text
stringlengths
2
1.42k
label
int64
0
1
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. surface singularities; \({bbfC}^ *\)-action; regular system of weights; quotient varieties; polyhedral groups; Heisenberg groups; Fuchsian groups K. Saito, Regular system of weights and their associated singularities, in Complex analytic singularities, Adv. Stud. Pure Math. 8, Academic Press, Boston, MA, and Kinokuniya, Tokyo, 1987, 479-526.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. abelian subvarieties of abelian varieties; density of family of polarized abelian varieties; families of jacobians; generic abelian threefold DOI: 10.1007/BF01444527
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. fundamental domain; resolutions of cusp singularities; algorithms; totally real cubic fields; values of partial zeta-functions; Hilbert varieties Grundman, HG, Explicit resolutions of cubic cusp singularities, Math. Comp., 69, 815-825, (2000)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. elliptic curves; Cartan modular curves; trace of Hecke operators; cusp forms; Selberg trace formula; non-split dihedral representation; Jacobians; isogeny; explicit formula Chen, Imin, The Jacobians of non-split Cartan modular curves, Proc. London Math. Soc. (3), 77, 1, 1-38, (1998)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. del Pezzo surfaces; toric varieties; separable algebras; Galois cohomology; \(K\)-theory Б. Э.. Кунявcкий, \textit{Tp\(###\)xмepныe aлгeбpaичecкиe тopы}, в cб. \textit{Иccлeдoвaния пo тeopии чиceл,}Capaтoвcкий гoc. унив., Capaтoв, 1987, 90-111. Engl. transl.: B. È. Kunyavskiĭ, Three-dimensional algebraic tori, Selecta Math. Soviet. \textbf{9} (1990), no. 1, 1-21.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification up to isomorphism; elementary equivalence; function fields over algebraically closed fields; function fields of curves; elliptic curves D. Pierce , Function fields and elementary equivalence . Bull. London Math. Soc. 31 ( 1999 ), 431 - 440 . MR 1687564 | Zbl 0959.03022
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic geometry; classification of \(g_n^1\) elliptic curve; solvable in radicals; monodromy group
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. residue currents; ideal membership problems; effective Nullstellensatz; toric varieties E. Wulcan: \textit{Sparse effective membership problems via residue currents}, Math. Ann. 350(2011), 661--682.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Theta functions; Siegel modular forms; graded ring of modular forms; Thetanullwerte; Siegel modular group; injective holomorphic maps; Satake compactifications; projective varieties Salvati Manni, R.: On the projective varieties associated with some subrings of the ring of thetanullwerte. Nagoya Math. J.133, 71--83 (1994)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. characteristic classes of singular varieties; Stiefel-Whitney class; Wu class; Chern class; Pontryagin class; Chern-Schwartz-MacPherson class; Thom polynomial; Hirzebruch theory; local Euler obstruction; Segre class; stringy Chern class; motivic Chern class
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric ideals; Markov complexity; minimal set of generators; starlike trees; book graphs
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. computation of number of rational points; Calabi-Yau varieties; modularity; Lefschetz fixed point formula
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Mumford-Tate group; Hodge conjecture; varieties of Mumford-type; Kuga-Satake variety F. Galluzzi, Abelian fourfold of Mumford-type and Kuga--Satake varieties, Indag. Math. (N.S.) 11 (2000), 547--560.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. arithmetical rank; cohomological dimension; varieties of minimal degree; set theoretic complete intersection
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Kuga fiber varieties; bottom field; fields of definition; families of abelian varieties Petri, M.: Arithmetic classification of Kuga fiber varieties of quaternion type. Duke Math. J.58, 469--498 (1989)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Novikov conjecture; Riemann Schottky problem; Jacobian locus; moduli space of principally polarized abelian varieties; soliton equations; theta function; KP-equation Taimanov I.A. (1997). Secants of abelian varieties, theta functions and soliton equations. Russ. Math. Surv. 52: 147--218
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. supersingular locus; special fiber of Shimura varieties; Deligne-Lusztig varieties; Tate conjecture
