input
stringlengths
2.65k
237k
output
stringclasses
1 value
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl import random, copy import matplotlib.cm as cm import itertools import scipy.stats import math import statistics import pysan.multisequence as pysan_ms from itertools import combinations random.seed('1<PASSWORD>') def generate_sequence(length, alphabet): """ Generates a random sequence of a given length, given an alphabet of elements. This is useful for benchmarking function performance, and creating examples in the docs. Example -------- >>> ps.generate_sequence(12, [1,2,3]) [2, 3, 3, 3, 2, 2, 2, 1, 3, 3, 2, 2] """ return [random.choice(alphabet) for x in range(length)] def full_analysis(sequence): """ UC Computes a collection of information on a given sequence plus a collection of plots. """ details = describe(sequence) sequence_plot = plot_sequence(sequence) tm = plot_transition_matrix(sequence) element_counts = get_element_counts(sequence) element_prevalence = plot_element_counts(sequence) bigrams = plot_ngram_counts(sequence, 2) trigrams = plot_ngram_counts(sequence, 3) print(details) print(element_counts, element_prevalence) sequence_plot.show() tm.show() bigrams.show() trigrams.show() return None def describe(sequence): """ Computes descriptive properties of a given sequence, returning a dictionary containing the keys: {'length', 'alphabet', 'sequence_universe', 'unique_bigrams', 'bigram_universe', 'entropy'}. Example --------- >>> sequence = [1,1,2,1,2,2,3,4,2] >>> ps.describe(sequence) #doctest: +NORMALIZE_WHITESPACE {'length': 9, 'alphabet': {1, 2, 3, 4}, 'is_recurrent': True, 'entropy': 0.8763576394898526, 'complexity': 0.6885628567541515, 'turbulence': 7.868228975239414, 'element_counts': {1: 3, 2: 4, 3: 1, 4: 1}, 'first_positions': {1: 0, 2: 2, 3: 6, 4: 7}, 'ntransitions': 6, 'sequence_universe': 262144, 'distinct_subsequences': 175, 'unique_bigrams': 7, 'bigram_universe': 16, 'longest_spell': {'element': 1, 'count': 2, 'start': 0}} """ details = { 'length': len(sequence), 'alphabet': get_alphabet(sequence), 'is_recurrent': is_recurrent(sequence), 'entropy' : get_entropy(sequence), 'complexity': get_complexity(sequence), 'turbulence': get_turbulence(sequence), 'element_counts': get_element_counts(sequence), 'first_positions': get_first_positions(sequence), 'ntransitions' : get_ntransitions(sequence), 'sequence_universe': get_ngram_universe(sequence, len(sequence)), 'distinct_subsequences': get_ndistinct_subsequences(sequence), 'unique_bigrams': len(get_unique_ngrams(sequence, 2)), 'bigram_universe' : get_ngram_universe(sequence, 2), 'longest_spell': get_longest_spell(sequence) # spell durations here } return details # ==================================================================================== # SUMMARY STATISTICS # ==================================================================================== def is_recurrent(sequence): """ Returns true if the given sequence is recurrent (elements can exist more than once), otherwise returns false. Example --------- >>> sequence = [1,2,3,4,5] >>> ps.is_recurrent(sequence) False >>> sequence = [1,1,2,2,3] >>> ps.is_recurrent(sequence) True """ element_counts = get_element_counts(sequence) truths = [count > 1 for element, count in element_counts.items()] if True in truths: return True return False def get_entropy(sequence): """ Computes the normalised `Shannon entropy <https://en.wikipedia.org/wiki/Entropy_(information_theory)>`_ of a given sequence, using the `scipy.stats.entropy <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html>`_ implementation. Note that this measure is insensitive to transition frequency or event order, so should be used in conjunction with other measures. Example -------- >>> low_entropy_sequence = [1,1,1,1,1,1,1,2] >>> ps.get_entropy(low_entropy_sequence) 0.543... >>> high_entropy_sequence = [1,2,2,3,4,3] >>> ps.get_entropy(high_entropy_sequence) 0.959... """ alphabet = get_alphabet(sequence) entropy = 0 for state in alphabet: proportion_occurances = sequence.count(state) / len(sequence) entropy += proportion_occurances * math.log(proportion_occurances) maximal_occurances = 1 / len(alphabet) alphabet_entropy = sum([maximal_occurances * math.log(maximal_occurances) for x in alphabet]) if alphabet_entropy == 0: return 0 return -entropy / -alphabet_entropy def get_turbulence(sequence): """ Computes turbulence for a given sequence, based on `Elzinga & Liefbroer's 2007 definition <https://www.researchgate.net/publication/225402919_De-standardization_of_Family-Life_Trajectories_of_Young_Adults_A_Cross-National_Comparison_Using_Sequence_Analysis>`_ which is also implemented in the `TraMineR <http://traminer.unige.ch/doc/seqST.html>`_ sequence analysis library. Example -------- >>> sequence = [1,1,2,2,3] >>> ps.get_turbulence(sequence) 5.228... """ phi = get_ndistinct_subsequences(sequence) #print('phi', phi) state_durations = [value for key, value in get_spells(sequence)] #print('durations', state_durations) #print('mean duration', statistics.mean(state_durations)) variance_of_state_durations = statistics.variance(state_durations) #print('variance', variance_of_state_durations) tbar = statistics.mean(state_durations) maximum_state_duration_variance = (len(sequence) - 1) * (1 - tbar) ** 2 #print('smax', maximum_state_duration_variance) top_right = maximum_state_duration_variance + 1 bot_right = variance_of_state_durations + 1 turbulence = math.log2(phi * (top_right / bot_right)) #print('turbulence', turbulence) return turbulence def get_complexity(sequence): """ Computes the complexity of a given sequence, based on TraMineR's `seqici <http://traminer.unige.ch/doc/seqici.html>`_ method. """ alphabet = get_alphabet(sequence) pre_log = 1 / len(alphabet) hmax = -math.log(pre_log) #print('hmax', hmax) if hmax == 0: return 0 # all identical elements, no complexity hs = get_entropy(sequence) #print('hs', hs) qs = get_ntransitions(sequence) #print('qs', qs) qmax = len(sequence) - 1 #print('qmax', qmax) norm_transitions = qs / qmax norm_entropy = hs / hmax #print('nt', norm_transitions) #print('ne', norm_entropy) complexity = math.sqrt(norm_transitions * norm_entropy) #print('complexity', complexity) return complexity def get_routine(sequence, duration): """ Computes a normalised measure of routine within a sequence for a given duration within that sequence. E.g. with a sequence where each element is one day, calling get_routine() with a duration of 7 would look at weekly routines. Note that this routine measure is identical to the multisequence measure of synchrony, but applied within-sequence in duration length chunks. Example --------- >>> sequence = [1,1,2,2,3,1,1,2,3,2,1,1,3,2,2] >>> ps.get_routine(sequence, 5) 0.4 """ if len(sequence) % duration != 0: raise Exception('sequence not divisible by interval, check data input') num_cycles = int(len(sequence) / duration) cycles = [sequence[n * duration:n * duration + duration] for n in range(num_cycles)] return pysan_ms.get_synchrony(cycles) # ==================================================================================== # ELEMENTS # ==================================================================================== def get_alphabet(sequence): """ Computes the alphabet of a given sequence (set of its unique elements). Parameters ---------- sequence : int A sequence of elements, encoded as integers e.g. [1,3,2,1]. Example ---------- >>> sequence = [1,1,2,1,2,2,3,4,2] >>> ps.get_alphabet(sequence) {1, 2, 3, 4} """ return set(sequence) def get_first_positions(sequence): """ Reports the first occurance of each element in the sequence in a dictionary, with each element as keys, and their first position as values. Example --------- >>> sequence = [1,1,2,3,4] >>> ps.get_first_positions(sequence) {1: 0, 2: 2, 3: 3, 4: 4} """ unique_elements = list(set(sequence)) first_positions = {} for element in unique_elements: first_positions[element] = sequence.index(element) return first_positions def get_element_counts(sequence): """ Counts the number of occurances for each element in a sequence, returning a dictionary containing the elements as keys and their counts as values. Example --------- >>> sequence = [1,1,2,1,2,2,3,4,2] >>> ps.get_element_counts(sequence) {1: 3, 2: 4, 3: 1, 4: 1} """ alphabet = get_alphabet(sequence) counts = {} for element in alphabet: counts[element] = sequence.count(element) return counts def get_element_frequency(sequence): """ Computes the relative frequency (aka prevalence or unconditional probability) of each element in a sequence, returning a dictionary where each key is an element and each value is that elements relative frequency. Example --------- >>> sequence = [1,1,2,1,2,2,3,4,2,1] >>> ps.get_element_frequency(sequence) {1: 0.4, 2: 0.4, 3: 0.1, 4: 0.1} """ alphabet = get_alphabet(sequence) prevalences = {} for element in alphabet: prevalences[element] = sequence.count(element) / len(sequence) return prevalences # ==================================================================================== # SUBSEQUENCES # ==================================================================================== # NGRAMS def get_subsequences(sequence): """ Computes the actual possible subsequences in a given sequence, returning them as a list of lists. Note that this does not include a single empty list as a subsequence. This method is based on a similar implementation available `here <https://www.w3resource.com/python-exercises/list/python-data-type-list-exercise-33.php>`_. Example -------- >>> sequence = [1,2,3] >>> ps.get_subsequences(sequence) [[1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3]] """ subsequences = [] for i in range(0, len(sequence)+1): temp = [list(x) for x in combinations(sequence, i)] if len(temp)>0: subsequences.extend(temp) return subsequences[1:] def get_ndistinct_subsequences(sequence): """ Computes the number of distinct subsequences for a given sequence, based on original implementation by <NAME> available `here <https://www.geeksforgeeks.org/count-distinct-subsequences/>`_. Example -------- >>> sequence = [1,2,1,3] >>> ps.get_ndistinct_subsequences(sequence) 14 """ # this implementation works on strings, so parse non-strings to strings if sequence is not str: sequence = [str(e) for e in sequence] # create an array to store index of last last = [-1 for i in range(256 + 1)] # hard-coded value needs explaining -ojs # length of input string sequence_length = len(sequence) # dp[i] is going to store count of discount subsequence of length of i dp = [-2 for i in range(sequence_length + 1)] # empty substring has only one subseqence dp[0] = 1 # Traverse through all lengths from 1 to n for i in range(1, sequence_length + 1): # number of subseqence with substring str[0...i-1] dp[i] = 2 * dp[i - 1] # if current character has appeared before, then remove all subseqences ending with previous occurrence. if last[ord(sequence[i - 1])] != -1: dp[i] = dp[i] - dp[last[ord(sequence[i - 1])]] last[ord(sequence[i - 1])] = i - 1 return dp[sequence_length] def get_unique_ngrams(sequence, n): """ Creates a list of all unique ngrams found in a given sequence. Example --------- >>> sequence = [2,1,1,4,2,2,3,4,2,1,1] >>> ps.get_unique_ngrams(sequence, 3) #doctest: +NORMALIZE_WHITESPACE [[2, 1, 1], [1, 1, 4], [1, 4, 2], [4, 2, 2], [2, 2, 3], [2, 3, 4], [3, 4, 2], [4, 2, 1]] """ unique_ngrams = [] for x in range(len(sequence) - n + 1): this_ngram = sequence[x:x + n] if str(this_ngram) not in unique_ngrams: unique_ngrams.append(str(this_ngram)) return [eval(x) for x in unique_ngrams] def get_all_ngrams(sequence, n): """ Creates a list of all ngrams found in a given sequence. Example --------- >>> sequence = [2,1,1,4,2,2,3,4,2,1,1] >>> ps.get_unique_ngrams(sequence, 3) #doctest: +NORMALIZE_WHITESPACE [[2, 1, 1], [1, 1, 4], [1, 4, 2], [4, 2, 2], [2, 2, 3], [2, 3, 4], [3, 4, 2], [4, 2, 1]] """ all_ngrams = [] for x in range(len(sequence) - n + 1): this_ngram = sequence[x:x + n] all_ngrams.append(this_ngram) return all_ngrams def get_ngram_universe(sequence, n): """ Computes the universe of possible ngrams given a sequence. Where n is equal to the length of the sequence, the resulting number represents the sequence universe. Example -------- >>> sequence = [2,1,1,4,2,2,3,4,2,1,1] >>> ps.get_ngram_universe(sequence, 3) 64 """ # if recurrance is possible, the universe is given by k^t (SSA pg 68) k = len(set(sequence)) if k > 10 and n > 10: return 'really big' return k**n def get_ngram_counts(sequence, n): """ Computes the prevalence of ngrams in a sequence, returning a dictionary where each key is an ngram, and each value is the number of times that ngram appears in the sequence. Parameters ------------- sequence : list(int) A sequence of elements, encoded as integers e.g. [1,3,2,1]. n: int The number of elements in the ngrams to extract. Example --------- >>> sequence = [2,1,1,4,2,2,3,4,2,1,1] >>> ps.get_ngram_counts(sequence, 3) #doctest: +NORMALIZE_WHITESPACE {'[2, 1, 1]': 2, '[1, 1, 4]': 1, '[1, 4, 2]': 1, '[4, 2, 2]': 1, '[2, 2, 3]': 1, '[2, 3, 4]': 1, '[3, 4, 2]': 1, '[4, 2, 1]': 1} """ ngrams = get_unique_ngrams(sequence, n) ngram_counts = {str(i):0 for i in ngrams} for x in range(len(sequence) - n + 1): this_ngram = sequence[x:x + n] ngram_counts[str(this_ngram)] += 1 return ngram_counts # TRANSITIONS def get_transitions(sequence): """ Extracts a list of transitions from a
""" Train utils ************************************** Losses, training loops and helper functions used during training. """ from pennylane import numpy as np import autograd.numpy as np from autograd.numpy import exp import itertools import time def hinge_loss(labels, predictions, type='L2'): """ Args: labels: predictions: type: (Default value = 'L2') Returns: """ loss = 0 for l, p in zip(labels, predictions): if type == 'L1': loss = loss + np.abs(l - p) # L1 loss elif type == 'L2': loss = loss + (l - p) ** 2 # L2 loss loss = loss / labels.shape[0] return loss def ohe_accuracy(labels, predictions): """ Args: labels: predictions: Returns: """ loss = 0 for l, p in zip(labels, predictions): loss += np.argmax(l) == np.argmax(p) return loss / labels.shape[0] def wn_accuracy(labels, predictions): """ Args: labels: predictions: Returns: """ loss = 0 #tol = 0.05 tol = 0.1 for l, p in zip(labels, predictions): if abs(l - p) < tol: loss = loss + 1 loss = loss / labels.shape[0] return loss def mse(labels, predictions): """ Args: labels: predictions: Returns: """ # print(labels.shape, predictions.shape) loss = 0 for l, p in zip(labels, predictions): loss += np.sum((l - p) ** 2) return loss / labels.shape[0] def make_predictions(circuit,pre_trained_vals,X,Y,**kwargs): """ Args: circuit: pre_trained_vals: X: Y: **kwargs: Returns: """ if kwargs['readout_layer']=='one_hot': var = pre_trained_vals elif kwargs['readout_layer']=="weighted_neuron": var = pre_trained_vals # make final predictions if kwargs['readout_layer']=='one_hot': final_predictions = np.stack([circuit(var, x) for x in X]) acc=ohe_accuracy(Y,predictions) elif kwargs['readout_layer']=='weighted_neuron': from autograd.numpy import exp n = kwargs.get('nqubits') w = var[:,-1] theta = var[:,:-1].numpy() final_predictions = [int(np.round(2.*(1.0/(1.0+exp(np.dot(-w,circuit(theta, features=x)))))- 1.,1)) for x in X] acc=wn_accuracy(Y,predictions) return final_predictions,acc def train_circuit(circuit, parameter_shape,X_train, Y_train, batch_size, learning_rate,**kwargs): """train a circuit classifier Args: circuit(qml.QNode): A circuit that you want to train parameter_shape: A tuple describing the shape of the parameters. The first entry is the number of qubits, parameter_shape: A tuple describing the shape of the parameters. The first entry is the number of qubits, the second one is the number of layers in the circuit architecture. X_train(np.ndarray): An array of floats of size (M, n) to be used as training data. Y_train(np.ndarray): An array of size (M,) which are the categorical labels associated to the training data. batch_size(int): Batch size for the circuit training. learning_rate(float): The learning rate/step size of the optimizer. kwargs: Hyperparameters for the training (passed as keyword arguments). There are the following hyperparameters: nsteps (int) : Number of training steps. optim (pennylane.optimize instance): Optimizer used during the training of the circuit. Pass as qml.OptimizerName. Tmax (list): Maximum point T as defined in https://arxiv.org/abs/2010.08512. (Definition 8) The first element is the maximum number of parameters among all architectures, the second is the maximum inference time among all architectures in terms of computing time, the third one is the maximum inference time among all architectures in terms of the number of CNOTS in the circuit rate_type (string): Determines the type of error rate in the W-coefficient. If rate_type == 'accuracy', the inference time of the circuit is equal to the time it takes to evaluate the accuracy of the trained circuit with respect to a validation batch three times the size of the training batch size and the error rate is equal to 1-accuracy (w.r.t. to a validation batch). If rate_type == 'accuracy', the inference time of the circuit is equal to the time it takes to train the circuit (for nsteps training steps) and compute the cost at each step and the error rate is equal to the cost after nsteps training steps. **kwargs: Returns: W_: W-coefficient, trained weights """ #print('batch_size',batch_size) # fix the seed while debugging #np.random.seed(1337) def ohe_cost_fcn(params, circuit, ang_array, actual): """use MAE to start Args: params: circuit: ang_array: actual: Returns: """ predictions = (np.stack([circuit(params, x) for x in ang_array]) + 1) * 0.5 return mse(actual, predictions) def wn_cost_fcn(params, circuit, ang_array, actual): """use MAE to start Args: params: circuit: ang_array: actual: Returns: """ w = params[:,-1] theta = params[:,:-1] #print(w.shape,w,theta.shape,theta) predictions = np.asarray([2.*(1.0/(1.0+exp(np.dot(-w,circuit(theta, features=x)))))- 1. for x in ang_array]) return mse(actual, predictions) if kwargs['readout_layer']=='one_hot': var = np.zeros(parameter_shape) elif kwargs['readout_layer']=="weighted_neuron": var = np.hstack((np.zeros(parameter_shape),np.random.random((kwargs['nqubits'],1))-0.5)) rate_type = kwargs['rate_type'] inf_time = kwargs['inf_time'] optim = kwargs['optim'] numcnots = kwargs['numcnots'] Tmax = kwargs['Tmax'] #Tmax[0] is maximum parameter size, Tmax[1] maximum inftime (timeit),Tmax[2] maximum number of entangling gates num_train = len(Y_train) validation_size = int(0.1*num_train) opt = optim(stepsize=learning_rate) #all optimizers in autograd module take in argument stepsize, so this works for all start = time.time() for _ in range(kwargs['nsteps']): batch_index = np.random.randint(0, num_train, (batch_size,)) X_train_batch = np.asarray(X_train[batch_index]) Y_train_batch = np.asarray(Y_train[batch_index]) if kwargs['readout_layer']=='one_hot': var, cost = opt.step_and_cost(lambda v: ohe_cost_fcn(v, circuit, X_train_batch, Y_train_batch), var) elif kwargs['readout_layer']=='weighted_neuron': var, cost = opt.step_and_cost(lambda v: wn_cost_fcn(v, circuit, X_train_batch, Y_train_batch), var) end = time.time() cost_time = (end - start) if kwargs['rate_type'] == 'accuracy': validation_batch = np.random.randint(0, num_train, (validation_size,)) X_validation_batch = np.asarray(X_train[validation_batch]) Y_validation_batch = np.asarray(Y_train[validation_batch]) start = time.time() # add in timeit function from Wbranch if kwargs['readout_layer']=='one_hot': predictions = np.stack([circuit(var, x) for x in X_validation_batch]) elif kwargs['readout_layer']=='weighted_neuron': n = kwargs.get('nqubits') w = var[:,-1] theta = var[:,:-1] predictions = [int(np.round(2.*(1.0/(1.0+exp(np.dot(-w,circuit(theta, features=x)))))- 1.,1)) for x in X_validation_batch] end = time.time() inftime = (end - start) / len(X_validation_batch) if kwargs['readout_layer']=='one_hot': err_rate = (1.0 - ohe_accuracy(Y_validation_batch,predictions))+10**-7 #add small epsilon to prevent divide by 0 errors #print('error rate:',err_rate) #print('weights: ',var) elif kwargs['readout_layer']=='weighted_neuron': err_rate = (1.0 - wn_accuracy(Y_validation_batch,predictions))+10**-7 #add small epsilon to prevent divide by 0 errors #print('error rate:',err_rate) #print('weights: ',var) elif kwargs['rate_type'] == 'batch_cost': err_rate = (cost) + 10**-7 #add small epsilon to prevent divide by 0 errors #print('error rate:',err_rate) #print('weights: ',var) inftime = cost_time # QHACK # if kwargs['inf_time'] =='timeit': W_ = (Tmax[0] - len(var) / (Tmax[0])) * (Tmax[1] - inftime) / (Tmax[1]) * (1. / err_rate) elif kwargs['inf_time']=='numcnots': nc_ = numcnots W_ = (Tmax[0] - len(var) / (Tmax[0])) * (Tmax[2] - nc_) / (Tmax[2]) * (1. / err_rate) return W_,var def evaluate_w(circuit, n_params, X_train, Y_train, **kwargs): """together with the function train_circuit(...) this executes lines 7-8 in the Algorithm 1 pseudo code of (de Wynter 2020) batch_sets and learning_rates are lists, if just single values needed then pass length-1 lists Args: circuit: n_params: X_train: Y_train: **kwargs: Returns: """ Wmax = 0.0 batch_sets = kwargs.get('batch_sizes') learning_rates=kwargs.get('learning_rates') hyperparameter_space = list(itertools.product(batch_sets, learning_rates)) for idx, sdx in hyperparameter_space: wtemp, weights = train_circuit(circuit, n_params,X_train, Y_train, batch_size=idx, learning_rate=sdx, **kwargs) if wtemp >= Wmax: Wmax = wtemp saved_weights = weights return Wmax, saved_weights def train_best(circuit, pre_trained_vals,X_train, Y_train, batch_size, learning_rate,**kwargs): """train a circuit classifier Args: circuit(qml.QNode): A circuit that you want to train parameter_shape: A tuple describing the shape of the parameters. The first entry is the number of qubits, parameter_shape: A tuple describing the shape of the parameters. The first entry is the number of qubits, the second one is the number of layers in the circuit architecture. X_train(np.ndarray): An array of floats of size (M, n) to be used as training data. Y_train(np.ndarray): An array of size (M,) which are the categorical labels associated to the training data. batch_size(int): Batch size for the circuit training. learning_rate(float): The learning rate/step size of the optimizer. kwargs: Hyperparameters for the training (passed as keyword arguments). There are the following hyperparameters: nsteps (int) : Number of training steps. optim (pennylane.optimize instance): Optimizer used during the training of the circuit. Pass as qml.OptimizerName. Tmax (list): Maximum point T as defined in https://arxiv.org/abs/2010.08512. (Definition 8) The first element is the maximum number of parameters among all architectures, the second is the maximum inference time among all architectures in terms of computing time, the third one is the maximum inference time among all architectures in terms of the number of CNOTS in the circuit rate_type (string): Determines the type of error rate in the W-coefficient. If rate_type == 'accuracy', the inference time of the circuit is equal to the time it takes to evaluate the accuracy of the trained circuit with respect to a validation batch three times the size of the training batch size and the error rate is equal to 1-accuracy (w.r.t. to a validation batch). If rate_type
# -*- coding: utf-8 -*- from __future__ import print_function import abc import copy import functools import hashlib import os import pathlib2 from .._protos.public.modeldb.versioning import Dataset_pb2 as _DatasetService from ..external import six from .._internal_utils import ( _file_utils, _request_utils, _utils, ) from ..repository import _blob DEFAULT_DOWNLOAD_DIR = "mdb-data-download" # to be in cwd class _Dataset(_blob.Blob): """ Base class for dataset versioning. Not for human consumption. """ _CANNOT_DOWNLOAD_ERROR = RuntimeError( "this dataset cannot be used for downloads;" " consider using `commit.get()` or `dataset_version.get_content()" " to obtain a download-capable dataset" " if ModelDB-managed versioning was enabled" ) def __init__(self, paths=None, enable_mdb_versioning=False): super(_Dataset, self).__init__() self._components_map = dict() # paths to Component objects self._mdb_versioned = enable_mdb_versioning # to enable download() with ModelDB-managed versioning # using commit.get() self._commit = None self._blob_path = None # using dataset_version.get_content() self._dataset_version = None def __repr__(self): lines = ["{} Version".format(self.__class__.__name__)] components = self._components_map.values() components = sorted(components, key=lambda component: component.path) for component in components: lines.extend(repr(component).splitlines()) return "\n ".join(lines) def __add__(self, other): if not isinstance(other, type(self)): return NotImplemented new = copy.deepcopy(self) return new.__iadd__(other) def __iadd__(self, other): if not isinstance(other, type(self)): return NotImplemented self_keys = set(self._components_map.keys()) other_keys = set(other._components_map.keys()) intersection = list(self_keys & other_keys) if intersection: raise ValueError("dataset already contains paths: {}".format(intersection)) if self._mdb_versioned != other._mdb_versioned: raise ValueError("datasets must have same value for `enable_mdb_versioning`") self._add_components(other._components_map.values()) return self @classmethod def _create_empty(cls): return cls([]) def _add_components(self, components): self._components_map.update({ component.path: component for component in components }) @abc.abstractmethod def _prepare_components_to_upload(self): pass @abc.abstractmethod def _clean_up_uploaded_components(self): pass def _set_commit_and_blob_path(self, commit, blob_path): """ Associate this blob with a commit and path to enable downloads. Parameters ---------- commit : :class:`verta.repository.Commit` Commit this blob was gotten from. blob_path : str Location of this blob within its Repository. """ # TODO: raise error if _dataset_version already set self._commit = commit self._blob_path = blob_path def _set_dataset_version(self, dataset_version): """ Associate this blob with a dataset version to enable downloads. Parameters ---------- dataset_version : :class:`~verta.dataset.entities.DatasetVersion` Dataset version this blob was gotten from. """ # TODO: raise error if _commit already set self._dataset_version = dataset_version @property def _is_downloadable(self): """ Whether this has a linked commit or dataset version to download from. """ if self._commit and self._blob_path: return True elif self._dataset_version: return True else: return False @property def _conn(self): """ Co-opts the ``_conn`` from associated commit or dataset version. """ if self._commit: return self._commit._conn elif self._dataset_version: return self._dataset_version._conn else: raise self._CANNOT_DOWNLOAD_ERROR def _get_url_for_artifact(self, path, method): if self._commit and self._blob_path: return self._commit._get_url_for_artifact(self._blob_path, path, method) elif self._dataset_version: return self._dataset_version._get_url_for_artifact(path, method) else: raise self._CANNOT_DOWNLOAD_ERROR # TODO: there is too much happening in this method's body def _get_components_to_download(self, component_path=None, download_to_path=None): """ Identify components to be downloaded, along with their local destination paths. Parameters ---------- component_path : str, optional Path to directory or file within blob. download_to_path : str, optional Local path to download to. Returns ------- components_to_download : dict Map of component paths to local destination paths. downloaded_to_path : str Absolute path where file(s) were downloaded to. Matches `download_to_path` if it was provided as an argument. """ implicit_download_to_path = download_to_path is None if component_path is not None: # look for an exact match with `component_path` as a file for path in self.list_paths(): if path == component_path: if implicit_download_to_path: # default to filename from `component_path`, in cwd local_path = os.path.basename(component_path) # avoid collision with existing file local_path = _file_utils.without_collision(local_path) else: # exactly where the user requests local_path = download_to_path return ({path: local_path}, os.path.abspath(local_path)) # no exact match, so it's a folder download (or nonexistent path) # figure out where files are going to be downloaded to if implicit_download_to_path: if component_path is None: downloaded_to_path = DEFAULT_DOWNLOAD_DIR # avoid collision with existing directory downloaded_to_path = _file_utils.without_collision(downloaded_to_path) else: # need to automatically determine directory # NOTE: if `component_path` == "s3://" with any trailing slashes, it becomes "s3:" downloaded_to_path = pathlib2.Path(component_path).name # final path component if downloaded_to_path in {".", "..", "/", "s3:"}: # rather than dump everything into cwd, use new child dir downloaded_to_path = DEFAULT_DOWNLOAD_DIR # avoid collision with existing directory downloaded_to_path = _file_utils.without_collision(downloaded_to_path) else: # exactly where the user requests downloaded_to_path = download_to_path # collect paths in blob and map them to download locations components_to_download = dict() if component_path is None: # download all for path in self.list_paths(): local_path = os.path.join( downloaded_to_path, _file_utils.remove_prefix_dir(path, "s3:"), ) components_to_download[path] = local_path else: # look for files contained in `component_path` as a directory component_path_as_dir = component_path if component_path.endswith('/') else component_path+'/' for path in self.list_paths(): if path.startswith(component_path_as_dir): # rebase from `component_path` onto `downloaded_to_path` # Implicit `download_to_path` example: # component_blob.path = "coworker/downloads/data/info.csv" # component_path = "coworker/downloads" # downloaded_to_path = "downloads" or "downloads 1", etc. # local_path = "downloads/data/info.csv" # Explicit `download_to_path` example: # component_blob.path = "coworker/downloads/data/info.csv" # component_path = "coworker/downloads" # downloaded_to_path = "my-data" # local_path = "my-data/data/info.csv" local_path = os.path.join( downloaded_to_path, _file_utils.remove_prefix_dir(path, prefix_dir=component_path), ) components_to_download[path] = local_path if not components_to_download: raise KeyError("no components found for path {}".format(component_path)) return (components_to_download, os.path.abspath(downloaded_to_path)) @staticmethod def _is_hidden_to_spark(path): # PySpark ignores certain files and raises a "does not exist" error # https://stackoverflow.com/a/38479545 return os.path.basename(path).startswith(('_', '.')) @classmethod def with_spark(cls, sc, paths): """ Creates a dataset blob with a SparkContext instance. Parameters ---------- sc : pyspark.SparkContext SparkContext instance. paths : list of strs List of paths to binary input data file(s). Returns ------- dataset :ref:`blob <blobs>` Dataset blob capturing the metadata of the binary files. """ if isinstance(paths, six.string_types): paths = [paths] rdds = list(map(sc.binaryFiles, paths)) rdd = functools.reduce(lambda a,b: a.union(b), rdds) def get_component(entry): filepath, content = entry return Component( path=filepath, size=len(content), # last_modified=metadata['modificationTime'], # handle timezone? md5=hashlib.md5(content).hexdigest(), ) result = rdd.map(get_component) result = result.collect() obj = cls._create_empty() obj._add_components(result) return obj @abc.abstractmethod def add(self, paths): pass def download(self, component_path=None, download_to_path=None): """ Downloads `component_path` from this dataset if ModelDB-managed versioning was enabled. Parameters ---------- component_path : str, optional Original path of the file or directory in this dataset to download. If not provided, all files will be downloaded. download_to_path : str, optional Path to download to. If not provided, the file(s) will be downloaded into a new path in the current directory. If provided and the path already exists, it will be overwritten. Returns ------- downloaded_to_path : str Absolute path where file(s) were downloaded to. Matches `download_to_path` if it was provided as an argument. """ if not self._is_downloadable: raise self._CANNOT_DOWNLOAD_ERROR implicit_download_to_path = download_to_path is None components_to_download, downloaded_to_path = self._get_components_to_download( component_path, download_to_path, ) for path in components_to_download: # component paths local_path = components_to_download[path] # dict will be updated near end of iteration # create parent dirs pathlib2.Path(local_path).parent.mkdir(parents=True, exist_ok=True) # TODO: clean up empty parent dirs if something later fails url = self._get_url_for_artifact(path, "GET").url # stream download to avoid overwhelming memory with _utils.make_request("GET", url, self._conn, stream=True) as response: _utils.raise_for_http_error(response) print("downloading {} from ModelDB".format(path)) if (implicit_download_to_path and len(components_to_download) == 1): # single file download # update `downloaded_to_path` in case changed to avoid overwrite downloaded_to_path = _request_utils.download_file(response, local_path, overwrite_ok=False) else: # don't update `downloaded_to_path` here because we are either downloading: # - single file with an explicit destination, so `local_path` won't change # - directory, so individual path's `local_path` isn't important _request_utils.download_file(response, local_path, overwrite_ok=True) return os.path.abspath(downloaded_to_path) def list_paths(self): """ Returns the paths of all components in this dataset. Returns ------- component_paths : list of str Paths of all components. """ return list(sorted( component.path for component in self._components_map.values() )) def list_components(self): """ Returns the components in this dataset. Returns ------- components : list of :class:`~verta.dataset._dataset.Component` Components. """ components = self._components_map.values() return list(sorted(components, key=lambda component: component.path)) class Component(object): """ A dataset component returned by ``dataset.list_components()``. Attributes ---------- path : str File path. base_path : str Prefix of `path`. size : int File size. last_modified : int Unix time when this file was last modified. sha256 : str SHA-256 checksum. md5 : str MD5 checksum. """ def __init__( self, path, size=None, last_modified=None, sha256=None, md5=None, base_path=None, internal_versioned_path=None, local_path=None): # metadata self.path = path self.size = size self.last_modified = last_modified # checksums self.sha256 = sha256 self.md5 = md5 # base path self.base_path = base_path # ModelDB versioning self._internal_versioned_path = internal_versioned_path self._local_path = local_path def
the replay-memory. # These have HIGH estimation errors for the Q-values. idx_hi = np.random.choice(self.idx_err_hi, size=self.num_samples_err_hi, replace=False) # Combine the indices. idx = np.concatenate((idx_lo, idx_hi)) # Get the batches of states and Q-values. states_batch = self.states[idx] q_values_batch = self.q_values[idx] return states_batch, q_values_batch def all_batches(self, batch_size=128): """ Iterator for all the states and Q-values in the replay-memory. It returns the indices for the beginning and end, as well