text
stringlengths
2
1.42k
label
int64
0
1
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Prym varieties; automorphisms of curves
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. surjective morphism of normal algebraic varieties; Cartier divisors; Zariski decomposition of the log-canonical divisor; log-canonical ring Yujiro Kawamata, The Zariski decomposition of log-canonical divisors, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 425 -- 433.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Banach algebras of differentiable functions; homogeneous algebras of functions; classification up to a global isomorphism
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. topological classification; germ of functions; singularities
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. 3-dimensional homology spheres; link of a complete intersection surface singularity; Milnor fibre; Casson invariant; graph manifold; rational homology spheres Neumann, W.; Wahl, J.: Casson invariant of links of singularities. Comment. math. Helv. 65, 58-78 (1990)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Hodge structures for singular varieties; variation of Hodge structure; nilpotent orbit theorem; limiting mixed Hodge structure; several variables \(SL_ 2\)-orbit theorem; nonlinear system of differential equations E. Cattani, A. Kaplan and W. Schmid. Degeneration of Hodge structures. \textit{Ann. Math}, (2)123 (1986), 457-535
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. spherical varieties; branching laws; unitary highest weight modules; stability of multiplicities; dense orbits; irreducible finite dimensional representations; Harish-Chandra modules M. Kitagawa, Stability of branching laws for highest weight modules, arXiv:
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. motivic homotopy theory; isotropic motives; Steenrod algebra; homotopy groups of spheres
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. K-group of Grassmannians; flag varieties; Azumaya algebras Marc Levine, V. Srinivas, and Jerzy Weyman, \?-theory of twisted Grassmannians, \?-Theory 3 (1989), no. 2, 99 -- 121.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. embeddings of minimal abelian surfaces; smooth toric 4-folds
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. compactification of moduli spaces of polarized abelian varieties; moduli stack; degeneration of polarized abelian varieties; toroidal compactification; Satake-Bailey-Borel compactification
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic sphere; affine schemes of countable type; homotopy theory of algebraic varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. generic syzygy varieties; vector bundles; curves of genus 7; Green's conjecture Eusen F and Schreyer F -O, \textit{A remark on a conjecture of Paranjape and Ramanan, in: Geometry and arithmetic, EMS Ser. Congr. Rep.} (2012) (Zürich: Eur. Math. Soc.) pp. 113-123
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. nef tangent bundle; vanishing theorem; toric varieties Manivel, L, Théorèmes d'annulation sur certaines variétés projectives, Comment. Math. Helv., 71, 402-425, (1996)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Chow rings; Hilbert schemes; equivariant Chow rings; toric varieties [9] L. Evain, &The Chow ring of punctual Hilbert schemes on toric surfaces&#xTransform. Groups12 (2007) no. 2, p. 227Article | &MR 23 | &Zbl 1128.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Riemann surface; moduli space of semistable vector bundles on curves; non-abelian theta-function; determinant line bundle; theta divisor; trisecant identity Ben-Zvi, David and Biswas, Indranil, Theta functions and {S}zegő kernels, International Mathematics Research Notices, 2003, 24, 1305-1340, (2003)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. links of normal surface singularities; Q-Gorenstein singularities; geometric genus; plumbing graph; spin structure; Seiberg-Witten invariants of Q-homology spheres; Reidemeister-Turaev torsion; Seifert invariants; complete intersections singularities; log canonical singularities Némethi, András; Nicolaescu, Liviu I., Seiberg--Witten invariants and surface singularities. II. Singularities with good \(\mathbb{C}^*\)-action, J. London Math. Soc. (2), 69, 3, 593-607, (2004)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Iitaka dimension of a line bundle; family of dimensions; vector bundles; Kodaira dimension; cotangent genus; complete intersections; low codimensional subvarieties; tori; birational classification of surfaces L. Manivel, Birational invariants of algebraic varieties.J. reine angew. Math. 458 (1995), 63--91.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. finiteness of Mordell-Weil groups of abelian varieties Alice Silverberg, Finiteness of Mordell-Weil groups of generic abelian varieties, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 131 -- 133.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. tropical geometry; amoebas; approximation of tropical varieties; intersection theory E. Brugallé, K. Shaw, Obstructions to approximating tropical curves in surfaces via intersection theory. Canad. J. Math. 67(3), 527-572 (2015)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. \(p_1\) model; Markov basis; toric ideal; edge subring of a graph; random network; Gröbner basis Petrović, S., Rinaldo, A. and Fienberg, S. E. (2010). Algebraic statistics for a directed random graph model with reciprocation. In Algebraic Methods in Statistics and Probability II. Contemp. Math.516 261--283. Amer. Math. Soc., Providence, RI.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. \(J\)-map; classification of minimal elliptic surfaces over a curve; minimal elliptic surfaces; genus 2 curve; singular fiber