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. hypertoric enveloping algebras; hypertoric varieties; blocks of category \(\mathcal O\); quantizations; localizations; quantized polarized arrangements; highest weight categories Braden, T.; Licata, A.; Proudfoot, N.; Webster, B., Hypertoric category \(\mathcal{O}\), Adv. Math., 231, 3-4, 1487-1545, (2012)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. L-functions of algebraic varieties; arithmetical geometry; Beilinson conjectures; higher algebraic K-theory; Beilinson regulators P. Schneider, Introduction to the Beĭlinson conjectures , Beĭlinson's conjectures on special values of \(L\)-functions ed. M. Rapoport, et al., Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 1-35.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. topological classification of real algebraic sets; resolution of singularities; Nash conjecture; resolution towers S. \textsc{Akbulut}\textsc{and} H. \textsc{King}, Topology of Real Algebraic Sets, Mathematical Sciences Research Institute Publications, 25, Springer, New York, 1992.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. \( \mathbb{Q}\)-factorial complete toric varieties; fibration; toric projective bundle; gale duality; secondary fan; primitive collection; primitive relation; fan matrix; weight matrix; nef divisors; big divisors; nef cone; moving cone; pseudo-effective cone; Picard number; poly weighted spaces
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. configuration space; generating series; Grothendieck ring of complex quasiprojective varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. étale cohomological dimension; topology of algebraic varieties of small codimension; Picard group Gennady Lyubeznik, Étale cohomological dimension and the topology of algebraic varieties, Ann. of Math. (2) 137 (1993), no. 1, 71 -- 128.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. genus; hyperelliptic curves; strong boundedness conjecture; group of rational points; Jacobian varieties of hyperelliptic curves --, Sur certains sous-groupes de torsion de jacobiennes de courbes hyperelliptiques de genreg 1.Manuscr. Math. 92 (1) (1997), 47--63.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. smoothable homomorphism; non-vanishing of cotangent cohomology; cotangent complex; complete intersection Avramov, L.; Halperin, S.: On the nonvanishing of cotangent cohomology. Comment. math. Helv. 62, 169-184 (1987)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. lattice polytopes; toric varieties; simplicial polytopes; terminal polytopes; reflexive polytopes; del Pezzo surface; toric Fano varieties Assarf, Benjamin, Joswig, Michael, Paffenholz, Andreas: Smooth Fano polytopes with many vertices. Discret. Comput. Geom. \textbf{52}(2), 153-194 (2014). 10.1007/s00454-014-9607-4
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. character varieties; representation varieties; one-relator groups; numbers of irreducible components Martín Morales, J; Oller-Marcén, AM, Combinatorial aspects of the character variety of a family of one-relator groups, Topol. Appl., 156, 2376-2389, (2009)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Okounkov bodies; toric vector bundles; Klyachko filtrations; toric varieties; Cox rings; Mori dream spaces González, J, Okounkov bodies on projectivizations of rank two toric vector bundles, J. Algebra, 330, 322-345, (2011)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. absolutely simple polarized abelian varieties over finite fields; automorphism groups; distribution of primes
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. three-dimensional toric variety; subdivision of fan; desingularization; Euler characteristic Aguzzoli, S.; Mundici, D., An algorithmic desingularization of 3-dimensional toric varieties, \textit{Tohoku Math. J.}, 46, 4, 557-572, (1994)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. affine toric varieties; weighted graphs
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Veronese double cone; Fano manifolds; varieties of minimal rational tangents Hwang, J. M.; Kim, H., Varieties of minimal rational tangents on Veronese double cones, Algebraic Geom., 2, 176-192, (2015)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Hilbert schemes of points on surfaces; rational cohomology ring; locally constant systems; generalised Kummer varieties Nieper-Wißkirchen, M.: Twisted cohomology of the Hilbert schemes of points on surfaces, Doc. math. 14, 749-770 (2009)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric geometry; Fano varieties; equivariant morphism; blow up; blow down Casagrande, C.: On the birational geometry of toric Fano 4-folds. C. R. Acad. sci. Paris, série I 332, 1093-1098 (2001)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Symposium; Proceedings; Kyoto (Japan); Geometry; Toric varieties; Convex polytopes; RIMS
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Fourier theory on abelian varieties; Grothendieck Riemann-Roch theorem; Chow groups of abelian varieties Murre, J.: Algebraic cycles on abelian varieties: application of abstract Fourier theory. The arithmetic and geometry of algebraic cycles, 307-320 (1998)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. finite fields; maximal curves; genus spectrum; classification problem; towers of curves Garcia A.: On curves with many rational points over finite fields. In: Finite Fields with Applications to Coding Theory, Cryptography and Related Areas, pp. 152--163. Springer, Berlin (2002).