as a progress-counter between 0.0 and 1.0. This function is not currently being used except by the function estimate_all_q_values() below. These two functions are merely included to make it easier for you to experiment with the code by showing you an easy and efficient way to loop over all the data in the replay-memory. """ # Start index for the current batch. begin = 0 # Repeat until all batches have been processed. while begin < self.num_used: # End index for the current batch. end = begin + batch_size # Ensure the batch does not exceed the used replay-memory. if end > self.num_used: end = self.num_used # Progress counter. progress = end / self.num_used # Yield the batch indices and completion-counter. yield begin, end, progress # Set the start-index for the next batch to the end of this batch. begin = end def estimate_all_q_values(self, model): """ Estimate all Q-values for the states in the replay-memory using the model / Neural Network. Note that this function is not currently being used. It is provided to make it easier for you to experiment with this code, by showing you an efficient way to iterate over all the states and Q-values. :param model: Instance of the NeuralNetwork-class. """ print("Re-calculating all Q-values in replay memory ...") # Process the entire replay-memory in batches. for begin, end, progress in self.all_batches(): # Print progress. msg = "\tProgress: {0:.0%}" msg = msg.format(progress) print_progress(msg) # Get the states for the current batch. states = self.states[begin:end] # Calculate the Q-values using the Neural Network # and update the replay-memory. self.q_values[begin:end] = model.get_q_values(states=states) # Newline. print() def print_statistics(self): """Print statistics for the contents of the replay-memory.""" print("Replay-memory statistics:") # Print statistics for the Q-values before they were updated # in update_all_q_values(). msg = "\tQ-values Before, Min: {0:5.2f}, Mean: {1:5.2f}, Max: {2:5.2f}" print(msg.format(np.min(self.q_values_old), np.mean(self.q_values_old), np.max(self.q_values_old))) # Print statistics for the Q-values after they were updated # in update_all_q_values(). msg = "\tQ-values After, Min: {0:5.2f}, Mean: {1:5.2f}, Max: {2:5.2f}" print(msg.format(np.min(self.q_values), np.mean(self.q_values), np.max(self.q_values))) # Print statistics for the difference in Q-values before and # after the update in update_all_q_values(). q_dif = self.q_values - self.q_values_old msg = "\tQ-values Diff., Min: {0:5.2f}, Mean: {1:5.2f}, Max: {2:5.2f}" print(msg.format(np.min(q_dif), np.mean(q_dif), np.max(q_dif))) # Print statistics for the number of large estimation errors. # Don't use the estimation error for the last state in the memory, # because its Q-values have not been updated. err = self.estimation_errors[:-1] err_count = np.count_nonzero(err > self.error_threshold) msg = "\tNumber of large errors > {0}: {1} / {2} ({3:.1%})" print(msg.format(self.error_threshold, err_count, self.num_used, err_count / self.num_used)) # How much of the replay-memory is used by states with end_life. end_life_pct = np.count_nonzero(self.end_life) / self.num_used # How much of the replay-memory is used by states with end_episode. end_episode_pct = np.count_nonzero(self.end_episode) / self.num_used # How much of the replay-memory is used by states with non-zero reward. reward_nonzero_pct = np.count_nonzero(self.rewards) / self.num_used # Print those statistics. msg = "\tend_life: {0:.1%}, end_episode: {1:.1%}, reward non-zero: {2:.1%}" print(msg.format(end_life_pct, end_episode_pct, reward_nonzero_pct)) ######################################################################## class LinearControlSignal: """ A control signal that changes linearly over time. This is used to change e.g. the learning-rate for the optimizer of the Neural Network, as well as other parameters. TensorFlow has functionality for doing this, but it uses the global_step counter inside the TensorFlow graph, while we want the control signals to use a state-counter for the game-environment. So it is easier to make this in Python. """ def __init__(self, start_value, end_value, num_iterations, repeat=False): """ Create a new object. :param start_value: Start-value for the control signal. :param end_value: End-value for the control signal. :param num_iterations: Number of iterations it takes to reach the end_value from the start_value. :param repeat: Boolean whether to reset the control signal back to the start_value after the end_value has been reached. """ # Store arguments in this object. self.start_value = start_value self.end_value = end_value self.num_iterations = num_iterations self.repeat = repeat # Calculate the linear coefficient. self._coefficient = (end_value - start_value) / num_iterations def get_value(self, iteration): """Get the value of the control signal for the given iteration.""" if self.repeat: iteration %= self.num_iterations if iteration < self.num_iterations: value = iteration * self._coefficient + self.start_value else: value = self.end_value return value ######################################################################## class EpsilonGreedy: """ The epsilon-greedy policy either takes a random action with probability epsilon, or it takes the action for the highest Q-value. If epsilon is 1.0 then the actions are always random. If epsilon is 0.0 then the actions are always argmax for the Q-values. Epsilon is typically decreased linearly from 1.0 to 0.1 and this is also implemented in this class. During testing, epsilon is usually chosen lower, e.g. 0.05 or 0.01 """ def __init__(self, num_actions, epsilon_testing=0.05, num_iterations=1e6, start_value=1.0, end_value=0.1, repeat=False): """ :param num_actions: Number of possible actions in the game-environment. :param epsilon_testing: Epsilon-value when testing. :param num_iterations: Number of training iterations required to linearly decrease epsilon from start_value to end_value. :param start_value: Starting value for linearly decreasing epsilon. :param end_value: Ending value for linearly decreasing epsilon. :param repeat: Boolean whether to repeat and restart the linear decrease when the end_value is reached, or only do it once and then output the end_value forever after. """ # Store parameters. self.num_actions = num_actions self.epsilon_testing = epsilon_testing # Create a control signal for linearly decreasing epsilon. self.epsilon_linear = LinearControlSignal(num_iterations=num_iterations, start_value=start_value, end_value=end_value, repeat=repeat) def get_epsilon(self, iteration, training): """ Return the epsilon for the given iteration. If training==True then epsilon is linearly decreased, otherwise epsilon is a fixed number. """ if training: epsilon = self.epsilon_linear.get_value(iteration=iteration) else: epsilon = self.epsilon_testing return epsilon def get_action(self, q_values, iteration, training): """ Use the epsilon-greedy policy to select an action. :param q_values: These are the Q-values that are estimated by the Neural Network for the current state of the game-environment. :param iteration: This is an iteration counter. Here we use the number of states that has been processed in the game-environment. :param training: Boolean whether we are training or testing the Reinforcement Learning agent. :return: action (integer), epsilon (float) """ epsilon = self.get_epsilon(iteration=iteration, training=training) # With probability epsilon. if np.random.random() < epsilon: # Select a random action. action = np.random.randint(low=0, high=self.num_actions) else: # Otherwise select the action that has the highest Q-value. action = np.argmax(q_values) return action, epsilon ######################################################################## class NeuralNetwork: """ Creates a Neural Network for Reinforcement Learning (Q-Learning). Functions are provided for estimating Q-values from states of the game-environment, and for optimizing the Neural Network so it becomes better at estimating the Q-values. """ def __init__(self, num_actions, replay_memory): """ :param num_actions: Number of discrete actions for the game-environment. :param replay_memory: Object-instance of the ReplayMemory-class. """ # Replay-memory used for sampling random batches. self.replay_memory = replay_memory # Path for saving/restoring checkpoints. self.checkpoint_path = os.path.join(checkpoint_dir, "checkpoint") # Placeholder variable for inputting states into the Neural Network. # A state is a multi-dimensional array holding image-frames from # the game-environment. self.x = tf.placeholder(dtype=tf.float32, shape=[None] + state_shape, name='x') # Placeholder variable for inputting the learning-rate to the optimizer. self.learning_rate = tf.placeholder(dtype=tf.float32, shape=[]) # Placeholder variable for inputting the target Q-values # that we want the Neural Network to be able to estimate. self.q_values_new = tf.placeholder(tf.float32, shape=[None, num_actions], name='q_values_new') # This is a hack that allows us to save/load the counter for # the number of states processed in the game-environment. # We will keep it as a variable in the TensorFlow-graph # even though it will not actually be used by TensorFlow. self.count_states = tf.Variable(initial_value=0,
<filename>sdk/python/pulumi_exoscale/instance_pool.py # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities __all__ = ['InstancePoolArgs', 'InstancePool'] @pulumi.input_type class InstancePoolArgs: def __init__(__self__, *, size: pulumi.Input[int], template_id: pulumi.Input[str], zone: pulumi.Input[str], affinity_group_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, deploy_target_id: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, disk_size: Optional[pulumi.Input[int]] = None, elastic_ip_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, instance_prefix: Optional[pulumi.Input[str]] = None, instance_type: Optional[pulumi.Input[str]] = None, ipv6: Optional[pulumi.Input[bool]] = None, key_pair: Optional[pulumi.Input[str]] = None, labels: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, name: Optional[pulumi.Input[str]] = None, network_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, security_group_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, service_offering: Optional[pulumi.Input[str]] = None, state: Optional[pulumi.Input[str]] = None, user_data: Optional[pulumi.Input[str]] = None, virtual_machines: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None): """ The set of arguments for constructing a InstancePool resource. :param pulumi.Input[int] size: The number of Compute instance members the Instance Pool manages. :param pulumi.Input[str] template_id: The ID of the instance [template][template] to use when creating Compute instances. Usage of the [`compute_template`][d-compute_template] data source is recommended. :param pulumi.Input[str] zone: The name of the [zone][zone] to deploy the Instance Pool into. :param pulumi.Input[Sequence[pulumi.Input[str]]] affinity_group_ids: A list of [Anti-Affinity Group][r-affinity] IDs (at creation time only). :param pulumi.Input[str] deploy_target_id: A Deploy Target ID. :param pulumi.Input[str] description: The description of the Instance Pool. :param pulumi.Input[int] disk_size: The managed Compute instances disk size. :param pulumi.Input[Sequence[pulumi.Input[str]]] elastic_ip_ids: A list of [Elastic IP][eip-doc] IDs. :param pulumi.Input[str] instance_prefix: The string to add as prefix to managed Compute instances name (default: `pool`). :param pulumi.Input[str] instance_type: The managed Compute instances [type][type] (format: `FAMILY.SIZE`, e.g. `standard.medium`, `memory.huge`). :param pulumi.Input[bool] ipv6: Enable IPv6 on managed Compute instances (default: `false`). :param pulumi.Input[str] key_pair: The name of the [SSH key pair][sshkeypair] to install when creating Compute instances. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] labels: A map of key/value labels. :param pulumi.Input[str] name: The name of the Instance Pool. :param pulumi.Input[Sequence[pulumi.Input[str]]] network_ids: A list of [Private Network][privnet-doc] IDs. :param pulumi.Input[Sequence[pulumi.Input[str]]] security_group_ids: A list of [Security Group][r-security_group] IDs (at creation time only). :param pulumi.Input[str] service_offering: **Deprecated** The managed Compute instances size. Replaced by `instance_type`. :param pulumi.Input[str] user_data: A [cloud-init][cloudinit] configuration to apply when creating Compute instances. Whenever possible don't base64-encode neither gzip it yourself, as this will be automatically taken care of on your behalf by the provider. :param pulumi.Input[Sequence[pulumi.Input[str]]] virtual_machines: The list of Instance Pool members (Compute instance IDs). """ pulumi.set(__self__, "size", size) pulumi.set(__self__, "template_id", template_id) pulumi.set(__self__, "zone", zone) if affinity_group_ids is not None: pulumi.set(__self__, "affinity_group_ids", affinity_group_ids) if deploy_target_id is not None: pulumi.set(__self__, "deploy_target_id", deploy_target_id) if description is not None: pulumi.set(__self__, "description", description) if disk_size is not None: pulumi.set(__self__, "disk_size", disk_size) if elastic_ip_ids is not None: pulumi.set(__self__, "elastic_ip_ids", elastic_ip_ids) if instance_prefix is not None: pulumi.set(__self__, "instance_prefix", instance_prefix) if instance_type is not None: pulumi.set(__self__, "instance_type", instance_type) if ipv6 is not None: pulumi.set(__self__, "ipv6", ipv6) if key_pair is not None: pulumi.set(__self__, "key_pair", key_pair) if labels is not None: pulumi.set(__self__, "labels", labels) if name is not None: pulumi.set(__self__, "name", name) if network_ids is not None: pulumi.set(__self__, "network_ids", network_ids) if security_group_ids is not None: pulumi.set(__self__, "security_group_ids", security_group_ids) if service_offering is not None: warnings.warn("""This attribute has been replaced by \"instance_type\".""", DeprecationWarning) pulumi.log.warn("""service_offering is deprecated: This attribute has been replaced by \"instance_type\".""") if service_offering is not None: pulumi.set(__self__, "service_offering", service_offering) if state is not None: pulumi.set(__self__, "state", state) if user_data is not None: pulumi.set(__self__, "user_data", user_data) if virtual_machines is not None: pulumi.set(__self__, "virtual_machines", virtual_machines) @property @pulumi.getter def size(self) -> pulumi.Input[int]: """ The number of Compute instance members the Instance Pool manages. """ return pulumi.get(self, "size") @size.setter def size(self, value: pulumi.Input[int]): pulumi.set(self, "size", value) @property @pulumi.getter(name="templateId") def template_id(self) -> pulumi.Input[str]: """ The ID of the instance [template][template] to use when creating Compute instances. Usage of the [`compute_template`][d-compute_template] data source is recommended. """ return pulumi.get(self, "template_id") @template_id.setter def template_id(self, value: pulumi.Input[str]): pulumi.set(self, "template_id", value) @property @pulumi.getter def zone(self) -> pulumi.Input[str]: """ The name of the [zone][zone] to deploy the Instance Pool into. """ return pulumi.get(self, "zone") @zone.setter def zone(self, value: pulumi.Input[str]): pulumi.set(self, "zone", value) @property @pulumi.getter(name="affinityGroupIds") def affinity_group_ids(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ A list of [Anti-Affinity Group][r-affinity] IDs (at creation time only). """ return pulumi.get(self, "affinity_group_ids") @affinity_group_ids.setter def affinity_group_ids(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "affinity_group_ids", value) @property @pulumi.getter(name="deployTargetId") def deploy_target_id(self) -> Optional[pulumi.Input[str]]: """ A Deploy Target ID. """ return pulumi.get(self, "deploy_target_id") @deploy_target_id.setter def deploy_target_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "deploy_target_id", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ The description of the Instance Pool. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="diskSize") def disk_size(self) -> Optional[pulumi.Input[int]]: """ The managed Compute instances disk size. """ return pulumi.get(self, "disk_size") @disk_size.setter def disk_size(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "disk_size", value) @property @pulumi.getter(name="elasticIpIds") def elastic_ip_ids(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ A list of [Elastic IP][eip-doc] IDs. """ return pulumi.get(self, "elastic_ip_ids") @elastic_ip_ids.setter def elastic_ip_ids(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "elastic_ip_ids", value) @property @pulumi.getter(name="instancePrefix") def instance_prefix(self) -> Optional[pulumi.Input[str]]: """ The string to add as prefix to managed Compute instances name (default: `pool`). """ return pulumi.get(self, "instance_prefix") @instance_prefix.setter def instance_prefix(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "instance_prefix", value) @property @pulumi.getter(name="instanceType") def instance_type(self) -> Optional[pulumi.Input[str]]: """ The managed Compute instances [type][type] (format: `FAMILY.SIZE`, e.g. `standard.medium`, `memory.huge`). """ return pulumi.get(self, "instance_type") @instance_type.setter def instance_type(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "instance_type", value) @property @pulumi.getter def ipv6(self) -> Optional[pulumi.Input[bool]]: """ Enable IPv6 on managed Compute instances (default: `false`). """ return pulumi.get(self, "ipv6") @ipv6.setter def ipv6(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "ipv6", value) @property @pulumi.getter(name="keyPair") def key_pair(self) -> Optional[pulumi.Input[str]]: """ The name of the [SSH key pair][sshkeypair] to install when creating Compute instances. """ return pulumi.get(self, "key_pair") @key_pair.setter def key_pair(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "key_pair", value) @property @pulumi.getter def labels(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A map of key/value labels. """ return pulumi.get(self, "labels") @labels.setter def labels(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "labels", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the Instance Pool. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="networkIds") def network_ids(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ A list of [Private Network][privnet-doc] IDs. """ return pulumi.get(self, "network_ids") @network_ids.setter def network_ids(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "network_ids", value) @property @pulumi.getter(name="securityGroupIds") def security_group_ids(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ A list of [Security Group][r-security_group] IDs (at creation time only). """ return pulumi.get(self, "security_group_ids") @security_group_ids.setter def security_group_ids(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "security_group_ids", value) @property @pulumi.getter(name="serviceOffering") def service_offering(self) -> Optional[pulumi.Input[str]]: """ **Deprecated** The managed Compute instances size. Replaced by `instance_type`. """ return pulumi.get(self, "service_offering") @service_offering.setter def service_offering(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "service_offering", value) @property @pulumi.getter def state(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "state") @state.setter def state(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "state", value) @property @pulumi.getter(name="userData") def user_data(self) -> Optional[pulumi.Input[str]]: """ A [cloud-init][cloudinit] configuration to apply when creating Compute instances. Whenever possible don't base64-encode neither gzip it yourself, as this will be automatically taken care of on your behalf by the provider. """ return pulumi.get(self, "user_data") @user_data.setter def user_data(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "user_data", value) @property @pulumi.getter(name="virtualMachines") def virtual_machines(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The list of Instance Pool members (Compute instance IDs). """ return pulumi.get(self, "virtual_machines") @virtual_machines.setter def virtual_machines(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "virtual_machines", value) @pulumi.input_type class _InstancePoolState: def __init__(__self__, *, affinity_group_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, deploy_target_id: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, disk_size: Optional[pulumi.Input[int]] = None, elastic_ip_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, instance_prefix: Optional[pulumi.Input[str]] = None, instance_type: Optional[pulumi.Input[str]] = None, ipv6: Optional[pulumi.Input[bool]] = None, key_pair: Optional[pulumi.Input[str]] = None, labels: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, name: Optional[pulumi.Input[str]] = None, network_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, security_group_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, service_offering: Optional[pulumi.Input[str]] = None, size: Optional[pulumi.Input[int]] = None, state: Optional[pulumi.Input[str]] = None, template_id: Optional[pulumi.Input[str]] = None, user_data: Optional[pulumi.Input[str]] = None, virtual_machines: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, zone: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering InstancePool resources. :param pulumi.Input[Sequence[pulumi.Input[str]]] affinity_group_ids: A list of [Anti-Affinity Group][r-affinity] IDs (at creation time only). :param pulumi.Input[str] deploy_target_id: A Deploy Target ID. :param pulumi.Input[str] description: The description of the Instance Pool. :param pulumi.Input[int] disk_size: The managed Compute instances disk size. :param pulumi.Input[Sequence[pulumi.Input[str]]] elastic_ip_ids: A list of [Elastic IP][eip-doc] IDs. :param pulumi.Input[str] instance_prefix: The string to
# # COPYRIGHT (C) 2012-2013 TCS Ltd # """ .. module:: snpdb :platform: Unix, Windows, MacOSX :synopsis: Class for accessing SNP information from an sqlite database .. moduleauthor:: <NAME> (<EMAIL>); modified by <EMAIL> Class for accessing variant information from an sqlite database. This is primarily intended for reference databases of variants such as dbSNP, 1000 Genomes, etc. """ from gcn.etc import dbconfig from gcn.lib.io import db import os from collections import namedtuple from gcn.lib.databases.ready2upload import lib_clinvar BENIGN,UNKNOWN2,PATHOGENIC = range(-1,2) clitag = {BENIGN:'benign',UNKNOWN2:'vus',PATHOGENIC:'pathogenic'} def classify_clnsig(clinvar_sigs): if '2' in clinvar_sigs: if '5' in clinvar_sigs: return UNKNOWN2 else: return BENIGN elif '5' in clinvar_sigs: return PATHOGENIC elif '3' in clinvar_sigs: if '4' in clinvar_sigs: return UNKNOWN2 else: return BENIGN elif '4' in clinvar_sigs: return PATHOGENIC else: return UNKNOWN2 class SNPDB(db.DB): """Class to retrieve SNP information from a SNP database The class makes the following assumptions 1. The name of the table is snps 2. The table defines the following columns a) chrom b) pos c) id d) ref e) alt The class is initialized with the name of the database to connect to. The name should be defined in `gcn.etc.dbconfig.DBCONFIG`. Alternatively the full path qualified name of the database may be passed """ def __init__(self, name): """Class initialization Argument name (string): Name of the database or filename for the database """ self.name = name super(SNPDB, self).__init__() if name in dbconfig.DBCONFIG: self.load(name=name) elif os.path.exists(name): self.load(db=name) else: raise ValueError('No such database %s' % name) def snp_by_location(self, chromosome, position): """Retrieve details of a SNP associated with a given chromosomal location. Args: chromosome (str): Chromosome name in the form chrN where N=1-23,X,Y position (integer): Location on the chromosome, using 0-based indexing Returns: SNP associated with the position as an instance of a `SNP` namedtuple """ stmt = 'SELECT * FROM snps WHERE chrom=(?) AND pos=(?)' if chromosome[:3] == 'chr': chromosome = chromosome[3:] if hasattr(self,'SNP'): C = self.SNP else: C = self.SNP = self.make_namedtuple('snps', 'SNP') return [C._make(r) for r in self.execute(stmt, (chromosome, position))] def has_snp(self, chromosome, position, ref=None, alt=None): """Check if a SNP is present in the database given postion and location. Optionally the ref and alt allele may also be specified. Args: chromosome(str): Chromosome name in the form chrN where N=1-23,X,Y position (integer): Location on the chromosome, using 0-based indexing ref (str): Reference Allele (Optional) alt (str): Alternate Allele (Optional) Returns: True if the SNP is present and False otherwise """ if chromosome[:3] == 'chr': chromosome = chromosome[3:] args = (chromosome, position) stmt = 'SELECT * FROM snps WHERE chrom=(?) AND pos=(?)' if ref is not None: stmt += ' AND ref=(?)' args = args + (ref,) if alt is not None: stmt += ' AND alt=(?) limit 1' args = args + (alt,) results = self.execute(stmt, args).fetchone() if results: return True else: return False def get_meta_info(self, attrib_id): """Returns the meta data for the given attribute id. Args: attrib_id(str): VCF Attribute Identifier Eg. AF, GMAF, OM etc Returns: Named Tuple comprising of the fields - id, count, type, description """ TYPEMAP = {'int': 'Integer', 'float': 'Float', 'text': 'String'} meta_info = self.make_namedtuple('info', 'metainfo') stmt = 'SELECT * FROM info WHERE id=(?)' c = self.conn.cursor() r = c.execute(stmt, ('info' + '_' + attrib_id, )).fetchall() if r: idfr, idfr_type, idfr_count, idfr_desc = r[0] ctype = TYPEMAP[idfr_type] if ctype == 'Integer': if idfr_count == '0': ctype = 'Flag' return meta_info._make((attrib_id, ctype, idfr_count, idfr_desc)) else: return def iterate_db(self, chromosome): """Retrieve the SNPs present in the given chromosome. Args: chromosome (str): Chromosome name in the form chrN where N=1-23,X,Y Returns: SNP associated with the position as an instance of a `SNP` namedtuple """ stmt = "SELECT * FROM snps WHERE chrom='%s'" if chromosome[:3] == 'chr': chromosome = chromosome[3:] if hasattr(self,'SNP'): C = self.SNP else: C = self.SNP = self.make_namedtuple('snps', 'SNP') for r in self.execute(stmt % chromosome): yield C._make(r) def is_clinically_associated(self, rsid): """This method is valid only for querying Clinvardb. Check if a SNP is present in the database and annotated with disease causing annotation. For this the 'CLNDBN' tag is checked if its value is not '.' and instead hold a disease name. Args: rsid(str): dbSNP ID Returns: True if the SNP is disease associated and False otherwise """ stmt = "SELECT * FROM snps WHERE id='%s' and info_CLNDBN != '.'"\ % (rsid) results = self.execute(stmt).fetchone() if results: return True else: return False def select_all_hgmd(self): """ This method is valid only for querying Clinvardb. select variant key and clnsig (benign or pathogenic only) """ if self.name!='HGMDDB': raise EnvironmentError('this method only supports for hgmddb') outs = [] stmt = "SELECT chrom, pos, id, ref, alt, info_VC from snps" for chrm,pos,id,ref,alt,clisig in self.execute(stmt).fetchall(): if clisig in ['FP','R']: sig='benign_%s'%self.name elif clisig in ['DM','DM?']: sig='pathogenic_%s'%self.name else: sig='vus_%s'%self.name outs.append([chrm,pos,id,ref,alt,sig]) return outs def select_all_clinvar(self): """ This method is valid only for querying Clinvardb. select variant key and clnsig (benign or pathogenic only) """ outs = [] if self.name!='CLINVARDB': raise EnvironmentError('this method only supports for clinvardb') stmt = "SELECT chrom, pos, id, ref, alt, info_CLNSIG from snps" for chrm,pos,id,ref,alt,clisig in self.execute(stmt).fetchall(): sigclass = classify_clnsig(clisig.split('|')) #print '%s|%s'%(sigclass,self.name) #debug sig='%s_%s'%(clitag[sigclass],self.name) outs.append([chrm,pos,id,ref,alt,sig]) return outs def select_snps(self,min_maf,max_maf,sample_rate=1.0,snp_tag='.'): import random sampling = False num2 = {} if sample_rate < 1.0: sampling = True stmt = "select count(*) from snps where info_AF > %g and info_AF < %g" % (min_maf,max_maf) outs = self.execute(stmt).fetchone() R = int(outs[0]) R1 = int(round(sample_rate*R)) print 'sampling %d out of %d'%(R1,R) nums = range(R) random.shuffle(nums) nums = nums[:R1] num2 = {} for j in nums: num2[j]=True stmt = "select chrom, pos, id, ref, alt, info_AF from snps where info_AF > %g and info_AF < %g" % (min_maf,max_maf) r = 0 outs = [] print 'selecting ...' for chrom,pos,id,ref,alt,maf in self.execute(stmt).fetchall(): if not sampling or (sampling and r in num2): outs.append([chrom,pos,id,ref,alt,snp_tag]) r += 1 print 'done.' return outs def get_hgmd_genes(self, clnsig2sels=['DM','DM?']): """ This method return (genes) for HGMD Args: type (str): types of clinical significance Returns: genes (tuple): gene1,gene2,... """ if self.name!='HGMDDB': raise EnvironmentError('this method only supports for hgmddb') genes = [] stmt = "SELECT info_Gene, info_VC FROM snps" results = self.execute(stmt).fetchall() if results: for gene,vc in results: if vc in clnsig2sels: if gene not in genes: genes.append(gene) return tuple(genes) def get_clinvar_genes(self, clnsig2sels=['pathogenic']): """ This method return (genes) for Clinvar Args: type (str): types of clinical significance Returns: genes (tuple): gene1,gene2,... """ if self.name!='CLINVARDB': raise EnvironmentError('this method only supports for clinvardb') genes = [] stmt = "SELECT info_CLNSIG, info_GENEINFO FROM snps" results = self.execute(stmt).fetchall() if results: for clisig, geneinfo in results: if clisig and geneinfo: sigclass = classify_clnsig(clisig.split('|')) if clitag[sigclass] in clnsig2sels: gene = geneinfo.split(':')[0] if gene not in genes: genes.append(gene) return tuple(genes) def get_snp_coord(self, snpid): """This method return (chrom, pos, ref, alts) for the given snpid. Args: snpid(str): dbSNP ID Returns: snp_coord(tuple): (chrom, pos, ref, [alt1, alt2, ]) """ stmt = "SELECT chrom, pos, ref, alt FROM snps WHERE id='%s' limit 1"\ % (snpid) results = self.execute(stmt).fetchone() if results: alts = results[3].split(',') results = list(results) results[3] = alts return tuple(results) else: return None # for now the following are implemented as functions. If in the future # there is a need to define methods specific to these databases # these can be converted to classes while still supporting the current # API def KGDB(): """Return an instance of `SNPDB` configured to search 1000 Genomes Variations""" return SNPDB('KGDB') def DBSNP(): """Return an instance of `SNPDB` configured to search the NCBI dbSNP database""" return SNPDB('DBSNP') class ClinvarDB(SNPDB): def __init__(self): #open db connection self.name = 'CLINVARDB' super(ClinvarDB, self).__init__(self.name) if self.name in dbconfig.DBCONFIG: self.load(name=self.name) elif os.path.exists(self.name): self.load(db=self.name) else: raise ValueError('No such database %s' % self.name) # self.report = ClinvarReport() def count_lofs(self, goi_tup=None, vartypes={}): LOF, NSM = range(2) region_sql = "SELECT chrom, pos, ref, alt, info_DATE, info_NSF, info_NSM, info_NSN, info_PM, info_SPLOC, info_CLNSIG, info_VLD, info_GENEINFO from snps" fields = "chrom cpos cref calt cdate cnsf cnsm cnsn cpm csploc csig cvld gene".split() region_tup = namedtuple('region_tup', fields) if goi_tup: region_cond_sql = "%s where chrom = (?) and pos between (?) and (?)" % region_sql results = self.execute(region_cond_sql, (goi_tup.chrom, goi_tup.start_bp, goi_tup.end_bp)).fetchall() else: results = self.execute(region_sql).fetchall() for res in results: rec = region_tup._make(res) # create variant position key pos_key = '%s_%s_%s_%s'
file for later execution. If you have a Windows system, often these executable machine language programs have a suffix of .exe or .dll which stand for executable and dynamic link library respectively. In Linux and Macintosh, there is no suffix that uniquely marks a file as executable. If you were to open an executable file in a text editor, it would look completely crazy and be unreadable: It is not easy to read or write machine language, so it is nice that we have compilers that allow us to write in high-level languages like Python or C. Now at this point in our discussion of compilers and interpreters, you should be wondering a bit about the Python interpreter itself. What language is it written in? Is it written in a compiled language? When we type python, what exactly is happening? The Python interpreter is written in a high-level language called C. You can look at the actual source code for the Python interpreter by going to www.python.org and working your way to their source code. So Python is a program itself and it is compiled into machine code. When you installed Python on your computer (or the vendor installed it), you copied a machine-code copy of the translated Python program onto your system. In Windows, the executable machine code for Python itself is likely in a file. That is more than you really need to know to be a Python programmer, but sometimes it pays to answer those little nagging questions right at the beginning. Writing a program Typing commands into the Python interpreter is a great way to experiment with Python's features, but it is not recommended for solving more complex problems. When we want to write a program, we use a text editor to write the Python instructions into a file, which is called a script. By convention, Python scripts have names that end with .py. script To execute the script, you have to tell the Python interpreter the name of the file. In a Unix or Windows command window, you would type python hello.py as follows: We call the Python interpreter and tell it to read its source code from the file hello.py instead of prompting us for lines of Python code interactively. You will notice that there was no need to have quit() at the end of the Python program in the file. When Python is reading your source code from a file, it knows to stop when it reaches the end of the file. 9006 What is a program? The definition of a program at its most basic is a sequence of Python statements that have been crafted to do something. Even our simple hello.py script is a program. It is a one-line program and is not particularly useful, but in the strictest definition, it is a Python program. It might be easiest to understand what a program is by thinking about a problem that a program might be built to solve, and then looking at a program that would solve that problem. Lets say you are doing Social Computing research on Facebook posts and you are interested in the most frequently used word in a series of posts. You could print out the stream of Facebook posts and pore over the text looking for the most common word, but that would take a long time and be very mistake prone. You would be smart to write a Python program to handle the task quickly and accurately so you can spend the weekend doing something fun. For example, look at the following text about a clown and a car. Look at the text and figure out the most common word and how many times it occurs. Then imagine that you are doing this task looking at millions of lines of text. Frankly it would be quicker for you to learn Python and write a Python program to count the words than it would be to manually scan the words. The even better news is that I already came up with a simple program to find the most common word in a text file. I wrote it, tested it, and now I am giving it to you to use so you can save some time. You don't even need to know Python to use this program. You will need to get through Chapter ten of this book to fully understand the awesome Python techniques that were used to make the program. You are the end user, you simply use the program and marvel at its cleverness and how it saved you so much manual effort. You simply type the code into a file called words.py and run it or you download the source code from http://www.py4e.com/code3/ and run it. This is a good example of how Python and the Python language are acting as an intermediary between you (the end user) and me (the programmer). Python is a way for us to exchange useful instruction sequences (i.e., programs) in a common language that can be used by anyone who installs Python on their computer. So neither of us are talking to Python, instead we are communicating with each other through Python. The building blocks of programs In the next few chapters, we will learn more about the vocabulary, sentence structure, paragraph structure, and story structure of Python. We will learn about the powerful capabilities of Python and how to compose those capabilities together to create useful programs. There are some low-level conceptual patterns that we use to construct programs. These constructs are not just for Python programs, they are part of every programming language from machine language up to the high-level languages. description Get data from the outside world. This might be reading data from a file, or even some kind of sensor like a microphone or GPS. In our initial programs, our input will come from the user typing data on the keyboard. Display the results of the program on a screen or store them in a file or perhaps write them to a device like a speaker to play music or speak text. Perform statements one after another in the order they are encountered in the script. Check for certain conditions and then execute or skip a sequence of statements. Perform some set of statements repeatedly, usually with some variation. Write a set of instructions once and give them a name and then reuse those instructions as needed throughout your program. description It sounds almost too simple to be true, and of course it is never so simple. It is like saying that walking is simply putting one foot in front of the other. The art of writing a program is composing and weaving these basic elements together many times over to produce something that is useful to its users. The word counting program above directly uses all of these patterns except for one. What could possibly go wrong? As we saw in our earliest conversations with Python, we must communicate very precisely when we write Python code. The smallest deviation or mistake will cause Python to give up looking at your program. Beginning programmers often take the fact that Python leaves no room for errors as evidence that Python is mean, hateful, and cruel. While Python seems to like everyone else, Python knows them personally and holds a grudge against them. Because of this grudge, Python takes our perfectly written programs and rejects them as unfit just to torment us. There is little to be gained by arguing with Python. It is just a tool. It has no emotions and it is happy and ready to serve you whenever you need it. Its error messages sound harsh, but they are just Python's call for help. It has looked at what you typed, and it simply cannot understand what you have entered. Python is much more like a dog, loving you unconditionally, having a few key words that it understands, looking you with a sweet look on its face (>>>), and waiting for you to say something it understands. When Python says SyntaxError: invalid syntax, it is simply wagging its tail and saying, You seemed to say something but I just don't understand what you meant, but please keep talking to me (>>>). As your programs become increasingly sophisticated, you will encounter three general types of errors: description These are the first errors you will make and the easiest to fix. A syntax error means that you have violated the grammar rules of Python. Python
