text
stringlengths 2
1.42k
| label
int64 0
1
|
---|---|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. finitely presented algebras; algebras of regular functions; degenerations of algebras; irreducible varieties; open dense subsets; generalized CB-degenerations
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification theory of open algebraic surfaces S. Tsunoda and M. Miyanishi : The structure of open algebraic surfaces. II . In : Classification of Algebraic and Analytic Manifolds. Progress in Mathematics 39. Birkäuser (1983).
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. fixed point varieties on affine flag manifolds; simply connected semisimple algebraic group; variety of Borel subalgebras; Iwahori subalgebras; projective algebraic varieties; nilpotent orbits Chen, Z.: Truncated affine grassmannians and truncated affine Springer fibers for \({\mathrm GL}_{3}\). arXiv:1401.1930
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Mordell-Weil groups; generic fibre; system of polarized abelian varieties; level structure; endomorphism structure; CM-field , Moredell-Weil groups of generic abelian varieties in the unitary case, Proc. of the A. M.S., 104 (1988), 723-728.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. smooth 4-manifold; double points of immersed spheres; homology classes in rational surfaces Suciu, A.: Immersed spheres in CP2 and \(S2{\times}\)S2. Math. Z. 196, 51-57 (1987)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Chern numbers; flops; invariant of singular varieties Totaro B 2000 Chern numbers for singular varieties and elliptic homology \textit{Ann. Math.} 151 757--91
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. complex manifolds; special Hermitian structures; toric varieties; SKT metric; Bott manifolds; \(J\)-construction
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. affine Grassmannians; Schubert varieties; intersection cohomology; local models of Shimura varieties
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. abelian variety; polarization; theta group; Heisenberg group; moduli problems in the theory of abelian varieties; number of theta structures; symmetric line bundles; symmetric theta structures Birkenhake, Ch., Lange, H.: Symmetric theta-structures. Manuscr. Math.70, 67-91 (1990)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. flexible varieties; transitivity of automorphism groups; special automorphism group; locally nilpotent derivations; field Makar-Limanov invariant [\text AFK\(^+\)13]ArFlKa2013Flexible-varieties I.\,Arzhantsev, H.\,Flenner, S.\,Kaliman, F.\,Kutzschebauch, and M.\,Zaidenberg, \emph Flexible varieties and automorphism groups, Duke Math. J. \textbf 162 (2013), no.\,4, 767--823.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of Hilbert-Blumenthal surface; moduli of abelian surfaces DOI: 10.4310/AJM.1999.v3.n3.a6
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. arithmetic of rational points; varieties over function fields; cardinaltiy of the set of fibrations; uniform boundedness of rational points; distribution of rational points
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric surface; vector bundle; minimal resolution; moduli space; GIT quotient; toric varieties; equivariant sheaves Perling M.: Graded rings and equivariant sheaves on toric varieties. Math. Nachr. 263/264, 87--99 (2004)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. canonically polarized manifold; varieties of general type; Shafarevich's conjecture; Viehweg's conjecture; special varieties; geometric orbifold K. Jabbusch & S. Kebekus, ``Families over special base manifolds and a conjecture of Campana'', Math. Z.269 (2011) no. 3-4, p. 847-878
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Grothendieck-Witt groups of schemes; Hermitian Quillen-Lichtenbaum conjecture; number fields; algebraic varieties Berrick, A. J.; Karoubi, M.; Schlichting, M.; Østvær, P. A., The Homotopy Fixed Point Theorem and the Quillen-Lichtenbaum conjecture in Hermitian \(K\)-theory, Adv. Math., 278, 34-55, (2015)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. abelian varieties; algebraic quotients of periods; complex multiplication; criteria for complex multiplication; transcendence properties of automorphic functions G. Derome , Transcendance des valeurs des fonctions automorphes arithmétiques . Thèse de doctorat, Université des Sciences et Techniques de Lille .