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. curves on surfaces; non-negative Kodaira dimension; number of rational curves; quasi-rational singularities; Euler characteristic
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. stratification of Shimura varieties; purity; affine morphisms
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. tilting theory; toric geometry; quiver algebra; derived category; tilting sheaf; tilting bundle; toric Fano variety; full strong exceptional collection of sheafs N. Prabhu-Naik, Tilting bundles on toric Fano fourfolds, J. Algebra, 471 (2017), 348--398.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Maple system; decomposing affine algebraic varieties of low degree; Gröbner bases Wang, D. M., Irreducible decomposition of algebraic varieties via characteristic set and Gröbner bases, Computer Aided Geometric Design, 9, 471-484, (1992)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. sheaves of differential operators and their modules; characteristic varieties; conic involutive varieties of the cotangent bundle Coutinho, S. C.; Levcovitz, D.: Involutive varieties with smooth support. J. algebra 192, 183-199 (1997)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. moduli of curves; moduli of abelian varieties; prym varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Gröbner and toric degenerations; Grassmannians; semi-standard Young tableaux; Schubert varieties; Richardson varieties; standard monomial theory
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Wahl maps; minimal free resolution of nonlinearly normal embedded curves; Gaussian maps; non complete linear systems --------, On the minimal free resolution of some projective curves , Ann. Mat. Pura Appl.,
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. universal formal groups; Witt vectors; Cartier-Dieudonné classification; non-commutative formal groups
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Milnor \(K_2\)-functor; Brauer group; \(K\)-cohomology of Severi-Brauer varieties Merkur'ev, A. S.; Suslin, A. A., \textit{K}-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat., 46, 5, 1011-1046, (1982), 1135-1136, MR 675529
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. quadratic surfaces; polynomial equations; numerical methods; Schubert's problems; Schubert calculus; cohomology ring of flag varieties; Schubert triangle
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. irreducible symplectic varieties; moduli spaces of sheaves; K3 surfaces
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. morphism to projective space; higher order singularities of a finite morphism; simple connectivity of varieties; successive degeneration of double points
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Mori program; classification of algebraic surfaces
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification problem for real algebraic surfaces; Galois-maximal varieties; real homology mod 2; invariants; moduli space Silhol, R.: \textit{Real algebraic surfaces}. In: Lecture Notes in Mathematics, Vol. 1392. Springer, Berlin (1989)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric manifolds; simple convex polytopes; toric varieties; cohomology algebra Buchstaber V. M. and Panov T. E., ''Torus actions and combinatorics of polytopes,'' Proc. Steklov Inst. Math., 225, 87--120 (1999).
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; complete intersection varieties; finite abelian fundamental group Oka, M.: Non-Degenerate Complete Intersection Singularity. Actualités Mathématiques. Herman, Paris (1997)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. degeneracy loci; Chow groups; Chern numbers of determinantal varieties; resultant P. PRAGACZ , Determinantal Varieties and Symmetric Polynomials (Functional Analysis and Its Applications, Vol. 21, N^\circ 3, pp. 89-90, 1987 ). MR 90h:14072a | Zbl 0633.14029
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. deformation family of mixed singularities; Whitney equisingularity; non-compact Newton boundary; strong non-degeneracy; uniform local tameness; Whitney \((b)\)-regularity; Thom \(a_f\) condition
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. thetanullwerte; graded ring of theta-constant; non-integrally closed ring; Eisenstein series of low weight
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. weighted projective space; mutation; \(T\)-singularity; lattice polytopes; toric varieties Akhtar, M.; Kasprzyk, A. M., Mutations of fake weighted projective planes, Proc. Edinb. Math. Soc. (2), 59, 2, 271-285, (2016)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. varieties of general type; deformations; covering space