based on managed rules. """ return pulumi.get(self, "tag_key_scope") @tag_key_scope.setter def tag_key_scope(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "tag_key_scope", value) @property @pulumi.getter(name="tagValueScope") def tag_value_scope(self) -> Optional[pulumi.Input[str]]: """ The rule monitors the tag value, use with the TagKeyScope options. only applies to rules created based on managed rules. """ return pulumi.get(self, "tag_value_scope") @tag_value_scope.setter def tag_value_scope(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "tag_value_scope", value) @pulumi.input_type class _RuleState: def __init__(__self__, *, config_rule_trigger_types: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, exclude_resource_ids_scope: Optional[pulumi.Input[str]] = None, input_parameters: Optional[pulumi.Input[Mapping[str, Any]]] = None, maximum_execution_frequency: Optional[pulumi.Input[str]] = None, region_ids_scope: Optional[pulumi.Input[str]] = None, resource_group_ids_scope: Optional[pulumi.Input[str]] = None, resource_types_scopes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, risk_level: Optional[pulumi.Input[int]] = None, rule_name: Optional[pulumi.Input[str]] = None, scope_compliance_resource_types: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, source_detail_message_type: Optional[pulumi.Input[str]] = None, source_identifier: Optional[pulumi.Input[str]] = None, source_maximum_execution_frequency: Optional[pulumi.Input[str]] = None, source_owner: Optional[pulumi.Input[str]] = None, status: Optional[pulumi.Input[str]] = None, tag_key_scope: Optional[pulumi.Input[str]] = None, tag_value_scope: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering Rule resources. :param pulumi.Input[str] config_rule_trigger_types: The trigger type of the rule. Valid values: `ConfigurationItemChangeNotification`: The rule is triggered upon configuration changes. `ScheduledNotification`: The rule is triggered as scheduled. :param pulumi.Input[str] description: The description of the Config Rule. :param pulumi.Input[str] exclude_resource_ids_scope: The rule monitors excluded resource IDs, multiple of which are separated by commas, only applies to rules created based on managed rules, custom rule this field is empty. :param pulumi.Input[Mapping[str, Any]] input_parameters: Threshold value for managed rule triggering. :param pulumi.Input[str] maximum_execution_frequency: The frequency of the compliance evaluations, it is required if the ConfigRuleTriggerTypes value is ScheduledNotification. Valid values: `One_Hour`, `Three_Hours`, `Six_Hours`, `Twelve_Hours`, `TwentyFour_Hours`. :param pulumi.Input[str] region_ids_scope: The rule monitors region IDs, separated by commas, only applies to rules created based on managed rules. :param pulumi.Input[str] resource_group_ids_scope: The rule monitors resource group IDs, separated by commas, only applies to rules created based on managed rules. :param pulumi.Input[Sequence[pulumi.Input[str]]] resource_types_scopes: Resource types to be evaluated. [Alibaba Cloud services that support Cloud Config.](https://www.alibabacloud.com/help/en/doc-detail/127411.htm) :param pulumi.Input[int] risk_level: The risk level of the Config Rule. Valid values: `1`: Critical ,`2`: Warning , `3`: Info. :param pulumi.Input[str] rule_name: The name of the Config Rule. :param pulumi.Input[Sequence[pulumi.Input[str]]] scope_compliance_resource_types: Field `scope_compliance_resource_types` has been deprecated from provider version 1.124.1. New field `resource_types_scope` instead. :param pulumi.Input[str] source_detail_message_type: Field `source_detail_message_type` has been deprecated from provider version 1.124.1. New field `config_rule_trigger_types` instead. :param pulumi.Input[str] source_identifier: The identifier of the rule. For a managed rule, the value is the name of the managed rule. For a custom rule, the value is the ARN of the custom rule. Using managed rules, refer to [List of Managed rules.](https://www.alibabacloud.com/help/en/doc-detail/127404.htm) :param pulumi.Input[str] source_maximum_execution_frequency: Field `source_maximum_execution_frequency` has been deprecated from provider version 1.124.1. New field `maximum_execution_frequency` instead. :param pulumi.Input[str] source_owner: Specifies whether you or Alibaba Cloud owns and manages the rule. Valid values: `CUSTOM_FC`: The rule is a custom rule and you own the rule. `ALIYUN`: The rule is a managed rule and Alibaba Cloud owns the rule. :param pulumi.Input[str] tag_key_scope: The rule monitors the tag key, only applies to rules created based on managed rules. :param pulumi.Input[str] tag_value_scope: The rule monitors the tag value, use with the TagKeyScope options. only applies to rules created based on managed rules. """ if config_rule_trigger_types is not None: pulumi.set(__self__, "config_rule_trigger_types", config_rule_trigger_types) if description is not None: pulumi.set(__self__, "description", description) if exclude_resource_ids_scope is not None: pulumi.set(__self__, "exclude_resource_ids_scope", exclude_resource_ids_scope) if input_parameters is not None: pulumi.set(__self__, "input_parameters", input_parameters) if maximum_execution_frequency is not None: pulumi.set(__self__, "maximum_execution_frequency", maximum_execution_frequency) if region_ids_scope is not None: pulumi.set(__self__, "region_ids_scope", region_ids_scope) if resource_group_ids_scope is not None: pulumi.set(__self__, "resource_group_ids_scope", resource_group_ids_scope) if resource_types_scopes is not None: pulumi.set(__self__, "resource_types_scopes", resource_types_scopes) if risk_level is not None: pulumi.set(__self__, "risk_level", risk_level) if rule_name is not None: pulumi.set(__self__, "rule_name", rule_name) if scope_compliance_resource_types is not None: warnings.warn("""Field 'scope_compliance_resource_types' has been deprecated from provider version 1.124.1. New field 'resource_types_scope' instead.""", DeprecationWarning) pulumi.log.warn("""scope_compliance_resource_types is deprecated: Field 'scope_compliance_resource_types' has been deprecated from provider version 1.124.1. New field 'resource_types_scope' instead.""") if scope_compliance_resource_types is not None: pulumi.set(__self__, "scope_compliance_resource_types", scope_compliance_resource_types) if source_detail_message_type is not None: warnings.warn("""Field 'source_detail_message_type' has been deprecated from provider version 1.124.1. New field 'config_rule_trigger_types' instead.""", DeprecationWarning) pulumi.log.warn("""source_detail_message_type is deprecated: Field 'source_detail_message_type' has been deprecated from provider version 1.124.1. New field 'config_rule_trigger_types' instead.""") if source_detail_message_type is not None: pulumi.set(__self__, "source_detail_message_type", source_detail_message_type) if source_identifier is not None: pulumi.set(__self__, "source_identifier", source_identifier) if source_maximum_execution_frequency is not None: warnings.warn("""Field 'source_maximum_execution_frequency' has been deprecated from provider version 1.124.1. New field 'maximum_execution_frequency' instead.""", DeprecationWarning) pulumi.log.warn("""source_maximum_execution_frequency is deprecated: Field 'source_maximum_execution_frequency' has been deprecated from provider version 1.124.1. New field 'maximum_execution_frequency' instead.""") if source_maximum_execution_frequency is not None: pulumi.set(__self__, "source_maximum_execution_frequency", source_maximum_execution_frequency) if source_owner is not None: pulumi.set(__self__, "source_owner", source_owner) if status is not None: pulumi.set(__self__, "status", status) if tag_key_scope is not None: pulumi.set(__self__, "tag_key_scope", tag_key_scope) if tag_value_scope is not None: pulumi.set(__self__, "tag_value_scope", tag_value_scope) @property @pulumi.getter(name="configRuleTriggerTypes") def config_rule_trigger_types(self) -> Optional[pulumi.Input[str]]: """ The trigger type of the rule. Valid values: `ConfigurationItemChangeNotification`: The rule is triggered upon configuration changes. `ScheduledNotification`: The rule is triggered as scheduled. """ return pulumi.get(self, "config_rule_trigger_types") @config_rule_trigger_types.setter def config_rule_trigger_types(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "config_rule_trigger_types", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ The description of the Config Rule. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="excludeResourceIdsScope") def exclude_resource_ids_scope(self) -> Optional[pulumi.Input[str]]: """ The rule monitors excluded resource IDs, multiple of which are separated by commas, only applies to rules created based on managed rules, custom rule this field is empty. """ return pulumi.get(self, "exclude_resource_ids_scope") @exclude_resource_ids_scope.setter def exclude_resource_ids_scope(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "exclude_resource_ids_scope", value) @property @pulumi.getter(name="inputParameters") def input_parameters(self) -> Optional[pulumi.Input[Mapping[str, Any]]]: """ Threshold value for managed rule triggering. """ return pulumi.get(self, "input_parameters") @input_parameters.setter def input_parameters(self, value: Optional[pulumi.Input[Mapping[str, Any]]]): pulumi.set(self, "input_parameters", value) @property @pulumi.getter(name="maximumExecutionFrequency") def maximum_execution_frequency(self) -> Optional[pulumi.Input[str]]: """ The frequency of the compliance evaluations, it is required if the ConfigRuleTriggerTypes value is ScheduledNotification. Valid values: `One_Hour`, `Three_Hours`, `Six_Hours`, `Twelve_Hours`, `TwentyFour_Hours`. """ return pulumi.get(self, "maximum_execution_frequency") @maximum_execution_frequency.setter def maximum_execution_frequency(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "maximum_execution_frequency", value) @property @pulumi.getter(name="regionIdsScope") def region_ids_scope(self) -> Optional[pulumi.Input[str]]: """ The rule monitors region IDs, separated by commas, only applies to rules created based on managed rules. """ return pulumi.get(self, "region_ids_scope") @region_ids_scope.setter def region_ids_scope(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "region_ids_scope", value) @property @pulumi.getter(name="resourceGroupIdsScope") def resource_group_ids_scope(self) -> Optional[pulumi.Input[str]]: """ The rule monitors resource group IDs, separated by commas, only applies to rules created based on managed rules. """ return pulumi.get(self, "resource_group_ids_scope") @resource_group_ids_scope.setter def resource_group_ids_scope(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "resource_group_ids_scope", value) @property @pulumi.getter(name="resourceTypesScopes") def resource_types_scopes(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ Resource types to be evaluated. [Alibaba Cloud services that support Cloud Config.](https://www.alibabacloud.com/help/en/doc-detail/127411.htm) """ return pulumi.get(self, "resource_types_scopes") @resource_types_scopes.setter def resource_types_scopes(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "resource_types_scopes", value) @property @pulumi.getter(name="riskLevel") def risk_level(self) -> Optional[pulumi.Input[int]]: """ The risk level of the Config Rule. Valid values: `1`: Critical ,`2`: Warning , `3`: Info. """ return pulumi.get(self, "risk_level") @risk_level.setter def risk_level(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "risk_level", value) @property @pulumi.getter(name="ruleName") def rule_name(self) -> Optional[pulumi.Input[str]]: """ The name of the Config Rule. """ return pulumi.get(self, "rule_name") @rule_name.setter def rule_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "rule_name", value) @property @pulumi.getter(name="scopeComplianceResourceTypes") def scope_compliance_resource_types(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ Field `scope_compliance_resource_types` has been deprecated from provider version 1.124.1. New field `resource_types_scope` instead. """ return pulumi.get(self, "scope_compliance_resource_types") @scope_compliance_resource_types.setter def scope_compliance_resource_types(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "scope_compliance_resource_types", value) @property @pulumi.getter(name="sourceDetailMessageType") def source_detail_message_type(self) -> Optional[pulumi.Input[str]]: """ Field `source_detail_message_type` has been deprecated from provider version 1.124.1. New field `config_rule_trigger_types` instead. """ return pulumi.get(self, "source_detail_message_type") @source_detail_message_type.setter def source_detail_message_type(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "source_detail_message_type", value) @property @pulumi.getter(name="sourceIdentifier") def source_identifier(self) -> Optional[pulumi.Input[str]]: """ The identifier of the rule. For a managed rule, the value is the name of the managed rule. For a custom rule, the value is the ARN of the custom rule. Using managed rules, refer to [List of Managed rules.](https://www.alibabacloud.com/help/en/doc-detail/127404.htm) """ return pulumi.get(self, "source_identifier") @source_identifier.setter def source_identifier(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "source_identifier", value) @property @pulumi.getter(name="sourceMaximumExecutionFrequency") def source_maximum_execution_frequency(self) -> Optional[pulumi.Input[str]]: """ Field `source_maximum_execution_frequency` has been deprecated from provider version 1.124.1. New field `maximum_execution_frequency` instead. """ return pulumi.get(self, "source_maximum_execution_frequency") @source_maximum_execution_frequency.setter def source_maximum_execution_frequency(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "source_maximum_execution_frequency", value) @property @pulumi.getter(name="sourceOwner") def source_owner(self) -> Optional[pulumi.Input[str]]: """ Specifies whether you or Alibaba Cloud owns and manages the rule. Valid values: `CUSTOM_FC`: The rule is a custom rule and
1.1155787450000001)]), ('P', [(5.5831385290000002, -0.1283927634), (2.174045204, 0.5852047641), (0.95702005089999997, 0.54394420399999999)]), ('D', [(5.5831385290000002, 0.12506621379999999), (2.174045204, 0.66867855769999995), (0.95702005089999997, 0.30524682450000001)]), ('S', [(0.62358164199999999, -0.38426426070000003), (0.3357601616, -0.1972567438), (0.1483111678, 1.3754955120000001)]), ('P', [(0.62358164199999999, -0.34816915259999998), (0.3357601616, 0.62903236900000004), (0.1483111678, 0.66628327430000001)])], 51: [('S', [(5586.9870019999998, 0.15432896730000001), (1017.676657, 0.53532814230000003), (275.42301889999999, 0.44463454219999998)]), ('S', [(492.19248879999998, -0.099967229199999993), (114.37494940000001, 0.3995128261), (37.198283359999998, 0.70011546889999998)]), ('P', [(492.19248879999998, 0.15591627499999999), (114.37494940000001, 0.60768371860000003), (37.198283359999998, 0.3919573931)]), ('S', [(62.521797749999998, -0.2277635023), (19.07114112, 0.21754360440000001), (7.3582391310000004, 0.91667696109999997)]), ('P', [(62.521797749999998, 0.0049515111999999997), (19.07114112, 0.57776646909999996), (7.3582391310000004, 0.4846460366)]), ('D', [(62.521797749999998, 0.2197679508), (19.07114112, 0.65554736270000002), (7.3582391310000004, 0.28657325900000002)]), ('S', [(6.1206931490000001, -0.33061006259999998), (2.383366187, 0.057610953399999998), (1.0491636630000001, 1.1155787450000001)]), ('P', [(6.1206931490000001, -0.1283927634), (2.383366187, 0.5852047641), (1.0491636630000001, 0.54394420399999999)]), ('D', [(6.1206931490000001, 0.12506621379999999), (2.383366187, 0.66867855769999995), (1.0491636630000001, 0.30524682450000001)]), ('S', [(0.65292269280000004, -0.38426426070000003), (0.3515585034, -0.1972567438), (0.1552895732, 1.3754955120000001)]), ('P', [(0.65292269280000004, -0.34816915259999998), (0.3515585034, 0.62903236900000004), (0.1552895732, 0.66628327430000001)])], 52: [('S', [(5810.0615909999997, 0.15432896730000001), (1058.309972, 0.53532814230000003), (286.4199797, 0.44463454219999998)]), ('S', [(512.75419199999999, -0.099967229199999993), (119.15304709999999, 0.3995128261), (38.752268999999998, 0.70011546889999998)]), ('P', [(512.75419199999999, 0.15591627499999999), (119.15304709999999, 0.60768371860000003), (38.752268999999998, 0.3919573931)]), ('S', [(65.985562270000003, -0.2277635023), (20.127699700000001, 0.21754360440000001), (7.765892279, 0.91667696109999997)]), ('P', [(65.985562270000003, 0.0049515111999999997), (20.127699700000001, 0.57776646909999996), (7.765892279, 0.4846460366)]), ('D', [(65.985562270000003, 0.2197679508), (20.127699700000001, 0.65554736270000002), (7.765892279, 0.28657325900000002)]), ('S', [(6.7079569210000001, -0.33061006259999998), (2.6120436549999999, 0.057610953399999998), (1.149828048, 1.1155787450000001)]), ('P', [(6.7079569210000001, -0.1283927634), (2.6120436549999999, 0.5852047641), (1.149828048, 0.54394420399999999)]), ('D', [(6.7079569210000001, 0.12506621379999999), (2.6120436549999999, 0.66867855769999995), (1.149828048, 0.30524682450000001)]), ('S', [(0.70127134830000004, -0.38426426070000003), (0.37759126529999998, -0.1972567438), (0.16678870200000001, 1.3754955120000001)]), ('P', [(0.70127134830000004, -0.34816915259999998), (0.37759126529999998, 0.62903236900000004), (0.16678870200000001, 0.66628327430000001)])], 53: [('S', [(6035.1836229999999, 0.15432896730000001), (1099.316231, 0.53532814230000003), (297.5178737, 0.44463454219999998)]), ('S', [(533.73664180000003, -0.099967229199999993), (124.0289171, 0.3995128261), (40.338053279999997, 0.70011546889999998)]), ('P', [(533.73664180000003, 0.15591627499999999), (124.0289171, 0.60768371860000003), (40.338053279999997, 0.3919573931)]), ('S', [(69.54270545, -0.2277635023), (21.212741749999999, 0.21754360440000001), (8.1845352340000002, 0.91667696109999997)]), ('P', [(69.54270545, 0.0049515111999999997), (21.212741749999999, 0.57776646909999996), (8.1845352340000002, 0.4846460366)]), ('D', [(69.54270545, 0.2197679508), (21.212741749999999, 0.65554736270000002), (8.1845352340000002, 0.28657325900000002)]), ('S', [(7.2959911960000001, -0.33061006259999998), (2.8410211539999999, 0.057610953399999998), (1.2506245060000001, 1.1155787450000001)]), ('P', [(7.2959911960000001, -0.1283927634), (2.8410211539999999, 0.5852047641), (1.2506245060000001, 0.54394420399999999)]), ('D', [(7.2959911960000001, 0.12506621379999999), (2.8410211539999999, 0.66867855769999995), (1.2506245060000001, 0.30524682450000001)]), ('S', [(0.79003645820000001, -0.38426426070000003), (0.42538578919999998, -0.1972567438), (0.1879003836, 1.3754955120000001)]), ('P', [(0.79003645820000001, -0.34816915259999998), (0.42538578919999998, 0.62903236900000004), (0.1879003836, 0.66628327430000001)])]} g631ss = \ {1: [('S', [(18.731137, 0.033494599999999999), (2.8253936999999998, 0.23472694999999999), (0.64012170000000002, 0.81375732999999995)]), ('S', [(0.1612778, 1.0)]), ('P', [(1.1000000000000001, 1.0)])], 2: [('S', [(38.421633999999997, 0.023765999999999999), (5.7780300000000002, 0.15467900000000001), (1.2417739999999999, 0.46962999999999999)]), ('S', [(0.29796400000000001, 1.0)]), ('P', [(1.1000000000000001, 1.0)])], 3: [('S', [(642.41891999999996, 0.0021426000000000001), (96.798514999999995, 0.016208899999999998), (22.091121000000001, 0.077315599999999998), (6.2010702999999996, 0.245786), (1.9351176999999999, 0.47018900000000002), (0.63673579999999996, 0.34547080000000002)]), ('S', [(2.3249184000000001, -0.035091700000000003), (0.63243059999999995, -0.19123280000000001), (0.079053399999999996, 1.0839878000000001)]), ('P', [(2.3249184000000001, 0.0089414999999999998), (0.63243059999999995, 0.14100950000000001), (0.079053399999999996, 0.94536370000000003)]), ('S', [(0.035962000000000001, 1.0)]), ('P', [(0.035962000000000001, 1.0)]), ('D', [(0.20000000000000001, 1.0)])], 4: [('S', [(1264.5857000000001, 0.0019448), (189.93681000000001, 0.0148351), (43.159089000000002, 0.072090600000000005), (12.098663, 0.23715420000000001), (3.8063232, 0.46919870000000002), (1.2728903, 0.35652020000000001)]), ('S', [(3.1964630999999999, -0.1126487), (0.74781330000000001, -0.2295064), (0.2199663, 1.1869167)]), ('P', [(3.1964630999999999, 0.055980200000000001), (0.74781330000000001, 0.26155060000000002), (0.2199663, 0.79397229999999996)]), ('S', [(0.082309900000000005, 1.0)]), ('P', [(0.082309900000000005, 1.0)]), ('D', [(0.40000000000000002, 1.0)])], 5: [('S', [(2068.8823000000002, 0.0018663), (310.64956999999998, 0.0142515), (70.683032999999995, 0.069551600000000005), (19.861080000000001, 0.2325729), (6.2993047999999998, 0.46707870000000001), (2.127027, 0.36343140000000002)]), ('S', [(4.7279710000000001, -0.1303938), (1.1903376999999999, -0.13078890000000001), (0.3594117, 1.1309444)]), ('P', [(4.7279710000000001, 0.0745976), (1.1903376999999999, 0.30784669999999997), (0.3594117, 0.74345680000000003)]), ('S', [(0.12675120000000001, 1.0)]), ('P', [(0.12675120000000001, 1.0)]), ('D', [(0.59999999999999998, 1.0)])], 6: [('S', [(3047.5248999999999, 0.0018347000000000001), (457.36950999999999, 0.014037300000000001), (103.94869, 0.068842600000000004), (29.210155, 0.23218440000000001), (9.2866630000000008, 0.4679413), (3.1639270000000002, 0.36231200000000002)]), ('S', [(7.8682724000000004, -0.11933240000000001), (1.8812884999999999, -0.1608542), (0.54424930000000005, 1.1434564)]), ('P', [(7.8682724000000004, 0.068999099999999994), (1.8812884999999999, 0.31642399999999998), (0.54424930000000005, 0.74430830000000003)]), ('S', [(0.16871439999999999, 1.0)]), ('P', [(0.16871439999999999, 1.0)]), ('D', [(0.80000000000000004, 1.0)])], 7: [('S', [(4173.5110000000004, 0.0018347999999999999), (627.4579, 0.013995), (142.90209999999999, 0.068586999999999995), (40.23433, 0.232241), (12.820209999999999, 0.46906999999999999), (4.3904370000000004, 0.36045500000000003)]), ('S', [(11.626358, -0.11496099999999999), (2.7162799999999998, -0.16911799999999999), (0.77221799999999996, 1.1458520000000001)]), ('P', [(11.626358, 0.067580000000000001), (2.7162799999999998, 0.323907), (0.77221799999999996, 0.74089499999999997)]), ('S', [(0.21203130000000001, 1.0)]), ('P', [(0.21203130000000001, 1.0)]), ('D', [(0.80000000000000004, 1.0)])], 8: [('S', [(5484.6716999999999, 0.0018311), (825.23495000000003, 0.0139501), (188.04696000000001, 0.068445099999999995), (52.964500000000001, 0.23271430000000001), (16.897570000000002, 0.47019300000000003), (5.7996353000000003, 0.35852089999999998)]), ('S', [(15.539616000000001, -0.1107775), (3.5999336, -0.1480263), (1.0137617999999999, 1.1307670000000001)]), ('P', [(15.539616000000001, 0.070874300000000001), (3.5999336, 0.33975280000000002), (1.0137617999999999, 0.72715859999999999)]), ('S', [(0.27000580000000002, 1.0)]), ('P', [(0.27000580000000002, 1.0)]), ('D', [(0.80000000000000004, 1.0)])], 9: [('S', [(7001.7130900000002, 0.0018196168999999999), (1051.36609, 0.013916079600000001), (239.28568999999999, 0.068405324500000003), (67.397445300000001, 0.23318575999999999), (21.519957300000002, 0.47126743900000001), (7.4031013000000003, 0.35661854599999998)]), ('S', [(20.847952800000002, -0.10850697500000001), (4.80830834, -0.14645165800000001), (1.3440698600000001, 1.1286885799999999)]), ('P', [(20.847952800000002, 0.071628724300000002), (4.80830834, 0.34591210300000003), (1.3440698600000001, 0.72246995700000005)]), ('S', [(0.35815139299999998, 1.0)]), ('P', [(0.35815139299999998, 1.0)]), ('D', [(0.80000000000000004, 1.0)])], 10: [('S', [(8425.8515299999999, 0.0018843480999999999), (1268.5193999999999, 0.0143368994), (289.62141400000002, 0.070109623300000007), (81.859003999999999, 0.237373266), (26.2515079, 0.473007126), (9.0947205100000001, 0.34840124099999997)]), ('S', [(26.532131, -0.10711828700000001), (6.1017550099999998, -0.146163821), (1.69627153, 1.1277735)]), ('P', [(26.532131, 0.071909588499999996), (6.1017550099999998, 0.34951337199999999), (1.69627153, 0.71994051199999998)]), ('S', [(0.44581870000000001, 1.0)]), ('P', [(0.44581870000000001, 1.0)]), ('D', [(0.80000000000000004, 1.0)])], 11: [('S', [(9993.2000000000007, 0.0019377000000000001), (1499.8900000000001, 0.014807000000000001), (341.95100000000002, 0.072706000000000007), (94.679699999999997, 0.25262899999999999), (29.734500000000001, 0.49324200000000001), (10.0063, 0.31316899999999998)]), ('S', [(150.96299999999999, -0.0035420999999999998), (35.587800000000001, -0.043958999999999998), (11.1683, -0.10975210000000001), (3.9020100000000002, 0.18739800000000001), (1.3817699999999999, 0.64669900000000002), (0.46638200000000002, 0.306058)]), ('P', [(150.96299999999999, 0.0050017000000000004), (35.587800000000001, 0.035511000000000001), (11.1683, 0.14282500000000001), (3.9020100000000002, 0.33861999999999998), (1.3817699999999999, 0.45157900000000001), (0.46638200000000002, 0.27327099999999999)]), ('S', [(0.49796600000000002, -0.248503), (0.084352999999999997, -0.13170399999999999), (0.066635, 1.2335199999999999)]), ('P', [(0.49796600000000002, -0.023022999999999998), (0.084352999999999997, 0.95035899999999995), (0.066635, 0.059858000000000001)]), ('S', [(0.025954399999999999, 1.0)]), ('P', [(0.025954399999999999, 1.0)]), ('D', [(0.17499999999999999, 1.0)])], 12: [('S', [(11722.799999999999, 0.0019778), (1759.9300000000001, 0.015114000000000001), (400.846, 0.073911000000000004), (112.807, 0.249191), (35.999699999999997, 0.48792799999999997), (12.1828, 0.319662)]), ('S', [(189.18000000000001, -0.0032372), (45.2119, -0.041008000000000003), (14.356299999999999, -0.11260000000000001), (5.1388600000000002, 0.14863299999999999), (1.90652, 0.61649699999999996), (0.70588700000000004, 0.36482900000000001)]), ('P', [(189.18000000000001, 0.0049281000000000004), (45.2119, 0.034988999999999999), (14.356299999999999, 0.14072499999999999), (5.1388600000000002, 0.33364199999999999), (1.90652, 0.44494), (0.70588700000000004, 0.26925399999999999)]), ('S', [(0.92934000000000005, -0.21229000000000001), (0.26903500000000002, -0.107985), (0.117379, 1.17584)]), ('P', [(0.92934000000000005, -0.022419000000000001), (0.26903500000000002, 0.19227), (0.117379, 0.84618099999999996)]), ('S', [(0.0421061, 1.0)]), ('P', [(0.0421061, 1.0)]), ('D', [(0.17499999999999999, 1.0)])], 13: [('S', [(13983.1, 0.0019426700000000001), (2098.75, 0.014859900000000001), (477.70499999999998, 0.072849399999999995), (134.36000000000001, 0.24682999999999999), (42.870899999999999, 0.48725800000000002), (14.5189, 0.32349600000000001)]), ('S', [(239.66800000000001, -0.00292619), (57.441899999999997, -0.037407999999999997), (18.285900000000002, -0.11448700000000001), (6.5991400000000002, 0.115635), (2.4904899999999999, 0.612595), (0.94454000000000005, 0.39379900000000001)]), ('P', [(239.66800000000001, 0.0046028500000000003), (57.441899999999997, 0.033198999999999999), (18.285900000000002, 0.13628199999999999), (6.5991400000000002, 0.33047599999999999), (2.4904899999999999, 0.44914599999999999), (0.94454000000000005, 0.265704)]), ('S', [(1.2779, -0.227606), (0.39759, 0.0014458299999999999), (0.16009499999999999, 1.0927899999999999)]), ('P', [(1.2779, -0.017513000000000001), (0.39759, 0.244533), (0.16009499999999999, 0.80493400000000004)]), ('S', [(0.055657699999999997, 1.0)]), ('P', [(0.055657699999999997, 1.0)]), ('D', [(0.32500000000000001, 1.0)])], 14: [('S', [(16115.9, 0.00195948), (2425.5799999999999, 0.014928800000000001), (553.86699999999996, 0.072847800000000004), (156.34, 0.24612999999999999), (50.068300000000001, 0.48591400000000001), (17.017800000000001, 0.32500200000000001)]), ('S', [(292.71800000000002, -0.00278094), (69.873099999999994, -0.035714599999999999), (22.336300000000001, -0.114985), (8.1503899999999998, 0.093563400000000005), (3.1345800000000001, 0.60301700000000003), (1.22543, 0.41895900000000003)]), ('P', [(292.71800000000002, 0.0044382600000000003), (69.873099999999994, 0.0326679), (22.336300000000001, 0.13472100000000001), (8.1503899999999998, 0.32867800000000003), (3.1345800000000001, 0.44963999999999998), (1.22543, 0.26137199999999999)]), ('S', [(1.7273799999999999, -0.24462999999999999), (0.57292200000000004, 0.0043157200000000003), (0.222192, 1.0981799999999999)]), ('P', [(1.7273799999999999, -0.017795100000000001), (0.57292200000000004, 0.25353900000000001), (0.222192, 0.80066899999999996)]), ('S', [(0.077836900000000001, 1.0)]), ('P', [(0.077836900000000001, 1.0)]), ('D', [(0.45000000000000001, 1.0)])], 15: [('S', [(19413.299999999999, 0.0018515999999999999), (2909.4200000000001, 0.0142062), (661.36400000000003, 0.069999500000000006), (185.75899999999999, 0.24007899999999999), (59.194299999999998, 0.48476200000000003), (20.030999999999999, 0.3352)]), ('S', [(339.47800000000001, -0.00278217), (81.010099999999994, -0.036049900000000003), (25.878, -0.116631), (9.4522099999999991, 0.096832799999999997), (3.6656599999999999, 0.61441800000000002), (1.46746, 0.40379799999999999)]), ('P', [(339.47800000000001, 0.0045646200000000001), (81.010099999999994, 0.033693599999999997), (25.878, 0.13975499999999999), (9.4522099999999991, 0.339362), (3.6656599999999999, 0.45092100000000002), (1.46746, 0.23858599999999999)]), ('S', [(2.1562299999999999, -0.25292300000000001), (0.74899700000000002, 0.032851699999999998), (0.28314499999999998, 1.08125)]), ('P', [(2.1562299999999999, -0.017765300000000001), (0.74899700000000002, 0.27405800000000002), (0.28314499999999998, 0.78542100000000004)]), ('S', [(0.099831699999999995, 1.0)]), ('P', [(0.099831699999999995, 1.0)]), ('D', [(0.55000000000000004, 1.0)])], 16: [('S', [(21917.099999999999, 0.001869), (3301.4899999999998, 0.01423), (754.14599999999996, 0.069695999999999994), (212.71100000000001, 0.238487), (67.989599999999996, 0.48330699999999999), (23.051500000000001, 0.33807399999999999)]), ('S', [(423.73500000000001, -0.0023766999999999998), (100.70999999999999, -0.031692999999999999), (32.1599, -0.113317), (11.8079, 0.056090000000000001), (4.6311, 0.59225499999999998), (1.87025, 0.45500600000000002)]), ('P', [(423.73500000000001, 0.0040610000000000004), (100.70999999999999, 0.030681), (32.1599, 0.13045200000000001), (11.8079, 0.32720500000000002), (4.6311, 0.452851), (1.87025, 0.25604199999999999)]), ('S', [(2.6158399999999999, -0.25037399999999999), (0.92216699999999996, 0.066957000000000003), (0.34128700000000001, 1.0545100000000001)]), ('P', [(2.6158399999999999, -0.014511), (0.92216699999999996, 0.31026300000000001), (0.34128700000000001, 0.75448300000000001)]), ('S', [(0.11716699999999999, 1.0)]), ('P', [(0.11716699999999999, 1.0)]), ('D', [(0.65000000000000002, 1.0)])], 17: [('S', [(25180.099999999999, 0.001833), (3780.3499999999999, 0.014034), (860.47400000000005, 0.069097000000000006), (242.14500000000001, 0.237452), (77.334900000000005, 0.48303400000000002), (26.247, 0.33985599999999999)]), ('S', [(491.76499999999999, -0.0022973999999999998), (116.98399999999999, -0.030714000000000002), (37.415300000000002, -0.112528), (13.7834, 0.045016), (5.4521499999999996, 0.58935300000000002), (2.2258800000000001, 0.46520600000000001)]), ('P', [(491.76499999999999, 0.0039893999999999997), (116.98399999999999, 0.030318000000000001), (37.415300000000002, 0.12988), (13.7834, 0.32795099999999999), (5.4521499999999996, 0.45352700000000001), (2.2258800000000001, 0.25215399999999999)]), ('S', [(3.18649, -0.25183), (1.1442699999999999, 0.061588999999999998), (0.420377, 1.0601799999999999)]), ('P', [(3.18649, -0.014298999999999999), (1.1442699999999999, 0.32357200000000003), (0.420377, 0.74350700000000003)]), ('S', [(0.14265700000000001, 1.0)]), ('P', [(0.14265700000000001, 1.0)]), ('D', [(0.75, 1.0)])], 18: [('S', [(28348.299999999999, 0.00182526), (4257.6199999999999, 0.013968599999999999), (969.85699999999997, 0.068707299999999999), (273.26299999999998, 0.236204), (87.369500000000002, 0.48221399999999998), (29.686699999999998, 0.34204299999999999)]), ('S', [(575.89099999999996, -0.00215972), (136.816, -0.029077499999999999), (43.809800000000003, -0.11082699999999999), (16.209399999999999, 0.0276999), (6.4608400000000001, 0.57761300000000004), (2.6511399999999998, 0.48868800000000001)]), ('P', [(575.89099999999996, 0.00380665), (136.816, 0.0292305), (43.809800000000003, 0.126467), (16.209399999999999, 0.32351000000000002), (6.4608400000000001, 0.45489600000000002), (2.6511399999999998, 0.25663000000000002)]), ('S', [(3.8602799999999999, -0.25559199999999999), (1.4137299999999999, 0.037806600000000003), (0.51664600000000005, 1.08056)]), ('P', [(3.8602799999999999, -0.015919699999999998), (1.4137299999999999, 0.32464599999999999), (0.51664600000000005, 0.74399000000000004)]), ('S', [(0.17388799999999999, 1.0)]), ('P', [(0.17388799999999999, 1.0)]), ('D', [(0.84999999999999998, 1.0)])], 19: [('S', [(31594.419999999998, 0.0018280099999999999), (4744.3299999999999, 0.013994029999999999), (1080.4190000000001, 0.068871290000000002), (304.23379999999997, 0.23697599999999999), (97.245859999999993, 0.482904), (33.024949999999997, 0.34047949999999999)]), ('S', [(622.76250000000005, -0.0025029760000000001), (147.88390000000001, -0.033155499999999997), (47.327350000000003, -0.1226387), (17.514949999999999, 0.053536430000000003), (6.9227220000000003, 0.61938599999999999), (2.7682769999999999, 0.43458780000000002)]), ('P', [(622.76250000000005, 0.0040946369999999999), (147.88390000000001, 0.031451989999999999), (47.327350000000003, 0.13515579999999999), (17.514949999999999, 0.33905000000000002), (6.9227220000000003, 0.46294550000000001), (2.7682769999999999, 0.22426380000000001)]), ('S', [(11.84802, 0.012776890000000001), (4.0792109999999999, 0.2098767), (1.7634810000000001, -0.0030952739999999999), (0.78892700000000004, -0.55938840000000001), (0.350387, -0.51347600000000004), (0.146344, -0.065980349999999993)]), ('P', [(11.84802, -0.012213770000000001), (4.0792109999999999, -0.006900537), (1.7634810000000001, 0.2007466), (0.78892700000000004, 0.42813319999999999), (0.350387, 0.39701560000000002), (0.146344, 0.1104718)]), ('S', [(0.71680100000000002, -0.052377720000000003), (0.233741, -0.2798503), (0.038675000000000001, 1.1415470000000001)]), ('P', [(0.71680100000000002, 0.031642999999999998), (0.233741, -0.0404616), (0.038675000000000001, 1.0120290000000001)]), ('S', [(0.016521000000000001, 1.0)]), ('P', [(0.016521000000000001, 1.0)]), ('D', [(0.20000000000000001, 1.0)])], 20: [('S', [(35264.860000000001, 0.0018135009999999999), (5295.5029999999997, 0.01388493), (1206.02, 0.068361619999999998), (339.68389999999999, 0.23561879999999999), (108.6264, 0.48206389999999999), (36.921030000000002, 0.34298190000000001)]), ('S', [(706.30960000000005, 0.0024482250000000001), (167.81870000000001, 0.032415039999999999), (53.825580000000002, 0.12262190000000001), (20.016380000000002, -0.043169649999999997), (7.9702789999999997, -0.61269949999999995), (3.212059, -0.44875399999999999)]), ('P', [(706.30960000000005, 0.004020371), (167.81870000000001, 0.031006010000000001), (53.825580000000002, 0.13372790000000001), (20.016380000000002, 0.33679829999999999), (7.9702789999999997, 0.46312809999999999), (3.212059, 0.22575319999999999)]), ('S', [(14.195180000000001, 0.010845), (4.8808280000000002, 0.2088333), (2.16039, 0.031503379999999997), (0.98789899999999997, -0.55265180000000003), (0.449517, -0.5437997), (0.187387, -0.066693420000000003)]), ('P', [(14.195180000000001, -0.01289621), (4.8808280000000002, -0.010251980000000001), (2.16039, 0.19597809999999999), (0.98789899999999997, 0.43579329999999999), (0.449517, 0.39964519999999998), (0.187387, 0.097136360000000005)]), ('S', [(1.0322709999999999, -0.044397199999999998), (0.38117099999999998, -0.32845629999999998), (0.065130999999999994, 1.1630100000000001)]), ('P', [(1.0322709999999999, -0.42986210000000002), (0.38117099999999998, 0.0069358290000000001), (0.065130999999999994, 0.97059329999999999)]), ('S', [(0.026009999999999998, 1.0)]), ('P', [(0.026009999999999998, 1.0)]), ('D', [(0.20000000000000001, 1.0)])], 21: [('S', [(39088.980000000003, 0.001803263), (5869.7920000000004, 0.013807689999999999), (1336.9100000000001, 0.068003960000000002), (376.60309999999998, 0.2347099),
