text
stringlengths 2
1.42k
| label
int64 0
1
|
---|---|
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. projective equivariant completion; semisimple algebraic group; group of units; semisimple varieties; Semisimple algebraic monoids; polyhedral root systems; character group; maximal torus; fundamental generators L. Renner, \textit{Classification of semisimple varieties}, J. Algebra \textbf{122} (1989), no. 2, 275-287.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. normality of the Schubert subvarieties in homogeneous space; Schubert varieties are Frobenius split V. B. Mehta and V. Srinivas, Normality of Schubert varieties, Amer. J. Math. 109 (1987), 987--989. JSTOR:
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. singular loci; varieties of complexes; Schubert varieties V. Lakshmibai. Singular loci of varieties of complexes. \textit{J. Pure Appl. Algebra} 152 (2000), 217--230.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. affine algebraic varieties; linear algebraic groups; groups of rational points; Jordan decomposition; conjugacy classes; semi-simple elements
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Siegel modular varieties; compactification of the quotient; dimension of the homology group
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. complex algebraic curves; Jacobians; Krichever theory; Kadomtsev- Petviashvili equation; KP hierarchy; theta functions of Riemann surfaces; divisors on algebraic curves; Prym varieties; intermediate Jacobians; Schottky problem V. V. Shokurov, Algebraic curves and their Jacobians (Russian), in Current Problems in Mathematics. Fundamental Directions Vol. 36, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 233--273, 280.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. blowing up; toric variety; birational cobordism; decomposition of a birational mapping Bonavero, L.: Factorisation faible des applications birationnelles. Astérisque 282 (2002)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Lagrangian fibration; Kummer variety; symplectic manifold; toric varieties
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Algebraic K-Theory, Dévissage, Localization, Grothendieck ring of varieties, motives
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. projective representations of quivers; varieties of representations; rational smoothness; quantum groups; quantized enveloping algebra
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Algebraic varieties; algebraic subgroups; intersection of algebraic varieties with algebraic subgroups; specialization; unlikely intersection E. Bombieri, D. Masser, and U. Zannier, ''On unlikely intersections of complex varieties with tori,'' Acta Arith., vol. 133, iss. 4, pp. 309-323, 2008.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. representation of quasiprojective algebraic varieties; smooth stratification; smooth cover A. L. Chistov, ''Efficient smooth stratification of an algebraic variety in zero-characteristic and its applications,'' J. Math. Sci., 113, No. 5, 689--717 (2003).
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties and stacks; equivariant coherent sheaves; derived categories; exceptional collections; simplicial complexes
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. tropical geometry; tropical curves; metric graphs; Torelli map; moduli of curves; abelian varieties 10 M. Chan, 'Combinatorics of the tropical Torelli map', \textit{Algebra Number Theory}6 (2012) 1133-1169.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. compactifications; symmetric spaces; toric varieties; tensor categories; Tannaka categories S. Kato, Equivariant vector bundles on group completions, J. Reine Angew. Math. 581 (2005) 71 -- 116.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. sigma function; differentiation with respect to parameters; universal bundle of Jacobi varieties Bukhshtaber, V. M. and Leykin, D. V., Solution of the problem of differentiation of Abelian functions over parameters for families of {\((n,s)\)}-curves, Functional Analysis and its Applications, 42, 4, 268-278, (2008)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Fano varieties; Mori fibre spaces; toric varieties; vertex-transitive polytopes; high index; high Picard rank
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. moduli of curves; moduli maps; moduli spaces of \(K3\) surfaces; Severi varieties; deformations theory; degenerations Ciliberto, Ciro; Flamini, Flaminio; Galati, Concettina; Knutsen, Andreas Leopold, Moduli of nodal curves on \(K3\) surfaces, Adv. Math., 309, 624-654, (2017)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. compactifications; quasi-homogeneous varieties; deformations of actions; Schwartz-Christoffel transformation; moduli spaces of polygons; hyperbolic polyhedra
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. affinoid space; rigid analytic geometry; non-archimedean valued ground field; affinoid algebra; Picard group; formal group of an elliptic curve E. Heinrich , M. van der PUT . '' Uber die Picardgruppen affinoider Algebren ''. Math Z. 186 , 9 - 28 ( 1984 ). Article | MR 735047 | Zbl 0543.14011