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Cohen-Macaulay property; bouquet of spheres; spherical; reduced homology; fibre space; Tits building; split building; connected reductive linear algebraic group; locally finite posets [LR] G. I. Lehrer and L. J. Rylands,The split building of a reductive group, Mathematische Annalen296 (1993), 607--624.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. determinantal ideal; Gröbner basis; ideal of linear forms; Koszul algebra; linear resolution; polymatroidal ideal; primary decomposition; Rees algebra; regularity; toric deformation Bruns, Winfried; Conca, Aldo, Linear resolutions of powers and products. Singularities and computer algebra, 47-69, (2017), Springer, Cham
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Hilbert scheme of orbits; toric geometry Craw, A., An explicit construction of the McKay correspondence for \(A\)-Hilb \({\mathbb{C}^3}\), J. Algebra, 285, 682-705, (2005)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Hodge structures; toric varieties; Jacobian rings
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic geometry; convex geometry; toric varieties; intersection cohomology Bressler, P., Lunts, V.A.: Hard Lefschetz theorem and Hodge--Riemann relations for intersection cohomology of nonrational polytopes. Indiana Univ. Math. J. 54(1), 263--307 (2005)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. topological classification; germs of functions; singularities
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. multiplicity of a root of an algebraic equation; multiplicity of a point of an algebraic variety; intersection multiplicity of algebraic varieties at a point; Weil's multiplicity; Hilbert-Samuel's multiplicity
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Calabi-Yau manifolds; toric varieties; elliptic fibrations; string theory; embedded manifolds; maximal Newton polyhedra Avram, A. C.; Kreuzer, M.; Mandelberg, M.; Skarke, H., Searching for \(K3\) fibrations, Nuclear Phys. B, 494, 3, 567-589, (1997)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic surface of general type; Severi inequality; Severi line; double covers; irregular varieties; maximal Albanese dimension
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. affine variety; set of non-proper points; parametric curves; \( \mathbb{K} \)-uniruled set; degree of \(\mathbb{K} \)-uniruledness; positive characteristic
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. equivariant \(K\)-theory; algebraic \(K\)-theory; algebraic groups; algebraic varieties; separable F-algebras; projective homogeneous varieties; toric modules; toric varieties A. S. Merkurjev, ``Equivariant \(K\)-theory'' in Handbook of \(K\)-Theory: Vol. 2 , Springer, Berlin, 2005, 925--954.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. representations of a dicrete group in \(SL_ 2({\mathbb{C}})\); actions on generalized trees; hyperbolic structures on surfaces; varieties of group representations; compactification of Teichmüller space; compactifications of real and complex algebraic varieties; affine algebraic set; valuations of the coordinate ring J. Morgan, P. Shalen. Valuations, trees, and degenerations of hyperbolic structures. I, \textit{Ann. of Math. } 120 (1984), 401--476.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. spherical representations; spherical varieties; generalized complexes; quivers; Dynkin diagrams; algebras of coinvariants
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; horofunctions; compactifications
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. character varieties; mixed Hodge structures; Serre polynomial; \(E\)-polynomial; representations of free groups
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. twisted Higgs bundles; twisted wild character varieties; large N duality; spectral surface; non-Abelian Hodge correspondence; perverse Poincare polynomials; weighted Poincare polynomials; P=W conjecture; refined Gopakumar-Vafa expansion; torus knots; refined Chern-Simons invariants; Shende-Okounkov-Rasmussen conjecture; E-polynomials
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. enumerative problems; rational equivalence of cycles; non-catenary schemes Grothendieck, A., Dieudonné, J.: Eléments de géométrie algébrique, Publ. Math. IHÉS \textbf{8} (II, 1-8), \textbf{20} (Chapter~0, 14-23, and~IV, 1), \textbf{24} (IV, 2-7), \textbf{28} (IV, 8-15), and \textbf{32} (IV, 16-21) (1961-1967)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. intermediate Jacobian; Abel-Jacobi mapping; non-rationality of the general cubic hypersurface; not the Jacobian of a curve
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. canonical lifting; existence of a lifting for polarized abelian varieties; ramification F. Oort, ''Lifting algebraic curves, abelian varieties, and their endomorphisms to characteristic zero,'' in Algebraic Geometry, Bowdoin, 1985, Providence, RI: Amer. Math. Soc., 1987, vol. 46, pp. 165-195.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. rational points; affine varieties; finite fields; complete intersection; exponential sums; asymptotic formula; upper estimate; number of integral points \beginbarticle \bauthor\binitsW. \bsnmLuo, \batitleRational points on complete intersections over \(\F_p\), \bjtitleInt. Math. Res. Not. IMRN \bvolume1999 (\byear1999), page 901-\blpage907. \endbarticle \OrigBibText W. Luo, Rational points on complete intersections over \(\F_p\), Inter. Math. Res. Notices , 1999 (1999), 901-907. \endOrigBibText \bptokstructpyb \endbibitem