<gh_stars>0 #-*- encoding: utf-8 -*- # # Copyright (c) 2013, 2014, 2017 NORDUnet A/S # All rights reserved. # # Redistribution and use in source and binary forms, with or # without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # 3. Neither the name of the NORDUnet nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # Author : <NAME> <<EMAIL>> # """ the VCCS authentication client package Copyright (c) 2013, 2014, 2017 NORDUnet A/S See the source file for complete license statement. Short usage, see the README for details : Add credential, and authenticate with correct password : >>> import vccs_client >>> f = vccs_client.VCCSPasswordFactor('password', credential_id=4712) >>> client = vccs_client.VCCSClient(base_url='http://localhost:8550/') >>> client.add_credentials('<EMAIL>', [f]) True >>> f.salt '$2a$12$F0TIdfp4quhVJYIOO1ojU.' >>> The salt and the credential_id needs to be remembered in the client application for use when validating the password later on. Authenticate with incorrect password : >>> client.authenticate('<EMAIL>', [f]) True >>> incorrect_f = vccs_client.VCCSPasswordFactor('foobar', credential_id=4712, ... salt='$2a$12$F0TIdfp4quhVJYIOO1ojU.') >>> client.authenticate('<EMAIL>', [incorrect_f]) False >>> Revoke a credential (irreversible!) : >>> r = vccs_client.VCCSRevokeFactor(4712, 'testing revoke', reference='foobar') >>> client.revoke_credentials('<EMAIL>', [r]) True >>> """ __version__ = '0.5.0b0' __copyright__ = 'NORDUnet A/S' __organization__ = 'NORDUnet' __license__ = 'BSD' __authors__ = ['<NAME>'] __all__ = [ ] import os import six import bson import bcrypt from six.moves.urllib.parse import urlencode from six.moves.urllib.request import urlopen, Request from six.moves.urllib.error import HTTPError, URLError from six import string_types import simplejson as json class VCCSClientException(Exception): """ Base exception class for VCCS client. """ def __init__(self, reason): Exception.__init__(self) self.reason = reason class VCCSClientHTTPError(VCCSClientException): """ Class to convey HTTP errors to VCCS client users in a way that does not make them have to know what HTTP library is used by the VCCS client. """ def __init__(self, reason, http_code): VCCSClientException.__init__(self, reason) self.http_code = http_code def __str__(self): return '<{cl} instance at {addr}: {code!r} {reason!r}>'.format( cl = self.__class__.__name__, addr = hex(id(self)), code = self.http_code, reason = self.reason, ) class VCCSFactor(object): """ Base class for authentication factors. Do not use directly. """ def __init__(self): pass def to_dict(self, _action): """ Return factor as a dict that can be serialized for sending to the authentication backend. :param _action: 'auth', 'add_creds' or 'revoke_creds' :returns: dict """ raise NotImplementedError('Sub-class must implement to_dict') class VCCSPasswordFactor(VCCSFactor): """ Object representing an ordinary password authentication factor. """ def __init__(self, password, credential_id, salt=None, strip_whitespace=True): """ :param password: string, password as <PASSWORD> :param credential_id: unique id of credential in the authentication backend databas :param salt: string or None, NDNv1H1 salt to be used for pre-hashing (if None, one will be generated. If non-default salt parameters are requested, use generate_salt() directly) :param strip_whitespace: boolean, Remove all whitespace from input :type password: string_types :type credential_id: string_types | bson.ObjectId :type salt: None | string_types :type strip_whitespace: bool """ if salt is None: salt = self.generate_salt() if not salt.startswith('$NDNv1H1$'): raise ValueError('Invalid salt (not NDNv1H1)') self.salt = salt if isinstance(credential_id, bson.ObjectId): # backwards compatibility credential_id = str(credential_id) if not isinstance(credential_id, string_types): raise ValueError('Non-string credential id: {!r}'.format(credential_id)) self.credential_id = credential_id salt, key_length, rounds, = self._decode_parameters(salt) cid_str = str(self.credential_id) if strip_whitespace: password = ''.join(password.split()) if six.PY2: # Allow passwords containing non-ascii characters, while # keeping backward-capability by converting to byte string. # UTF-8 is the encoding used for POST-requests, for more info see the # section handling-form-submissions-in-view-callables-unicode-and-character-set-issues # at http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/views.html if isinstance(password, unicode): password = password.encode('UTF-8') T1 = "{!s}{!s}{!s}{!s}".format(len(cid_str), cid_str, len(password), password) else: password = bytes(password, '<PASSWORD>') T1 = "{!s}{!s}{!s}".format(len(cid_str), cid_str, len(password)) T1 = bytes(T1, 'utf-8') + password # password = '<PASSWORD>' (T1 as hex:'<PASSWORD>') # should give res == '<PASSWORD>' res = bcrypt.kdf(T1, salt, key_length, rounds) if six.PY2: res = res.encode('hex') else: res = res.hex() self.hash = res VCCSFactor.__init__(self) def generate_salt(self, salt_length=32, desired_key_length=32, rounds=2 ** 5): """ Generate a NDNv1H1 salt. Encoded into the salt will be the KDF parameter values desired_key_length and rounds. For number of rounds, it is recommended that a measurement is made to achieve a cost of at least 100 ms on current hardware. :param salt_length: Number of bytes of salt to generate (recommended min 16). :param desired_key_length: Length of H1 hash to produce (recommended min 32). :param rounds: bcrypt pbkdf number of rounds. :returns: string with salt and parameters """ random = self._get_random_bytes(salt_length) if six.PY2: random_str = random.encode('hex') else: random_str = random.hex() return "$NDNv1H1${!s}${!r}${!r}$".format(random_str, desired_key_length, rounds) def _decode_parameters(self, salt): """ Internal function to decode a NDNv1H1 salt. """ _, version, salt, desired_key_length, rounds, _ = salt.split('$') if version == 'NDNv1H1': if six.PY2: salt = salt.decode('hex') else: salt = bytes().fromhex(salt) return salt, int(desired_key_length), int(rounds) raise NotImplementedError('Unknown hashing scheme') def _get_random_bytes(self, bytes): """ Internal function to make salt generation testable. """ return os.urandom(bytes) def to_dict(self, _action): """ Return factor as dictionary, transmittable to authentiation backends. :param _action: 'auth', 'add_creds' or 'revoke_creds' """ res = {'type': 'password', 'H1': self.hash, 'credential_id': self.credential_id, } return res class VCCSOathFactor(VCCSFactor): """ Object representing an OATH token authentication factor. """ def __init__(self, oath_type, credential_id, user_code=None, nonce=None, aead=None, key_handle=None, digits=6, oath_counter=0): """ :param oath_type: 'oath-totp' or 'oath-hotp' (time based or event based OATH) :param credential_id: integer, unique index of credential for authentication : :param user_code: integer, the user supplied token code for initialization (add_creds) : :param nonce: string, AEAD nonce :param aead: string, encrypted OATH secret :param key_handle: integer(), YubiHSM key handle used to create AEAD :param digits: integer, OATH token number of digits per code (6/8) :param oath_counter: initial OATH counter value of token """ if oath_type not in ['oath-totp', 'oath-hotp']: raise ValueError('Invalid OATH type (not oath-totp or oath-hotp)') self.oath_type = oath_type self.credential_id = credential_id self.user_code = user_code self.nonce = nonce self.aead = aead self.key_handle = key_handle self.digits = digits self.oath_counter = oath_counter VCCSFactor.__init__(self) def to_dict(self, action): """ Return factor as dictionary, transmittable to authentiation backends. :param action: 'auth', 'add_creds' or 'revoke_creds' :returns: Factor in dict format :rtype: dict """ if action == 'auth': if self.user_code is None: raise ValueError('User code not provided') res = {'type': self.oath_type, 'user_code': self.user_code, 'credential_id': self.credential_id, } elif action == 'add_creds': res = {'type': self.oath_type, 'credential_id': self.credential_id, 'nonce': self.nonce, 'aead': self.aead, 'key_handle': self.key_handle, 'digits': self.digits, 'oath_counter': self.oath_counter, } elif action == 'revoke_creds': # XXX implement this raise NotImplementedError() else: raise ValueError('Unknown \'action\' value (not auth or add_creds)') for (k, v) in res.items(): if v is None: raise ValueError('{!r} property {!r} not provided'.format(action, k)) return res class VCCSRevokeFactor(VCCSFactor): """ Object representing a factor to be revoked. """ def __init__(self, credential_id, reason, reference=''): """ :param credential_id: unique index of credential :param reason: reason for revocation :param reference: optional data to identify this event in logs on frontend :type credential_id: string_types | bson.ObjectId :type reason: string_types :type reference: string_types """ if isinstance(credential_id, bson.ObjectId): # backwards compatibility credential_id = str(credential_id) if not isinstance(credential_id, string_types): raise TypeError('Non-string credential id: {!r}'.format(credential_id)) if not isinstance(reason, string_types): raise TypeError('Revocation reason value type error : {!r}'.format(reason)) if not isinstance(reference, string_types): raise TypeError('Revocation reference value type error : {!r}'.format(reference)) self.credential_id = credential_id self.reason = reason self.reference = reference VCCSFactor.__init__(self) def to_dict(self, _action): """ Return factor as dictionary, transmittable to authentiation backends. :param _action: string,
: { stpair : { path1 : %x, path2: %y, ...}}} #or { alg : { stpair : { path1 : [%x, di,...] , path2 : [%y, dj,...], ...} ... } ... } algstpathlen={} for d in Zless1:#demands: #TODO analysis path utilization and when Z<1 we can some how find the relationship #between optimal link using for each s-t pair compared with other algs for alg in algdic: if alg not in stpUtilize: algPathSet[alg]={} stpUtilize[alg]={} algstpathlen[alg]={} for comp in compare:#here actually includes only one method like ["hardnop"] filename=pathpre+topo+"-"+str(d)+"-"+alg+"-"+comp+".json" fileJSON=readJSON(filename) Zless1[d][alg]=fileJSON['Z'] key = "<PASSWORD> (maximize total throuput)" stpband={} pathsband=fileJSON[key] leband={} for st in pathsband: sttemp=str(st).split() s=sttemp[0] t=sttemp[1] stpband[(s,t)]={} sv=int(s[1:])#TODO for gscale we can do like this but for Cernet we need to read hosts tv=int(t[1:]) plentemp=0 pntemp=0 if (s,t) not in stpUtilize[alg]: stpUtilize[alg][(s,t)]={} algstpathlen[alg][(s,t)]=[0,0,100,0] #first average path length, second average path number?, min len, max len? for path in pathsband[st]: #TODO at least for ksp each time the path set is the same if str(path) not in stpUtilize[alg][(s,t)]: algPathSet[alg][str(path)]=0 stpUtilize[alg][(s,t)][str(path)]=[0] if pathsband[st][path]>0: pntemp+=1 stpUtilize[alg][(s,t)][str(path)][0]+=1*1.0/ndzles stpUtilize[alg][(s,t)][str(path)].append(d) algPathSet[alg][str(path)]+=1*1.0/ndzles stpband[(s,t)][str(path)]=pathsband[st][path] ptemp = str(path).split("->") plentemp+=len(ptemp)-1 if len(ptemp)-1<algstpathlen[alg][(s,t)][2]: algstpathlen[alg][(s,t)][2]=len(ptemp)-1 if len(ptemp)-1>algstpathlen[alg][(s,t)][3]: algstpathlen[alg][(s,t)][3]=len(ptemp)-1 del ptemp[0] del ptemp[-1] ilen=len(ptemp)-1 for i in range(ilen): if (ptemp[i],ptemp[i+1]) not in leband: leband[(ptemp[i],ptemp[i+1])]=0 #print plentemp,pntemp,algstpathlen[alg][(s,t)][0] algstpathlen[alg][(s,t)][0]=algstpathlen[alg][(s,t)][0]+plentemp*1.0/pntemp/1.0/ndzles algstpathlen[alg][(s,t)][1]=algstpathlen[alg][(s,t)][1]+pntemp/1.0/ndzles #algstpathlen[alg][(s,t)][0]=algstpathlen[alg][(s,t)][0]/1.0/ndzles #algstpathlen[alg][(s,t)][1]=algstpathlen[alg][(s,t)][1]/1.0/ndzles #TODO cal or get demand for corresponding topo and d (JSON file) #leband[(ptemp[i],ptemp[i+1])]+=pathsband[st][path]*demand49gscale[(sv-1)*12+tv-1]*1.0/pow(2,20)/1000#here need to *demand(s,t) #print 'Step 2',stpband,leband#TODO not right #first get the result for hardnop #print "============" print 'Zless1',Zless1,len(Zless1) #print 'stpUtilize',stpUtilize print 'algstpathlen ',algstpathlen dictx={} dicty={} for alg in algdic: data=[algstpathlen[alg][key][0] for key in algstpathlen[alg]] x,y=ccdf(data)#y=P(X>x) #x,y=cdf(data) dictx[alg]=x dicty[alg]=y #drawCDFandCCDF(dictx,dicty,2,0,'Path utilization','Path-gscale-1-Zless1-ccdf.pdf') drawCDFandCCDF(dictx,dicty,6,0,'Average path length of each s-t pair','Pathlength-'+topo+'-1-Zless1-'+comp+'-ccdf.pdf',figurepath) for alg in algdic: data=[algstpathlen[alg][key][1] for key in algstpathlen[alg]] x,y=ccdf(data)#y=P(X>x) #x,y=cdf(data) dictx[alg]=x dicty[alg]=y #drawCDFandCCDF(dictx,dicty,2,0,'Path utilization','Path-gscale-1-Zless1-ccdf.pdf') drawCDFandCCDF(dictx,dicty,6,0,'# used path of each s-t pair','Pathnum-'+topo+'-1-Zless1-'+comp+'-ccdf.pdf',figurepath) for alg in algdic: data=[algstpathlen[alg][key][3] for key in algstpathlen[alg]] x,y=ccdf(data)#y=P(X>x) #x,y=cdf(data) dictx[alg]=x dicty[alg]=y #drawCDFandCCDF(dictx,dicty,2,0,'Path utilization','Path-gscale-1-Zless1-ccdf.pdf') drawCDFandCCDF(dictx,dicty,6,0,'Length of the longest used s-t path','Pathmaxlen-'+topo+'-1-Zless1-'+comp+'-ccdf.pdf',figurepath) for alg in algdic: data=[algstpathlen[alg][key][3] for key in algstpathlen[alg]] x,y=ccdf(data)#y=P(X>x) #x,y=cdf(data) dictx[alg]=x dicty[alg]=y #drawCDFandCCDF(dictx,dicty,2,0,'Path utilization','Path-gscale-1-Zless1-ccdf.pdf') drawCDFandCCDF(dictx,dicty,6,0,'Length of the shortest used s-t path','Pathmaxlen-'+topo+'-1-Zless1-'+comp+'-ccdf.pdf',figurepath) def analysisPathlength1(Zrelated, lessorlargeorall, demands, pathpre, topo, algdic, compare, figurepath): #TODO here Zrelated actually can stands for a lot of things? #TODO TODO consider for Z<=1 only or any Z?, #the difference is that for Z>1 the total throughput of each alg after step 2 may not be the same #TODO each s-t first get the average path length?, then draw CCDF for each alg (for all the s-t pairs) Zinname='' if len(Zrelated)==0: Zless1={} Zlarge1={} for d in demands: filename=pathpre+topo+"-"+str(d)+"-optimal-mcf.json" #Z,leband,lest,steband=readOptimal(filename) fileOptimal=readOptimal(filename) Z=fileOptimal['Z'] if Z<=1:#fileOptimal['Z']<=1: Zless1[d]={} Zless1[d]['Optimal']=Z#fileOptimal['Z'] elif Z<2.5: Zlarge1[d]={} Zlarge1[d]['Optimal']=Z#fileOptimal['Z'] print "============" if lessorlargeorall==3: Zrelated=demands Zinname='all' elif lessorlargeorall==2: Zrelated=Zless1 Zinname='Zlarge1' elif lessorlargeorall==1: Zrelated=Zlarge1 Zinname='Zless1new' else: if lessorlargeorall==3: Zinname='all' elif lessorlargeorall==2: Zinname='Zlarge1' elif lessorlargeorall==1: Zinname='Zless1new' ndzles = len(Zrelated) algPathSet={} stpUtilize={}#This can be initialized only once then record the path utilization for each TM # { alg : { stpair : { path1 : %x, path2: %y, ...}}} #or { alg : { stpair : { path1 : [%x, di,...] , path2 : [%y, dj,...], ...} ... } ... } algstpathlen={} for d in Zrelated:#demands: #TODO analysis path utilization and when Z<1 we can some how find the relationship #between optimal link using for each s-t pair compared with other algs for alg in algdic: if alg not in stpUtilize: algPathSet[alg]={} stpUtilize[alg]={} algstpathlen[alg]={} for comp in compare:#here actually includes only one method like ["hardnop"] filename=pathpre+topo+"-"+str(d)+"-"+alg+"-"+comp+".json" fileJSON=readJSON(filename) #Zrelated[d][alg]=fileJSON['Z'] key = "paths after the second step (maximize total throuput)" stpband={} pathsband=fileJSON[key] leband={} for st in pathsband: sttemp=str(st).split() s=sttemp[0] t=sttemp[1] stpband[(s,t)]={} sv=int(s[1:])#TODO for gscale we can do like this but for Cernet we need to read hosts tv=int(t[1:]) plentemp=0 pntemp=0 if (s,t) not in stpUtilize[alg]: stpUtilize[alg][(s,t)]={} algstpathlen[alg][(s,t)]=[0,0,100,0] #first average path length, second average path number?, min len, max len? for path in pathsband[st]: #TODO at least for ksp each time the path set is the same if str(path) not in stpUtilize[alg][(s,t)]: algPathSet[alg][str(path)]=0 stpUtilize[alg][(s,t)][str(path)]=[0] if pathsband[st][path]>0: pntemp+=1 stpUtilize[alg][(s,t)][str(path)][0]+=1*1.0/ndzles stpUtilize[alg][(s,t)][str(path)].append(d) algPathSet[alg][str(path)]+=1*1.0/ndzles stpband[(s,t)][str(path)]=pathsband[st][path] ptemp = str(path).split("->") plentemp+=len(ptemp)-1 if len(ptemp)-1<algstpathlen[alg][(s,t)][2]: algstpathlen[alg][(s,t)][2]=len(ptemp)-1 if len(ptemp)-1>algstpathlen[alg][(s,t)][3]: algstpathlen[alg][(s,t)][3]=len(ptemp)-1 del ptemp[0] del ptemp[-1] ilen=len(ptemp)-1 for i in range(ilen): if (ptemp[i],ptemp[i+1]) not in leband: leband[(ptemp[i],ptemp[i+1])]=0 #print plentemp,pntemp,algstpathlen[alg][(s,t)][0] algstpathlen[alg][(s,t)][0]=algstpathlen[alg][(s,t)][0]+plentemp*1.0/pntemp/1.0/ndzles algstpathlen[alg][(s,t)][1]=algstpathlen[alg][(s,t)][1]+pntemp/1.0/ndzles #algstpathlen[alg][(s,t)][0]=algstpathlen[alg][(s,t)][0]/1.0/ndzles #algstpathlen[alg][(s,t)][1]=algstpathlen[alg][(s,t)][1]/1.0/ndzles #TODO cal or get demand for corresponding topo and d (JSON file) #leband[(ptemp[i],ptemp[i+1])]+=pathsband[st][path]*demand49gscale[(sv-1)*12+tv-1]*1.0/pow(2,20)/1000#here need to *demand(s,t) #print 'Step 2',stpband,leband#TODO not right #first get the result for hardnop #print "============" #print 'Zrelated',Zrelated,len(Zrelated) #print 'stpUtilize',stpUtilize #print 'algstpathlen ',algstpathlen dictx={} dicty={} for alg in algdic: data=[algstpathlen[alg][key][0] for key in algstpathlen[alg]] x,y=ccdf(data)#y=P(X>x) #x,y=cdf(data) dictx[alg]=x dicty[alg]=y #drawCDFandCCDF(dictx,dicty,2,0,'Path utilization','Path-gscale-1-Zrelated-ccdf.pdf') drawCDFandCCDF(dictx,dicty,6,0,'Average path length of each s-t pair','Pathlength-'+topo+'-1-'+Zinname+'-'+comp+str(len(compare))+'-ccdf.pdf',figurepath) for alg in algdic: data=[algstpathlen[alg][key][1] for key in algstpathlen[alg]] x,y=ccdf(data)#y=P(X>x) #x,y=cdf(data) dictx[alg]=x dicty[alg]=y #drawCDFandCCDF(dictx,dicty,2,0,'Path utilization','Path-gscale-1-Zrelated-ccdf.pdf') drawCDFandCCDF(dictx,dicty,6,0,'# used path of each s-t pair','Pathnum-'+topo+'-1-'+Zinname+'-'+comp+str(len(compare))+'-ccdf.pdf',figurepath) for alg in algdic: data=[algstpathlen[alg][key][3] for key in algstpathlen[alg]] x,y=ccdf(data)#y=P(X>x) #x,y=cdf(data) dictx[alg]=x dicty[alg]=y #drawCDFandCCDF(dictx,dicty,2,0,'Path utilization','Path-gscale-1-Zrelated-ccdf.pdf') drawCDFandCCDF(dictx,dicty,6,0,'Length of the longest used s-t path','Pathmaxlen-'+topo+'-1-'+Zinname+'-'+comp+str(len(compare))+'-ccdf.pdf',figurepath) for alg in algdic: data=[algstpathlen[alg][key][2] for key in algstpathlen[alg]] x,y=ccdf(data)#y=P(X>x) #x,y=cdf(data) dictx[alg]=x dicty[alg]=y #drawCDFandCCDF(dictx,dicty,2,0,'Path utilization','Path-gscale-1-Zrelated-ccdf.pdf') drawCDFandCCDF(dictx,dicty,6,0,'Length of the shortest used s-t path','Pathminlen-'+topo+'-1-'+Zinname+'-'+comp+str(len(compare))+'-ccdf.pdf',figurepath) #1. fairness: get the average? satisfied demand ratio (%) for each s-t pair, consider whether include Zopt<=1(will mostly be 1) , Z>1 #2. robustness: as we have shown that each s-t almost all use 1 path only (only one path has weight) #therefore, we are hard to reroute in data plane use the normalized weight (TODO or just send packet out using equal weight to each healthy tunnel), ? TODO, #2.1 get the percent that how many single link failure lead to some s-t pair unreachable #2.2 get the Histogram of P(T>95%), P(T>95%), P(T>95%), P(T>95%), P(T>95%) #2.3 get the throughput ratio CDF def fairness(Zrelated, lessorlargeorall, pathpre, topo, algdic, comp, figurepath): if lessorlargeorall==3: Zinname='all' elif lessorlargeorall==2: Zinname='Zlarge1' elif lessorlargeorall==1: Zinname='Zless1' dictx={} dicty={} algstdratio={} algstdratioH={} for alg in algdic: #if alg not in algstdratio: # algstdratio[alg]=[] alldsumtemp=[]#mat([]) for d in Zrelated: #for comp in compare: filename=pathpre+topo+"-"+str(d)+"-"+alg+"-"+comp+".json" fileJSON=readJSON(filename) key="number of path and demand ratio of each st pair" # "h22 h17": [3.0,46.54156150185264], #compute the y=p(X>x) data=[] temp=fileJSON[key] if 'average' in temp: del temp['average'] if len(alldsumtemp)==0: alldsumtemp=mat([0]*len(temp)) data=[float(temp[st][1]) for st in sorted(temp)] data=mat(data) alldsumtemp=alldsumtemp+data #print alldsumtemp #print alldsumtemp alldsumtemp=alldsumtemp*1.0/100/len(Zrelated) algstdratio[alg]=alldsumtemp.tolist()[0] print algstdratio[alg] x,y=ccdf(algstdratio[alg]) dictx[alg]=x dicty[alg]=y #keylist=["P(T > 90%)","P(T > 95%)","P(T > 99%)","P(T > 99.9%)","P(T > 99.99%)"] percy=[0,0,0,0,0] for i in range(len(x)): percx=x[i] if percy[0]==0 and percx>=0.9: if percx==0.9 or i==0: percy[0]=y[i] else: percy[0]=y[i-1] elif percy[1]==0 and percx>=0.95: if percx==0.95 or i==0: percy[1]=y[i] else: percy[1]=y[i-1] elif percy[2]==0 and percx>=0.99: if percx==0.99 or i==0: percy[2]=y[i] else: percy[2]=y[i-1] elif percy[3]==0 and percx>=0.999: if percx==0.999 or i==0: percy[3]=y[i] else: percy[3]=y[i-1] elif percy[4]==0 and percx>=0.9999: if percx==0.9999 or i==0: percy[4]=y[i] else: percy[4]=y[i-1] #print percy #print "============" algstdratioH[alg]=percy #print algstdratio print algstdratioH #drawCDFandCCDF(dictx,dicty,2,0,'# flow entries','flow-gscale-1-'+comp+'-ccdf.pdf',figurepath) drawCDFandCCDF(dictx,dicty,6,0,'Satisfied demand ratio of each s-t pair','dratio-'+topo+'-1-'+Zinname+'-'+comp+'-ccdf.pdf',figurepath) #TODO draw Histogram for "P(T > 95%)","P(T > 90%)","P(T > 99%)","P(T > 99.9%)","P(T > 99.99%)" def robustness(Zrelated, lessorlargeorall, pathpre, topo, algdic, comp, figurepath): #key="Z, total throuput, and throuput ratio at single edge failure" if lessorlargeorall==3: Zinname='all' elif lessorlargeorall==2: Zinname='Zlarge1' elif lessorlargeorall==1: Zinname='Zless1' keylist=["P(T > 90%)","P(T > 95%)","P(T > 99%)","P(T > 99.9%)","P(T > 99.99%)"] dictx={} dicty={} #algetratio={} algetratioH={} algefailunreach={} for alg in algdic: #if alg not in algstdratio: # algstdratio[alg]=[] alldsumtemp=[]#mat([]) alldsumH=[] dunreachtemp=[] for d in Zrelated: #for comp in compare: filename=pathpre+topo+"-"+str(d)+"-"+alg+"-"+comp+".json" fileJSON=readJSON(filename) key="Z, total throuput, and throuput ratio at single edge failure" #"s6 s7": [3.1532651852755422, 14672.0837296913, 91.61506879097249], #compute the y=p(X>x) data=[] dataH=[] unreachN=0 temp=fileJSON[key] if 'average' in temp: del temp['average'] if len(alldsumH)==0: alldsumH=mat([0]*len(keylist)) for prob in keylist: dataH.append(temp[prob]) del temp[prob] dataH=mat(dataH) alldsumH=alldsumH+dataH # TODO this can not use mat to add all , as some link down may lead to "some pairs have no path" for k in temp: if temp[k]=="some pairs have no path": unreachN=unreachN+1 dunreachtemp.append(unreachN) if len(alldsumtemp)==0: alldsumtemp=mat([0]*len(temp)) #data=[float(temp[e][2]) for e in sorted(temp)] #data=mat(data) #alldsumtemp=alldsumtemp+data #print alldsumtemp #print alldsumtemp alldsumH=alldsumH*1.0/len(Zrelated)#remember it is % is OK algetratioH[alg]=alldsumH.tolist()[0] #alldsumtemp=alldsumtemp*1.0/100/len(Zrelated) #algetratio[alg]=alldsumtemp.tolist()[0] #print algetratio[alg] algefailunreach[alg]=dunreachtemp #x,y=ccdf(algetratio[alg]) x,y=ccdf(algefailunreach[alg]) dictx[alg]=x dicty[alg]=y print "============" print algetratioH print algefailunreach #print algstdratio #drawCDFandCCDF(dictx,dicty,2,0,'# flow entries','flow-gscale-1-'+comp+'-ccdf.pdf',figurepath) #drawCDFandCCDF(dictx,dicty,6,0,'Satisfied whole throughput ratio','tratio-'+topo+'-1-'+Zinname+'-'+comp+'-ccdf.pdf',figurepath) #drawCDFandCCDF(dictx,dicty,6,0,'Percent of unreachable s-t
<filename>coherence/backends/gstreamer_renderer.py # Licensed under the MIT license # http://opensource.org/licenses/mit-license.php # Copyright 2006,2007,2008,2009 <NAME> <<EMAIL>> from sets import Set from twisted.internet import reactor, defer from twisted.internet.task import LoopingCall from twisted.python import failure from coherence.upnp.core.soap_service import errorCode from coherence.upnp.core import DIDLLite import string import os, platform from StringIO import StringIO import tokenize import pygst pygst.require('0.10') import gst import coherence.extern.louie as louie from coherence.extern.simple_plugin import Plugin from coherence import log class Player(log.Loggable): logCategory = 'gstreamer_player' max_playbin_volume = 1. def __init__(self, default_mimetype='audio/mpeg', audio_sink_name=None, video_sink_name=None, audio_sink_options=None, video_sink_options=None): self.audio_sink_name = audio_sink_name or "autoaudiosink" self.video_sink_name = video_sink_name or "autovideosink" self.audio_sink_options = audio_sink_options or {} self.video_sink_options = video_sink_options or {} self.player = None self.source = None self.sink = None self.bus = None self.views = [] self.playing = False self.duration = None self.mimetype = default_mimetype self.create_pipeline(self.mimetype) def add_view(self,view): self.views.append(view) def remove_view(self,view): self.views.remove(view) def update(self,message=None): for v in self.views: v(message=message) def _is_not_playbin2_friendly(self): uname = platform.uname()[1] result = False if uname.startswith('Nokia'): try: device = uname.split("-")[1] except: device = "unknown" result = device != "N900" return result def create_pipeline(self, mimetype): self.debug("creating pipeline") if self._is_not_playbin2_friendly(): self.bus = None self.player = None self.source = None self.sink = None if mimetype == 'application/ogg': self.player = gst.parse_launch('gnomevfssrc name=source ! oggdemux ! ivorbisdec ! audioconvert ! dsppcmsink name=sink') self.player.set_name('oggplayer') self.set_volume = self.set_volume_dsp_pcm_sink self.get_volume = self.get_volume_dsp_pcm_sink else: self.player = gst.parse_launch('gnomevfssrc name=source ! id3lib ! dspmp3sink name=sink') self.player.set_name('mp3player') self.set_volume = self.set_volume_dsp_mp3_sink self.get_volume = self.get_volume_dsp_mp3_sink self.source = self.player.get_by_name('source') self.sink = self.player.get_by_name('sink') self.player_uri = 'location' self.mute = self.mute_hack self.unmute = self.unmute_hack self.get_mute = self.get_mute_hack else: self.player = gst.element_factory_make('playbin2', 'player') self.player_uri = 'uri' self.source = self.sink = self.player self.set_volume = self.set_volume_playbin self.get_volume = self.get_volume_playbin self.mute = self.mute_playbin self.unmute = self.unmute_playbin self.get_mute = self.get_mute_playbin audio_sink = gst.element_factory_make(self.audio_sink_name) self._set_props(audio_sink, self.audio_sink_options) self.player.set_property("audio-sink", audio_sink) video_sink = gst.element_factory_make(self.video_sink_name) self._set_props(video_sink, self.video_sink_options) self.player.set_property("video-sink", video_sink) self.bus = self.player.get_bus() self.player_clean = True self.bus.connect('message', self.on_message) self.bus.add_signal_watch() self.update_LC = LoopingCall(self.update) def _set_props(self, element, props): for option, value in props.iteritems(): value = self._py_value(value) element.set_property(option, value) def _py_value(self, s): value = None g = tokenize.generate_tokens(StringIO(s).readline) for toknum, tokval, _, _, _ in g: if toknum == tokenize.NUMBER: if '.' in tokval: value = float(tokval) else: value = int(tokval) elif toknum == tokenize.NAME: value = tokval if value is not None: break return value def get_volume_playbin(self): """ playbin volume is a double from 0.0 - 10.0 """ volume = self.sink.get_property('volume') return int((volume*100) / self.max_playbin_volume) def set_volume_playbin(self, volume): volume = int(volume) if volume < 0: volume=0 if volume > 100: volume=100 volume = (volume * self.max_playbin_volume) / 100. self.sink.set_property('volume', volume) def get_volume_dsp_mp3_sink(self): """ dspmp3sink volume is a n in from 0 to 65535 """ volume = self.sink.get_property('volume') return int(volume*100/65535) def set_volume_dsp_mp3_sink(self, volume): volume = int(volume) if volume < 0: volume=0 if volume > 100: volume=100 self.sink.set_property('volume', volume*65535/100) def get_volume_dsp_pcm_sink(self): """ dspmp3sink volume is a n in from 0 to 65535 """ volume = self.sink.get_property('volume') return int(volume*100/65535) def set_volume_dsp_pcm_sink(self, volume): volume = int(volume) if volume < 0: volume=0 if volume > 100: volume=100 self.sink.set_property('volume', volume*65535/100) def mute_playbin(self): self.player.set_property('mute', True) def unmute_playbin(self): self.player.set_property('mute', False) def get_mute_playbin(self): return self.player.get_property('mute') def mute_hack(self): if hasattr(self,'stored_volume'): self.stored_volume = self.sink.get_property('volume') self.sink.set_property('volume', 0) else: self.sink.set_property('mute', True) def unmute_hack(self): if hasattr(self,'stored_volume'): self.sink.set_property('volume', self.stored_volume) else: self.sink.set_property('mute', False) def get_mute_hack(self): if hasattr(self,'stored_volume'): muted = self.sink.get_property('volume') == 0 else: try: muted = self.sink.get_property('mute') except TypeError: if not hasattr(self,'stored_volume'): self.stored_volume = self.sink.get_property('volume') muted = self.stored_volume == 0 except: muted = False self.warning("can't get mute state") return muted def get_state(self): return self.player.get_state() def get_uri(self): """ playbin2 has an empty uri property after a pipeline stops, as the uri is nowdays the next track to play, not the current one """ if self.player.get_name() != 'player': return self.source.get_property(self.player_uri) else: try: return self.current_uri except: return None def set_uri(self,uri): self.source.set_property(self.player_uri, uri.encode('utf-8')) if self.player.get_name() == 'player': self.current_uri = uri.encode('utf-8') def on_message(self, bus, message): #print "on_message", message #print "from", message.src.get_name() t = message.type #print t if t == gst.MESSAGE_ERROR: err, debug = message.parse_error() self.warning("Gstreamer error: %s,%r" % (err.message, debug)) if self.playing == True: self.seek('-0') #self.player.set_state(gst.STATE_READY) elif t == gst.MESSAGE_TAG: for key in