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Borel-Weil-Bott theorem; cohomology with support; spherical varieties; wonderful varieties; flag varieties; Grothendieck-Cousin complex; cohomology of line bundles; Verma modules Tchoudjem, A., Cohomologie des fibrés en droites sur les variétés magnifiques de rang minimal, Bull. Soc. Math. France, 135, 2, 171-214, (2007)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. torsor; excellent Dedekind domain; algebraic spaces; classification of étale covering groups; isodecomposability of a group space
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. cotangent bundles of moduli spaces of vector bundles over a Riemann surface; completely integrable Hamiltonian systems; adjoint representation; Jacobian; Prym varieties N. Hitchin, \textit{Stable bundles and integrable systems}. Duke Math. J. 54 (1987), no. 1, 91--114.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. unitary representations of compact groups; non-vanishing of class of L- series on their line of convergence; Gauss sums; Kloosterman sums
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. complex compact manifolds; toric varieties Meersseman, Laurent; Verjovsky, Alberto, Sur les variétés LV-M. Singularities II, Contemp. Math. 475, 111-134, (2008), Amer. Math. Soc., Providence, RI
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. integral polytopes; toric varieties; Ehrhart polynomial; arithmetical PL-topology Kantor J.M.: Triangulations of integral polytopes and Ehrhart polynomials. Contributions Algebra Geom. 39(1), 205--218 (1998)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. \(C\)-analytic spaces; \(C\)-semianalytic sets; subanalytic sets; points of non-coherence; amenable \(C\)-semianalytic sets; irreducibility; irreducible components; nullstellensatz; real nullstellensatz; Łojasiewicz's radical
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. intermediate Jacobians; Fano varieties; threefolds; theta divisors; families of curves; quartic double solids; moduli spaces of stable vector bundles; Abel-Jacobi map Markushevich, D.G., Tikhomirov, A.S.: A parametrization of the theta divisor of the quartic double solid. Int. Math. Res. Not. \textbf{2003}(51), 2747-2778 (2003)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. quotient of affine plane; classification; linearization problem M. Koras: A characterization of \(\mathbf{A}^{2}/\mathbf{Z}_{a}\) , Compositio Math. 87 (1993), 241-267.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. finitely generated ring of global sections; complete toric variety; Cartier divisor Elizondo, E. J., The ring of global sections of multiples of a line bundle on a toric variety, Proc. Am. Math. Soc., 125, 9, 2527-2529, (1997)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric Fano manifold; Futaki invariant; Kähler metric of constant scalar curvature, asymptotic Chow stability Berman, R.J., Nyström, D.W.: \textit{Complex optimal transport and the pluripotential theory of Kähler-Ricci solitons}. arXiv:1401.8264
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Hirzebruch surfaces; simply-connected algebraic surfaces of general type; non-negative signatue; spin manifolds; Galois covers Moishezon B, Robb A, Teicher M. On Galois covers of Hirzebruch surfaces. Math Ann, 305: 493--539 (1996)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. endomorphism ring of an abelian variety; fixed-point-free automorphism; Shimura varieties; number of fixed-points of an automorphism Birkenhake, Christina; Lange, Herbert, Automorphisms, 411-438, (2004), Berlin, Heidelberg
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. decomposition of birational mappings; threefold; birational transformation of non-singular three-dimensional projective manifolds V. S. Kulikov, Decomposition of a birational map of three-dimensional varieties outside codimension \(2\) , Math. USSR Izv. 21 (1983), 187-200.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. compactification of the moduli space of principally polarised; abelian varieties; coarse moduli scheme; toroidal completions of Siegel moduli schemes; semi-abelian varieties; 2-adic theta functions Chai, C.-L.: Compactification of Siegel moduli schemes. London Math. Soc. Lecture Note Series, vol. 107. Cambridge University Press (1985)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. theta functions; theta constants; modular varieties; partition functions; Ramanujan congruences; modular forms of \({1\over 2}\)-integral weight H. M. Farkas, I. Kra, Theta constants, Riemann surfaces and the modular group. Graduate Studies in Mathematics 37. American Mathematical Society, Providence, RI, (2001). Zbl0982.30001 MR1850752
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. group of rational points; abelian varieties; isogeny classes; cyclic
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties Furukawa, K.; Ito, A.: Gauss maps of toric varieties. Tohoku math. J. (2016)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; Fano varieties; lattice polytopes
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic geometry; mirror symmetry; Hodge theory; toric varieties
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Auslander algebras; varieties of representations; dimension vectors; stratifications; irreducible components; preprojective algebras; quiver representations