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. representation of forms; secant varieties M. V. Catalisano, A. V. Geramita, A. Gimigliano, and Y. S. Shin, The secant line variety to the varieties of reducible plane curves, Ann. Mat. Pura Appl. (4) 195 (2016), no. 2, 423--443.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. moduli space of principally polarized abelian varieties; intermediate Jacobians of cubic threefolds; theta maps; Prym varieties; Schottky locus; degeneration R. Donagi,Non-Jacobians in the Schottky loci, Annals of Math.126 (1987), 193--217.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. horospherical varieties; rational homogeneous varieties; varieties of minimal tangents Hong, J., Smooth horospherical varieties of Picard number one as linear sections of rational homogeneous varieties. J, Korean Math. Soc., 53, 433-446, (2016)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. polarized \(K3\) surfaces; Tate's conjecture for \(K3\) surfaces; finitely generated fields of odd characteristic; Kuga-Satake abelian varieties Madapusi Pera, K., \textit{the Tate conjecture for K3 surfaces in odd characteristic}, Invent. Math., 201, 625-668, (2015)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. unseparated flag varieties; characters of parabolic subgroup schemes; weight; vanishing theorem; dominant line bundles; parabolic stabilizers W. Haboush, N. Lauritzen, \textit{Varieties of unseparated flags}, in: Linear Algebraic Groups and Their Representations (Los Angeles, CA, 1992), Contemp. Math., Vol. 153, Amer. Math. Soc., Providence, RI, 1993, pp. 35-57.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of surfaces of general type; construction of surfaces of general type; double covering; branch locus
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. factoring of birational map; classification of nonsingular projective rational surfaces Yu. Polyakova, Factorization of birational mappings of rational surfaces over the field of real numbers. Fundam. Prikl. Mat. 3(2), 519-547 (1997)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Shimura varieties; holomorphic cohomology class; Hecke translates of Shimura subvarieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. multilinear algebra; tensor products; algebraic varieties; secant varieties; representation theory; complexity theory; matrices; monograph; textbook; matrix multiplication; tensor decomposition; tensor network; border rank; tensor calculus; projective algebraic geometry; Terracini's Lemma; polynomial Waring problem; Segre varieties; signal processing; Littlewood-Richardson rule; Pieri's formula; Strassen's equation; Young flattening; Friedland's equation; Fano varieties of line; Chow varieties of zero cycle; Brill's equation; normal form; Konstant's theorem; Bott-Borel-Weil theorem; Koszul sequences; syzygies J. M. Landsberg, \textit{Tensors: Geometry and Applications}, American Mathematical Society, Providence, RI, 2012.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. arrangements; cohomology ring; moment-angle complex; simplicial complex; simplicial sets; stable splittings; Stanley-Reisner ring; suspensions; toric varieties Martínez, D., Muñoz, V., Presas, F.: Open book decompositions for almost contact manifolds. In: Proceedings of the XI Fall Workshop on Geometry and Physics, Publicaciones de la RSME, vol. 6, pp. 131-149 (2004)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. compactifying (generalized) Jacobians of curves and families of curves; moduli of semistable rank-1 sheaves; semistable projetive curves; principally polarized abelian varieties Alexeev V.: Compactified Jacobians and Torelli map. Publ. RIMS Kyoto Univ. 40, 1241--1265 (2004)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. small codimension; subvariety of general type; moduli space of principally polarized Abelian varieties; Poincaré series; theta series
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Grothendieck standard conjecture; Hodge theory; \(L_ 2\)-cohomology of Kuga fiber varieties; invariant cycles conjecture S. Abdulali, Algebraic cycles in families of abelian varieties,Can. J. Math.,46 (6) (1994), 1121--1134.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Galois modules; characteristic p; ring of Witt vectors; finite commutative group schemes; non-existence of abelian schemes Abrashkin, VA, Galois modules of group schemes of period \(p\) over the ring of Witt vectors, Math. USSR-Izv., 31, 1-46, (1988)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. finitely generated algebras; categories of finite-dimensional modules; module varieties; irreducible components; representations of quivers; deformations Crawley-Boevey, W.; Schröer, J., Irreducible components of varieties of modules, J. Reine Angew. Math., 553, 201-220, (2002)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; interpolations; traces; residues M. Weimann, An interpolation theorem in toric varieties, Ann. Inst. Fourier 58(4), 1371--1381 (2008).