message.parse_tag().keys(): self.tags[key] = message.structure[key] #print self.tags elif t == gst.MESSAGE_STATE_CHANGED: if message.src == self.player: old, new, pending = message.parse_state_changed() #print "player (%s) state_change:" %(message.src.get_path_string()), old, new, pending if new == gst.STATE_PLAYING: self.playing = True self.update_LC.start( 1, False) self.update() elif old == gst.STATE_PLAYING: self.playing = False try: self.update_LC.stop() except: pass self.update() #elif new == gst.STATE_READY: # self.update() elif t == gst.MESSAGE_EOS: self.debug("reached file end") self.seek('-0') self.update(message=gst.MESSAGE_EOS) def query_position( self): #print "query_position" try: position, format = self.player.query_position(gst.FORMAT_TIME) except: #print "CLOCK_TIME_NONE", gst.CLOCK_TIME_NONE position = gst.CLOCK_TIME_NONE position = 0 #print position if self.duration == None: try: self.duration, format = self.player.query_duration(gst.FORMAT_TIME) except: self.duration = gst.CLOCK_TIME_NONE self.duration = 0 #import traceback #print traceback.print_exc() #print self.duration r = {} if self.duration == 0: self.duration = None self.debug("duration unknown") return r r[u'raw'] = {u'position':unicode(str(position)), u'remaining':unicode(str(self.duration - position)), u'duration':unicode(str(self.duration))} position_human = u'%d:%02d' % (divmod( position/1000000000, 60)) duration_human = u'%d:%02d' % (divmod( self.duration/1000000000, 60)) remaining_human = u'%d:%02d' % (divmod( (self.duration-position)/1000000000, 60)) r[u'human'] = {u'position':position_human, u'remaining':remaining_human, u'duration':duration_human} r[u'percent'] = {u'position':position*100/self.duration, u'remaining':100-(position*100/self.duration)} self.debug(r) return r def load( self, uri, mimetype): self.debug("load --> %r %r" % (uri, mimetype)) _,state,_ = self.player.get_state() if( state == gst.STATE_PLAYING or state == gst.STATE_PAUSED): self.stop() #print "player -->", self.player.get_name() if self.player.get_name() != 'player': self.create_pipeline(mimetype) self.player.set_state(gst.STATE_READY) self.set_uri(uri) self.player_clean = True self.duration = None self.mimetype = mimetype self.tags = {} #self.player.set_state(gst.STATE_PAUSED) #self.update() self.debug("load <--") self.play() def play( self): uri = self.get_uri() mimetype = self.mimetype self.debug("play --> %r %r" % (uri, mimetype)) if self.player.get_name() != 'player': if self.player_clean == False: #print "rebuild pipeline" self.player.set_state(gst.STATE_NULL) self.create_pipeline(mimetype) self.set_uri(uri) self.player.set_state(gst.STATE_READY) else: self.player_clean = True self.player.set_state(gst.STATE_PLAYING) self.debug("play <--") def pause(self): self.debug("pause --> %r" % self.get_uri()) self.player.set_state(gst.STATE_PAUSED) self.debug("pause <--") def stop(self): self.debug("stop --> %r" % self.get_uri()) self.seek('-0') self.player.set_state(gst.STATE_READY) self.update(message=gst.MESSAGE_EOS) self.debug("stop <-- %r " % self.get_uri()) def seek(self, location): """ @param location: simple number = time to seek to, in seconds +nL = relative seek forward n seconds -nL = relative seek backwards n seconds """ _,state,_ = self.player.get_state() if state != gst.STATE_PAUSED: self.player.set_state(gst.STATE_PAUSED) l = long(location)*1000000000 p = self.query_position() #print p['raw']['position'], l if location[0] == '+': l = long(p[u'raw'][u'position']) + (long(location[1:])*1000000000) l = min( l, long(p[u'raw'][u'duration'])) elif location[0] == '-': if location == '-0': l = 0L else: l = long(p[u'raw'][u'position']) - (long(location[1:])*1000000000) l = max( l, 0L) self.debug("seeking to %r" % l) """ self.player.seek( 1.0, gst.FORMAT_TIME, gst.SEEK_FLAG_FLUSH | gst.SEEK_FLAG_ACCURATE, gst.SEEK_TYPE_SET, l, gst.SEEK_TYPE_NONE, 0) """ event = gst.event_new_seek(1.0, gst.FORMAT_TIME, gst.SEEK_FLAG_FLUSH | gst.SEEK_FLAG_KEY_UNIT, gst.SEEK_TYPE_SET, l, gst.SEEK_TYPE_NONE, 0) res = self.player.send_event(event) if res: pass #print "setting new stream time to 0" #self.player.set_new_stream_time(0L) elif location != '-0': print "seek to %r failed" % location if location == '-0': content_type, _ = self.mimetype.split("/") try: self.update_LC.stop() except: pass if self.player.get_name() != 'player': self.player.set_state(gst.STATE_NULL) self.player_clean = False elif content_type != "image": self.player.set_state(gst.STATE_READY) self.update() else: self.player.set_state(state) if state == gst.STATE_PAUSED: self.update() class GStreamerPlayer(log.Loggable,Plugin): """ a backend with a GStreamer based audio player needs gnomevfssrc from gst-plugins-base unfortunately gnomevfs has way too much dependencies # not working -> http://bugzilla.gnome.org/show_bug.cgi?id=384140 # needs the neonhttpsrc plugin from gst-plugins-bad # tested with CVS version # and with this patch applied # --> http://bugzilla.gnome.org/show_bug.cgi?id=375264 # not working and id3demux from gst-plugins-good CVS too """ logCategory = 'gstreamer_player' implements = ['MediaRenderer'] vendor_value_defaults = {'RenderingControl': {'A_ARG_TYPE_Channel':'Master'}, 'AVTransport': {'A_ARG_TYPE_SeekMode':('ABS_TIME','REL_TIME','TRACK_NR')}} vendor_range_defaults = {'RenderingControl': {'Volume': {'maximum':100}}} def __init__(self, device, **kwargs): if(device.coherence.config.get('use_dbus','no') != 'yes' and device.coherence.config.get('glib','no') != 'yes'): raise Exception, 'this media renderer needs use_dbus enabled in the configuration' self.name = kwargs.get('name','GStreamer Audio Player') audio_sink_name = kwargs.get("audio_sink_name") audio_sink_options = kwargs.get("audio_sink_options") video_sink_name = kwargs.get("video_sink_name") video_sink_options = kwargs.get("video_sink_options") self.player = Player(audio_sink_name=audio_sink_name, video_sink_name=video_sink_name, audio_sink_options=audio_sink_options, video_sink_options=video_sink_options) self.player.add_view(self.update) self.metadata = None self.duration = None self.view = [] self.tags = {} self.server = device self.playcontainer = None self.dlna_caps = ['playcontainer-0-1'] louie.send('Coherence.UPnP.Backend.init_completed', None, backend=self) def __repr__(self): return str(self.__class__).split('.')[-1] def update(self, message=None): _, current,_ = self.player.get_state() self.debug("update current %r", current) connection_manager = self.server.connection_manager_server av_transport = self.server.av_transport_server conn_id = connection_manager.lookup_avt_id(self.current_connection_id) if current == gst.STATE_PLAYING: state = 'playing' av_transport.set_variable(conn_id, 'TransportState', 'PLAYING') elif current == gst.STATE_PAUSED: state = 'paused' av_transport.set_variable(conn_id, 'TransportState', 'PAUSED_PLAYBACK') elif self.playcontainer != None and message == gst.MESSAGE_EOS and \ self.playcontainer[0]+1 < len(self.playcontainer[2]): state = 'transitioning' av_transport.set_variable(conn_id, 'TransportState', 'TRANSITIONING')
0.354971], [0.190367, 0.039309, 0.361447], [0.197297, 0.038400, 0.367535], [0.204209, 0.037632, 0.373238], [0.211095, 0.037030, 0.378563], [0.217949, 0.036615, 0.383522], [0.224763, 0.036405, 0.388129], [0.231538, 0.036405, 0.392400], [0.238273, 0.036621, 0.396353], [0.244967, 0.037055, 0.400007], [0.251620, 0.037705, 0.403378], [0.258234, 0.038571, 0.406485], [0.264810, 0.039647, 0.409345], [0.271347, 0.040922, 0.411976], [0.277850, 0.042353, 0.414392], [0.284321, 0.043933, 0.416608], [0.290763, 0.045644, 0.418637], [0.297178, 0.047470, 0.420491], [0.303568, 0.049396, 0.422182], [0.309935, 0.051407, 0.423721], [0.316282, 0.053490, 0.425116], [0.322610, 0.055634, 0.426377], [0.328921, 0.057827, 0.427511], [0.335217, 0.060060, 0.428524], [0.341500, 0.062325, 0.429425], [0.347771, 0.064616, 0.430217], [0.354032, 0.066925, 0.430906], [0.360284, 0.069247, 0.431497], [0.366529, 0.071579, 0.431994], [0.372768, 0.073915, 0.432400], [0.379001, 0.076253, 0.432719], [0.385228, 0.078591, 0.432955], [0.391453, 0.080927, 0.433109], [0.397674, 0.083257, 0.433183], [0.403894, 0.085580, 0.433179], [0.410113, 0.087896, 0.433098], [0.416331, 0.090203, 0.432943], [0.422549, 0.092501, 0.432714], [0.428768, 0.094790, 0.432412], [0.434987, 0.097069, 0.432039], [0.441207, 0.099338, 0.431594], [0.447428, 0.101597, 0.431080], [0.453651, 0.103848, 0.430498], [0.459875, 0.106089, 0.429846], [0.466100, 0.108322, 0.429125], [0.472328, 0.110547, 0.428334], [0.478558, 0.112764, 0.427475], [0.484789, 0.114974, 0.426548], [0.491022, 0.117179, 0.425552], [0.497257, 0.119379, 0.424488], [0.503493, 0.121575, 0.423356], [0.509730, 0.123769, 0.422156], [0.515967, 0.125960, 0.420887], [0.522206, 0.128150, 0.419549], [0.528444, 0.130341, 0.418142], [0.534683, 0.132534, 0.416667], [0.540920, 0.134729, 0.415123], [0.547157, 0.136929, 0.413511], [0.553392, 0.139134, 0.411829], [0.559624, 0.141346, 0.410078], [0.565854, 0.143567, 0.408258], [0.572081, 0.145797, 0.406369], [0.578304, 0.148039, 0.404411], [0.584521, 0.150294, 0.402385], [0.590734, 0.152563, 0.400290], [0.596940, 0.154848, 0.398125], [0.603139, 0.157151, 0.395891], [0.609330, 0.159474, 0.393589], [0.615513, 0.161817, 0.391219], [0.621685, 0.164184, 0.388781], [0.627847, 0.166575, 0.386276], [0.633998, 0.168992, 0.383704], [0.640135, 0.171438, 0.381065], [0.646260, 0.173914, 0.378359], [0.652369, 0.176421, 0.375586], [0.658463, 0.178962, 0.372748], [0.664540, 0.181539, 0.369846], [0.670599, 0.184153, 0.366879], [0.676638, 0.186807, 0.363849], [0.682656, 0.189501, 0.360757], [0.688653, 0.192239, 0.357603], [0.694627, 0.195021, 0.354388], [0.700576, 0.197851, 0.351113], [0.706500, 0.200728, 0.347777], [0.712396, 0.203656, 0.344383], [0.718264, 0.206636, 0.340931], [0.724103, 0.209670, 0.337424], [0.729909, 0.212759, 0.333861], [0.735683, 0.215906, 0.330245], [0.741423, 0.219112, 0.326576], [0.747127, 0.222378, 0.322856], [0.752794, 0.225706, 0.319085], [0.758422, 0.229097, 0.315266], [0.764010, 0.232554, 0.311399], [0.769556, 0.236077, 0.307485], [0.775059, 0.239667, 0.303526], [0.780517, 0.243327, 0.299523], [0.785929, 0.247056, 0.295477], [0.791293, 0.250856, 0.291390], [0.796607, 0.254728, 0.287264], [0.801871, 0.258674, 0.283099], [0.807082, 0.262692, 0.278898], [0.812239, 0.266786, 0.274661], [0.817341, 0.270954, 0.270390], [0.822386, 0.275197, 0.266085], [0.827372, 0.279517, 0.261750], [0.832299, 0.283913, 0.257383], [0.837165, 0.288385, 0.252988], [0.841969, 0.292933, 0.248564], [0.846709, 0.297559, 0.244113], [0.851384, 0.302260, 0.239636], [0.855992, 0.307038, 0.235133], [0.860533, 0.311892, 0.230606], [0.865006, 0.316822, 0.226055], [0.869409, 0.321827, 0.221482], [0.873741, 0.326906, 0.216886], [0.878001, 0.332060, 0.212268], [0.882188, 0.337287, 0.207628], [0.886302, 0.342586, 0.202968], [0.890341, 0.347957, 0.198286], [0.894305, 0.353399, 0.193584], [0.898192, 0.358911, 0.188860], [0.902003, 0.364492, 0.184116], [0.905735, 0.370140, 0.179350], [0.909390, 0.375856, 0.174563], [0.912966, 0.381636, 0.169755], [0.916462, 0.387481, 0.164924], [0.919879, 0.393389, 0.160070], [0.923215, 0.399359, 0.155193], [0.926470, 0.405389, 0.150292], [0.929644, 0.411479, 0.145367], [0.932737, 0.417627, 0.140417], [0.935747, 0.423831, 0.135440], [0.938675, 0.430091, 0.130438], [0.941521, 0.436405, 0.125409], [0.944285, 0.442772, 0.120354], [0.946965, 0.449191, 0.115272], [0.949562, 0.455660, 0.110164], [0.952075, 0.462178, 0.105031], [0.954506, 0.468744, 0.099874], [0.956852, 0.475356, 0.094695], [0.959114, 0.482014, 0.089499], [0.961293, 0.488716, 0.084289], [0.963387, 0.495462, 0.079073], [0.965397, 0.502249, 0.073859], [0.967322, 0.509078, 0.068659], [0.969163, 0.515946, 0.063488], [0.970919, 0.522853, 0.058367], [0.972590, 0.529798, 0.053324], [0.974176, 0.536780, 0.048392], [0.975677, 0.543798, 0.043618], [0.977092, 0.550850, 0.039050], [0.978422, 0.557937, 0.034931], [0.979666, 0.565057, 0.031409], [0.980824, 0.572209, 0.028508], [0.981895, 0.579392, 0.026250], [0.982881, 0.586606, 0.024661], [0.983779, 0.593849, 0.023770], [0.984591, 0.601122, 0.023606], [0.985315, 0.608422, 0.024202], [0.985952, 0.615750, 0.025592], [0.986502, 0.623105, 0.027814], [0.986964, 0.630485, 0.030908], [0.987337, 0.637890, 0.034916], [0.987622, 0.645320, 0.039886], [0.987819, 0.652773, 0.045581], [0.987926, 0.660250, 0.051750], [0.987945, 0.667748, 0.058329], [0.987874, 0.675267, 0.065257], [0.987714, 0.682807, 0.072489], [0.987464, 0.690366, 0.079990], [0.987124, 0.697944, 0.087731], [0.986694, 0.705540, 0.095694], [0.986175, 0.713153, 0.103863], [0.985566, 0.720782, 0.112229], [0.984865, 0.728427, 0.120785], [0.984075, 0.736087, 0.129527], [0.983196, 0.743758, 0.138453], [0.982228, 0.751442, 0.147565], [0.981173, 0.759135, 0.156863], [0.980032, 0.766837, 0.166353], [0.978806, 0.774545, 0.176037], [0.977497, 0.782258, 0.185923], [0.976108, 0.789974, 0.196018], [0.974638, 0.797692, 0.206332], [0.973088, 0.805409, 0.216877], [0.971468, 0.813122, 0.227658], [0.969783, 0.820825, 0.238686], [0.968041, 0.828515, 0.249972], [0.966243, 0.836191, 0.261534], [0.964394, 0.843848, 0.273391], [0.962517, 0.851476, 0.285546], [0.960626, 0.859069, 0.298010], [0.958720, 0.866624, 0.310820], [0.956834, 0.874129, 0.323974], [0.954997, 0.881569, 0.337475], [0.953215, 0.888942, 0.351369], [0.951546, 0.896226, 0.365627], [0.950018, 0.903409, 0.380271], [0.948683, 0.910473, 0.395289], [0.947594, 0.917399, 0.410665], [0.946809, 0.924168, 0.426373], [0.946392, 0.930761, 0.442367], [0.946403, 0.937159, 0.458592], [0.946903, 0.943348, 0.474970], [0.947937, 0.949318, 0.491426], [0.949545, 0.955063, 0.507860], [0.951740, 0.960587, 0.524203], [0.954529, 0.965896, 0.540361], [0.957896, 0.971003, 0.556275], [0.961812, 0.975924, 0.571925], [0.966249, 0.980678, 0.587206], [0.971162, 0.985282, 0.602154], [0.976511, 0.989753, 0.616760], [0.982257, 0.994109, 0.631017], [0.988362, 0.998364, 0.644924]] plasma = [[0.050383, 0.029803, 0.527975], [0.063536, 0.028426, 0.533124], [0.075353, 0.027206, 0.538007], [0.086222, 0.026125, 0.542658], [0.096379, 0.025165, 0.547103], [0.105980, 0.024309, 0.551368], [0.115124, 0.023556, 0.555468], [0.123903, 0.022878, 0.559423], [0.132381, 0.022258, 0.563250], [0.140603, 0.021687, 0.566959], [0.148607, 0.021154, 0.570562], [0.156421, 0.020651, 0.574065], [0.164070, 0.020171, 0.577478], [0.171574, 0.019706, 0.580806], [0.178950, 0.019252, 0.584054], [0.186213, 0.018803, 0.587228], [0.193374, 0.018354, 0.590330], [0.200445, 0.017902, 0.593364], [0.207435, 0.017442, 0.596333], [0.214350, 0.016973, 0.599239], [0.221197, 0.016497, 0.602083], [0.227983, 0.016007, 0.604867], [0.234715, 0.015502, 0.607592], [0.241396, 0.014979, 0.610259], [0.248032, 0.014439, 0.612868], [0.254627, 0.013882, 0.615419], [0.261183, 0.013308, 0.617911], [0.267703, 0.012716, 0.620346], [0.274191, 0.012109, 0.622722], [0.280648, 0.011488, 0.625038], [0.287076, 0.010855, 0.627295], [0.293478, 0.010213, 0.629490], [0.299855, 0.009561, 0.631624], [0.306210, 0.008902, 0.633694], [0.312543, 0.008239, 0.635700], [0.318856, 0.007576, 0.637640], [0.325150, 0.006915, 0.639512], [0.331426, 0.006261, 0.641316], [0.337683, 0.005618, 0.643049], [0.343925, 0.004991, 0.644710], [0.350150, 0.004382, 0.646298], [0.356359, 0.003798, 0.647810], [0.362553, 0.003243, 0.649245], [0.368733, 0.002724, 0.650601], [0.374897, 0.002245, 0.651876], [0.381047, 0.001814, 0.653068], [0.387183, 0.001434, 0.654177], [0.393304, 0.001114, 0.655199], [0.399411, 0.000859, 0.656133], [0.405503, 0.000678, 0.656977], [0.411580, 0.000577, 0.657730], [0.417642, 0.000564, 0.658390], [0.423689, 0.000646, 0.658956], [0.429719, 0.000831, 0.659425], [0.435734, 0.001127, 0.659797], [0.441732, 0.001540, 0.660069], [0.447714, 0.002080, 0.660240], [0.453677, 0.002755, 0.660310], [0.459623, 0.003574, 0.660277], [0.465550, 0.004545, 0.660139], [0.471457, 0.005678, 0.659897], [0.477344, 0.006980, 0.659549], [0.483210, 0.008460, 0.659095], [0.489055, 0.010127, 0.658534], [0.494877, 0.011990, 0.657865], [0.500678, 0.014055, 0.657088], [0.506454, 0.016333, 0.656202], [0.512206, 0.018833, 0.655209], [0.517933, 0.021563, 0.654109], [0.523633, 0.024532, 0.652901], [0.529306, 0.027747, 0.651586], [0.534952, 0.031217, 0.650165], [0.540570, 0.034950, 0.648640], [0.546157, 0.038954, 0.647010], [0.551715, 0.043136, 0.645277], [0.557243, 0.047331, 0.643443], [0.562738, 0.051545, 0.641509], [0.568201, 0.055778, 0.639477], [0.573632, 0.060028, 0.637349], [0.579029, 0.064296, 0.635126], [0.584391, 0.068579, 0.632812], [0.589719, 0.072878, 0.630408], [0.595011, 0.077190, 0.627917], [0.600266, 0.081516, 0.625342], [0.605485, 0.085854, 0.622686], [0.610667, 0.090204, 0.619951], [0.615812, 0.094564, 0.617140], [0.620919, 0.098934, 0.614257], [0.625987, 0.103312, 0.611305], [0.631017, 0.107699, 0.608287], [0.636008, 0.112092, 0.605205], [0.640959, 0.116492, 0.602065], [0.645872, 0.120898, 0.598867], [0.650746, 0.125309, 0.595617], [0.655580, 0.129725, 0.592317], [0.660374, 0.134144, 0.588971], [0.665129, 0.138566, 0.585582], [0.669845, 0.142992, 0.582154], [0.674522, 0.147419, 0.578688], [0.679160, 0.151848, 0.575189], [0.683758, 0.156278, 0.571660], [0.688318, 0.160709, 0.568103], [0.692840, 0.165141, 0.564522], [0.697324, 0.169573, 0.560919], [0.701769, 0.174005, 0.557296], [0.706178, 0.178437, 0.553657], [0.710549, 0.182868, 0.550004], [0.714883, 0.187299, 0.546338], [0.719181, 0.191729, 0.542663], [0.723444, 0.196158, 0.538981], [0.727670, 0.200586, 0.535293], [0.731862, 0.205013, 0.531601], [0.736019, 0.209439, 0.527908], [0.740143, 0.213864, 0.524216], [0.744232, 0.218288, 0.520524], [0.748289, 0.222711, 0.516834], [0.752312, 0.227133, 0.513149], [0.756304, 0.231555, 0.509468], [0.760264, 0.235976, 0.505794], [0.764193, 0.240396, 0.502126], [0.768090, 0.244817, 0.498465], [0.771958, 0.249237, 0.494813], [0.775796, 0.253658, 0.491171], [0.779604, 0.258078, 0.487539], [0.783383, 0.262500, 0.483918], [0.787133, 0.266922, 0.480307], [0.790855, 0.271345, 0.476706], [0.794549, 0.275770, 0.473117], [0.798216, 0.280197, 0.469538], [0.801855, 0.284626, 0.465971], [0.805467, 0.289057, 0.462415], [0.809052, 0.293491, 0.458870], [0.812612, 0.297928, 0.455338], [0.816144, 0.302368, 0.451816], [0.819651, 0.306812, 0.448306], [0.823132, 0.311261, 0.444806], [0.826588, 0.315714, 0.441316], [0.830018, 0.320172, 0.437836], [0.833422, 0.324635, 0.434366], [0.836801, 0.329105, 0.430905], [0.840155, 0.333580, 0.427455], [0.843484, 0.338062, 0.424013], [0.846788, 0.342551, 0.420579], [0.850066, 0.347048, 0.417153], [0.853319, 0.351553, 0.413734], [0.856547, 0.356066, 0.410322], [0.859750, 0.360588, 0.406917], [0.862927, 0.365119, 0.403519], [0.866078, 0.369660, 0.400126], [0.869203, 0.374212, 0.396738], [0.872303, 0.378774, 0.393355], [0.875376, 0.383347, 0.389976], [0.878423, 0.387932, 0.386600], [0.881443, 0.392529, 0.383229], [0.884436, 0.397139, 0.379860], [0.887402, 0.401762, 0.376494], [0.890340, 0.406398, 0.373130], [0.893250, 0.411048, 0.369768], [0.896131, 0.415712, 0.366407], [0.898984, 0.420392, 0.363047], [0.901807, 0.425087, 0.359688], [0.904601, 0.429797, 0.356329], [0.907365, 0.434524, 0.352970], [0.910098, 0.439268, 0.349610], [0.912800, 0.444029, 0.346251], [0.915471, 0.448807, 0.342890], [0.918109, 0.453603, 0.339529], [0.920714, 0.458417, 0.336166], [0.923287, 0.463251, 0.332801], [0.925825, 0.468103, 0.329435], [0.928329, 0.472975, 0.326067], [0.930798, 0.477867, 0.322697], [0.933232, 0.482780, 0.319325], [0.935630, 0.487712, 0.315952], [0.937990, 0.492667, 0.312575], [0.940313, 0.497642, 0.309197], [0.942598, 0.502639, 0.305816], [0.944844, 0.507658, 0.302433], [0.947051, 0.512699, 0.299049], [0.949217, 0.517763, 0.295662], [0.951344, 0.522850, 0.292275], [0.953428, 0.527960, 0.288883], [0.955470, 0.533093, 0.285490], [0.957469, 0.538250, 0.282096], [0.959424, 0.543431, 0.278701], [0.961336, 0.548636, 0.275305], [0.963203, 0.553865, 0.271909], [0.965024, 0.559118, 0.268513], [0.966798, 0.564396, 0.265118], [0.968526, 0.569700, 0.261721], [0.970205, 0.575028, 0.258325], [0.971835, 0.580382, 0.254931], [0.973416, 0.585761, 0.251540], [0.974947, 0.591165, 0.248151], [0.976428, 0.596595, 0.244767], [0.977856, 0.602051, 0.241387], [0.979233, 0.607532, 0.238013], [0.980556, 0.613039, 0.234646], [0.981826, 0.618572, 0.231287], [0.983041, 0.624131, 0.227937], [0.984199, 0.629718, 0.224595], [0.985301, 0.635330, 0.221265], [0.986345, 0.640969, 0.217948], [0.987332, 0.646633, 0.214648], [0.988260, 0.652325, 0.211364], [0.989128, 0.658043, 0.208100], [0.989935, 0.663787, 0.204859], [0.990681, 0.669558, 0.201642], [0.991365, 0.675355, 0.198453], [0.991985, 0.681179, 0.195295], [0.992541, 0.687030, 0.192170],
# -*- coding: utf-8 -*- # Copyright 2017 Google LLC All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import sys import unittest import mock class TestGeoPoint(unittest.TestCase): @staticmethod def _get_target_class(): from google.cloud.firestore_v1._helpers import GeoPoint return GeoPoint def _make_one(self, *args, **kwargs): klass = self._get_target_class() return klass(*args, **kwargs) def test_constructor(self): lat = 81.25 lng = 359.984375 geo_pt = self._make_one(lat, lng) self.assertEqual(geo_pt.latitude, lat) self.assertEqual(geo_pt.longitude, lng) def test_to_protobuf(self): from google.type import latlng_pb2 lat = 0.015625 lng = 20.03125 geo_pt = self._make_one(lat, lng) result = geo_pt.to_protobuf() geo_pt_pb = latlng_pb2.LatLng(latitude=lat, longitude=lng) self.assertEqual(result, geo_pt_pb) def test___eq__(self): lat = 0.015625 lng = 20.03125 geo_pt1 = self._make_one(lat, lng) geo_pt2 = self._make_one(lat, lng) self.assertEqual(geo_pt1, geo_pt2) def test___eq__type_differ(self): lat = 0.015625 lng = 20.03125 geo_pt1 = self._make_one(lat, lng) geo_pt2 = object() self.assertNotEqual(geo_pt1, geo_pt2) self.assertIs(geo_pt1.__eq__(geo_pt2), NotImplemented) def test___ne__same_value(self): lat = 0.015625 lng = 20.03125 geo_pt1 = self._make_one(lat, lng) geo_pt2 = self._make_one(lat, lng) comparison_val = geo_pt1 != geo_pt2 self.assertFalse(comparison_val) def test___ne__(self): geo_pt1 = self._make_one(0.0, 1.0) geo_pt2 = self._make_one(2.0, 3.0) self.assertNotEqual(geo_pt1, geo_pt2) def test___ne__type_differ(self): lat = 0.015625 lng = 20.03125 geo_pt1 = self._make_one(lat, lng) geo_pt2 = object() self.assertNotEqual(geo_pt1, geo_pt2) self.assertIs(geo_pt1.__ne__(geo_pt2), NotImplemented) class Test_verify_path(unittest.TestCase): @staticmethod def _call_fut(path, is_collection): from google.cloud.firestore_v1._helpers import verify_path return verify_path(path, is_collection) def test_empty(self): path = () with self.assertRaises(ValueError): self._call_fut(path, True) with self.assertRaises(ValueError): self._call_fut(path, False) def test_wrong_length_collection(self): path = ("foo", "bar") with self.assertRaises(ValueError): self._call_fut(path, True) def test_wrong_length_document(self): path = ("Kind",) with self.assertRaises(ValueError): self._call_fut(path, False) def test_wrong_type_collection(self): path = (99, "ninety-nine", "zap") with self.assertRaises(ValueError): self._call_fut(path, True) def test_wrong_type_document(self): path = ("Users", "Ada", "Candy", {}) with self.assertRaises(ValueError): self._call_fut(path, False) def test_success_collection(self): path = ("Computer", "Magic", "Win") ret_val = self._call_fut(path, True) # NOTE: We are just checking that it didn't fail. self.assertIsNone(ret_val) def test_success_document(self): path = ("Tokenizer", "Seventeen", "Cheese", "Burger") ret_val = self._call_fut(path, False) # NOTE: We are just checking that it didn't fail. self.assertIsNone(ret_val) class Test_encode_value(unittest.TestCase): @staticmethod def _call_fut(value): from google.cloud.firestore_v1._helpers import encode_value return encode_value(value) def test_none(self): from google.protobuf import struct_pb2 result = self._call_fut(None) expected = _value_pb(null_value=struct_pb2.NULL_VALUE) self.assertEqual(result, expected) def test_boolean(self): result = self._call_fut(True) expected = _value_pb(boolean_value=True) self.assertEqual(result, expected) def test_integer(self): value = 425178 result = self._call_fut(value) expected = _value_pb(integer_value=value) self.assertEqual(result, expected) def test_float(self): value = 123.4453125 result = self._call_fut(value) expected = _value_pb(double_value=value) self.assertEqual(result, expected) def test_datetime_with_nanos(self): from google.api_core.datetime_helpers import DatetimeWithNanoseconds from google.protobuf import timestamp_pb2 dt_seconds = 1488768504 dt_nanos = 458816991 timestamp_pb = timestamp_pb2.Timestamp(seconds=dt_seconds, nanos=dt_nanos) dt_val = DatetimeWithNanoseconds.from_timestamp_pb(timestamp_pb) result = self._call_fut(dt_val) expected = _value_pb(timestamp_value=timestamp_pb) self.assertEqual(result, expected) def test_datetime_wo_nanos(self): from google.protobuf import timestamp_pb2 dt_seconds = 1488768504 dt_nanos = 458816000 # Make sure precision is valid in microseconds too. self.assertEqual(dt_nanos % 1000, 0) dt_val = datetime.datetime.utcfromtimestamp(dt_seconds + 1e-9 * dt_nanos) result = self._call_fut(dt_val) timestamp_pb = timestamp_pb2.Timestamp(seconds=dt_seconds, nanos=dt_nanos) expected = _value_pb(timestamp_value=timestamp_pb) self.assertEqual(result, expected) def test_string(self): value = u"\u2018left quote, right quote\u2019" result = self._call_fut(value) expected = _value_pb(string_value=value) self.assertEqual(result, expected) def test_bytes(self): value = b"\xe3\xf2\xff\x00" result = self._call_fut(value) expected = _value_pb(bytes_value=value) self.assertEqual(result, expected) def test_reference_value(self): client = _make_client() value = client.document("my", "friend") result = self._call_fut(value) expected = _value_pb(reference_value=value._document_path) self.assertEqual(result, expected) def test_geo_point(self): from google.cloud.firestore_v1._helpers import GeoPoint value = GeoPoint(50.5, 88.75) result = self._call_fut(value) expected = _value_pb(geo_point_value=value.to_protobuf()) self.assertEqual(result, expected) def test_array(self): from google.cloud.firestore_v1.proto.document_pb2 import ArrayValue result = self._call_fut([99, True, 118.5]) array_pb = ArrayValue( values=[ _value_pb(integer_value=99), _value_pb(boolean_value=True), _value_pb(double_value=118.5), ] ) expected = _value_pb(array_value=array_pb) self.assertEqual(result, expected) def test_map(self): from google.cloud.firestore_v1.proto.document_pb2 import MapValue result = self._call_fut({"abc": 285, "def": b"piglatin"}) map_pb = MapValue( fields={ "abc": _value_pb(integer_value=285), "def": _value_pb(bytes_value=b"piglatin"), } ) expected = _value_pb(map_value=map_pb) self.assertEqual(result, expected) def test_bad_type(self): value = object() with self.assertRaises(TypeError): self._call_fut(value) class Test_encode_dict(unittest.TestCase): @staticmethod def _call_fut(values_dict): from google.cloud.firestore_v1._helpers import encode_dict return encode_dict(values_dict) def test_many_types(self): from google.protobuf import struct_pb2 from google.protobuf import timestamp_pb2 from google.cloud.firestore_v1.proto.document_pb2 import ArrayValue from google.cloud.firestore_v1.proto.document_pb2 import MapValue dt_seconds = 1497397225 dt_nanos = 465964000 # Make sure precision is valid in microseconds too. self.assertEqual(dt_nanos % 1000, 0) dt_val = datetime.datetime.utcfromtimestamp(dt_seconds + 1e-9 * dt_nanos) client = _make_client() document = client.document("most", "adjective", "thing", "here") values_dict = { "foo": None, "bar": True, "baz": 981, "quux": 2.875, "quuz": dt_val, "corge": u"\N{snowman}", "grault": b"\xe2\x98\x83", "wibble": document, "garply": [u"fork", 4.0], "waldo": {"fred": u"zap", "thud": False}, } encoded_dict = self._call_fut(values_dict) expected_dict = { "foo": _value_pb(null_value=struct_pb2.NULL_VALUE), "bar": _value_pb(boolean_value=True), "baz": _value_pb(integer_value=981), "quux": _value_pb(double_value=2.875), "quuz": _value_pb( timestamp_value=timestamp_pb2.Timestamp( seconds=dt_seconds, nanos=dt_nanos ) ), "corge": _value_pb(string_value=u"\N{snowman}"), "grault": _value_pb(bytes_value=b"\xe2\x98\x83"), "wibble": _value_pb(reference_value=document._document_path), "garply": _value_pb( array_value=ArrayValue( values=[ _value_pb(string_value=u"fork"), _value_pb(double_value=4.0), ] ) ), "waldo": _value_pb( map_value=MapValue( fields={ "fred": _value_pb(string_value=u"zap"), "thud": _value_pb(boolean_value=False), } ) ), } self.assertEqual(encoded_dict, expected_dict) class Test_reference_value_to_document(unittest.TestCase): @staticmethod def _call_fut(reference_value, client): from google.cloud.firestore_v1._helpers import reference_value_to_document return reference_value_to_document(reference_value, client) def test_bad_format(self): from google.cloud.firestore_v1._helpers import BAD_REFERENCE_ERROR reference_value = "not/the/right/format" with self.assertRaises(ValueError) as exc_info: self._call_fut(reference_value, None) err_msg = BAD_REFERENCE_ERROR.format(reference_value) self.assertEqual(exc_info.exception.args, (err_msg,)) def test_same_client(self): from google.cloud.firestore_v1.document import DocumentReference client = _make_client() document = client.document("that", "this") reference_value = document._document_path new_document = self._call_fut(reference_value, client) self.assertIsNot(new_document, document) self.assertIsInstance(new_document, DocumentReference) self.assertIs(new_document._client, client) self.assertEqual(new_document._path, document._path) def test_different_client(self): from google.cloud.firestore_v1._helpers import WRONG_APP_REFERENCE client1 = _make_client(project="kirk") document = client1.document("tin", "foil") reference_value = document._document_path client2 = _make_client(project="spock") with self.assertRaises(ValueError) as exc_info: self._call_fut(reference_value, client2) err_msg = WRONG_APP_REFERENCE.format(reference_value, client2._database_string) self.assertEqual(exc_info.exception.args, (err_msg,)) class Test_decode_value(unittest.TestCase): @staticmethod def _call_fut(value, client=mock.sentinel.client): from google.cloud.firestore_v1._helpers import decode_value return decode_value(value, client) def test_none(self): from google.protobuf import struct_pb2 value = _value_pb(null_value=struct_pb2.NULL_VALUE) self.assertIsNone(self._call_fut(value)) def test_bool(self): value1 = _value_pb(boolean_value=True) self.assertTrue(self._call_fut(value1)) value2 = _value_pb(boolean_value=False) self.assertFalse(self._call_fut(value2)) def test_int(self): int_val = 29871 value = _value_pb(integer_value=int_val) self.assertEqual(self._call_fut(value), int_val) def test_float(self): float_val = 85.9296875 value = _value_pb(double_value=float_val) self.assertEqual(self._call_fut(value), float_val) @unittest.skipIf( (3,) <= sys.version_info < (3, 4, 4), "known datetime bug (bpo-23517) in Python" ) def test_datetime(self): from google.api_core.datetime_helpers import DatetimeWithNanoseconds from google.protobuf import timestamp_pb2 dt_seconds = 552855006 dt_nanos = 766961828 timestamp_pb = timestamp_pb2.Timestamp(seconds=dt_seconds, nanos=dt_nanos) value = _value_pb(timestamp_value=timestamp_pb) expected_dt_val = DatetimeWithNanoseconds.from_timestamp_pb(timestamp_pb) self.assertEqual(self._call_fut(value), expected_dt_val) def test_unicode(self): unicode_val = u"zorgon" value = _value_pb(string_value=unicode_val) self.assertEqual(self._call_fut(value), unicode_val) def test_bytes(self): bytes_val = b"abc\x80" value = _value_pb(bytes_value=bytes_val) self.assertEqual(self._call_fut(value), bytes_val) def test_reference(self): from google.cloud.firestore_v1.document import DocumentReference client = _make_client() path = (u"then", u"there-was-one") document = client.document(*path) ref_string = document._document_path value = _value_pb(reference_value=ref_string) result = self._call_fut(value, client) self.assertIsInstance(result, DocumentReference) self.assertIs(result._client, client) self.assertEqual(result._path, path) def test_geo_point(self): from google.cloud.firestore_v1._helpers import GeoPoint geo_pt = GeoPoint(latitude=42.5, longitude=99.0625) value = _value_pb(geo_point_value=geo_pt.to_protobuf()) self.assertEqual(self._call_fut(value), geo_pt) def test_array(self): from google.cloud.firestore_v1.proto import document_pb2 sub_value1 = _value_pb(boolean_value=True) sub_value2 = _value_pb(double_value=14.1396484375) sub_value3 = _value_pb(bytes_value=b"\xde\xad\xbe\xef") array_pb = document_pb2.ArrayValue(values=[sub_value1, sub_value2, sub_value3]) value = _value_pb(array_value=array_pb) expected = [ sub_value1.boolean_value, sub_value2.double_value, sub_value3.bytes_value, ] self.assertEqual(self._call_fut(value), expected) def test_map(self): from google.cloud.firestore_v1.proto import document_pb2 sub_value1 = _value_pb(integer_value=187680) sub_value2 = _value_pb(string_value=u"how low can you go?") map_pb = document_pb2.MapValue( fields={"first": sub_value1, "second": sub_value2} ) value = _value_pb(map_value=map_pb) expected = { "first": sub_value1.integer_value, "second": sub_value2.string_value, } self.assertEqual(self._call_fut(value), expected) def test_nested_map(self): from google.cloud.firestore_v1.proto import document_pb2 actual_value1 = 1009876 actual_value2 = u"hey you guys" actual_value3 = 90.875 map_pb1 = document_pb2.MapValue( fields={ "lowest": _value_pb(integer_value=actual_value1), "aside": _value_pb(string_value=actual_value2), } ) map_pb2 = document_pb2.MapValue( fields={ "middle": _value_pb(map_value=map_pb1), "aside": _value_pb(boolean_value=True), } ) map_pb3 = document_pb2.MapValue( fields={ "highest": _value_pb(map_value=map_pb2), "aside": _value_pb(double_value=actual_value3), } ) value = _value_pb(map_value=map_pb3) expected = { "highest": { "middle": {"lowest": actual_value1, "aside": actual_value2}, "aside": True, }, "aside": actual_value3, } self.assertEqual(self._call_fut(value), expected) def test_unset_value_type(self): with self.assertRaises(ValueError): self._call_fut(_value_pb()) def test_unknown_value_type(self): value_pb = mock.Mock(spec=["WhichOneof"]) value_pb.WhichOneof.return_value = "zoob_value" with self.assertRaises(ValueError): self._call_fut(value_pb) value_pb.WhichOneof.assert_called_once_with("value_type") class Test_decode_dict(unittest.TestCase): @staticmethod def _call_fut(value_fields, client=mock.sentinel.client): from google.cloud.firestore_v1._helpers import decode_dict return decode_dict(value_fields, client) @unittest.skipIf( (3,) <= sys.version_info < (3, 4, 4), "known datetime bug (bpo-23517) in Python" ) def test_many_types(self): from google.protobuf import struct_pb2 from google.protobuf import timestamp_pb2 from google.cloud.firestore_v1.proto.document_pb2 import ArrayValue from google.cloud.firestore_v1.proto.document_pb2 import MapValue from google.cloud._helpers import UTC from google.cloud.firestore_v1.field_path import FieldPath dt_seconds = 1394037350 dt_nanos = 667285000 # Make sure precision is valid in microseconds too. self.assertEqual(dt_nanos % 1000, 0) dt_val = datetime.datetime.utcfromtimestamp( dt_seconds + 1e-9 * dt_nanos ).replace(tzinfo=UTC) value_fields = { "foo": _value_pb(null_value=struct_pb2.NULL_VALUE), "bar": _value_pb(boolean_value=True), "baz": _value_pb(integer_value=981), "quux": _value_pb(double_value=2.875), "quuz": _value_pb( timestamp_value=timestamp_pb2.Timestamp( seconds=dt_seconds, nanos=dt_nanos ) ), "corge": _value_pb(string_value=u"\N{snowman}"), "grault": _value_pb(bytes_value=b"\xe2\x98\x83"), "garply": _value_pb( array_value=ArrayValue( values=[ _value_pb(string_value=u"fork"), _value_pb(double_value=4.0), ] ) ), "waldo": _value_pb( map_value=MapValue( fields={
<gh_stars>1-10 # django-openid-auth - OpenID integration for django.contrib.auth # # Copyright (C) 2009-2010 Canonical Ltd. