|
import os |
|
import cv2 |
|
import numpy as np |
|
import supervision as sv |
|
from ultralytics import YOLO |
|
import yaml |
|
from pathlib import Path |
|
import torch |
|
|
|
print(torch.cuda.is_available()) |
|
|
|
def setup_dataset_config(dataset_path, class_names): |
|
data_yaml = { |
|
'path': os.path.abspath(dataset_path), |
|
'train': 'train/images', |
|
'val': 'valid/images', |
|
'test': 'test/images', |
|
'names': {i: name for i, name in enumerate(class_names)}, |
|
'nc': len(class_names) |
|
} |
|
|
|
with open(os.path.join(dataset_path, 'dataset.yaml'), 'w') as f: |
|
yaml.dump(data_yaml, f, sort_keys=False) |
|
|
|
print(f"Dataset config saved to {os.path.join(dataset_path, 'dataset.yaml')}") |
|
return os.path.join(dataset_path, 'dataset.yaml') |
|
|
|
|
|
def train_yolov8_model(dataset_config, epochs=100, img_size=640, batch_size=16): |
|
model = YOLO('yolov8n.pt') |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
print(f"Training on device: {device}") |
|
|
|
results = model.train( |
|
data=dataset_config, |
|
epochs=epochs, |
|
imgsz=img_size, |
|
batch=batch_size, |
|
name='accessory_detection', |
|
patience=20, |
|
save=True, |
|
device=device, |
|
verbose=True |
|
) |
|
|
|
print("Training completed!") |
|
return model |
|
|
|
|
|
def validate_model(model): |
|
metrics = model.val() |
|
print(f"Validation metrics: {metrics}") |
|
return metrics |
|
|
|
|
|
def run_webcam_detection(model_path=None): |
|
if model_path is None: |
|
runs_dir = Path('runs/detect') |
|
if runs_dir.exists(): |
|
model_dirs = [d for d in runs_dir.iterdir() if d.is_dir() and d.name.startswith('accessory_detection')] |
|
if model_dirs: |
|
latest_model = max(model_dirs, key=os.path.getmtime) / 'weights' / 'best.pt' |
|
if latest_model.exists(): |
|
model_path = str(latest_model) |
|
print(f"Using latest model: {model_path}") |
|
|
|
model = YOLO(model_path) if model_path else YOLO('yolov8n.pt') |
|
print(f"Model loaded from {model_path if model_path else 'Pretrained YOLOv8n'}") |
|
|
|
cap = cv2.VideoCapture(0, cv2.CAP_V4L2) |
|
if not cap.isOpened(): |
|
print("Error: Could not open webcam.") |
|
return |
|
|
|
box_annotator = sv.BoxAnnotator(thickness=2, text_thickness=2, text_scale=1) |
|
print("Press 'q' to quit") |
|
|
|
while True: |
|
ret, frame = cap.read() |
|
if not ret: |
|
print("Error: Failed to capture image") |
|
break |
|
|
|
results = model(frame, conf=0.25) |
|
detections = sv.Detections.from_ultralytics(results[0]) |
|
class_names = model.names if hasattr(model, 'names') else {0: "unknown"} |
|
|
|
labels = [ |
|
f"{class_names[class_id]} {confidence:.2f}" |
|
for _, confidence, class_id, _ in detections |
|
] |
|
|
|
frame = box_annotator.annotate(scene=frame, detections=detections, labels=labels) |
|
cv2.putText(frame, "Press 'q' to quit", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) |
|
|
|
cv2.imshow("YOLOv8 Accessory Detection", frame) |
|
|
|
if cv2.waitKey(1) & 0xFF == ord('q'): |
|
break |
|
|
|
cap.release() |
|
cv2.destroyAllWindows() |
|
|
|
|
|
def prepare_custom_dataset(source_dir, target_dir, split_ratios=(0.7, 0.2, 0.1)): |
|
import shutil |
|
from sklearn.model_selection import train_test_split |
|
|
|
os.makedirs(os.path.join(target_dir, 'train', 'images'), exist_ok=True) |
|
os.makedirs(os.path.join(target_dir, 'train', 'labels'), exist_ok=True) |
|
os.makedirs(os.path.join(target_dir, 'valid', 'images'), exist_ok=True) |
|
os.makedirs(os.path.join(target_dir, 'valid', 'labels'), exist_ok=True) |
|
os.makedirs(os.path.join(target_dir, 'test', 'images'), exist_ok=True) |
|
os.makedirs(os.path.join(target_dir, 'test', 'labels'), exist_ok=True) |
|
|
|
print("YOLOv8 directory structure created") |
|
|
|
files = [f for f in os.listdir(source_dir) if f.endswith('.txt') and not f.endswith('classes.txt')] |
|
|
|
train_files, temp_files = train_test_split(files, test_size=(split_ratios[1]+split_ratios[2]), random_state=42) |
|
val_ratio = split_ratios[1] / (split_ratios[1] + split_ratios[2]) |
|
val_files, test_files = train_test_split(temp_files, test_size=(1-val_ratio), random_state=42) |
|
|
|
print(f"Split dataset: {len(train_files)} train, {len(val_files)} validation, {len(test_files)} test images") |
|
|
|
setup_dataset_config(target_dir, ["hat", "scarf", "sunglasses", "spectacles", "headphones", "ears_visible"]) |
|
print("Dataset preparation completed!") |
|
|
|
return os.path.join(target_dir, 'dataset.yaml') |
|
|
|
|
|
if __name__ == "__main__": |
|
import argparse |
|
parser = argparse.ArgumentParser(description="YOLOv8 Face Accessory Detection System") |
|
parser.add_argument('--train', action='store_true', help='Train model') |
|
parser.add_argument('--detect', action='store_true', help='Run detection on webcam') |
|
parser.add_argument('--config', type=str, help='Path to dataset config file') |
|
parser.add_argument('--model', type=str, help='Path to trained model') |
|
parser.add_argument('--epochs', type=int, default=100, help='Number of training epochs') |
|
args = parser.parse_args() |
|
|
|
if args.train: |
|
if not args.config: |
|
print("Error: Dataset config is required for training") |
|
else: |
|
model = train_yolov8_model(args.config, epochs=args.epochs) |
|
validate_model(model) |
|
|
|
if args.detect: |
|
run_webcam_detection(args.model) |
|
|
|
if not (args.train or args.detect): |
|
parser.print_help() |
|
|