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. ample fields; morphisms of varieties
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Manin-Brauer obstruction to the existence of rational points; counterexamples to the Hasse principle; cubic diagonal surfaces; asymptotic behavior of rational points; product of varieties
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. bounds for Castelnuovo's index of regularity; Cohen-Macaulay projective varieties Rüdiger Achilles and Peter Schenzel, On bounds for Castelnuovo's index of regularity, J. Math. Kyoto Univ. 29 (1989), no. 1, 91 -- 104.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. multilucarnes; number of ovals; non-singular algebraic curves; Ragsdale conjecture Haas, B.: LES multilucarnes: nouveaux contre-exemples à la conjecture de ragsdale. C. R. Acad. sci. Paris sér. I math. 320, No. 12, 1507-1512 (1995)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. flattening point of a curve; non-degenerate quasi-homogeneous singular point
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. syzygies of bihomogeneous ideal; implicit equation for toric hypersurfaces; Segre-Veronese map Schenck, H.; Seceleanu, A.; Validashti, J., Syzygies and singularities of tensor product surfaces of bidegree (\(2, 1\)), Math. Comput., 83, 287, 1337-1372, (2014)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. topological classification of curves knots
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. orbits of real reductive groups acting on real affine varieties R. W. Richardson and P. J. Slodowy, ''Minimum vectors for real reductive algebraic groups,'' J. London Math. Soc., vol. 42, iss. 3, pp. 409-429, 1990.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. constellation of infinitely near points; Enriques diagrams; cluster; toric constellations Campillo, A., Gonzalez-Sprinberg, G., Lejeune-Jalabert, M.: Enriques diagrams, resolutions and toric clusters. Comptes Rendus de l'Académie de Sciences - Série I - Mathématiques 320, 329-334 (1995)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. resolution of singularities; idealistic exponents; positive characteristic; determinantal varieties
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. degenerate fibre; family of conormal varieties
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. value of zeta function; T-complexes; toric divisors; Tsuchihashi cusp singularities M. N. Ishida, \(T\)-complexes and Ogata's zeta zero values, Adv. St. Pure Math. 15 (1989), 351-364.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Calabi-Yau manifold; coisotropic submanifold; non-linear sigma-model; characteristic foliation; perturbative geometry on \(A\)-brane; stacks of \(A\)-branes; tachyon profiles of brane-antibrane pairs; tachyon condensation; transversely holomorphic vector bundles Herbst, M., On higher rank coisotropic A-branes, J. Geom. Phys., 62, 156, (2012)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric variety; height of a variety; ronkin function; Legendre-Fenchel duality; mixed integral
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; valuation rings; polyhedral complexes; tropical geometry Foster, T., Ranganathan, D.: Degenerations of toric varieties over valuation rings. arXiv:1508.04057 (2015)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. sectional genus; classification of irregular ruled surfaces; very ample line bundle; iterating the adjunction process Biancofiore A., Livorni E.L.:Algebraic ruled surfaces with low sectional genus.Ricerche di Matematica.Vol.XXXVI,fasc.1{\(\deg\)} (1987)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Hessenberg varieties; flag varieties; cohomology; hyperplane arrangements; representations of symmetric groups; chromatic symmetric functions.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. software package for computing Gröbner fans; tropical varieties of polynomial ideals; Gfan
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. free resolutions; virtual resolutions; chain complexes; toric varieties; Fitting ideals; saturations; irrelevant ideal
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. vector bundles; relative Bogomolov's inequality; semistable families of arithmetic varieties; arithmetic Chow group; Riemann-Roch theorems; locally integrable forms [23] Kawaguchi (S.) and Moriwaki (A.).-- Inequalities for semistable families of arithmetic varieties, J. Math. Kyoto Univ. 41 (2001), no.~1, 97-182. &MR~18 | &Zbl~1041.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. degeneration of surfaces; classification of the degenerations; minus one theorem; degenerations of Kodaira surfaces
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Bernstein polynomials; toric varieties; Delzant polytope; Dedekind-Riemann sums; asymptotic expansions; Bergman-Szegö kernels S. Zelditch. Bernstein polynomials, Bergman kernels, and toric Kähler varieties, J. Symplectic Geom. (to appear); arXiv: 0705.2879.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. normal varieties; irreducible representations; classical groups; maximal tori; weights; toric varieties; orbits; normality; simple rational modules; classical root systems; weight decompositions K. G. Kuyumzhiyan, ''Simple modules of classical linear groups with normal closures of maximal torus orbits,'' Sibirsk. Mat. Zh. (in press); arXiv: 1009.4724v2.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. vanishing theorem for varieties of small codimension A. Alzati andG. Ottaviani, Small codimension subvarieties of ? n . Boll. Um. Mat. Ital. (7)2-A, 81-89 (1988).