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Weierstrass point; Weierstrass weight; non-hyperelliptic curves of genus five; singularity
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. non-existence of hyperelliptic curve; Kummer variety; Abelian variety G.\ P. Pirola, Curves on generic Kummer varieties, Duke Math. J. 59 (1989), no. 3, 701-708.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. families of varieties; isolated singularities; embedded deformations Greuel, G.-M., Karras, U.: Families of varieties with prescribed singularities. Compos. Math. 69(1), 83--110 (1989)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Kowalewski's curve; Bobenko-Reyman-Semenov-Tian-Shansky curve; curves of genus 2; Kowalewski top; Jacobians; theta-functions; isogeny; Richelot's transformation; Hamiltonian flows; Prym varieties Markushevich, D., Kowalevski Top and Genus-2 Curves, J. Phys. A: Math. Gen., 2001, vol. 34, pp. 2125--2135.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. finitely generated graded modules; abstract Kazhdan-Lusztig theories; highest weight category; finite dimensional quasi-hereditary algebras; graded Kazhdan-Lusztig theories; Koszul property; automorphisms; category of \(\ell\)-adic perverse sheaves; flag varieties; semisimple algebraic groups; Borel subgroups; principal blocks; category \(\mathcal O\) Parshall B., Quart. J. Math. Oxford 2 pp 345-- (1995)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. finite-dimensional algebras; finite-dimensional representations; top-stable degenerations; fine moduli spaces; projective varieties; degenerations of modules; representations of quivers 10.1016/j.aim.2014.02.008
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. jet ampleness; toric varieties; Fujita's conjectures; higher concavity; Seshadri constants
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. non-local field theory; harmonic extensions of functions Faizal, M, No article title, Int. J. Geom. Methods Mod. Phys., 12, 1550022, (2015)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. families of surfaces; famlies of polarized algebraic varieties; vanishing theorem E. Bedulev and E. Viehweg, ''On the Shafarevich conjecture for surfaces of general type over function fields,'' Invent. Math., vol. 139, iss. 3, pp. 603-615, 2000.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. abelian varieties; torsion; Betti coordinates; Kodaira-Spencer map; Manin theorem of kernel; Ax-Schanuel theorem
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic moduli problems; moduli of vector bundles; vector bundles on surfaces; higher-dimensional varieties and their moduli; vector bundles on curves and their moduli
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. sheaves of monoids; resolution of singularities; Jungian domain; toric singularity; toroidal embeddings 22. Kato, Kazuya Toric singularities \textit{Amer. J. Math.}116 (1994) 1073--1099 Math Reviews MR1296725
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Chow motive; moduli space; stable vector bundles; Poincaré-Hodge polynomial; symmetric power of a motive; \(\lambda\)-structure on a tensor category; MacDonald theorem; varieties of matrix divisors; standard conjecture of Lefschetz type; semisimplicity of Galois actions; Hodge conjecture; Tate conjecture S. del Baño, \textit{On the Chow motive of some moduli spaces}, J. Reine Angew. Math. \textbf{532} (2001), 105-132.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. geometric genus; moduli space of abelian varieties; paramodular groups; cusp forms
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. numerical classification; elliptic surfaces; singular fibers of pencils of curves; curves of genus three Kazuhiro Uematsu, Numerical classification of singular fibers in genus 3 pencils, J. Math. Kyoto Univ. 39 (1999), no. 4, 763 -- 782.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. o-minimality; real closed field; non-Archimedean analysis; complex analytic set; Weierstrass function; theta functions; abelian varieties; holomorphic functions Peterzil, Y.; Starchenko, S., Tame complex analysis and o-minimality, Hyderabad
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Witt algebra; Cartan type Lie algebra; nilpotent cone; restricted nilpotent cone; nilpotent commuting varieties; Borel subalgebra; cohomology of second Frobenius kernels Yao, Y-F; Chang, H., The nilpotent commuting variety of the Witt algebra, J Pure Appl Algebra, 218, 1783-1791, (2014)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. derived categories of coherent sheaves; rational points; Brauer-Manin obstructions; moduli spaces of sheaves; K3 surfaces; holomorphic symplectic varieties
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. \(\mathbb{A}^1\) homotopy; motivic homotopy; simplicial EHP sequence; motivic homotopy of spheres
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic geometry; syzygies; toric varieties
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Mordell-Weil group; ramification of division points; non-existence of abelian variety of type (K); Néron model; class number
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of real plane projective 7-th degree curves; \(M\)-curves