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. construction of algebras with non-vanishing K-groups L. Reid, \(N\)\!-dimensional rings with an isolated singular point having nonzero \(K_-N\) , \(K\)\!-Theory 1 (1987), 197--205. MR 88i:13020
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of irregular surfaces of general type; nonbirational bicanonical map; classification of minimal surfaces; geometric genus F. Catanese, C. Ciliberto, M. Mendes Lopes, On the classification of irregular surfaces of general type with nonbirational bicanonical map. \textit{Trans. Amer. Math. Soc.}\textbf{350} (1998), 275-308. MR1422597 Zbl 0889.14019
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. duality theorems in class field theory; values of zeta-functions; at non-negative integral values S. Lichtenbaum, Values of zeta-functions at non-negative integers , Journées Arithmetiques, Springer Verlag, Noordwykinhoot, Netherlands, 1983.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Galois cohomology; cohomology of Severi-Brauer varieties; Brauer group; \(K_2\); algebraic cycles
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. real and complex algebraic varieties; toric varieties; logarithmic moment map; Gromov-Witten invariants; max-plus algebra; polyhedral complexes , \textit{Amoebas of algebraic varieties and tropical geometry}, Different Faces of Geometry (S. K. Donaldson, Y. Eliashberg, and M. Gromov, eds.), Kluwer, New York, 2004, pp. 257--300.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. modular representations; elementary Abelian groups; modules of constant Jordan type; vector bundles; rank varieties; Chern classes; Frobenius twists; endotrivial modules Benson, D.: Modules for elementary abelian \(p\)-groups. In: Proceedings of the International Congress of Mathematicians (ICM 2010), pp. 113-124 (2010)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of finite flat groups schemes; Kisin theory Kim, W., The classification of \textit{p}-divisible groups over 2-adic discrete valuation rings, Math. Res. Lett., 19, 1, 121-141, (2012)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. double covers of Fano manifolds; varieties of minimal rational tangents; Cartan-Fubini type rigidity
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. infinitesimally faithful representations; reductive complex connected algebraic groups; Lie algebras; representation spaces; fields of rational functions; Cayley transforms; coordinate rings; regular orbits; varieties of unipotent elements Kostant, B.; Michor, P.; Christian, Duval, The generalized Cayley map from an algebraic group to its Lie algebra, \textit{Prog. Math.}, 213, 259-296, (2003), Birkhäuser, Boston, MA
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. amphicheiral; classification of real surface; rigid isotopy
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Picard modular varieties; compactification; Picard modular group; number of cusps; number of isomorphism classes; hermitian unimodular lattices; splitting theorem; Euler volume Hanns Zeltinger, Spitzenanzahlen und Volumina Picardscher Modulvarietäten, Bonner Mathematische Schriften [Bonn Mathematical Publications], 136, Universität Bonn, Mathematisches Institut, Bonn, 1981 (German). Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1981.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. intresection cohomology; arc space; determinantal varieties; toric varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. non-negative polynomials; sums of squares; symmetric polynomials; symmetric inequalities; symmetric group
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Fermat curves; periods of abelian varieties with complex multiplication; \(p\)-adic periods; abelian varieties with complex multiplication; heights; Chowla-Selberg formula
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. almost-homogeneous spaces; almost-homogeneous varieties; fans; holomorphic involutions; spherical varieties; toric varieties; torus embeddings; Coxeter groups DOI: 10.5802/aif.1171
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Galois modules of finite commutative group schemes; ring of Witt vectors; abelian varieties with good reduction everywhere over the; rationals; nontrivial p-divisible groups over the integers; abelian varieties with good reduction everywhere over the rationals
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. rank 1 commutators; varieties of matrices; Zariski topology; commutators; irreducible components Michael G. Neubauer, The variety of pairs of matrices with rank(\?\?-\?\?)\le 1, Proc. Amer. Math. Soc. 105 (1989), no. 4, 787 -- 792.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. \(A\)-algebraic sets; classical algebraic geometry; formal concept analysis; polynomial context; free algebra; formal context; congruence relations; radical congruences; ring of polynomials; algebraically closed field; algebraic varieties; reduced ideals; functorial correspondence; coordinate algebras; dual equivalence; category
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Calabi-Yau hypersurfaces in Gorenstein toric Fano varieties; mirror symmetry; string-theoretic Hodge numbers; Calabi-Yau complete intersections Victor V. Batyrev and Lev A. Borisov. Mirror duality and string-theoretic Hodge numbers. \(Invent. Math.\), 126(1):183-203, 1996.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. abelian varieties of Kuga's type; zeta functions; absolute Hodge cycles; product of two Shimura curves Abdulali, S.: Zeta functions of Kuga fiber varieties. Duke Math. J.57, 333--345 (1988)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. density of subvarieties; product of elliptic curves; moduli space; principally polarized abelian varieties; codimension E. Izadi, Density and completeness of subvarieties of moduli spaces of curves or abelian varieties, Math. Ann. 310 (1998), no. 2, 221 -- 233.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Hodge ideals; Nadel vanishing; toric varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. integer factorization; Dirichlet characters; smooth numbers; discrete logarithm problem for composite numbers; least character non-residue; quadratic twist of elliptic curve; large sieve
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Langlands conjecture; zeta functions of Shimura varieties; number of points of Shimura varieties over a finite field
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. equivariant cohomology; toric varieties; symplectic manifolds
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. cohomology of Shimura varieties; Schubert cycles; Hodge structures; Mumford-Tate group T. N. Venkataramana, Abelianness of Mumford-Tate groups associated to some unitary groups, Compositio Math. 122 (2000), 223--242.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. modular curves; non-hyperelliptic curves of genus E. González-Jiménez and R. Oyono, Non-hyperelliptic modular curves of genus \( 3\), work in progress, 2007.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. class fields; complex multiplication of Abelian varieties G. Shimura, ''On class-fields obtained by complex multiplication of Abelian varieties,'' Osaka Math. J.,14, No. 1, 33--44 (1962).