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Selmer groups; twists; abelian varieties; Jacobians of curves; hyperelliptic curves; superelliptic curves
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. natural deformations of an abelian cover; automorphism group; coarse moduli spaces of abelian covers; moduli space of varieties with ample canonical class; irreducible components of the moduli Fantechi B, Pardini R. Automorphism and moduli spaces of varieties with ample canonical class via deformations of abelian covers. Comm Algebra, 1997, 25: 1413--1441
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. ideal of a projectively embedded toric surface; quadrics Koelman, RJ, A criterion for the ideal of a projectively embedded toric surface to be generated by quadrics, Beiträge Algebra Geom., 34, 57-62, (1993)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. \(M\)-curves; \(T\)-curves; Ragsdale conjecture; topological types of real plane algebraic curves; oval; topology of real algebraic varieties --. --. --. --., ``Counter-examples to Ragsdale conjecture and \(T\)-curves'' in Real Algebraic Geometry and Topology (East Lansing, Mich., 1993), Contemp. Math. 182 , Amer. Math. Soc., Providence, 1995, 55--72.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. non-rational hypersurface; non-rational cyclic cover; rationally connected varieties János Kollár, Nonrational covers of \?\?^{\?}\times \?\?\(^{n}\), Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge, 2000, pp. 51 -- 71.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. non finite generation of group of rational points; elliptic curve; roots of unity J. S. CHAHAL, The Mordell-Weil rank of elliptic curves, Thoku Math. J. 39 (1987), 101-103.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; vanishing theorems; Cartier isomorphism
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. dualizing complexes; equivariant sheaves; de Rham complexes; categories of differential graded algebras; non-commutative multi-parameter quantum deformations; integration; differential forms; homogeneous coordinate rings Borowiec A., Adv. Math. 115 pp 250-- (1995)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. surfaces of general type; topology and connected components of moduli spaces; abelian varieties; finite group actions; Bagnera-de Franchis varieties; generalized Burniat type surfaces Lefschetz, S.: L'analysis situs et la géométrie algébrique. Gauthier-Villars, Paris, pp. vi+154 (1924)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. symplectomorphism groups; symplectic rational surface; symplectic mapping class groups; almost complex structures; technique of ball-swapping; semi-toric model; rational 4-manifolds; Torelli symplectic mapping class group; symplectic cone; Lagrangian root system
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. moduli space of curves; Weierstrass point; non-gaps Diaz, S.: Deformations of exceptional Weierstrass points. Proc. A.M.S., 96, 7--10 (1986)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. product of singular algebraic varieties; Chern-Schwartz-MacPherson characteristic classes; intersection homology; perversities Kwieciński, Michał, Formule du produit pour les classes caractéristiques de Chern-Schwartz-MacPherson et homologie d'intersection, C. R. Acad. Sci. Paris Sér. I Math., 0764-4442, 314, 8, 625-628, (1992)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebra of motivated cycles; standard conjectures; tannakian category; motivic Galois group; Hodge conjecture; Tate conjecture; algebraicity of the Lefschetz involution; base pieces; motivated \(E\)-correspondences; algebraic gerb; motivic cohomology; Hodge conjecture for abelian varieties; motif with integer coefficients; motives in characteristic \(p\); numerical equivalence coincides with homological equivalence André, Y., Pour une théorie inconditionnelle des motifs, Inst. Hautes études Sci. Publ. Math. No., 83, 5-49, (1996)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. varieties of Chevalley groups; maximal parabolic subgroups; small Schubert cells; Kac-Moody algebras; superalgebras [25] Ustimenko V.\ A., ''On the Varieties of Parabolic Subgroups, their Generalizations and Combinatorial Applications'', Acta Applicandae Mathematicae, 52 (1998), 223--238
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. valued function fields; genus change; algebraic function field; reduction of constants; rigid analytic geometry; non-discrete valuation; defect; ramification index
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. branching rules for representations of sl(N); Hodge group action; 10- dimensional abelian varieties; Hodge conjecture
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Yang-Baxter maps; Grassmann algebraic varieties; Grassmann extensions of Yang-Baxter maps; Grassmann extensions of Darboux transformations; noncommutative extensions of Yang-Baxter maps Grahovski, G.G.; Konstantinou-Rizos, S.; Mikhailov, A.V., Grassmann extension of Yang-Baxter maps, J. phys. A, math. theor., 49, (2016)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. surfaces with a hyperelliptic hyperplane section; classification of surfaces EIN L.: Surfaces with a hyperelliptic hyperplane section, Duke math. J.50, 685-694, 1984