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Mabuchi solitons; moment-weight inequality; relative Ding stability; toric Fano varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. varieties of almost minimal degree; arithmetic depth; secant variety M. Brodmann, E. Park and P. Schenzel, On varieties of almost minimal degree II: A rank-depth formula. Proc. Amer. Math. Soc. 139 (2011), no. 6, 2025-2032
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. p-adic cohomology of varieties over number fields
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. deformations of algebraic structures; degenerations; rigidity; varieties of algebras; perturbations Makhlouf, A.: Comparison of deformations and geometric study of associative algebras varieties. Int. J. Math. Math. Sci., article ID 18915 (2007)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. digit expansion; non-adjacent form; quaternions; root of unity; supersingular elliptic curve; Frobenius endomorphism; scalar multiplication; pairing computation
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Calabi-Yau manifolds; cone conjecture; compactifications of moduli spaces; mirror symmetry; semi-toric compactifications Morrison, David R., Compactifications of moduli spaces inspired by mirror symmetry, Journées de Géométrie Algébrique d'Orsay (Orsay, 1992), Astérisque, 218, 243-271, (1993)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Picard-Lefschetz theory; universal coverings; complements to non-singular affine hypersurfaces; deformation of the monodromy Shimada, I., Picard-Lefschetz theory for the universal covering of complements to affine hypersurfaces, Publ RIMS, Kyoto Univ., 32 (1996), 835-928.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. principal polarization; height function; Arakelov intersection theory; moduli scheme of abelian varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. tautological systems; extended GKZ systems; conifold transitions; toric degenerations of Grassmannians
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. reductive spherical pairs; multiplicity-free actions; coordinate rings of spherical varieties; Jack polynomials
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. non-degenerate complete intersection; full complete intersection; toric compactification
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. lattice points in convex polyhedra; toric varieties Brion, M.: Points entiers dans les polyèdres convexes. Ann. Sci. École Norm. Sup. (4) \textbf{21}(4), 653-663 (1988)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; Calabi-Yau manifolds; dual F-theory vacua; compactified heterotic strings; K3 surfaces; toric geometry; singularities Candelas, P.; Perevalov, E.; Rajesh, G., Comments on A, B, C chains of heterotic and type-II vacua, Nucl. Phys., B 502, 594, (1997)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. secant varieties; expected dimension of Grassmannians of secant varieties; Veronese surfaces L. Chiantini and M. Coppens: ''Grassmannians of secant varieties'', Forum Math., Vol. 13, (2001), pp. 615--628.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. representation of finitely generated group; rational representations of pro-affine algebraic group; tangent spaces of the representation varieties; twist operation; orbits 6. Lubotzky, Alexander and Magid, Andy R. Varieties of representations of finitely generated groups \textit{Mem. Amer. Math. Soc.}58 (1985) 117 Math Reviews MR818915 (87c:20021)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Analytic varieties; Proceedings; Symposium; Kyoto; RIMS; pseudoconvex domain; analytic varieties; Moduli spaces; compact Kähler manifolds; automorphism groups of certain compact Riemann surfaces; Logarithmic vector fields; Coxeter equality; Analytic K-theory; meromorphic maps into \(P^ N({\mathbb{C}})\); H. Cartan's theorems; Riemann- Hilbert problems; duality theorem; pseudoconvex region; rational homotopy type of open varieties; de Rham homotopy; combinatorial space forms
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Schubert varieties; quantum double Schubert polynomials; Schur functions; Schubert polynomials; morphisms of vector bundles; degeneracy loci; Grassmannians; flag manifolds; symmetric functions Fulton, W., Pragacz, P.: Schubert Varieties and Degeneracy Loci. Lecture Notes in Mathematics, vol. 1689. Springer, Berlin (1998)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric Deligne-Mumford stacks; orbifolds; \(K\)-theory; localization; derived category of coherent sheaves; Fourier-Mukai transformation; flop; \(K\)-equivalence; equivariant; variation of GIT quotient T. Coates, H. Iritani, Y. Jiang, and E. Segal, \(K\)-theoretic and categorical properties of toric Deligne-Mumford stacks, Pure Appl. Math. Q. 11 (2015), 239--266.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Zariski problem; topological fundamental groups of complex algebraic varieties; good fibrations; mapping class group; fundamental group of the complement of a projective plane curve DOI: 10.1016/0040-9383(94)00045-M
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. quasitoric manifold; complete non-singular toric variety; strong cohomological rigidity; toric topology
0