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import cgi import unittest from urllib import quote_plus from django.conf import settings from django.contrib.auth.models import User, Group from django.http import HttpRequest, HttpResponse from django.test import TestCase from openid.consumer.consumer import Consumer, SuccessResponse from openid.consumer.discover import OpenIDServiceEndpoint from openid.extensions import ax, sreg, pape from openid.fetchers import ( HTTPFetcher, HTTPFetchingError, HTTPResponse, setDefaultFetcher) from openid.oidutil import importElementTree from openid.server.server import BROWSER_REQUEST_MODES, ENCODE_URL, Server from openid.store.memstore import MemoryStore from openid.message import OPENID1_URL_LIMIT, IDENTIFIER_SELECT from django_openid_auth import teams from django_openid_auth.models import UserOpenID from django_openid_auth.views import ( sanitise_redirect_url, make_consumer, ) from django_openid_auth.auth import OpenIDBackend from django_openid_auth.signals import openid_login_complete from django_openid_auth.store import DjangoOpenIDStore from django_openid_auth.exceptions import ( MissingUsernameViolation, DuplicateUsernameViolation, MissingPhysicalMultiFactor, RequiredAttributeNotReturned, ) ET = importElementTree() class StubOpenIDProvider(HTTPFetcher): def __init__(self, base_url): self.store = MemoryStore() self.identity_url = base_url + 'identity' self.localid_url = base_url + 'localid' self.endpoint_url = base_url + 'endpoint' self.server = Server(self.store, self.endpoint_url) self.last_request = None self.type_uris = ['http://specs.openid.net/auth/2.0/signon'] def fetch(self, url, body=None, headers=None): if url == self.identity_url: # Serve an XRDS document directly, pointing at our endpoint. type_uris = ['<Type>%s</Type>' % uri for uri in self.type_uris] return HTTPResponse( url, 200, {'content-type': 'application/xrds+xml'}, """\ <?xml version="1.0"?> <xrds:XRDS xmlns="xri://$xrd*($v*2.0)" xmlns:xrds="xri://$xrds"> <XRD> <Service priority="0"> %s <URI>%s</URI> <LocalID>%s</LocalID> </Service> </XRD> </xrds:XRDS> """ % ('\n'.join(type_uris), self.endpoint_url, self.localid_url)) elif url.startswith(self.endpoint_url): # Gather query parameters query = {} if '?' in url: query.update(cgi.parse_qsl(url.split('?', 1)[1])) if body is not None: query.update(cgi.parse_qsl(body)) self.last_request = self.server.decodeRequest(query) # The browser based requests should not be handled through # the fetcher interface. assert self.last_request.mode not in BROWSER_REQUEST_MODES response = self.server.handleRequest(self.last_request) webresponse = self.server.encodeResponse(response) return HTTPResponse(url, webresponse.code, webresponse.headers, webresponse.body) else: raise HTTPFetchingError('unknown URL %s' % url) def parseFormPost(self, content): """Parse an HTML form post to create an OpenID request.""" # Hack to make the javascript XML compliant ... content = content.replace('i < elements.length', 'i &lt; elements.length') tree = ET.XML(content) form = tree.find('.//form') assert form is not None, 'No form in document' assert form.get('action') == self.endpoint_url, ( 'Form posts to %s instead of %s' % (form.get('action'), self.endpoint_url)) query = {} for input in form.findall('input'): if input.get('type') != 'hidden': continue query[input.get('name').encode('UTF-8')] = \ input.get('value').encode('UTF-8') self.last_request = self.server.decodeRequest(query) return self.last_request class DummyDjangoRequest(object): def __init__(self, request_path): self.request_path = request_path self.META = { 'HTTP_HOST': "localhost", 'SCRIPT_NAME': "http://localhost", 'SERVER_PROTOCOL': "http", } self.POST = { 'openid_identifier': "http://example.com/identity", } self.GET = {} self.session = {} def get_full_path(self): return self.META['SCRIPT_NAME'] + self.request_path def build_absolute_uri(self): return self.META['SCRIPT_NAME'] + self.request_path def _combined_request(self): request = {} request.update(self.POST) request.update(self.GET) return request REQUEST = property(_combined_request) class RelyingPartyTests(TestCase): urls = 'django_openid_auth.tests.urls' def setUp(self): super(RelyingPartyTests, self).setUp() self.provider = StubOpenIDProvider('http://example.com/') self.req = DummyDjangoRequest('http://localhost/') self.endpoint = OpenIDServiceEndpoint() self.endpoint.claimed_id = 'http://example.com/identity' self.endpoint.server_url = 'http://example.com/' self.consumer = make_consumer(self.req) self.server = Server(DjangoOpenIDStore()) setDefaultFetcher(self.provider, wrap_exceptions=False) self.old_login_redirect_url = getattr(settings, 'LOGIN_REDIRECT_URL', '/accounts/profile/') self.old_create_users = getattr(settings, 'OPENID_CREATE_USERS', False) self.old_strict_usernames = getattr(settings, 'OPENID_STRICT_USERNAMES', False) self.old_update_details = getattr(settings, 'OPENID_UPDATE_DETAILS_FROM_SREG', False) self.old_sso_server_url = getattr(settings, 'OPENID_SSO_SERVER_URL', None) self.old_teams_map = getattr(settings, 'OPENID_LAUNCHPAD_TEAMS_MAPPING', {}) self.old_use_as_admin_login = getattr(settings, 'OPENID_USE_AS_ADMIN_LOGIN', False) self.old_follow_renames = getattr(settings, 'OPENID_FOLLOW_RENAMES', False) self.old_physical_multifactor = getattr(settings, 'OPENID_PHYSICAL_MULTIFACTOR_REQUIRED', False) self.old_login_render_failure = getattr(settings, 'OPENID_RENDER_FAILURE', None) self.old_consumer_complete = Consumer.complete self.old_required_fields = getattr( settings, 'OPENID_SREG_REQUIRED_FIELDS', []) settings.OPENID_CREATE_USERS = False settings.OPENID_STRICT_USERNAMES = False settings.OPENID_UPDATE_DETAILS_FROM_SREG = False settings.OPENID_SSO_SERVER_URL = None settings.OPENID_LAUNCHPAD_TEAMS_MAPPING = {} settings.OPENID_USE_AS_ADMIN_LOGIN = False settings.OPENID_FOLLOW_RENAMES = False settings.OPENID_PHYSICAL_MULTIFACTOR_REQUIRED = False settings.OPENID_SREG_REQUIRED_FIELDS = [] def tearDown(self): settings.LOGIN_REDIRECT_URL = self.old_login_redirect_url settings.OPENID_CREATE_USERS = self.old_create_users settings.OPENID_STRICT_USERNAMES = self.old_strict_usernames settings.OPENID_UPDATE_DETAILS_FROM_SREG = self.old_update_details settings.OPENID_SSO_SERVER_URL = self.old_sso_server_url settings.OPENID_LAUNCHPAD_TEAMS_MAPPING = self.old_teams_map settings.OPENID_USE_AS_ADMIN_LOGIN = self.old_use_as_admin_login settings.OPENID_FOLLOW_RENAMES = self.old_follow_renames settings.OPENID_PHYSICAL_MULTIFACTOR_REQUIRED = self.old_physical_multifactor settings.OPENID_RENDER_FAILURE = self.old_login_render_failure Consumer.complete = self.old_consumer_complete settings.OPENID_SREG_REQUIRED_FIELDS = self.old_required_fields setDefaultFetcher(None) super(RelyingPartyTests, self).tearDown() def complete(self, openid_response): """Complete an OpenID authentication request.""" # The server can generate either a redirect or a form post # here. For simplicity, force generation of a redirect. openid_response.whichEncoding = lambda: ENCODE_URL webresponse = self.provider.server.encodeResponse(openid_response) self.assertEquals(webresponse.code, 302) redirect_to = webresponse.headers['location'] self.assertTrue(redirect_to.startswith( 'http://testserver/openid/complete/')) return self.client.get('/openid/complete/', dict(cgi.parse_qsl(redirect_to.split('?', 1)[1]))) def test_login(self): user = User.objects.create_user('someuser', '<EMAIL>') useropenid = UserOpenID( user=user, claimed_id='http://example.com/identity', display_id='http://example.com/identity') useropenid.save() # The login form is displayed: response = self.client.get('/openid/login/') self.assertTemplateUsed(response, 'openid/login.html') # Posting in an identity URL begins the authentication request: response = self.client.post('/openid/login/', {'openid_identifier': 'http://example.com/identity', 'next': '/getuser/'}) self.assertContains(response, 'OpenID transaction in progress') openid_request = self.provider.parseFormPost(response.content) self.assertEquals(openid_request.mode, 'checkid_setup') self.assertTrue(openid_request.return_to.startswith( 'http://testserver/openid/complete/')) # Complete the request. The user is redirected to the next URL. openid_response = openid_request.answer(True) response = self.complete(openid_response) self.assertRedirects(response, 'http://testserver/getuser/') # And they are now logged in: response = self.client.get('/getuser/') self.assertEquals(response.content, 'someuser') def test_login_no_next(self): """Logins with no next parameter redirect to LOGIN_REDIRECT_URL.""" user = User.objects.create_user('someuser', '<EMAIL>') useropenid = UserOpenID( user=user, claimed_id='http://example.com/identity', display_id='http://example.com/identity') useropenid.save() settings.LOGIN_REDIRECT_URL = '/getuser/' response = self.client.post('/openid/login/', {'openid_identifier': 'http://example.com/identity'}) self.assertContains(response, 'OpenID transaction in progress') openid_request = self.provider.parseFormPost(response.content) self.assertEquals(openid_request.mode, 'checkid_setup') self.assertTrue(openid_request.return_to.startswith( 'http://testserver/openid/complete/')) # Complete the request. The user is redirected to the next URL. openid_response = openid_request.answer(True) response = self.complete(openid_response) self.assertRedirects( response, 'http://testserver' + settings.LOGIN_REDIRECT_URL) def test_login_sso(self): settings.OPENID_SSO_SERVER_URL = 'http://example.com/identity' user = User.objects.create_user('someuser', '<EMAIL>') useropenid = UserOpenID( user=user, claimed_id='http://example.com/identity', display_id='http://example.com/identity') useropenid.save() # Requesting the login form immediately begins an # authentication request. response = self.client.get('/openid/login/', {'next': '/getuser/'}) self.assertEquals(response.status_code, 200) self.assertContains(response, 'OpenID transaction in progress') openid_request = self.provider.parseFormPost(response.content) self.assertEquals(openid_request.mode, 'checkid_setup') self.assertTrue(openid_request.return_to.startswith( 'http://testserver/openid/complete/')) # Complete the request. The user is redirected to the next URL. openid_response = openid_request.answer(True) response = self.complete(openid_response) self.assertRedirects(response, 'http://testserver/getuser/') # And they are now logged in: response = self.client.get('/getuser/') self.assertEquals(response.content, 'someuser') def test_login_create_users(self): settings.OPENID_CREATE_USERS = True # Create a user with the same name as we'll pass back via sreg. User.objects.create_user('someuser', '<EMAIL>') # Posting in an identity URL begins the authentication request: response = self.client.post('/openid/login/', {'openid_identifier': 'http://example.com/identity', 'next': '/getuser/'}) self.assertContains(response, 'OpenID transaction in progress') # Complete the request, passing back some simple registration # data. The user is redirected to the next URL. openid_request = self.provider.parseFormPost(response.content) sreg_request = sreg.SRegRequest.fromOpenIDRequest(openid_request) openid_response = openid_request.answer(True) sreg_response = sreg.SRegResponse.extractResponse( sreg_request, {'nickname': 'someuser', 'fullname': '<NAME>', 'email': '<EMAIL>'}) openid_response.addExtension(sreg_response) response = self.complete(openid_response) self.assertRedirects(response, 'http://testserver/getuser/') # And they are now logged in as a new user (they haven't taken # over the existing "someuser" user). response = self.client.get('/getuser/') self.assertEquals(response.content, 'someuser2') # Check the details of the new user. user = User.objects.get(username='someuser2') self.assertEquals(user.first_name, 'Some') self.assertEquals(user.last_name, 'User') self.assertEquals(user.email, '<EMAIL>') def _do_user_login(self, req_data, resp_data, use_sreg=True, use_pape=None): openid_request = self._get_login_request(req_data) openid_response = self._get_login_response(openid_request, resp_data, use_sreg, use_pape) response = self.complete(openid_response) self.assertRedirects(response, 'http://testserver/getuser/') return response def _get_login_request(self, req_data): # Posting in an identity URL begins the authentication request: response = self.client.post('/openid/login/', req_data) self.assertContains(response, 'OpenID transaction in progress') # Complete the request, passing back some simple registration # data. The user is redirected to the next URL. openid_request = self.provider.parseFormPost(response.content) return openid_request def _get_login_response(self, openid_request, resp_data, use_sreg, use_pape): openid_response = openid_request.answer(True) if use_sreg: sreg_request = sreg.SRegRequest.fromOpenIDRequest(openid_request) sreg_response = sreg.SRegResponse.extractResponse( sreg_request, resp_data) openid_response.addExtension(sreg_response) if use_pape is not None: policies = [ use_pape ] pape_response = pape.Response(auth_policies=policies) openid_response.addExtension(pape_response) return openid_response def parse_query_string(self, query_str): query_items = map(tuple, [item.split('=') for item in query_str.split('&')]) query = dict(query_items) return query def test_login_physical_multifactor_request(self): settings.OPENID_PHYSICAL_MULTIFACTOR_REQUIRED = True preferred_auth = pape.AUTH_MULTI_FACTOR_PHYSICAL self.provider.type_uris.append(pape.ns_uri) openid_req = {'openid_identifier': 'http://example.com/identity', 'next': '/getuser/'} response = self.client.post('/openid/login/', openid_req) openid_request = self.provider.parseFormPost(response.content) request_auth = openid_request.message.getArg( 'http://specs.openid.net/extensions/pape/1.0', 'preferred_auth_policies', ) self.assertEqual(request_auth, preferred_auth) def test_login_physical_multifactor_response(self): settings.OPENID_PHYSICAL_MULTIFACTOR_REQUIRED = True preferred_auth = pape.AUTH_MULTI_FACTOR_PHYSICAL self.provider.type_uris.append(pape.ns_uri) def
# Copyright 2019 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for scripts/run_e2e_tests.py.""" from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules import atexit import contextlib import functools import os import re import signal import subprocess import sys import time from core.tests import test_utils import feconf import python_utils from scripts import build from scripts import common from scripts import install_chrome_on_travis from scripts import install_third_party_libs from scripts import run_e2e_tests CHROME_DRIVER_VERSION = '77.0.3865.40' class MockProcessClass(python_utils.OBJECT): def __init__(self, clean_shutdown=True): """Create a mock process object. Attributes: poll_count: int. The number of times poll() has been called. signals_received: list(int). List of received signals (as ints) in order of receipt. kill_count: int. Number of times kill() has been called. poll_return: bool. The return value for poll(). clean_shutdown: bool. Whether to shut down when signal.SIGINT signal is received. Args: clean_shutdown: bool. Whether to shut down when SIGINT received. """ self.poll_count = 0 self.signals_received = [] self.kill_count = 0 self.poll_return = True self.clean_shutdown = clean_shutdown def kill(self): """Increment kill_count. Mocks the process being killed. """ self.kill_count += 1 def poll(self): """Increment poll_count. Mocks checking whether the process is still alive. Returns: bool. The value of self.poll_return, which mocks whether the process is still alive. """ self.poll_count += 1 return self.poll_return def send_signal(self, signal_number): """Append signal to self.signals_received. Mocks receiving a process signal. If a SIGINT signal is received (e.g. from ctrl-C) and self.clean_shutdown is True, then we set self.poll_return to False to mimic the process shutting down. Args: signal_number: int. The number of the received signal. """ self.signals_received.append(signal_number) if signal_number == signal.SIGINT and self.clean_shutdown: self.poll_return = False def wait(self): """Wait for the process completion. Mocks the process waiting for completion before it continues execution. """ return class RunE2ETestsTests(test_utils.GenericTestBase): """Test the run_e2e_tests methods.""" def setUp(self): super(RunE2ETestsTests, self).setUp() def mock_print(unused_msg): return def mock_run_cmd(unused_commands): pass def mock_check_call(unused_commands): pass def mock_build_main(args): # pylint: disable=unused-argument pass def mock_popen(args, env, shell): # pylint: disable=unused-argument return def mock_remove(unused_path): pass def mock_inplace_replace( unused_filename, unused_pattern, unused_replace): return self.popen_swap = functools.partial( self.swap_with_checks, subprocess, 'Popen', mock_popen) self.inplace_replace_swap = functools.partial( self.swap_with_checks, common, 'inplace_replace_file', mock_inplace_replace) self.mock_run_cmd = mock_run_cmd self.mock_check_call = mock_check_call self.mock_build_main = mock_build_main self.mock_remove = mock_remove self.print_swap = functools.partial( self.swap_with_checks, python_utils, 'PRINT', mock_print) self.mock_node_bin_path = 'node' self.node_bin_path_swap = self.swap( common, 'NODE_BIN_PATH', self.mock_node_bin_path) self.mock_webpack_bin_path = 'webpack' self.webpack_bin_path_swap = self.swap( run_e2e_tests, 'WEBPACK_BIN_PATH', self.mock_webpack_bin_path) self.mock_constant_file_path = 'constant.ts' self.constant_file_path_swap = self.swap( run_e2e_tests, 'CONSTANT_FILE_PATH', self.mock_constant_file_path) def test_check_screenhost_when_not_exist(self): def mock_isdir(unused_path): return False exist_swap = self.swap_with_checks( os.path, 'isdir', mock_isdir, expected_args=[(os.path.join(os.pardir, 'protractor-screenshots'),)] ) print_swap = self.print_swap(called=False) with print_swap, exist_swap: run_e2e_tests.ensure_screenshots_dir_is_removed() def test_check_screenhost_when_exist(self): screenshot_dir = os.path.join(os.pardir, 'protractor-screenshots') def mock_isdir(unused_path): return True def mock_rmdir(unused_path): return True exist_swap = self.swap_with_checks( os.path, 'isdir', mock_isdir, expected_args=[(screenshot_dir,)]) rmdir_swap = self.swap_with_checks( os, 'rmdir', mock_rmdir, expected_args=[(screenshot_dir,)]) expected_output = ( 'Note: If ADD_SCREENSHOT_REPORTER is set to true in' 'core/tests/protractor.conf.js, you can view screenshots' 'of the failed tests in ../protractor-screenshots/') print_swap = self.print_swap(expected_args=[(expected_output,)]) with print_swap, exist_swap, rmdir_swap: run_e2e_tests.ensure_screenshots_dir_is_removed() def test_cleanup_when_no_subprocess(self): def mock_kill_process_based_on_regex(unused_regex): return def mock_is_windows_os(): return False def mock_set_constants_to_default(): return subprocess_swap = self.swap(run_e2e_tests, 'SUBPROCESSES', []) google_app_engine_path = '%s/' % ( common.GOOGLE_APP_ENGINE_SDK_HOME) webdriver_download_path = '%s/selenium' % ( run_e2e_tests.WEBDRIVER_HOME_PATH) process_pattern = [ ('.*%s.*' % re.escape(google_app_engine_path),), ('.*%s.*' % re.escape(webdriver_download_path),) ] swap_kill_process = self.swap_with_checks( common, 'kill_processes_based_on_regex', mock_kill_process_based_on_regex, expected_args=process_pattern) swap_is_windows = self.swap_with_checks( common, 'is_windows_os', mock_is_windows_os) swap_set_constants_to_default = self.swap_with_checks( build, 'set_constants_to_default', mock_set_constants_to_default) with swap_kill_process, subprocess_swap, swap_is_windows: with swap_set_constants_to_default: run_e2e_tests.cleanup() def test_cleanup_when_subprocesses_exist(self): def mock_kill_process_based_on_regex(unused_regex): mock_kill_process_based_on_regex.called_times += 1 return True mock_kill_process_based_on_regex.called_times = 0 def mock_set_constants_to_default(): return mock_processes = [MockProcessClass(), MockProcessClass()] subprocess_swap = self.swap( run_e2e_tests, 'SUBPROCESSES', mock_processes) swap_kill_process = self.swap_with_checks( common, 'kill_processes_based_on_regex', mock_kill_process_based_on_regex) swap_set_constants_to_default = self.swap_with_checks( build, 'set_constants_to_default', mock_set_constants_to_default) with subprocess_swap, swap_kill_process, swap_set_constants_to_default: run_e2e_tests.cleanup() self.assertEqual( mock_kill_process_based_on_regex.called_times, len(mock_processes)) def test_cleanup_on_windows(self): def mock_is_windows_os(): return True def mock_set_constants_to_default(): return subprocess_swap = self.swap(run_e2e_tests, 'SUBPROCESSES', []) google_app_engine_path = '%s/' % common.GOOGLE_APP_ENGINE_SDK_HOME webdriver_download_path = '%s/selenium' % ( run_e2e_tests.WEBDRIVER_HOME_PATH) process_pattern = [ ('.*%s.*' % re.escape(google_app_engine_path),), ('.*%s.*' % re.escape(webdriver_download_path),) ] expected_pattern = process_pattern[:] expected_pattern[1] = ('.*%s.*' % re.escape( os.path.abspath(webdriver_download_path)),) def mock_kill_process_based_on_regex(unused_regex): return swap_kill_process = self.swap_with_checks( common, 'kill_processes_based_on_regex', mock_kill_process_based_on_regex, expected_args=expected_pattern) swap_is_windows = self.swap_with_checks( common, 'is_windows_os', mock_is_windows_os) swap_set_constants_to_default = self.swap_with_checks( build, 'set_constants_to_default', mock_set_constants_to_default) windows_exception = self.assertRaisesRegexp( Exception, 'The redis command line interface is not installed ' 'because your machine is on the Windows operating system. There is ' 'no redis server to shutdown.' ) with swap_kill_process, subprocess_swap, swap_is_windows, ( windows_exception): with swap_set_constants_to_default: run_e2e_tests.cleanup() def test_is_oppia_server_already_running_when_ports_closed(self): def mock_is_port_open(unused_port): return False is_port_open_swap = self.swap_with_checks( common, 'is_port_open', mock_is_port_open) with is_port_open_swap: result = run_e2e_tests.is_oppia_server_already_running() self.assertFalse(result) def test_is_oppia_server_already_running_when_one_of_the_ports_is_open( self): running_port = run_e2e_tests.GOOGLE_APP_ENGINE_PORT def mock_is_port_open(port): if port == running_port: return True return False is_port_open_swap = self.swap_with_checks( common, 'is_port_open', mock_is_port_open) with is_port_open_swap: result = run_e2e_tests.is_oppia_server_already_running() self.assertTrue(result) def test_wait_for_port_to_be_open_when_port_successfully_opened(self): def mock_is_port_open(unused_port): mock_is_port_open.wait_time += 1 if mock_is_port_open.wait_time > 10: return True return False mock_is_port_open.wait_time = 0 def mock_sleep(unused_time): mock_sleep.called_times += 1 return mock_sleep.called_times = 0 is_port_open_swap = self.swap_with_checks( common, 'is_port_open', mock_is_port_open) sleep_swap = self.swap_with_checks(time, 'sleep', mock_sleep) with is_port_open_swap, sleep_swap: common.wait_for_port_to_be_open(1) self.assertEqual(mock_is_port_open.wait_time, 11) self.assertEqual(mock_sleep.called_times, 10) def test_wait_for_port_to_be_open_when_port_failed_to_open(self): def mock_is_port_open(unused_port): return False def mock_sleep(unused_time): mock_sleep.sleep_time += 1 def mock_exit(unused_exit_code): return mock_sleep.sleep_time = 0 is_port_open_swap = self.swap(common, 'is_port_open', mock_is_port_open) sleep_swap = self.swap_with_checks(time, 'sleep', mock_sleep) exit_swap = self.swap_with_checks(sys, 'exit', mock_exit) with is_port_open_swap, sleep_swap, exit_swap: common.wait_for_port_to_be_open(1) self.assertEqual( mock_sleep.sleep_time, common.MAX_WAIT_TIME_FOR_PORT_TO_OPEN_SECS) def test_run_webpack_compilation_success(self): def mock_isdir(unused_dirname): mock_isdir.run_times += 1 if mock_isdir.run_times > 3: return True return False mock_isdir.run_times = 0 expected_commands = [ self.mock_node_bin_path, self.mock_webpack_bin_path, '--config', 'webpack.dev.config.ts'] isdir_swap = self.swap_with_checks(os.path, 'isdir', mock_isdir) # The webpack compilation processes will be called 4 times as mock_isdir # will return true after 4 calls. check_call_swap = self.swap_with_checks( subprocess, 'check_call', self.mock_check_call, expected_args=[(expected_commands,)] * 4) with self.node_bin_path_swap, self.webpack_bin_path_swap, ( check_call_swap): with isdir_swap: run_e2e_tests.run_webpack_compilation() def test_get_chrome_driver_version(self): def mock_popen(unused_arg): class Ret(python_utils.OBJECT): """Return object with required attributes.""" def read(self): """Return required method.""" return '77.0.3865' return Ret() popen_swap = self.swap(os, 'popen', mock_popen) def mock_url_open(unused_arg): class Ret(python_utils.OBJECT): """Return object with required attributes.""" def read(self): """Return required method.""" return CHROME_DRIVER_VERSION return Ret() url_open_swap = self.swap(python_utils, 'url_open', mock_url_open) with popen_swap, url_open_swap: version = run_e2e_tests.get_chrome_driver_version() self.assertEqual(version, CHROME_DRIVER_VERSION) def test_run_webpack_compilation_failed(self): def mock_isdir(unused_port): return False def mock_exit(unused_exit_code): return expected_commands = [ self.mock_node_bin_path, self.mock_webpack_bin_path, '--config', 'webpack.dev.config.ts'] # The webpack compilation processes will be called five times. check_call_swap = self.swap_with_checks( subprocess, 'check_call', self.mock_check_call, expected_args=[(expected_commands,)] * 5) isdir_swap = self.swap(os.path, 'isdir', mock_isdir) exit_swap = self.swap_with_checks( sys, 'exit', mock_exit, expected_args=[(1,)]) with self.node_bin_path_swap, self.webpack_bin_path_swap: with check_call_swap, isdir_swap, exit_swap: run_e2e_tests.run_webpack_compilation() def test_run_webdriver_manager(self): expected_commands = [ common.NODE_BIN_PATH, run_e2e_tests.WEBDRIVER_MANAGER_BIN_PATH, 'start', '--detach'] def mock_popen(unused_command): class Ret(python_utils.OBJECT): """Return object with required attributes.""" def __init__(self): self.returncode = 0 def communicate(self): """Return required method.""" return '', '' return Ret() popen_swap = self.swap_with_checks( subprocess, 'Popen', mock_popen, expected_args=[ (expected_commands,)], expected_kwargs=[{}]) with popen_swap: run_e2e_tests.run_webdriver_manager(['start', '--detach']) def test_setup_and_install_dependencies_without_skip(self): def mock_install_third_party_libs_main(): return install_swap = self.swap_with_checks( install_third_party_libs, 'main', mock_install_third_party_libs_main) with install_swap: run_e2e_tests.setup_and_install_dependencies(False) def test_setup_and_install_dependencies_on_travis(self): def mock_install_third_party_libs_main(): return def mock_install_chrome_main(args): # pylint: disable=unused-argument return def mock_getenv(unused_variable_name): return True install_swap = self.swap_with_checks( install_third_party_libs, 'main', mock_install_third_party_libs_main) install_chrome_swap = self.swap_with_checks( install_chrome_on_travis, 'main', mock_install_chrome_main, expected_kwargs=[{'args': []}]) getenv_swap = self.swap_with_checks( os, 'getenv', mock_getenv, expected_args=[('TRAVIS',)]) with install_swap, install_chrome_swap: with getenv_swap: run_e2e_tests.setup_and_install_dependencies(False) def test_setup_and_install_dependencies_with_skip(self): def mock_install_third_party_libs_main(unused_args): return install_swap = self.swap_with_checks( install_third_party_libs, 'main', mock_install_third_party_libs_main, called=False) with install_swap: run_e2e_tests.setup_and_install_dependencies(True) def test_build_js_files_in_dev_mode_with_hash_file_exists(self): def mock_isdir(unused_path): return True expected_commands = [ self.mock_node_bin_path, self.mock_webpack_bin_path, '--config', 'webpack.dev.config.ts'] isdir_swap = self.swap_with_checks(os.path, 'isdir', mock_isdir) check_call_swap = self.swap_with_checks( subprocess, 'check_call', self.mock_check_call, expected_args=[(expected_commands,)]) build_main_swap = self.swap_with_checks( build, 'main', self.mock_build_main, expected_kwargs=[{'args': []}]) print_swap = self.print_swap(called=False) with print_swap, self.constant_file_path_swap, check_call_swap: with self.node_bin_path_swap, self.webpack_bin_path_swap: with build_main_swap, isdir_swap: run_e2e_tests.build_js_files(True) def test_build_js_files_in_dev_mode_with_exception_raised(self): def mock_check_call(commands): raise subprocess.CalledProcessError( returncode=2, cmd=commands, output='ERROR') def mock_exit(unused_code): pass expected_commands = [ self.mock_node_bin_path, self.mock_webpack_bin_path, '--config', 'webpack.dev.config.ts'] check_call_swap = self.swap_with_checks( subprocess, 'check_call', mock_check_call, expected_args=[(expected_commands,)]) build_main_swap = self.swap_with_checks( build, 'main', self.mock_build_main, expected_kwargs=[{'args': []}]) exit_swap = self.swap_with_checks( sys, 'exit', mock_exit, expected_args=[(2,)]) print_swap = self.print_swap(expected_args=[('ERROR',)]) with print_swap, self.constant_file_path_swap: with self.node_bin_path_swap, self.webpack_bin_path_swap: with check_call_swap, exit_swap, build_main_swap: run_e2e_tests.build_js_files(True) def test_build_js_files_in_prod_mode(self): run_cmd_swap = self.swap_with_checks( common, 'run_cmd', self.mock_run_cmd, called=False) build_main_swap = self.swap_with_checks( build, 'main', self.mock_build_main, expected_kwargs=[{'args': ['--prod_env']}])
import os import settings import subprocess import shlex from logger import Logger '''Wrapper around rdiff-backup This module provides facilites for centrally managing a large set of rdiff-backup backup jobs. Backup job management is built around common tools like cron, run-parts, and xargs. The base features include: * central configuration file * backup jobs for local and remote hosts * configurable job parallelization * ability to run arbitrary commands locally or remotely before and after backup jobs (something especially handy for preparing databases pre-backup) * logging to syslog The base features are designed to be extended and we include an extension to manage the setup and tear down of LVM snapshots for backup. ''' class ARIBackup(object): '''Base class includes core features and basic rdiff-backup functionality This class can be used if all that is needed is to leverage the basic rdiff-backup features. The pre and post hook functionality as well as command execution is also part of this class. ''' def __init__(self, label, source_hostname, remove_older_than_timespec=None): # The name of the backup job (this will be the name of the directory in the backup store # that has the data). self.label = label # This is the host that has the source data. self.source_hostname = source_hostname # We'll bring in the remote_user from our settings, but it is a var # that the end-user is welcome to override. self.remote_user = settings.remote_user # setup logging self.logger = Logger('ARIBackup ({label})'.format(label=label), settings.debug_logging) # Include nothing by default self.include_dir_list = [] self.include_file_list = [] # Exclude nothing by default # We'll put the '**' exclude on the end of the arg_list later self.exclude_dir_list = [] self.exclude_file_list = [] # initialize hook lists self.pre_job_hook_list = [] self.post_job_hook_list = [] if remove_older_than_timespec != None: self.post_job_hook_list.append(( self._remove_older_than, {'timespec': remove_older_than_timespec})) def _process_pre_job_hooks(self): self.logger.info('processing pre-job hooks...') for task in self.pre_job_hook_list: # Let's do some assignments for readability hook = task[0] kwargs = task[1] hook(**kwargs) def _process_post_job_hooks(self, error_case): if error_case: self.logger.error('processing post-job hooks for error case...') else: self.logger.info('processing post-job hooks...') for task in self.post_job_hook_list: # Let's do some assignments for readability hook = task[0] kwargs = task[1] kwargs.update({'error_case': error_case}) hook(**kwargs) def _run_command(self, command, host='localhost'): '''Runs an arbitrary command on host. Given an input string or list, we attempt to execute it on the host via SSH unless host is "localhost". Returns a tuple with (stdout, stderr) if the exitcode is zero, otherwise an Exception is raised. ''' # make args a list if it's not already so if isinstance(command, basestring): args = shlex.split(command) elif isinstance(command, list): args = command else: raise Exception('_run_command: command arg must be str or list') # add SSH arguments if this is a remote command if host != 'localhost': ssh_args = shlex.split('%s %s@%s' % (settings.ssh_path, self.remote_user, host)) args = ssh_args + args try: self.logger.debug('_run_command %r' % args) p = subprocess.Popen(args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # We really want to block until our subprocess exists or # KeyboardInterrupt. If we don't, clean up tasks can likely fail. try: stdout, stderr = p.communicate() except KeyboardInterrupt: # TODO terminate() doesn't block, so we'll need to poll p.terminate() raise KeyboardInterrupt if stdout: self.logger.debug(stdout) if stderr: # Warning level should be fine here since we'll also look at # the exitcode. self.logger.warning(stderr) exitcode = p.returncode except IOError: raise Exception('Unable to execute/find {args}'.format(args=args)) if exitcode > 0: error_message = ('[{host}] A command terminated with errors and likely requires intervention. The ' 'command attempted was "{command}".').format( host=host, command=command) raise Exception(error_message) return (stdout, stderr) def run_backup(self): self.logger.info('started') try: error_case = False self._process_pre_job_hooks() self.logger.info('data backup started...') self._run_backup() self.logger.info('data backup complete') except Exception, e: error_case = True self.logger.error((str(e))) self.logger.info("let's try to clean up...") except KeyboardInterrupt: error_case = True # using error level here so that these messages will # print to the console self.logger.error('backup job cancelled by user') self.logger.error("let's try to clean up...") finally: self._process_post_job_hooks(error_case) self.logger.info('stopped') def _run_backup(self, top_level_src_dir='/'): '''Run rdiff-backup job. Builds an argument list for a full rdiff-backup command line based on the settings in the instance and optionally the top_level_src_dir parameter. Said parameter is used to define the context for the backup mirror. This is especially handy when backing up mounted spanshots so that the mirror doesn't contain the directory where the snapshot is mounted. ''' self.logger.debug('_run_backup started') # Init our arguments list with the path to rdiff-backup. # This will be in the format we'd normally pass to the command-line # e.g. [ '--include', '/dir/to/include', '--exclude', '/dir/to/exclude'] arg_list = [settings.rdiff_backup_path] # setup some default rdiff-backup options # TODO provide a way to override these arg_list.append('--exclude-device-files') arg_list.append('--exclude-fifos') arg_list.append('--exclude-sockets') # Bring the terminal verbosity down so that we only see errors arg_list += ['--terminal-verbosity', '1'] # This conditional reads strangely, but that's because rdiff-backup # not only defaults to having SSH compression enabled, it also doesn't # have an option to explicitly enable it -- only one to disable it. if not settings.ssh_compression: arg_list.append('--ssh-no-compression') # Populate self.argument list for exclude_dir in self.exclude_dir_list: arg_list.append('--exclude') arg_list.append(exclude_dir) for exclude_file in self.exclude_file_list: arg_list.append('--exclude-filelist') arg_list.append(exclude_file) for include_dir in self.include_dir_list: arg_list.append('--include') arg_list.append(include_dir) for include_file in self.include_file_list: arg_list.append('--include-filelist') arg_list.append(include_file) # Exclude everything else arg_list.append('--exclude') arg_list.append('**') # Add a source argument if self.source_hostname == 'localhost': arg_list.append(top_level_src_dir) else: arg_list.append( '{remote_user}@{source_hostname}::{top_level_src_dir}'.format( remote_user=self.remote_user, source_hostname=self.source_hostname, top_level_src_dir=top_level_src_dir ) ) # Add a destination argument arg_list.append( '{backup_store_path}/{label}'.format( backup_store_path=settings.backup_store_path, label=self.label ) ) # Rdiff-backup GO! self._run_command(arg_list) self.logger.debug('_run_backup completed') def _remove_older_than(self, timespec, error_case): '''Trims increments older than timespec Post-job hook that uses rdiff-backup's --remove-old-than feature to trim old increments from the backup history ''' if not error_case: self.logger.info('remove_older_than %s started' % timespec) arg_list = [settings.rdiff_backup_path] arg_list.append('--force') arg_list.append('--remove-older-than') arg_list.append(timespec) arg_list.append('%s/%s' % (settings.backup_store_path, self.label)) self._run_command(arg_list) self.logger.info('remove_older_than %s completed' % timespec) class LVMBackup(ARIBackup): def __init__(self, label, source_hostname, remove_older_than_timespec=None): super(LVMBackup, self).