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. jets schemes; toric surfaces; resolution of singularities; Nash problem Mourtada, H., Jet schemes of normal toric surfaces, \textit{Bull. SMF}
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. alcoves; affine Weyl groups; root systems; minuscule coweights; classical groups; bad reduction of Shimura varieties [8] Thomas J. Haines &aNgô Bao Châu, &Alcoves associated to special fibers of local models
mer. J. Math.124 (2002) no. 6, p. 1125-Article | &MR 19 | &Zbl 1047.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; root systems; projective normality; quadratic rings
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. isolated singularity; mixed Hodge structure; mixed Hodge complexes; Mayer-Vietoris sequence of quasi-projective varieties A. Durfee, Mixed Hodge structures on punctured neighborhoods.Duke Math. J. 50 (1983), 1017--1040.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. topological study of Schubert varieties; Schubert geometry; Grassmannian; Schubert symbol; stratification Buoncristiano, S.; Veit, A. B.: The intrinsic stratification of a Schubert variety. Adv. math. 91, No. 1, 1-26 (1992)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. moduli spaces; projective varieties; classifying spaces; group cohomology; group homology; symmetry marked moduli spaces; group of automorphisms; Bagnera-de Franchis varieties; absolute Galois group Catanese, F., Topological methods in moduli theory, Bull. Math. Sci., 5, 3, 287-449, (2015)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. varieties of small codimension; tangent spaces; secant varieties; Severi variety; higher secant variety; Scorza variety Zak, F. L., \textit{Tangents and Secants of Algebraic Varieties}, (1993), American Mathematical Society, Providence
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. \(n\)-th Gauss map; intersection multiplicities; non-classical curves; order sequence; dual varieties Hefez A., Kakuta N.: On the geometry of non-classical curves. Bol. Soc. Bras. Mat. 23(1)(2), 79--91 (1992).
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. polynomial map; rational curve; horizontal curve; classification of polynomial maps W. D. Neumann and P. Norbury, \(Rational polynomials of simple type\), Pacific Journal of Mathematics, 204 (2002), 177-207
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. relations of minors; determinantal varieties; plethysms Ronald King and Trevor Welsh, \textit{Some remarks on characters of symmetric groups, Schur functions, Littlewood-Richardson and Kronecker coefficients}, work in progress http://congreso.us.es/enredo2009/Workshop_files/Sevilla_King.pdf.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. families of varieties; local solubility; Erdős-Kac law
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. non-negative univariate polynomials; Nichtnegativstellensätze; sum of squares decomposition; root isolation; real algebraic geometry
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. flag variety; homogeneous ind-variety; generalized flag; linear embedding of flag varieties
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. zeta functions of Kuga fiber varieties; fields of definition of the Hodge cycles Abdulali, S.: Fields of definition for some Hodge cycles. Math. Ann.285, 289--295 (1989)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. reflection groups; unitary reflections; line systems; invariant theory; Shephard-Todd classification; groups of transformations G.I. Lehrer and D.E. Taylor, \textit{Unitary reflection groups}, \textit{Austral. Math. Soc. Lect. Ser.}\textbf{20}, Cambridge University Press, Cambridge, U.K., (2009).
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic varieties; degenerations of algebras; degeneration order; representation types; finite-dimensional algebras
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. abelian varieties over finite fields; Deligne modules; ordinary abelian variety; isogeny class; characteristic polynomial of Frobenius [12]E. W. Howe, Principally polarized ordinary abelian varieties over finite fields, Trans. Amer. Math. Soc. 347 (1995), 2361--2401.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. \(\mathbb{Q}\)-factorial complete toric varieties; Gale duality; weighted projective spaces; Hermite normal form; Smith normal form Rossi, M., Terracini, L.: \({\mathbb{Z}}\)-linear Gale duality and poly weighted spaces (PWS). Linear Algebra Appl. \textbf{495}, 256-288 (2016). 10.1016/j.laa.2016.01.039. arXiv:1501.05244
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. weakly normal variety; homeomorphic morphism of varieties; c-regular function; functions on a variety that lift to regular functions on the normalization Vitulli, M. A.: Corrections to ''seminormal rings and weakly normal varieties''. Nagoya math. J. 107, 147-157 (1987)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. derived categories of coherent sheaves; tilting sheaves; Severi-Brauer flag varieties; Galois decent
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. weak Landau-Ginzburg models; Fano varieties; toric degeneration; intermediate Jacobian Przyjalkowski V., Weak Landau-Ginzburg models for smooth Fano threefolds, preprint 2009, .