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. group schemes; cohomological support varieties; restricted Lie algebras; complexity; \(\pi\)-points; Weil restriction; projectivity; finite Chevalley groups; non-maximal support varieties; constant Jordan type Eric M. Friedlander, Weil restriction and support varieties, J. Reine Angew. Math. 648 (2010), 183 -- 200.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Brauer groups; obstruction to the Hasse principle; Severi-Brauer varieties; quadrics; fields of rational functions
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. cryptography; field; Frobenius endomorphism; Koblitz curve; number of elliptic points; sequence of arithmetic; sequence of simplex; \(\tau\)-adic non adjacent
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Chern class; Hodge bundle; moduli spaces of principally polarized abelian varieties; moduli space of curves with a level two structure; theta characteristic; Weierstrass points Hain, R; Reed, D, Geometric proofs of some results of Morita, J. Algebraic Geom., 10, 199-217, (2001)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. minimal models of algebraic varieties; flip conjectures; goodness conjectures; plurigenera; deformation
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. polyhedral diagram; Schlegel diagram Barnette, D.,An invertible non-polyhedral diagram. Israel J. Math.36 (1980), 86--96.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. P. Mani: Spheres with few vertices. J. Comb. Theor. 13 (1972), 346--352
1
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Kleinschmidt, P, Sphären mit wenigen ecken, Geom. Dedicata, 5, 307-320, (1976)
1
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Schlegel diagram Schulz, Ch.; An Invertible 3-Diagram with 8 Vertices, Discrete Math. 28 (1979), 201--205
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. complex; collapse; triangulation; strictly convex Connelly, R. and Henderson, D. W., A convex 3-complex is not simplicially isomorphic to a strictly convex complex,Math. Proc. Cambridge Philos. Soc. 88 (1980), 299--306.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. D. Barnette, ''Diagrams and Schlegel Diagrams,'' in Combinatorial Structures and Their Applications: Proc. Int. Conf., Calgary, 1969 (Gordon and Breach, New York, 1970), pp. 1--4.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Computational geometry; Computational synthetic geometry; oriented matroids; polytopes Bokowski, J. andSturmfels, B.,Computational Synthetic Geometry. (Lecture Notes in Math., No. 1355). Springer, Berlin--Heidelberg--New York, 1989.