__init__(label, source_hostname, remove_older_than_timespec) # This is a list of 2-tuples, where each inner 2-tuple expresses the LV # to back up, the mount point for that LV any mount options necessary. # For example: [('hostname/root, '/', 'noatime'),] # TODO I wonder if noatime being used all the time makes sense to # improve read performance and reduce writes to the snapshots. self.lv_list = [] # a list of dicts with the snapshot paths and where they should be # mounted self.lv_snapshots = [] # mount the snapshots in a directory named for this job's label self.snapshot_mount_point_base_path = os.path.join(settings.snapshot_mount_root, self.label) # setup pre and post job hooks to manage snapshot work flow self.pre_job_hook_list.append((self._create_snapshots, {})) self.pre_job_hook_list.append((self._mount_snapshots, {})) self.post_job_hook_list.append((self._umount_snapshots, {})) self.post_job_hook_list.append((self._delete_snapshots, {})) def _create_snapshots(self): '''Creates snapshots of all the volumns listed in self.lv_list''' self.logger.info('creating LVM snapshots...') for volume in self.lv_list: try: lv_path, src_mount_path, mount_options = volume except ValueError: lv_path, src_mount_path = volume mount_options = None vg_name, lv_name = lv_path.split('/') new_lv_name = lv_name + settings.snapshot_suffix mount_path = '{snapshot_mount_point_base_path}{src_mount_path}'.format( snapshot_mount_point_base_path=self.snapshot_mount_point_base_path, src_mount_path=src_mount_path ) # TODO Is it really OK to always make a 1GB exception table? self._run_command('lvcreate -s -L 1G %s -n %s' % (lv_path, new_lv_name), self.source_hostname) self.lv_snapshots.append({ 'lv_path': vg_name + '/' + new_lv_name, 'mount_path': mount_path, 'mount_options': mount_options, 'created': True, 'mount_point_created': False, 'mounted': False, }) def _delete_snapshots(self, error_case=None): '''Deletes snapshots in self.lv_snapshots This method behaves the same in the normal and error cases. ''' self.logger.info('deleting LVM snapshots...') for snapshot in self.lv_snapshots: if snapshot['created']: lv_path = snapshot['lv_path'] # -f makes lvremove not interactive self._run_command('lvremove -f %s' % lv_path, self.source_hostname) snapshot.update({'created': False}) def _mount_snapshots(self): self.logger.info('mounting LVM snapshots...') for snapshot in self.lv_snapshots: lv_path = snapshot['lv_path'] device_path = '/dev/' + lv_path mount_path = snapshot['mount_path'] mount_options = snapshot['mount_options'] # mkdir the mount point self._run_command('mkdir -p %s' % mount_path, self.source_hostname) snapshot.update({'mount_point_created': True}) # If where we want to mount our LV is already a mount point then # let's back out. if os.path.ismount(mount_path): raise Exception("{mount_path} is already a mount point".format(mount_path=mount_path)) # mount the LV, possibly with mount options if mount_options: command = 'mount -o {mount_options} {device_path} {mount_path}'.format( mount_options=mount_options, device_path=device_path, mount_path=mount_path ) else: command = 'mount {device_path} {mount_path}'.format( device_path=device_path, mount_path=mount_path ) self._run_command(command, self.source_hostname) snapshot.update({'mounted': True}) def _umount_snapshots(self, error_case=None): '''Umounts mounted snapshots in self.lv_snapshots This method behaves the same in the normal and error cases. ''' # TODO If
from __future__ import annotations # postpone evaluation of annotations import logging from typing import Any, Dict, List, Optional, Tuple import cv2 import numpy as np import numpy.typing as npt from pyquaternion import Quaternion from scipy import ndimage from scipy.spatial.transform import Rotation as R from sqlalchemy import Column, inspect from sqlalchemy.orm import relationship from sqlalchemy.schema import ForeignKey from sqlalchemy.types import Float, Integer from nuplan.database.common import sql_types from nuplan.database.common.utils import simple_repr from nuplan.database.maps_db.gpkg_mapsdb import GPKGMapsDB from nuplan.database.maps_db.utils import build_lane_segments_from_blps, connect_blp_predecessor, connect_blp_successor from nuplan.database.nuplan_db.models import Base, Image, generate_multi_scale_connections from nuplan.database.nuplan_db.utils import crop_rect, get_candidates from nuplan.database.nuplan_db.vector_map_np import VectorMapNp logger = logging.getLogger() class EgoPose(Base): """ Ego vehicle pose at a particular timestamp. Given with respect to global coordinate system. """ __tablename__ = "ego_pose" token = Column(sql_types.HexLen8, primary_key=True) # type: str timestamp = Column(Integer) # field type: int x = Column(Float) # type: float y = Column(Float) # type: float z = Column(Float) # type: float qw: float = Column(Float) qx: float = Column(Float) qy: float = Column(Float) qz: float = Column(Float) vx = Column(Float) # type: float vy = Column(Float) # type: float vz = Column(Float) # type: float acceleration_x = Column(Float) # type: float acceleration_y = Column(Float) # type: float acceleration_z = Column(Float) # type: float angular_rate_x = Column(Float) # type: float angular_rate_y = Column(Float) # type: float angular_rate_z = Column(Float) # type: float epsg = Column(Integer) # type: int log_token = Column(sql_types.HexLen8, ForeignKey("log.token"), nullable=False) # type: str image = relationship( "Image", foreign_keys="Image.ego_pose_token", back_populates="ego_pose", uselist=False ) # type: Image @property def _session(self) -> Any: """ Get the underlying session. :return: The underlying session. """ return inspect(self).session def __repr__(self) -> str: """ Return the string representation. :return: The string representation. """ desc: str = simple_repr(self) return desc @property def quaternion(self) -> Quaternion: """ Get the orientation of ego vehicle as quaternion respect to global coordinate system. :return: The orientation in quaternion. """ return Quaternion(self.qw, self.qx, self.qy, self.qz) @property def translation_np(self) -> npt.NDArray[np.float64]: """ Position of ego vehicle respect to global coordinate system. :return: <np.float: 3> Translation. """ return np.array([self.x, self.y, self.z]) @property def trans_matrix(self) -> npt.NDArray[np.float64]: """ Get the transformation matrix. :return: <np.float: 4, 4>. Transformation matrix. """ tm: npt.NDArray[np.float64] = self.quaternion.transformation_matrix tm[:3, 3] = self.translation_np return tm @property def trans_matrix_inv(self) -> npt.NDArray[np.float64]: """ Get the inverse transformation matrix. :return: <np.float: 4, 4>. Inverse transformation matrix. """ tm: npt.NDArray[np.float64] = np.eye(4) rot_inv = self.quaternion.rotation_matrix.T tm[:3, :3] = rot_inv tm[:3, 3] = rot_inv.dot(np.transpose(-self.translation_np)) return tm def rotate_2d_points2d_to_ego_vehicle_frame(self, points2d: npt.NDArray[np.float64]) -> npt.NDArray[np.float64]: """ Rotate 2D points from global frame to ego-vehicle frame. :param points2d: <np.float: num_points, 2>. 2D points in global frame. :return: <np.float: num_points, 2>. 2D points rotated to ego-vehicle frame. """ # Add zeros to the z dimension to make them 3D points. points3d: npt.NDArray[np.float32] = np.concatenate((points2d, np.zeros_like(points2d[:, 0:1])), axis=-1) # We need to extract the rotation around the z-axis only. since we are cropping a 2D map. # Construct scipy rotation instance using the rotation matrix from quaternion. rotation = R.from_matrix(self.quaternion.rotation_matrix.T) # Extract the angle of rotation around z-axis from the rotation. ego_rotation_angle = rotation.as_euler('zxy', degrees=True)[0] # Construct scipy rotation instance using ego_rotation_angle. xy_rotation = R.from_euler('z', ego_rotation_angle, degrees=True) # Rotate the corner points of the desired map crop to align with ego pose. rotated_points3d = xy_rotation.apply(points3d) # Remove the z dimension. rotated_points2d: npt.NDArray[np.float64] = rotated_points3d[:, :2] return rotated_points2d def get_map_crop( self, maps_db: Optional[GPKGMapsDB], xrange: Tuple[float, float], yrange: Tuple[float, float], map_layer_name: str, rotate_face_up: bool, target_imsize_xy: Optional[Tuple[float, float]] = None, ) -> Tuple[Optional[npt.NDArray[np.float64]], npt.NDArray[np.float64], Tuple[float, ...]]: """ This function returns the crop of the map centered at the current ego-pose with the given xrange and yrange. :param maps_db: Map database associated with this database. :param xrange: The range in x direction in meters relative to the current ego-pose. Eg: (-60, 60]). :param yrange: The range in y direction in meters relative to the current ego-pose Eg: (-60, 60). :param map_layer_name: A relevant map layer. Eg: 'drivable_area' or 'intensity'. :param rotate_face_up: Boolean indicating whether to rotate the image face up with respect to ego-pose. :param target_imsize_xy: The target grid xy dimensions for the output array. The xy resolution in meters / grid may be scaled by zooming to the desired dimensions. :return: (map_crop, map_translation, map_scale). Where: map_crop: The desired crop of the map. map_translation: The translation in map coordinates from the origin to the ego-pose. map_scale: Map scale (inverse of the map precision). This will be a tuple specifying the zoom in both the x and y direction if the target_imsize_xy parameter was set, which causes the resolution to change. map_scale and map_translation are useful for transforming objects like pointcloud/boxes to the map_crop. Refer to render_on_map(). """ if maps_db is None: precision: float = 1 def to_pixel_coords(x: float, y: float) -> Tuple[float, float]: """ Get the image coordinates given the x-y coordinates of point. This implementation simply returns the same coordinates. :param x: Global x coordinate. :param y: Global y coordinate. :return: Pixel coordinates in map. """ return x, y else: map_layer = maps_db.load_layer(self.log.map_version, map_layer_name) precision = map_layer.precision to_pixel_coords = map_layer.to_pixel_coords map_scale: Tuple[float, ...] = (1.0 / precision, 1.0 / precision, 1.0) ego_translation = self.translation_np center_x, center_y = to_pixel_coords(ego_translation[0], ego_translation[1]) center_x, center_y = int(center_x), int(center_y) top_left = int(xrange[0] * map_scale[0]), int(yrange[0] * map_scale[1]) bottom_right = int(xrange[1] * map_scale[0]), int(yrange[1] * map_scale[1]) # We need to extract the rotation around the z-axis only. since we are cropping a 2D map. # Construct scipy rotation instance using the rotation matrix from quaternion. rotation = R.from_matrix(self.quaternion.rotation_matrix.T) # Extract the angle of rotation around z-axis from the rotation. ego_rotation_angle = rotation.as_euler('zxy', degrees=True)[0] # Construct scipy rotation instance using ego_rotation_angle. xy_rotation = R.from_euler('z', ego_rotation_angle, degrees=True) map_rotate = 0 # Rotate the corner points of the desired map crop to align with ego pose. rotated = xy_rotation.apply( [ [top_left[0], top_left[1], 0], [top_left[0], bottom_right[1], 0], [bottom_right[0], top_left[1], 0], [bottom_right[0], bottom_right[1], 0], ] )[:, :2] # Construct minAreaRect using 4 corner points rect = cv2.minAreaRect(np.hstack([rotated[:, :1] + center_x, rotated[:, 1:] + center_y]).astype(int)) rect_angle = rect[2] # Due to rounding error, the dimensions returned by cv2 may be off by 1, therefore it's better to manually # calculate the cropped dimensions instead of relying on the values returned by cv2 in rect[1] cropped_dimensions: npt.NDArray[np.float32] = np.array( [map_scale[0] * (xrange[1] - xrange[0]), map_scale[1] * (yrange[1] - yrange[0])] ) rect = (rect[0], cropped_dimensions, rect_angle) # In OpenCV 4.4, the angle returned by cv2.minAreaRect is [-90,0). In OpenCV 4.5, the angle returned # appears to be [0, 90), though this isn't documented anywhere. To be compatible with both versions, # we adjust the angle to be [-90,0) if it isn't already. rect_angle = rect[2] cropped_dimensions = np.array([map_scale[0] * (xrange[1] - xrange[0]), map_scale[1] * (yrange[1] - yrange[0])]) if rect_angle >= 0: rect = (rect[0], cropped_dimensions, rect_angle - 90) else: rect = (rect[0], cropped_dimensions, rect_angle) # We construct rect using cv2.minAreaRect, which takes only 4 unordered corner points, and can not consider # the angle of the required rect. The range of of 'angle' in cv2.minAreaRect is [-90,0). # A good explanation for the angle can be found at : # https://namkeenman.wordpress.com/2015/12/18/open-cv-determine-angle-of-rotatedrect-minarearect/ # Hence, we have to manually rotate the map after cropping based on the initial rotation angle. if ego_rotation_angle < -90: map_rotate = -90 if -90 < ego_rotation_angle < 0: map_rotate = 0 if 0 < ego_rotation_angle < 90: map_rotate = 90 if 90 < ego_rotation_angle < 180: map_rotate = 180 if map_layer is None: map_crop = None else: # Crop the rect using minAreaRect. map_crop = crop_rect(map_layer.data, rect) # Rotate the cropped map using adjusted angles, # since the angle is reset in cv2.minAreaRect every 90 degrees. map_crop = ndimage.rotate(map_crop, map_rotate, reshape=False) if rotate_face_up: # The map_crop is aligned with the ego_pose, but ego_pose is facing towards the right of the canvas, # but we need ego_pose to be facing up, hence rotating an extra 90 degrees. map_crop = np.rot90(map_crop) # These are in units of pixels, where x
<reponame>zerorock1312/lt-maker-master from app.constants import WINWIDTH, WINHEIGHT, TILEX, TILEY from app.utilities import utils from app.sprites import SPRITES from app.engine.sound import SOUNDTHREAD from app.data.database import DB from app.engine import engine, image_mods from app.engine.state import MapState from app.engine.game_state import game from app.engine.input_manager import INPUT class Link(): def __init__(self, pos): self.position = pos self.adjacent_links = set() self.chain = None self.orientation = None def __repr__(self): return '%s %s' % (self.position, self.orientation) class CliffManager(): def __init__(self, cliff_positions, size): self.unexplored = set([Link(pos) for pos in cliff_positions]) unexplored_length = len(self.unexplored) self.chains = [] if self.unexplored: self.gen_chains() self.width, self.height = size self.orientation_grid = [0 for _ in range(self.width*self.height)] chain_length = sum(len(chain) for chain in self.chains) assert chain_length == unexplored_length, "%s, %s" % (chain_length, unexplored_length) for chain in self.chains: self.place_chain(chain) def gen_chains(self): current_chain = set() explored = [] explored.append(self.unexplored.pop()) while explored: current_link = explored.pop() current_chain.add(current_link) current_link.chain = current_chain adj = self.get_adjacent(current_link) if adj: for a in adj: self.make_adjacent(current_link, a) explored.append(a) self.unexplored -= adj elif explored: continue else: self.chains.append(current_chain) if self.unexplored: current_chain = set() current_link = self.unexplored.pop() explored.append(current_link) def make_adjacent(self, a, b): a.adjacent_links.add(b) b.adjacent_links.add(a) def is_adjacent(self, pos1, pos2) -> bool: return pos1 in ((pos2[0], pos2[1] - 1), (pos2[0] - 1, pos2[1]), (pos2[0] + 1, pos2[1]), (pos2[0], pos2[1] + 1)) def get_adjacent(self, current_link): adj = set() pos = current_link.position for link in self.unexplored: if self.is_adjacent(link.position, pos): adj.add(link) for link in self.unexplored: # If you are at a diagonal and you are not adjacent to anything I am already adjacent to if link.position in ((pos[0] - 1, pos[1] - 1), (pos[0] - 1, pos[1] + 1), (pos[0] + 1, pos[1] - 1), (pos[0] + 1, pos[1] + 1)) and \ not any(self.is_adjacent(a.position, link.position) for a in adj): adj.add(link) return adj def place_chain(self, chain): if len(chain) == 1: c_link = next(iter(chain)) c_link.orientation = 1 x, y = c_link.position self.orientation_grid[x + y*self.width] = 1 return # Look for endings links (ie, have only one adjacency) ending_links = [link for link in chain if len(link.adjacent_links) == 1] if len(ending_links) == 0: # Cycle ending_link = next(iter(chain)) # Initial set-up else: ending_link = ending_links[0] assert len(ending_link.adjacent_links) >= 1 adj_link = next(iter(ending_link.adjacent_links)) if len(chain) == 2: # Only if there are no middle links dx, dy = self.get_difference(ending_link, adj_link) if dx == 0: ending_link.orientation = 2 elif dy == 0: ending_link.orientation = 1 elif dx == dy: ending_link.orientation = 3 else: ending_link.orientation = 4 # Now iterate through explored = set() explored.add((ending_link, adj_link)) while explored: prev, current = explored.pop() other_adjs = current.adjacent_links - set([prev]) if other_adjs: for adj in other_adjs: self.find_orientation(prev, current, adj) explored.add((current, adj)) else: self.find_ending_orientation(prev, current) # get starting point now -- only if there were middle links if len(chain) != 2: self.find_ending_orientation(adj_link, ending_link) # Lastly, commit it to the orientation grid for link in chain: x, y = link.position self.orientation_grid[x + y*self.width] = link.orientation def find_orientation(self, prev, current, nxt): pdx, pdy = self.get_difference(prev, current) ndx, ndy = self.get_difference(current, nxt) tdx, tdy = self.get_difference(prev, nxt) if tdx == 0: current.orientation = 2 return if tdy == 0: current.orientation = 1 return slope = tdy/float(tdx) if slope > 0: current.orientation = 3 else: current.orientation = 4 return def find_ending_orientation(self, prev, current): dx, dy = self.get_difference(prev, current) if dy == 0: if prev.orientation == 1: current.orientation = 1 elif prev.orientation == 2: current.orientation = 2 elif prev.orientation == 3: current.orientation = 4 else: current.orientation = 3 elif dx == 0: if prev.orientation == 1: current.orientation = 1 elif prev.orientation == 2: current.orientation = 2 elif prev.orientation == 3: current.orientation = 4 else: current.orientation = 3 elif dx == dy: current.orientation = 3 else: current.orientation = 4 def get_difference(self, a, b): dx = b.position[0] - a.position[0] dy = b.position[1] - a.position[1] return dx, dy def get_orientation(self, pos): x, y = pos orientation = self.orientation_grid[x + y*self.width] if orientation == 2: return (9, 6) elif orientation == 3: return (11, 6) elif orientation == 4: return (10, 6) else: return (8, 6) # Minimap class MiniMap(object): # Constants minimap_tiles = SPRITES.get('Minimap_Tiles') minimap_units = SPRITES.get('Minimap_Sprites') minimap_cursor = SPRITES.get('Minimap_Cursor') cliffs = ('Cliff', 'Desert_Cliff', 'Snow_Cliff') complex_map = ('Wall', 'River', 'Sand', 'Sea') scale_factor = 4 def __init__(self, tilemap, units): self.tilemap = tilemap self.width = self.tilemap.width self.height = self.tilemap.height self.colorkey = (0, 0, 0) self.surf = engine.create_surface((self.width*self.scale_factor, self.height*self.scale_factor)) engine.set_colorkey(self.surf, self.colorkey, rleaccel=False) # black is transparent self.pin_surf = engine.create_surface((self.width*self.scale_factor, self.height*self.scale_factor), transparent=True) # All the rest of this is used for occlusion generation self.bg = engine.copy_surface(self.surf) self.starting_scale = 0.25 new_width = int(self.height*self.scale_factor*self.starting_scale) new_height = int(self.width*self.scale_factor*self.starting_scale) self.base_mask = engine.create_surface((new_width, new_height)) engine.set_colorkey(self.base_mask, self.colorkey, rleaccel=False) engine.fill(self.base_mask, (255, 255, 255), None) # Handle cliffs cliff_positions = set() for x in range(self.width): for y in range(self.height): minimap_nid = self.get_minimap_key((x, y)) if minimap_nid in self.cliffs: cliff_positions.add((x, y)) self.cliff_manager = CliffManager(cliff_positions, (self.width, self.height)) # Build Terrain for x in range(self.width): for y in range(self.height): minimap_nid = self.get_minimap_key((x, y)) sprite = self.handle_key(minimap_nid, (x, y)) self.surf.blit(sprite, (x*self.scale_factor, y*self.scale_factor)) # Fog of War if game.level_vars['_fog_of_war']: for x in range(self.width): for y in range(self.height): if not game.board.in_vision((x, y)): mask = (x * self.scale_factor, y * self.scale_factor, self.scale_factor, self.scale_factor) if game.level_vars['_fog_of_war'] == 2: engine.fill(self.surf, (12, 12, 12), mask) else: engine.fill(self.surf, (128, 128, 128), mask, engine.BLEND_RGB_MULT) self.surf = self.surf.convert() # Build units self.build_units(units) def get_minimap_key(self, pos): terrain_nid = self.tilemap.get_terrain(pos) terrain = DB.terrain.get(terrain_nid) if terrain: minimap_nid = terrain.minimap else: minimap_nid = DB.minimap.single_map[0] return minimap_nid def handle_key(self, key, position): # print(key) # Normal keys if key in DB.minimap.single_map: return self.get_sprite(DB.minimap.single_map[key]) # Bridge elif key == 'Bridge': if self.bridge_left_right(position): return self.get_sprite((0, 1)) else: return self.get_sprite((8, 1)) # Door elif key == 'Door': return self.door_type(position) # Wall, River, Desert, Sea elif key in DB.minimap.complex_map: return self.complex_shape(key, position) # Coast elif key == 'Coast': return self.coast(position) # Cliff elif key in self.cliffs: pos = self.cliff_manager.get_orientation(position) if key == 'Desert_Cliff': pos = (pos[0] + 4, pos[1]) elif key == 'Snow_Cliff': pos = (pos[0] - 4, pos[1] + 1) return self.get_sprite(pos) # Error! else: print("Error! Unrecognized Minimap Key %s" % key) def build_units(self, units): for unit in units: if unit.position and game.board.in_vision(unit.position): pos = unit.position[0] * self.scale_factor, unit.position[1] * self.scale_factor if unit.team == 'player': self.pin_surf.blit(engine.subsurface(self.minimap_units, (0, 0, self.scale_factor, self.scale_factor)), pos) elif unit.team == 'enemy': self.pin_surf.blit(engine.subsurface(self.minimap_units, (self.scale_factor*1, 0, self.scale_factor, self.scale_factor)), pos) elif unit.team == 'other': self.pin_surf.blit(engine.subsurface(self.minimap_units, (self.scale_factor*2, 0, self.scale_factor, self.scale_factor)), pos) else: self.pin_surf.blit(engine.subsurface(self.minimap_units, (self.scale_factor*3, 0, self.scale_factor, self.scale_factor)), pos) def coast(self, position, allow_recurse=True): sea_keys = ('Sea', 'Pier', 'River', 'Bridge') # A is up, B is left, C is right, D is down # This code determines which minimap tiles fit assuming you only knew one side of the tile, and then intersects to find the best a, b, c, d, e, f, g, h = None, None, None, None, None, None, None, None up_pos = position[0], position[1] - 1 if not self.tilemap.check_bounds(up_pos): a = {2, 3, 4, 8, 11, 12, 13} elif self.get_minimap_key(up_pos) in sea_keys: a = {0, 1, 5, 6, 7, 9, 10} elif self.get_minimap_key(up_pos) == 'Coast': a = {2, 3, 5, 6, 7, 9, 10, 11, 12, 13} else: a = {2, 3, 4, 8, 11, 12, 13} left_pos = position[0] - 1, position[1] if not self.tilemap.check_bounds(left_pos): b = {1, 3, 4, 7, 10, 12, 13} elif self.get_minimap_key(left_pos) in sea_keys: b = {0, 2, 5, 6, 8, 9, 11} elif self.get_minimap_key(left_pos) == 'Coast': b = {1, 4, 5, 6, 8, 9, 10, 11, 12, 13} else: b = {1, 3, 4, 7, 10, 12, 13} right_pos = position[0] + 1, position[1] if not self.tilemap.check_bounds(right_pos): c = {1, 2, 4, 6, 9, 11, 13} elif self.get_minimap_key(right_pos) in sea_keys: c = {0, 3, 5, 7, 8, 10, 12} elif self.get_minimap_key(right_pos) == 'Coast': c = {1, 4, 5, 7, 8, 9, 10, 11, 12, 13} else: c = {1, 2, 4, 6, 9, 11, 13} down_pos = position[0], position[1] + 1 if not self.tilemap.check_bounds(down_pos): d = {1, 2, 3, 5, 9, 10, 13} elif self.get_minimap_key(down_pos) in sea_keys: d = {0, 4, 6, 7, 8, 11, 12} elif self.get_minimap_key(down_pos) == 'Coast':
= np.zeros(indices.shape[1]) x_com, y_com, z_com = center_of_mass(plane) for point in range(indices.shape[1]): dist[point] = np.sqrt( (indices[0, point] - x_com) ** 2 + (indices[1, point] - y_com) ** 2 + (indices[2, point] - z_com) ** 2 ) median_dist = np.median(dist) if debugging: gu.scatter_plot( np.asarray(np.nonzero(plane)).transpose(), labels=("axis 0", "axis 1", "axis 2"), title="Points before distance threshold plane " + str(label) + f"\niteration {idx}", ) for point in range(indices.shape[1]): if dist[point] > median_dist: plane[indices[0, point], indices[1, point], indices[2, point]] = 0 print( "Fit plane", label, ", ", str(indices.shape[1] - plane[plane == 1].sum()), "points too far from COM, ", str(plane[plane == 1].sum()), "remaining", ) if debugging: gu.scatter_plot( np.asarray(np.nonzero(plane)).transpose(), labels=("axis 0", "axis 1", "axis 2"), title="Points after distance threshold plane " + str(label) + f"\niteration {idx}", ) # update plane indices and check if enough points remain indices = np.asarray(np.nonzero(plane)) if len(indices[0]) < 5: no_points = True return 0, indices, 0, no_points # the fit parameters are (a, b, c, d) such that a*x + b*y + c*z + d = 0 params, std_param, valid_plane = util.plane_fit( indices=indices, label=label, threshold=1, debugging=debugging ) if not valid_plane: plane[indices] = 0 no_points = True return params, indices, std_param, no_points def grow_facet(fit, plane, label, support, max_distance=0.90, debugging=True): """ Find voxels of the object which belong to a facet. It uses the facet plane equation and the distance to the plane to find such voxels. :param fit: coefficients of the plane (a, b, c, d) such that a*x + b*y + c*z + d = 0 :param plane: 3D binary support of the plane, with shape of the full dataset :param label: the label of the plane processed :param support: 3D binary support of the reconstructed object, with shape of the full dataset :param max_distance: in pixels, maximum allowed distance to the facet plane of a voxel :param debugging: set to True to see plots :return: the updated plane, a stop flag """ nbz, nby, nbx = plane.shape indices = np.nonzero(plane) if len(indices[0]) == 0: no_points = True return plane, no_points kernel = np.ones((3, 3, 3)) start_z = max(indices[0].min() - 20, 0) stop_z = min(indices[0].max() + 21, nbz) start_y = max(indices[1].min() - 20, 0) stop_y = min(indices[1].max() + 21, nby) start_x = max(indices[2].min() - 20, 0) stop_x = min(indices[2].max() + 21, nbx) # find nearby voxels using the coordination number obj = np.copy(plane[start_z:stop_z, start_y:stop_y, start_x:stop_x]) coord = np.rint(convolve(obj, kernel, mode="same")) coord = coord.astype(int) coord[np.nonzero(coord)] = 1 if debugging: gu.scatter_plot_overlaid( arrays=(np.asarray(np.nonzero(coord)).T, np.asarray(np.nonzero(obj)).T), markersizes=(2, 8), markercolors=("b", "r"), labels=("x", "y", "z"), title="Plane" + str(label) + " before facet growing and coord matrix", ) # update plane with new voxels temp_plane = np.copy(plane) temp_plane[start_z:stop_z, start_y:stop_y, start_x:stop_x] = coord # remove voxels not belonging to the support temp_plane[support == 0] = 0 # check distance of new voxels to the plane plane, no_points = distance_threshold( fit=fit, indices=np.nonzero(temp_plane), plane_shape=temp_plane.shape, max_distance=max_distance, ) plane_normal = fit[:-1] # normal is [a, b, c] if ax+by+cz+d=0 # calculate the local gradient for each point of the plane, # gradients is a list of arrays of 3 vector components indices = np.nonzero(plane) gradients = surface_gradient( list(zip(indices[0], indices[1], indices[2])), support=support ) count_grad = 0 nb_indices = len(indices[0]) for idx in range(nb_indices): if np.dot(plane_normal, gradients[idx]) < 0.75: # 0.85 is too restrictive checked CH4760 S11 plane 1 plane[indices[0][idx], indices[1][idx], indices[2][idx]] = 0 count_grad += 1 indices = np.nonzero(plane) if debugging and len(indices[0]) != 0: gu.scatter_plot( array=np.asarray(indices).T, labels=("x", "y", "z"), title="Plane" + str(label) + " after 1 cycle of facet growing", ) print(f"{count_grad} points excluded by gradient filtering") print(str(len(indices[0])) + " after 1 cycle of facet growing") return plane, no_points def offset_plane(indices, offset, plane_normal): """ Shift plane indices by the offset value in order to scan perpendicular to the plane. :param indices: tuple of 3 1D ndarrays (array shape = nb_points) :param offset: offset to be applied to the indices (offset of the plane) :param plane_normal: ndarray of 3 elements, normal to the plane :return: offseted indices """ if not isinstance(indices, tuple): raise ValueError("indices should be a tuple of 3 1D ndarrays") new_indices0 = np.rint( indices[0] + offset * np.dot(np.array([1, 0, 0]), plane_normal / np.linalg.norm(plane_normal)) ).astype(int) new_indices1 = np.rint( indices[1] + offset * np.dot(np.array([0, 1, 0]), plane_normal / np.linalg.norm(plane_normal)) ).astype(int) new_indices2 = np.rint( indices[2] + offset * np.dot(np.array([0, 0, 1]), plane_normal / np.linalg.norm(plane_normal)) ).astype(int) return new_indices0, new_indices1, new_indices2 def remove_duplicates(vertices, faces, debugging=False): """ Remove duplicates in a list of vertices and faces. A face is a triangle made of three vertices. :param vertices: a ndarray of vertices, shape (N, 3) :param faces: a ndarray of vertex indices, shape (M, 3) :param debugging: True to see which vertices are duplicated and how lists are modified :return: the updated vertices and faces with duplicates removed in place """ # find indices which are duplicated uniq_vertices, uniq_inverse = np.unique(vertices, axis=0, return_inverse=True) indices, count = np.unique(uniq_inverse, return_counts=True) duplicated_indices = indices[count != 1] # list of vertices which are not unique # for each duplicated vertex, build the list of the corresponding identical vertices list_duplicated = [] for idx, value in enumerate(duplicated_indices): same_vertices = np.argwhere(vertices == uniq_vertices[value, :]) # same_vertices is a ndarray of the form # [[ind0, 0], [ind0, 1], [ind0, 2], [ind1, 0], [ind1, 1], [ind1, 2],...] list_duplicated.append(list(same_vertices[::3, 0])) # remove duplicates in vertices remove_vertices = [value for sublist in list_duplicated for value in sublist[1:]] vertices = np.delete(vertices, remove_vertices, axis=0) print(len(remove_vertices), "duplicated vertices removed") # remove duplicated_vertices in faces for idx, temp_array in enumerate(list_duplicated): for idy in range(1, len(temp_array)): duplicated_value = temp_array[idy] faces[faces == duplicated_value] = temp_array[0] # temp_array[0] is the unique value, others are duplicates # all indices above duplicated_value have to be decreased by 1 # to keep the match with the number of vertices faces[faces > duplicated_value] = faces[faces > duplicated_value] - 1 # update accordingly all indices above temp_array[idy] if debugging: print("temp_array before", temp_array) print("list_duplicated before", list_duplicated) temp_array = [ (value - 1) if value > duplicated_value else value for value in temp_array ] list_duplicated = [ [ (value - 1) if value > duplicated_value else value for value in sublist ] for sublist in list_duplicated ] if debugging: print("temp_array after", temp_array) print("list_duplicated after", list_duplicated) # look for faces with 2 identical vertices # (cannot define later a normal to these faces) remove_faces = [] for idx in range(faces.shape[0]): if np.unique(faces[idx, :], axis=0).shape[0] != faces[idx, :].shape[0]: remove_faces.append(idx) faces = np.delete(faces, remove_faces, axis=0) print(len(remove_faces), "faces with identical vertices removed") return vertices, faces def surface_indices(surface, plane_indices, margin=3): """ Find surface indices potentially belonging to a plane. It crops the surface around the plane with a certain margin, and find corresponding surface indices. :param surface: the 3D surface binary array :param plane_indices: tuple of 3 1D-arrays of plane indices :param margin: margin to include aroung plane indices, in pixels :return: 3*1D arrays of surface indices """ valid.valid_ndarray(surface, ndim=3) if not isinstance(plane_indices, tuple): plane_indices = tuple(plane_indices) surf_indices = np.nonzero( surface[ plane_indices[0].min() - margin : plane_indices[0].max() + margin, plane_indices[1].min() - margin : plane_indices[1].max() + margin, plane_indices[2].min() - margin : plane_indices[2].max() + margin, ] ) surf0 = ( surf_indices[0] + plane_indices[0].min() - margin ) # add margin plane_indices[0].min() - margin surf1 = ( surf_indices[1] + plane_indices[1].min() - margin ) # add margin plane_indices[1].min() - margin surf2 = ( surf_indices[2] + plane_indices[2].min() - margin ) # add margin plane_indices[2].min() - margin return surf0, surf1, surf2 def stereographic_proj( normals, intensity, max_angle, savedir, voxel_size, projection_axis, min_distance=10, background_south=-1000, background_north=-1000, save_txt=False, cmap=default_cmap, planes_south=None, planes_north=None, plot_planes=True, scale="linear", comment_fig="", debugging=False, ): """ Detect facets in an object. It uses a stereographic projection of normals to mesh triangles and watershed segmentation. :param normals: array of normals to mesh triangles (nb_normals rows x 3 columns) :param intensity: array of intensities (nb_normals rows x 1 column) :param max_angle: maximum angle in degree of the stereographic projection (should be larger than 90) :param savedir: directory for saving figures :param voxel_size: tuple of three numbers corresponding to the real-space