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. quantization; topology of real algebraic varieties O. Viro, \textit{Dequantization of real algebraic geometry on logarithmic paper}, European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math., vol. 201, Birkh''auser, Basel, 2001, pp. 135--146.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of semisimple algebraic groups Chevalley, Claude, Classification des groupes algébriques semi-simples, 3-540-23031-9, xiv+276 pp., (2005), Springer-Verlag, Berlin
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. tropical Prym variety; non-Archimedean uniformization; folded chain of loops; Prym-Brill-Noether locus
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. abelian varieties; Selmer groups; geometry of numbers; rational points; quadratic twists
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. hyperplane sections; very ample line bundle; spanned line bundle; general position; projective classification of algebraic surfaces; geometrically ruled surfaces Biancofiore A., Pacific Journal of Mathematics 143 pp 9-- (1990)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. volume form; fan of toric variety; Fubini-Study metric; Newton polytope; integral representation
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. adjoint semisimple algebraic groups; \(R\)-equivalences; rational varieties; rational points; birational invariants; non-rational adjoint groups Merkurjev, AS, \(R\)-equivalence and rationality problem for semisimple adjoint classical algebraic groups, Inst. Hautes Études Sci. Publ. Math., 84, 189-213, (1997)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. complex torus; abelian variety; non-algebraic tori; intermediate Jacobians; Albanese varieties; tori with polarization; embeddings; Riemann-Roch theorem; parameter spaces; coarse moduli spaces Christina Birkenhake and Herbert Lange, Complex tori, Progress in Mathematics, vol. 177, Birkhäuser Boston, Inc., Boston, MA, 1999.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. birational automorphism; Fano varieties; Sarkisov program; variation of geometric invariant theory
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; cohomology; vanishing theorems Fujino, O., Multiplication maps and vanishing theorems for toric varieties, Mathematische Zeitschrift, 257, 631-641, (2007)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; holomorphic principal bundles 1. A. Dey and M. Poddar, Equivariant Abelian principal bundles on nonsingular toric varieties, Bull. Sci. Math.140(5) (2016) 471-487. genRefLink(16, 'S0129167X16501159BIB001', '10.1016%252Fj.bulsci.2015.05.002'); genRefLink(128, 'S0129167X16501159BIB001', '000378971900001');
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Brauer groups of schemes; rational points; varieties over global fields Smeets, Arne, Insufficiency of the étale Brauer-Manin obstruction: towards a simply connected example, Amer. J. Math., 139, 2, 417-431, (2017)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. complement of hyperplanes; non-hyperbolic; complex projective space V. E. Snurnitsyn, ?The complement of 2n hyperplanes inCP n is not hyperbolic,? Mat. Zametki,40, No. 6 (1986).
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. variations of Hodge structures; Calabi-Yau manifolds; computational aspects in higher dimensional varieties; transcendental methods; Hodge theory
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classifying stack; reductive group scheme; rational section; family of polarized varieties J. Starr and J. de Jong, ''Almost proper GIT-stacks and discriminant avoidance,'' Doc. Math., vol. 15, pp. 957-972, 2010.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; semigroup rings Thompson, H. M.: Toric singularities revisited. J. Algebra 299(2), 503--534 (2006)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. surfaces of general type; Severi inequality; étale coverings; irregular varieties Barja, M. Á.; Pardini, R.; Stoppino, L., Surfaces on the Severi line, J. Math. Pures Appl. (9), 105, 5, 734-743, (2016)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Brauer-Severi variety; Amitsur conjecture; birationality of Brauer-Severi varieties; cyclic subgroup in the Brauer group Tregub, S. L.: Birational equivalence of Brauer--Severi manifolds. Uspekhi mat. Nauk. 46, No. 6, 217-218 (1991)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. ind-varieties; toric varieties; filtered semigroups; inductive and projective limits
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. cusp form; Drinfeld module; adele ring; Hecke algebra; classification of elliptic curves; Fourier coefficients; matrix representation of Hecke operators Gekeler E.-U., Drinfeld-Moduln und modulare Formen über rationalen Funktionenkörpern, Bonner Math. Schriften 119, Universität Bonn, Bonn 1980.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Gorenstein orbifolds; simplicial Gorenstein toric varieties; stringy Hodge numbers; orbifold Hodge numbers Mainak Poddar, Orbifold cohomology group of toric varieties, Orbifolds in mathematics and physics (Madison, WI, 2001) Contemp. Math., vol. 310, Amer. Math. Soc., Providence, RI, 2002, pp. 223 -- 231.