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements syzygies; free resolution of projective variety; complete linear system Green, M. L.; Lazarsfeld, R., Some results on the syzygies of finite sets and algebraic curves, \textit{Compos. Math.}, 67, 301-314, (1988)
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements zero-dimensional schemes; linear system of plane curves; free resolution of the ideal sheaves; homogeneous ideals; graded Betti numbers
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements Hamburger-Noether matrices; equisingular deformations of curve singularities; infinitely near points; resolution procedure of a curve singularity; HN matrices; HN expansions; multiplicity sequence; HN deformations; Arf matrices; monoidal transformations Castellanos, J.: ''Hamburger-Noether matrices over rings'' J.P.P.A. 64 (1990) 7--19
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements Del Pezzo manifold; hyperplane section; polarized manifold; ample line bundle; discriminant locus; singular elements of the linear system; degeneracy loci; adjunction; nefness DOI: 10.1515/crll.1996.477.199
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements monodromy group of a branched covering; Hurwitz system; cellular decomposition; intersection matrix for the 1-cycles; homology basis; conformal self-mappings of Riemann surfaces; periods; quadratic periods; Abelian integrals; Klein-Hurwitz curve; Fermat curve; homogeneous linear differential equation Tretkoff, [Tretkoff and Tretkoff 84] C. L.; Tretkoff, M. D., Combinatorial group theory, Riemann surfaces and differential equations. contributions to group theory, 467--519, contemp. math., 33., \textit{Providence, RI: Amer. Math. Soc.}, (1984)
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements algebraic curves; conics; elliptic curves; projective geometry; polynomial rings; Bezout's theorem; intersection multiplicity; linear systems; inflection points; abelian varieties; local rings; Newton polygons; Puiseux expansion; Cremona transformation; singular points; resolution of singularities; Pücker formulas; differential forms; Riemann surfaces Brieskorn, Egbert and Knörrer, Horst, Plane algebraic curves, Modern Birkhäuser Classics, x+721, (1986), Birkhäuser/Springer Basel AG, Basel
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements linear system of quadrics
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements quadratic space; conic bundle surface; resolution of singularities; orders in quaternion algebras
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements null-cones of representations; reductive groups; connected reductive linear algebraic groups; rational representations; diagonal actions; nilpotent elements; numbers of irreducible components; algorithms
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements parametric solutions; system of quadratic diophantine equations; rectangular parallelepiped; integral edges and face diagonals; intersection of three quadrics in five-dimensional projective space Bremner, A.: The rational cuboid and a quartic surface. Rocky mountain J. Math. 18, No. 1, 105-121 (1988)
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements Jacobian of a hyperplane section of a surface; endomorphisms of abelian varieties; Albanese variety; linear system Ciliberto, C., van~der Geer, G.: On the Jacobian of a hyperplane section of a surface. In: Classification of Irregular Varieties (Trento, 1990). Lecture Notes in Mathematics, vol. 1515, pp. 33-40, Springer, Berlin (1992)
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements surface of general type; horizontal fixed component; horizontal fixed component of linear system; cotangent bundle; line bundle Serrano, F., The projectivised cotangent bundle of an algebraic surface, Arch. Math. (Basel), 65, 2, 168-175, (1995)
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements linear systems of conics; dimension and base points of a linear system
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements quadratic transformations of the real projective plane A. Degtyarev, Quadratic transformations RP2\toRP2, in: Topology of Real Algebraic Varieties and Related Topics, AMS Transl. Ser. 2, 173, Providence, 1996, pp. 61--71
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements entire transcendental function; measure of linear independence over imaginary quadratic field; Jacobi theta function P. Bundschuh and I. Shiokawa, ''A measure for the linear independence of certain numbers,'' Results Math. 7 (1984), 130--144.
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements Coresolvents; integralization; rational function; entire function; algebraic function; differential quotient; multilinear solution; system of \(n\) homogeneous quadratic equations; unknowns; differential equations
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements polar varieties; equidimensional varieties; singularities; stratifications; Whitney stratifications; Whitney conditions; tubular neighborhoods; tangent cones; limits of tangent spaces; conormal spaces; projective duality, multiplicity; Nash modifications; Plücker-type formulas; Todd's formulas; characteristic classes; Chern classes
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements canonical ring of a non-hyperelliptic; minimal free resolution; 2-linear projective dimension; genus; Clifford index Eisenbud, D.: Green's conjecture: an orientation for algebraists, (Sundance, UT, 1990). Research Notes Mathematics, vol. 2, pp. 51-78. Jones and Bartlett, Boston, MA (1992)
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements points in linear general position; property \((N_ p)\); minimal free resolution of the coordinate ring
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements Orthogonal; linear; substitution; quadratic form; equation denoted by characteristic; symmetric; permutable; geometric representation; conic section; space of lines
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements affine algebraic varieties; linear algebraic groups; groups of rational points; Jordan decomposition; conjugacy classes; semi-simple elements
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements integral quadratic forms; integral points; Hasse principle; Brauer-Manin obstruction; spinor exceptions; homogeneous spaces of linear algebraic groups; Galois cohomology Jean-Louis Colliot-Thélène & Fei Xu, ``Brauer-Manin obstruction for integral points of homogeneous spaces and representations by integral quadratic forms'', Compos. Math.145 (2009) no. 2, p. 309-363
0
resolution of linear system; quadratic transformations; Plücker formulas; equisingular elements powers of ideal; ideal of rational normal curve; linear resolution; Hilbert function; Hilbert polynomial DOI: 10.1016/S0022-4049(99)00146-2
0