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic statistics; maximum likelihood estimation; maximum likelihood degree; Fano varieties; toric varieties; toric fiber product
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. deformation Theory; abelian surfaces; toric varieties; triangulated tori Christophersen, Jan Arthur, Deformations of equivelar Stanley-Reisner abelian surfaces, Adv. Math., 227, 2, 801-829, (2011)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. topological classification of the quasi-ordinary hypersurfase singularities; Puiseux expansion; characteristic pairs; intersection multiplicity; distinguished pairs Gau, Y.N.: Embedded topological classification of quasi-ordinary singularities. Mem. Am. Math. Soc. 74(388), 109--129 (1988) (With an appendix by Joseph Lipman)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. formal group; Novikov-Landweber algebra; symbol algebra; ring of rationally symplectic cobordisms; non-Stongian elements; self-conjugate manifold
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Tsuchihashi singularity; hypersurface sections in four-dimensional affine toric varieties; K3 singularity; Newton polyhedron Tsuchihashi, H.: Simple K3 singularities which are hypersurface sections of toric singularities. preprint.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. degenerations of surfaces; degenerations of abelian varieties; regular models
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of prehomogeneous vector spaces; castling transformation; semisimple Lie algebras A. Mortajine: Classification des espaces préhomogènes de type parabolique réguliers et de leurs invariants relatifs, Hermann, Paris, 1991.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. zeta-functions of Shimura varieties; automorphic \(L\)-functions; Picard modular surfaces D. Blasius and J. D. Rogawski, ''Zeta functions of Shimura varieties,'' in Motives, Providence, RI: Amer. Math. Soc., 1994, vol. 55, pp. 525-571.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. \(L\)-functions of elliptic curves; modularity of elliptic curves; Shimura varieties; motivic Galois modules; mixed Tate motives; Taniyama conjecture; Wiles' famous theorem
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. p-rank of ideal class group of quadratic field; non-cyclic class group; geometric interpretation
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Computational number theory; algorithms; computer algebra systems; power series; solution of linear differential equations; monodromy groups; continued fraction expansion; computations with abelian varieties; SCRATCHPAD II; elliptic curve computations; primality testing; factorization; periods of abelian integrals; algebraic relations; transcendence; Galois groups; bibliography Chudnovsky, D.V.; Chudnovsky, G.V., Computer assisted number theory with applications, New York, 1984-1985, Berlin
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. oriented Borel-Moore homology; toric varieties; algebraic bordism
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. effective lower bounds; linear forms in logarithms of algebraic numbers; analytic subgroup theorem; algebraic groups; isogenies of abelian varieties; Tate's conjecture; semisimplicity of the Tate module; Arakelov theory
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. fat points; sum of decomposable tensors; tensor rank; secant varieties; Segre varieties Catalisano, M.V., Geramita, A.V., Gimigliano, A.: On the rank of tensors, via secant varieties and fat points, zero-dimensional schemes and applications (Naples, 2000). Queen's Papers in Pure and Appl. Math., vol. 123, pp. 133--147. Queen's University, Kingston (2002)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. stable manifold of Riccati flow; singularities of Schubert varieties Wolper, J.S.: The Riccati flow and singularities of Schubert varieties. Proceedings of the AMS 123 (1995) 703--709
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. log Fano pairs; dual complexes; Bott towers; toric varieties; semistable-degenerations
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of surfaces; constant mean curvature surfaces; semialgebraic sets
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. lattice polytopes; Minkowski sum decompositions; marked posets; reflexive polytopes; toric varieties; toric degenerations
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Quot scheme; zeta function
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Artin braid group; Jacobian varieties; Hurwitz monodromy; moduli space of curves M. Fried, Combinatorial computation of moduli dimension of Nielsen classes of covers, Contemporary Mathematics 89 (1989), 61--79.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. topological Nash conjecture; smooth blow-up of embedded links; classification of 3-manifolds modulo tears; rationality in dimension 3; rational real algebraic set; stratified diffeomorphism Riccardo Benedetti and Alexis Marin, Déchirures de variétés de dimension trois et la conjecture de Nash de rationalité en dimension trois, Comment. Math. Helv. 67 (1992), no. 4, 514 -- 545 (French).
| 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.