272, Sémin. Congr. 6, Soc. Math. France, Paris, 2002.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. germ of a real analytic function; singularities of real varieties; rational double points; simple critical points; Dynkin diagrams; real singularities A. Durfee, 14 characterizations of rational double points (to appear).
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Higgs bundles; character varieties; nilpotent cone; topology of moduli spaces
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Galois group of fields of rational functions on algebraic varieties over number fields; Bloch-Kato conjecture F.\ A. Bogomolov, On two conjectures in birational algebraic geometry, Algebraic geometry and analytic geometry (Tokyo 1990), ICM-90 Satell. Conf. Proc., Springer, Tokyo (1991), 26-52.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; tropicalization; positive currents; Lagerberg forms
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. real toric varieties; compact surfaces
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Hecke operators on Hilbert varieties; estimates of eigenvalues; Hecke ring; Hilbert modular variety; \(\ell\)-adic cohomology; local zeta function; toroidal compactifications; Weil conjecture K. Hatada: On the local zeta functions of compactified Hilbert modular schemes and action of the Hecke rings. Sci. Rep. Fac. Ed. Gifu Univ. Natur. Sci., 18, no. 2, 1-34 (1994).
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic geometry; toric geometry; moduli space of quasi maps; mirror symmetry
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. compatible systems of \(\ell\)-adic Galois representations; étale cohomologies of algebraic varieties Larsen, M.; Pink, R., On \textit{l}-independence of algebraic monodromy groups in compatible systems of representations, Invent. Math., 107, 3, 603-636, (1992)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Todd class of a toric variety; number of lattice points; lattice polyhedron R. Morelli, Pick's theorem and the Todd class of a toric variety, Adv. Math. 100(2), 183--231 (1993). MR 1234309 (94j:14048).
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. moduli space of principally polarized abelian varieties; singularities of the moduli space \({\mathcal A}_g\)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. isomorphisms of real algebraic varieties; real algebraic vector bundles
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. birational classification of real rational surfaces; classification of function fields; ruled surface Silhol, R., Classification birationnelle des surfaces rationnelles réelles, 308-324, (1990), Berlin
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. K-theory of endomorphisms; determinantal varieties; ring of the big Witt vectors Michiel Hazewinkel, Operations in the \?-theory of endomorphisms, J. Algebra 84 (1983), no. 2, 285 -- 304.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. moduli of Abelian varieties; Voronoi compactification
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Stable base loci; toric variety; cone of divisors Payne S.: Stable base loci, movable curves, and small modifications, for toric varieties. Math. Z. 253(2), 421--431 (2006)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Picard-Lefschetz theory; monodromy theory; isolated singularities; Dynkin diagrams; Gauss-Manin connexion; intersection homology theory; volume functions; Newton-Coulomb potentials; Green functions; hyperbolic equations; lacuna problem; non-integrability of ovals; twisted vanishing homology; ramification of potentials; homology of complements of plane arrangements; Grassmannians; multidimensional hypergeometric functions and integrals Vassiliev, V.A.: Applied Picard-Lefschetz Theory. American Mathematical Society, Providence (2002a)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. moduli space of principally polarized abelian varieties; singular locus; automorphism group; local deformation theory V. Gonzalez-Aguilera, J. M. Muñoz-Porras, and A. G. Zamora, On the irreducible components of the singular locus of \?_{\?}, J. Algebra 240 (2001), no. 1, 230 -- 250.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Hilbert polynomial; smooth sub-varieties of projective N-space; numerical invariants; curve generating algorithms
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. invariants of Hilbert schemes of zero-dimensional subschemes; Betti numbers; Kummer varieties; Chow ring Göttsche, L.: Hilbert schemes of zero-dimensional subschemes of smooth varieties. Lect. Notes Math. vol. 1572, Berlin Heidelberg New York: Springer 1993
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. relative homotopy group; locally ringed \(T_ 0\) spaces; elliptic curve; fundamental groups of affine models; homotopy theory internal to algebraic varieties; monoid in algebraic varieties with zero
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. deformation of the symmetric product of a non-hyperelliptic curve; genus B. Fantechi, Déformations of symmetric products of curves.Contemporary Math. 162 (1994), 135--141.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. secant varieties; split Varieties;varieties of decomposable forms; star configuration Y. S. Shin, Secants to the variety of completely reducible forms and the Hilbert function of the union of star-configurations, J. Algebra Appl. 11 (2012), no. 6, 1250109, 27 pp.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. arithmetic geometry; Lang's conjecture; fibered power conjecture; uniformity of rational points; varieties of general type; positive characteristic Dan Abramovich and José Felipe Voloch, Lang's conjectures, fibered powers, and uniformity, New York J. Math. 2 (1996), 20 -- 34, electronic.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. rationality of quotient varieties; invariant mapping F. A. Bogomolov and P. I. Katsylo, ''Rationality of some quotient varieties'',Mat. Sb. [Math. USSR-Sb.],126, No. 4, 584--589 (1985).
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. modular varieties; cyclic isogenies of elliptic curves; Shimura varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. polarized variety; vanishing theorems; Mori-Kawamata theory; \(\Delta\)- genus; classification of Del Pezzo manifolds Fujita, T., \textit{Classification Theories of Polarized Varieties}, 155, (1990), Cambridge University Press, Cambridge (UK)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. zero divisors; non-Noetherian theory of depth; soundable subset Picavet, G., Parties sondables d'un spectre et profondeur, Boll. U.M.I. (7), 8-B, 677-730, (1994)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. rationality of Hilbert-Kunz multiplicity; toric ideals Wa4 K.-i.~Watanabe, Hilbert-Kunz multiplicity of toric rings, Proc. Inst. Nat. Sci. Nihon Univ. \textbf 35 (2000), 173--177.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. distortion varieties; scroll varieties; toric varieties; image distortion; minimal problems; Chow polytopes; Gröbner bases; tropical geometry
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. bounds for the heights of torsion points on commutative group varieties; extensions of an elliptic curve Cohen, P. : Heights of torsion points on commutative group varieties , Proc. London Math. Soc., 52 (1986), 427-444.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. singularities of curves; classification of torsion-free modules; number of parameters Knörrer, H. : Torsionfreie Moduln bei Deformation von Kurvensingularitäten , In: Singularities, Representation of Algebras and Vector Bundles, Lambrecht 1985 (Eds.: Greuel, G.-M.; Trautmann, G.). Lecture Notes in Math., Vol. 1273, Springer, Berlin-Heidelberg - New York (1987) pp. 150-155.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. non-euclidean crystallographic group; compact bordered Klein surface; order of an automorphism; topological type; NEC groups
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. symplectic toric varieties; toric origami manifolds; origami templates; quasitoric manifolds; Delzant polytopes
0