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. varieties of almost general type
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; complete intersection codes; lattice polytope Celebi Demirarslan, P., Dual toric complete intersection codes, (2013), CSU, MS thesis
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Calabi-Yau manifolds; mirror symmetry; toric varieties; string and superstring theories; complete intersections; Hodge numbers M. Kreuzer, E. Riegler and D.A. Sahakyan, \textit{Toric complete intersections and weighted projective space}, \textit{J. Geom. Phys.}\textbf{46} (2003) 159 [math/0103214] [INSPIRE].
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; King's conjecture; exceptional collection; Frobenius splitting Costa L., Miró-Roig R.M., Frobenius splitting and Derived category of toric varieties, Illinois J. Math., 2010, 54(2), 649--669
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. abelian varieties; isogenies; Tate modules; locally free modules of rank 1
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic transformation groups; classification; convex geometry; geometry of algebraic groups; invariant theory; linear algebraic semigroups; linear algebraic monoids; linear semigroups; monoids of Lie type; normal algebraic monoids; Putcha lattices of cross-sections; reductive monoids; regular semigroups; Renner monoids; representation theory; spherical embeddings; strongly \(\pi\)-regular semigroups; Tits systems; torus embeddings Renner, L. E.: Linear algebraic monoids, Encyclopædia math. Sci. 134 (2005)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. analytification; tropical varieties; toric varieties Sam Payne, ``Analytification is the limit of all tropicalizations'', Math. Res. Lett.16 (2009) no. 2-3, p. 543-556
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric residue mirror conjecture; mirror symmetry conjecture; Calabi-Yau varieties; Gorenstein toric Fano varieties; simplicial toric varieties; Yukawa couplings V.V. Batyrev and E.N. Materov, \textit{Toric residues and mirror symmetry}, math/0203216 [INSPIRE].
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. families of manifolds; minimal models; Kodaira dimension; variation of Hodge structures; moduli of polarized varieties
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Hodge conjecture for abelian varieties; abelian varieties of Weil type; Mumford-Tate groups; abelian variety of Weil type; abelian fourfolds; exceptional Hodge classes van Geemen B.: An introduction to the Hodge conjecture for abelian varieties, Algebraic cycles and Hodge theory, Torino 1993, Lecture Notes in Math., vol. 1594, pp. 233--252. Springer (1994)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. triviality of vector bundles; bundles over quasi-projective varieties; bundles over affine varieties
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Grothendieck residues; Newton polyhedra; toric varieties Gelfond O.A., Khovanskii A.G.: Toric geometry and Grothendieck residues. Mosc. Math. J 2(1), 99--112 (2002)
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Calabi-Yau threefolds; fiber product of relatively minimal rational elliptic surfaces with section; automorphisms of rational elliptic surfaces; group actions; non-simply connected Calabi-Yau threefolds; fixed points
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. symplectic orbifold; Hamiltonian torus action; moment map; toric varieties E. Lerman and S. Tolman, Hamiltonian torus actions on symplectic orbifolds and toric varieties, \textit{Trans. Amer. Math. Soc.}, 349 (1997), no. 10, 4201--4230.Zbl 0897.58016 MR 1401525
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. rigid complex manifolds and varieties; branched coverings; Hirzebruch Kummer coverings; deformation theory; configurations of lines; del Pezzo surfaces
| 0 |
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. real polynomial mapping; topological degree; signature of a quadratic form; real algebraic varieties Szafraniec, Z.: Topological degree and quadratic forms. J. pure appl. Algebra 141, No. 3, 299-314 (1999)
| 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.