+ browse_string) # if not, assume that it is a URL without protcol and add it browser_msg = "glue browse [ " + browse_string + " ] complete\n" self.view.run_command('glue_writer', {'text': browser_msg, 'command': glue_command, 'exit': False}) else: browser_error_msg = "Please enter a URL or local filepath after the glue browse command\n" self.view.run_command('glue_writer', {'text': browser_error_msg, 'command': glue_command, 'exit': False}) # CLEAR command elif com_args[1] == "clear": self.view.run_command('glue_clear_editor') # keeps the input panel open for more commands self.view.run_command('glue') # FINDER command elif com_args[1] == "finder": # user is requesting a directory as an argument if len(com_args) > 2: finder_dirpath = com_args[2] if os.path.isdir(finder_dirpath): self.view.window().run_command("open_dir", {"dir": os.path.abspath(finder_dirpath)}) # open it curdir_finder_msg = "The requested directory was opened in your finder\n" elif os.path.isfile(finder_dirpath): finder_dirpath = os.path.dirname(finder_dirpath) self.view.window().run_command("open_dir", {"dir": os.path.abspath(finder_dirpath)}) # open it curdir_finder_msg = "The requested directory was opened in your finder\n" else: curdir_finder_msg = "Unable to find the requested directory path. Please try again.\n" # provide Glue view output to user after execution of the finder reveal self.view.run_command('glue_writer', {'text': curdir_finder_msg, 'command': glue_command, 'exit': False}) # user is requesting the current working directory (i.e. no argument) else: if len(self.current_dirpath) > 0 and os.path.isdir(self.current_dirpath): self.view.window().run_command("open_dir", {"dir": self.current_dirpath}) curdir_finder_msg = "The current directory was opened in your finder.\n" self.view.run_command('glue_writer', {'text': curdir_finder_msg, 'command': glue_command, 'exit': False}) else: curdir_finderror_msg = "Unable to detect the current working directory. Please restart the Glue plugin and try again.\n" self.view.run_command('glue_writer', {'text': curdir_finderror_msg, 'command': glue_command, 'exit': False}) # GOTO command elif com_args[1] == "goto": if len(com_args) > 2: goto_user_msg = "goto " + com_args[2] + " completed\n" self.view.window().run_command("show_overlay", {"overlay": "goto", "show_files": True, "text": com_args[2]}) self.view.run_command('glue_writer', {'text': goto_user_msg, 'command': glue_command, 'exit': False}) else: # if no query string, just open the overlay goto_user_msg = "goto overlay launch completed\n" self.view.window().run_command("show_overlay", {"overlay": "goto", "show_files": True}) self.view.run_command('glue_writer', {'text': goto_user_msg, 'command': glue_command, 'exit': False}) # LOCALHOST command elif com_args[1] == "localhost": import webbrowser localhost_url = 'http://localhost:8000' if len(com_args) > 2: protocol = com_args[2] # the argument is the requested protocol (doesn't perform sanity check) localhost_url = 'http://localhost:' + protocol webbrowser.open(localhost_url) localhost_browse_msg = "glue localhost complete\n" self.view.run_command('glue_writer', {'text': localhost_browse_msg, 'command': glue_command, 'exit': False}) # NEW command elif com_args[1] == "new": filenew_text = "glue new command completed\n" self.view.run_command('glue_writer', {'text': filenew_text, 'command': glue_command, 'exit': False}) self.view.window().new_file() # OPEN command elif com_args[1] == "open": if len(com_args) > 2: fileopen_text = "glue open command completed\n" self.view.run_command('glue_writer', {'text': fileopen_text, 'command': glue_command, 'exit': False}) self.view.window().run_command('glue_file_opener', {'current_dir': self.current_dirpath, 'file_list': com_args[2:]}) else: missing_file_error_msg = "Please enter at least one filepath after the open command.\n" self.view.run_command('glue_writer', {'text': missing_file_error_msg, 'command': glue_command, 'exit': False}) # PATH command elif com_args[1] == "path": if len(self.userpath) == 0: # obtain the 'real' mac osx path using the get_mac_path method if not set by user if sublime.platform() == "osx": # get the PATH updated_path = self.get_mac_path() # attempt to obtain the PATH set in the user's respective shell startup file # set the Mac environ PATH to the obtained PATH os.environ['PATH'] = updated_path # assign the PATH to the self.userpath attribute for the executable search below (and for reuse while running) self.userpath = updated_path the_path = self.userpath elif sublime.platform() == "windows": the_path = os.environ['PATH'] # do not set the PATH in Windows, letting Win shell handle the command elif sublime.platform() == "linux": self.userpath = os.environ['PATH'] the_path = self.userpath else: # if there is a self.userpath that is set (user set in settings, previously set above) then set Python environ PATH string the_path = self.userpath self.view.run_command('glue_writer', {'text': the_path + '\n', 'command': glue_command, 'exit': False}) # TEMPLATE command elif com_args[1] == "template": if len(com_args) > 2: template_name = "" template_filename = "" template_multi = False # test for the flag and name option in the user command for argument in com_args[2:]: # only test the arguments after the 'template' subcommand if "--multi" in argument: template_multi = True # user indicated that the file will specify multiple file paths elif argument.startswith('--name='): name_list = argument.split('=') template_filename = name_list[1] # the user assigned file write name of the file else: template_name = argument # if it is not one of the above options, then it is the requested template name print_string = template_name + " " + template_filename + " " + str(template_multi) self.view.run_command('glue_writer', {'text': print_string, 'command': glue_command, 'exit': False}) else: # user did not enter a template name template_err_msg = "Please enter a template name after your command.\n" self.view.run_command('glue_writer', {'text': template_err_msg, 'command': glue_command, 'exit': False}) # USER command elif com_args[1] == "user": uc_file_path = os.path.join(sublime.packages_path(), 'Glue-Commands', 'glue.json') if self.is_file_here(uc_file_path): fr = FileReader(uc_file_path) user_json = fr.read_utf8() usercom_dict = json.loads(user_json) if len(usercom_dict) > 0: if len(usercom_dict) == 1: com_extension_string = 'extension' com_number_string = 'lonely' else: com_extension_string = 'extensions' com_number_string = str(len(usercom_dict)) number_com_msg = "Your " + com_number_string + " Glue " + com_extension_string + ":\n\n" com_list = [] for key, value in self.xitems(usercom_dict): com_string = key + " : " + value com_list.append(com_string) com_string = '\n'.join(sorted(com_list)) com_string = number_com_msg + com_string + '\n' self.view.run_command('glue_writer', {'text': com_string, 'command': glue_command, 'exit': False}) else: user_error_msg = "Your glue.json file does not contain any commands\n" self.view.run_command('glue_writer', {'text': user_error_msg, 'command': glue_command, 'exit': False}) else: usercom_error_msg = "The glue.json file could not be found. Please confirm that this is contained in a Glue-Commands directory in your Sublime Text Packages directory.\n" self.view.run_command('glue_writer', {'text': usercom_error_msg, 'command': glue_command, 'exit': False}) # WCO command elif com_args[1] == "wco": if len(com_args) > 2: fileopen_text = "glue wco command completed\n" self.view.run_command('glue_writer', {'text': fileopen_text, 'command': glue_command, 'exit': False}) self.view.window().run_command('glue_file_wildcard_opener', {'current_dir': self.current_dirpath, 'match_pattern': com_args[2]}) else: missing_file_error_msg = "Please enter at least one filepath after the open command.\n" self.view.run_command('glue_writer', {'text': missing_file_error_msg, 'command': glue_command, 'exit': False}) # TEST command elif com_args[1] == "test": pass # test open containing folder #self.view.window().run_command("open_dir", {"dir": self.current_dirpath}) # self.view.run_command('glue_writer', {'text': current_proj, 'command': glue_command, 'exit': False}) # USER ALIAS commands else: if len(com_args) > 1: uc_file_path = os.path.join(sublime.packages_path(), 'Glue-Commands', 'glue.json') if self.is_file_here(uc_file_path): fr = FileReader(uc_file_path) user_json = fr.read_utf8() usercom_dict = json.loads(user_json) # if arguments from command, add those in location indicated by the file if len(com_args) > 2: # arguments were included on the command line, pass them to the user command arguments = ' '.join(com_args[2:]) else: # no additional arguments were included so pass empty string if there is an {{args}} tag arguments = '' if com_args[1] in usercom_dict: user_command = usercom_dict[com_args[1]] user_command = user_command.replace('{{args}}', arguments) # replace with CL args user_command = user_command.replace('{{pwd}}', os.getcwd()) # replace with working dir path user_command = user_command.replace('{{clipboard}}', sublime.get_clipboard()) # replace with contents of clipboard self.muterun(user_command) # execute the command else: # didn't find a glue alias with the requested name in the existing glue alias settings file bad_cmd_error_msg = "Glue could not identify that command. Please try again.\n" self.view.run_command('glue_writer', {'text': bad_cmd_error_msg, 'command': glue_command, 'exit': False}) # Didn't find a glue alias setting file, provide error message else: bad_cmd_error_msg = "Glue could not identify that command. Please try again.\n" self.view.run_command('glue_writer', {'text': bad_cmd_error_msg, 'command': glue_command, 'exit': False}) else: missing_arg_error_msg = "Glue requires an argument. Please use 'glue help' for for more information.\n" self.view.run_command('glue_writer', {'text': missing_arg_error_msg, 'command': glue_command, 'exit': False}) # Execute the system command that was entered else: try: if len(com_args) > 0: arguments = ' '.join(com_args[1:]) else: arguments = '' command = os.path.join(self.get_path(com_args[0]), com_args[0]) + " " + arguments t = threading.Thread(target=self.execute_command, args=(command, user_command)) t.start() # launch the thread to execute the command self.progress_indicator(t) # provide progress indicator self.print_on_complete(t, user_command) # polls for completion of the thread and prints to editor except Exception as e: raise e #------------------------------------------------------------------------------ # [ is_file_here ] - returns boolean for presence of filepath #------------------------------------------------------------------------------ def is_file_here(self, filepath): if os.path.exists(filepath) and os.path.isfile(filepath): return True else: return False #------------------------------------------------------------------------------ # [ get_mac_path method ] - obtain the user PATH setting on the Mac from bash #------------------------------------------------------------------------------ def get_mac_path(self): pathgetter = "bash -ilc 'echo -n $PATH'" updated_path = subprocess.Popen(pathgetter, stdout=subprocess.PIPE, shell=True).stdout.read() # update the shell PATH with this path return updated_path.decode("utf-8").rstrip().rstrip(':') #------------------------------------------------------------------------------ #
import torch from collections import OrderedDict import json import math import config as cfg import ipeps.ipeps as ipeps class IPEPS_U1SYM(ipeps.IPEPS): def __init__(self, sym_tensors, coeffs, vertexToSite=None, lX=None, lY=None, \ peps_args=cfg.peps_args, global_args=cfg.global_args): r""" :param sym_tensors: list of selected symmetric tensors :param coeffs: map from elementary unit cell to vector of coefficients :param vertexToSite: function mapping arbitrary vertex of a square lattice into a vertex within elementary unit cell :param lX: length of the elementary unit cell in X direction :param lY: length of the elementary unit cell in Y direction :param peps_args: ipeps configuration :param global_args: global configuration :type sym_tensors: list[tuple(dict(str,str), torch.tensor)] :type coeffs: dict[tuple(int,int) : torch.tensor] :type vertexToSite: function(tuple(int,int))->tuple(int,int) :type lX: int :type lY: int :type peps_args: PEPSARGS :type global_args: GLOBALARGS Member ``sites`` is a dictionary of non-equivalent on-site tensors indexed by tuple of coordinates (x,y) within the elementary unit cell. The index-position convetion for on-site tensors is defined as follows:: u s |/ l--A--r <=> A[s,u,l,d,r] | d where s denotes physical index, and u,l,d,r label four principal directions up, left, down, right in anti-clockwise order starting from up Member ``vertexToSite`` is a mapping function from vertex on a square lattice passed in as tuple(x,y) to a corresponding tuple(x,y) within elementary unit cell. On-site tensor of an IPEPS object ``wfc`` at vertex (x,y) is conveniently accessed through the member function ``site``, which internally uses ``vertexToSite`` mapping:: coord= (0,0) A_00= wfc.site(coord) By combining the appropriate ``vertexToSite`` mapping function with elementary unit cell specified through ``sites`` various tilings of a square lattice can be achieved:: # Example 1: 1-site translational iPEPS sites={(0,0): A} def vertexToSite(coord): return (0,0) wfc= IPEPS(sites,vertexToSite) # resulting tiling: # y\x -2 -1 0 1 2 # -2 A A A A A # -1 A A A A A # 0 A A A A A # 1 A A A A A # Example 2: 2-site bipartite iPEPS sites={(0,0): A, (1,0): B} def vertexToSite(coord): x = (coord[0] + abs(coord[0]) * 2) % 2 y = abs(coord[1]) return ((x + y) % 2, 0) wfc= IPEPS(sites,vertexToSite) # resulting tiling: # y\x -2 -1 0 1 2 # -2 A B A B A # -1 B A B A B # 0 A B A B A # 1 B A B A B # Example 3: iPEPS with 3x2 unit cell with PBC sites={(0,0): A, (1,0): B, (2,0): C, (0,1): D, (1,1): E, (2,1): F} wfc= IPEPS(sites,lX=3,lY=2) # resulting tiling: # y\x -2 -1 0 1 2 # -2 B C A B C # -1 E F D E F # 0 B C A B C # 1 E F D E F where in the last example we used default setting for ``vertexToSite``, which maps square lattice into elementary unit cell of size `lX` x `lY` assuming periodic boundary conditions (PBC) along both X and Y directions. TODO we infer the size of the cluster from the keys of sites. Is it OK? """ self.sym_tensors= sym_tensors self.coeffs= OrderedDict(coeffs) sites= self.build_onsite_tensors() super().__init__(sites, vertexToSite=vertexToSite, peps_args=peps_args,\ global_args=global_args) def __str__(self): print(f"lX x lY: {self.lX} x {self.lY}") for nid,coord,site in [(t[0], *t[1]) for t in enumerate(self.coeffs.items())]: print(f"A{nid} {coord}: {site.size()}") # show tiling of a square lattice coord_list = list(self.coeffs.keys()) mx, my = 3*self.lX, 3*self.lY label_spacing = 1+int(math.log10(len(self.coeffs.keys()))) for y in range(-my,my): if y == -my: print("y\\x ", end="") for x in range(-mx,mx): print(str(x)+label_spacing*" "+" ", end="") print("") print(f"{y:+} ", end="") for x in range(-mx,mx): print(f"A{coord_list.index(self.vertexToSite((x,y)))} ", end="") print("") # print meta-information of considered symmetric tensors for i,su2t in enumerate(self.sym_tensors): print(f"{i} {su2t[0]}") # print coefficients for nid,coord,c in [(t[0], *t[1]) for t in enumerate(self.coeffs.items())]: tdims = c.size() tlength = tdims[0] print(f"x: {coord[0]}, y: {coord[1]}") els=[f"{c[i]}" for i in range(tlength)] print(els) return "" def get_parameters(self): return self.coeffs.values() def get_checkpoint(self): return self.coeffs def load_checkpoint(self,checkpoint_file): checkpoint= torch.load(checkpoint_file) self.coeffs= checkpoint["parameters"] for coeff_t in self.coeffs.values(): coeff_t.requires_grad_(False) self.sites= self.build_onsite_tensors() def build_onsite_tensors(self): ts= torch.stack([t for m,t in self.sym_tensors]) sites=dict() for coord,c in self.coeffs.items(): sites[coord]= torch.einsum('i,ipuldr->puldr',c,ts) return sites def add_noise(self,noise): for coord in self.coeffs.keys(): rand_t = torch.rand( self.coeffs[coord].size(), dtype=self.dtype, device=self.device) tmp_t = self.coeffs[coord] + noise * rand_t self.coeffs[coord]= tmp_t/torch.max(torch.abs(tmp_t)) self.sites= self.build_onsite_tensors() def get_aux_bond_dims(self): return [max(t[1].size()[1:]) for t in self.sym_tensors] def write_to_file(self, outputfile, aux_seq=[0,1,2,3], tol=1.0e-14, normalize=False): write_ipeps_u1(self, outputfile, aux_seq=aux_seq, tol=tol, normalize=normalize) def extend_bond_dim(state, new_d): return ipeps.extend_bond_dim(state, new_d) def read_ipeps_u1(jsonfile, vertexToSite=None, aux_seq=[0,1,2,3], peps_args=cfg.peps_args,\ global_args=cfg.global_args): r""" :param jsonfile: input file describing iPEPS in json format :param vertexToSite: function mapping arbitrary vertex of a square lattice into a vertex within elementary unit cell :param aux_seq: array specifying order of auxiliary indices of on-site tensors stored in `jsonfile` :param peps_args: ipeps configuration :param global_args: global configuration :type jsonfile: str or Path object :type vertexToSite: function(tuple(int,int))->tuple(int,int) :type aux_seq: list[int] :type peps_args: PEPSARGS :type global_args: GLOBALARGS :return: wavefunction :rtype: IPEPS A simple PBC ``vertexToSite`` function is used by default Parameter ``aux_seq`` defines the expected order of auxiliary indices in input file relative to the convention fixed in tn-torch:: 0 1A3 <=> [up, left, down, right]: aux_seq=[0,1,2,3] 2 for alternative order, eg. 1 0A2 <=> [left, up, right, down]: aux_seq=[1,0,3,2] 3 """ asq = [x+1 for x in aux_seq] sites = OrderedDict() with open(jsonfile) as j: raw_state = json.load(j) # check for presence of "aux_seq" field in jsonfile if "aux_ind_seq" in raw_state.keys(): asq = [x+1 for x in raw_state["aux_ind_seq"]] # read the list of considered SU(2)-symmetric tensors sym_tensors=[] for symt in raw_state["sym_tensors"]: meta=dict({"meta": symt["meta"]}) dims=[symt["physDim"]]+[symt["auxDim"]]*4 t= torch.zeros(tuple(dims), dtype=global_args.dtype, device=global_args.device) for elem in symt["entries"]: tokens= elem.split(' ') inds=tuple([int(i) for i in tokens[0:5]]) t[inds]= float(tokens[5]) sym_tensors.append((meta,t)) # Loop over non-equivalent tensor,coeffs pairs in the unit cell coeffs=OrderedDict() for ts in raw_state["map"]: coord = (ts["x"],ts["y"]) # find the corresponding tensor of coeffs (and its elements) # identified by "siteId" in the "sites" list t = None for s in raw_state["coeffs"]: if s["siteId"] == ts["siteId"]: t = s if t == None: raise Exception("Tensor with siteId: "+ts["sideId"]+" NOT FOUND in \"sites\"") X = torch.zeros(t["numEntries"], dtype=global_args.dtype, device=global_args.device) # 1) fill the tensor with elements from the list "entries" # which list the coefficients in the following # notation: Dimensions are indexed starting from 0 # # index (integer) of coeff, (float) Re, Im for entry in t["entries"]: tokens = entry.split() X[int(tokens[0])]=float(tokens[1]) coeffs[coord]=X # Unless given, construct a function mapping from # any site of square-lattice back to unit-cell if vertexToSite == None: # check for legacy keys lX = 0 lY = 0 if "sizeM" in raw_state: lX = raw_state["sizeM"] else: lX = raw_state["lX"] if "sizeN" in raw_state: lY = raw_state["sizeN"] else: lY = raw_state["lY"] def vertexToSite(coord): x = coord[0] y = coord[1] return ( (x + abs(x)*lX)%lX, (y + abs(y)*lY)%lY ) state = IPEPS_U1SYM(sym_tensors=sym_tensors, coeffs=coeffs, \ vertexToSite=vertexToSite, \ lX=lX, lY=lY, peps_args=peps_args, global_args=global_args) else: state = IPEPS_U1SYM(sym_tensors=sym_tensors, coeffs=coeffs, \ vertexToSite=vertexToSite, \ peps_args=peps_args, global_args=global_args) return state def write_ipeps_u1(state, outputfile, aux_seq=[0,1,2,3], tol=1.0e-14, normalize=False): r""" :param state: wavefunction to write out in json format :param outputfile: target file :param aux_seq: array specifying order in which the auxiliary indices of on-site tensors will be stored in the `outputfile` :param tol: minimum magnitude of tensor elements which are written out :param normalize: if True, on-site tensors are normalized before writing :type state: IPEPS :type ouputfile: str or Path object :type aux_seq: list[int] :type tol: float :type normalize: bool Parameter ``aux_seq`` defines the order of auxiliary indices relative to the convention fixed in tn-torch in which the tensor elements are written out:: 0 1A3 <=> [up, left, down, right]: aux_seq=[0,1,2,3] 2 for alternative order, eg. 1 0A2 <=> [left, up, right, down]: aux_seq=[1,0,3,2] 3 TODO drop constrain for aux bond dimension to be identical on all bond indices TODO implement cutoff on
# Copyright 2016 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """bibtex.py encodes and describes the BibTeX specification (see Kopka & Daly, 2004 for details). Useful for validating OLD source input since the data structure for OLD sources is the BibTeX data structure. Use Pybtex (http://pybtex.sourceforge.net/manual.html) to parse BibTeX files if need be: from io import StringIO from pybtex.database.input.bibtex import Parser e1 = ''' @BOOK{knuth:86a, AUTHOR = "<NAME>", TITLE = {The \TeX{}book}, EDITION = "third", PUBLISHER = "Addison--Wesley", ADDRESS = {Reading, Massachusetts}, YEAR = 1986 } '''.strip() parser = Parser() bib_data = parser.parse_stream(StringIO(e1)) knuth86a = parser.data.entries['knuth:86a'] unicode(knuth86a.persons['author'][0]) u'<NAME>.' """ # Entry types. entry_types = { 'article': { 'description': 'An article from a journal or magazine.', 'required': ('author', 'title', 'journal', 'year'), 'optional': ('volume', 'number', 'pages', 'month', 'note') }, 'book' : { 'description': 'A book with an explicit publisher.', 'required': (('author', 'editor'), 'title', 'publisher', 'year'), 'optional': (('volume', 'number'), 'series', 'address', 'edition', 'month', 'note') }, 'booklet': { 'description': 'A work that is printed and bound, but without a named publisher or sponsoring institution.', 'required': ('title',), 'optional': ('author', 'howpublished', 'address', 'month', 'year', 'note') }, 'conference': { 'description': 'The same as inproceedings, included for Scribe compatibility.', 'required': ('author', 'title', 'booktitle', 'year'), 'optional': ('editor', ('volume', 'number'), 'series', 'pages', 'address', 'month', 'organization', 'publisher', 'note') }, 'inbook': { 'description': 'A part of a book, usually untitled. May be a chapter (or section or whatever) and/or a range of pages.', 'required': (('author', 'editor'), 'title', ('chapter', 'pages'), 'publisher', 'year'), 'optional': (('volume', 'number'), 'series', 'type', 'address', 'edition', 'month', 'note') }, 'incollection': { 'description': 'A part of a book having its own title.', 'required': ('author', 'title', 'booktitle', 'publisher', 'year'), 'optional': ('editor', ('volume', 'number'), 'series', 'type', 'chapter', 'pages', 'address', 'edition', 'month', 'note') }, 'inproceedings': { 'description': 'An article in a conference proceedings.', 'required': ('author', 'title', 'booktitle', 'year'), 'optional': ('editor', ('volume', 'number'), 'series', 'pages', 'address', 'month', 'organization', 'publisher', 'note') }, 'manual': { 'description': 'Technical documentation.', 'required': ('title',), 'optional': ('author', 'organization', 'address', 'edition', 'month', 'year', 'note') }, 'mastersthesis': { 'description': 'A Master\'s thesis.', 'required': ('author', 'title', 'school', 'year'), 'optional': ('type', 'address', 'month', 'note') }, 'misc': { 'description': 'For use when nothing else fits.', 'required': (), 'optional': ('author', 'title', 'howpublished', 'month', 'year', 'note') }, 'phdthesis': { 'description': 'A Ph.D. thesis.', 'required': ('author', 'title', 'school', 'year'), 'optional': ('type', 'address', 'month', 'note') }, 'proceedings': { 'description': 'The proceedings of a conference.', 'required': ('title', 'year'), 'optional': ('editor', ('volume', 'number'), 'series', 'address', 'month', 'publisher', 'organization', 'note') }, 'techreport': { 'description': 'A report published by a school or other institution, usually numbered within a series.', 'required': ('author', 'title', 'institution', 'year'), 'optional': ('type', 'number', 'address', 'month', 'note') }, 'unpublished': { 'description': 'A document having an author and title, but not formally published.', 'required': ('author', 'title', 'note'), 'optional': ('month', 'year') } } # Other entry types. Not recommended. other_entry_types = ( 'collection', 'patent' ) # These field names are optional for all entry types. universally_optional_field_names = ( 'key', # Additional info for alphabetizing entries 'crossref' # Field text here is the cite key for another entry, 'url', 'crossref' ) # Fields names. # Note that 'eprint' and 'url' might also be in the standard fields, cf. http://en.wikipedia.org/wiki/BibTeX#Bibliographic_information_file field_names = ( 'address', # Usually the address of the publisher or other type of institution. For major publishing houses, van Leunen recommends omitting the information entirely. For small publishers, on the other hand, you can help the reader by giving the complete address. 'annote', # An annotation. It is not used by the standard bibliography styles, but may be used by others that produce an annotated bibliography. 'author', # The name(s) of the author(s), in the format described in the LaTeX book. 'booktitle', # Title of a book, part of which is being cited. See the LaTeX book for how to type titles. For book entries, use the title field instead. 'chapter', # A chapter (or section or whatever) number. 'crossref', # The database key of the entry being cross referenced. Any fields that are missing from the current record are inherited from the field being cross referenced. 'edition', # The edition of a book---for example, ``Second''. This should be an ordinal, and should have the first letter capitalized, as shown here; the standard styles convert to lower case when necessary. 'editor', # Name(s) of editor(s), typed as indicated in the LaTeX book. If there is also an author field, then the editor field gives the editor of the book or collection in which the reference appears. 'howpublished', # How something strange has been published. The first word should be capitalized. 'institution', # The sponsoring institution of a technical report. 'journal', # A journal name. Abbreviations are provided for many journals. 'key', # Used for alphabetizing, cross referencing, and creating a label when the ``author'' information is missing. This field should not be confused with the key that appears in the cite command and at the beginning of the database entry. 'month', # The month in which the work was published or, for an unpublished work, in which it was written. You should use the standard three-letter abbreviation, as described in Appendix B.1.3 of the LaTeX book. 'note', # Any additional information that can help the reader. The first word should be capitalized. 'number', # The number of a journal, magazine, technical report, or of a work in a series. An issue of a journal or magazine is usually identified by its volume and number; the organization that issues a technical report usually gives it a number; and sometimes books are given numbers in a named series. 'organization', # The organization that sponsors a conference or that publishes a manual. 'pages', # One or more page numbers or range of numbers, such as 42--111 or 7,41,73--97 or 43+ (the `+' in this last example indicates pages following that don't form a simple range). To make it easier to maintain Scribe-compatible databases, the standard styles convert a single dash (as in 7-33) to the double dash used in TeX to denote number ranges (as in 7--33). 'publisher', # The publisher's name. 'school', # The name of the school where a thesis was written. 'series', # The name of a series or set of books. When citing an entire book, the the title field gives its title and an optional series field gives the name of a series or multi-volume set in which the book is published. 'title', # The work's title, typed as explained in the LaTeX book. 'type', # The type of a technical report---for example, ``Research Note''. 'url', # The universal resource locator for online documents; this is not standard but supplied by more modern bibliography styles. 'volume', # The volume of a journal or multi-volume book. 'year' # The year of publication or, for an unpublished work, the year it was written. Generally it should consist of four numerals, such as 1984, although the standard styles can handle any year whose last four nonpunctuation characters are numerals, such as `\hbox{(about 1984)}'. ) # Other field names. other_field_names = ( 'affiliation', # The author's affiliation. 'abstract', # An abstract of the work. 'contents', # A Table of Contents 'copyright', # Copyright information. 'ISBN', # The International Standard Book Number. 'ISSN', # The International Standard Serial Number. Used to identify a journal. 'keywords', # Key words used for searching or possibly for annotation. 'language', # The language the document is in. 'location', # A location associated with the entry, such as the city in which a conference took place. 'LCCN', # The Library of Congress Call
take up the full area.""" return self.SetFlag(self.optionMaximized, True) def Minimize(self): """ Makes the pane minimized in a L{AuiToolBar}. Clicking on the minimize button causes a new L{AuiToolBar} to be created and added to the frame manager, (currently the implementation is such that panes at West will have a toolbar at the right, panes at South will have toolbars at the bottom etc...) and the pane is hidden in the manager. Clicking on the restore button on the newly created toolbar will result in the toolbar being removed and the original pane being restored. """ return self.SetFlag(self.optionMinimized, True) def MinimizeMode(self, mode): """ Sets the expected minimized mode if the MinimizeButton() is visible. The minimized pane can have a specific position in the work space: ============================== ========= ============================== Minimize Mode Flag Hex Value Description ============================== ========= ============================== ``AUI_MINIMIZE_POS_SMART`` 0x01 Minimizes the pane on the closest tool bar ``AUI_MINIMIZE_POS_TOP`` 0x02 Minimizes the pane on the top tool bar ``AUI_MINIMIZE_POS_LEFT`` 0x03 Minimizes the pane on its left tool bar ``AUI_MINIMIZE_POS_RIGHT`` 0x04 Minimizes the pane on its right tool bar ``AUI_MINIMIZE_POS_BOTTOM`` 0x05 Minimizes the pane on its bottom tool bar ============================== ========= ============================== The caption of the minimized pane can be displayed in different modes: ============================== ========= ============================== Caption Mode Flag Hex Value Description ============================== ========= ============================== ``AUI_MINIMIZE_CAPT_HIDE`` 0x0 Hides the caption of the minimized pane ``AUI_MINIMIZE_CAPT_SMART`` 0x08 Displays the caption in the best rotation (horizontal in the top and in the bottom tool bar or clockwise in the right and in the left tool bar) ``AUI_MINIMIZE_CAPT_HORZ`` 0x10 Displays the caption horizontally ============================== ========= ============================== """ self.minimize_mode = mode return self def Restore(self): """ Is the reverse of L{Maximize} and L{Minimize}.""" return self.SetFlag(self.optionMaximized or self.optionMinimized, False) def Fixed(self): """ Forces a pane to be fixed size so that it cannot be resized. After calling L{Fixed}, L{IsFixed} will return ``True``. """ return self.SetFlag(self.optionResizable, False) def Resizable(self, resizable=True): """ Allows a pane to be resizable if `resizable` is ``True``, and forces it to be a fixed size if `resizeable` is ``False``. If `resizable` is ``False``, this is simply an antonym for L{Fixed}. :param `resizable`: whether the pane will be resizeable or not. """ return self.SetFlag(self.optionResizable, resizable) def Transparent(self, alpha): """ Makes the pane transparent when floating. :param `alpha`: an integer value between 0 and 255 for pane transparency. """ if alpha < 0 or alpha > 255: raise Exception("Invalid transparency value (%s)"%repr(alpha)) self.transparent = alpha self.needsTransparency = True def Dock(self): """ Indicates that a pane should be docked. It is the opposite of L{Float}. """ if self.IsNotebookPage(): self.notebook_id = -1 self.dock_direction = AUI_DOCK_NONE return self.SetFlag(self.optionFloating, False) def Float(self): """ Indicates that a pane should be floated. It is the opposite of L{Dock}. """ if self.IsNotebookPage(): self.notebook_id = -1 self.dock_direction = AUI_DOCK_NONE return self.SetFlag(self.optionFloating, True) def Hide(self): """ Indicates that a pane should be hidden. Calling L{Show} (``False``) achieve the same effect. """ return self.SetFlag(self.optionHidden, True) def Show(self, show=True): """ Indicates that a pane should be shown. :param `show`: whether the pane should be shown or not. """ return self.SetFlag(self.optionHidden, not show) # By defaulting to 1000, the tab will get placed at the end def NotebookPage(self, id, tab_position=1000): """ Forces a pane to be a notebook page, so that the pane can be docked on top to another to create a L{AuiNotebook}. :param `id`: the notebook id; :param `tab_position`: the tab number of the pane once docked in a notebook. """ # Remove any floating frame self.Dock() self.notebook_id = id self.dock_pos = tab_position self.dock_row = 0 self.dock_layer = 0 self.dock_direction = AUI_DOCK_NOTEBOOK_PAGE return self def NotebookControl(self, id): """ Forces a pane to be a notebook control (L{AuiNotebook}). :param `id`: the notebook id. """ self.notebook_id = id self.window = None self.buttons = [] if self.dock_direction == AUI_DOCK_NOTEBOOK_PAGE: self.dock_direction = AUI_DOCK_NONE return self def HasNotebook(self): """ Returns whether a pane has a L{AuiNotebook} or not. """ return self.notebook_id >= 0 def IsNotebookPage(self): """ Returns whether the pane is a notebook page in a L{AuiNotebook}. """ return self.notebook_id >= 0 and self.dock_direction == AUI_DOCK_NOTEBOOK_PAGE def IsNotebookControl(self): """ Returns whether the pane is a notebook control (L{AuiNotebook}). """ return not self.IsNotebookPage() and self.HasNotebook() def SetNameFromNotebookId(self): """ Sets the pane name once docked in a L{AuiNotebook} using the notebook id. """ if self.notebook_id >= 0: self.name = "__notebook_%d"%self.notebook_id return self def CaptionVisible(self, visible=True, left=False): """ Indicates that a pane caption should be visible. If `visible` is ``False``, no pane caption is drawn. :param `visible`: whether the caption should be visible or not; :param `left`: whether the caption should be drawn on the left (rotated by 90 degrees) or not. """ if left: self.SetFlag(self.optionCaption, False) return self.SetFlag(self.optionCaptionLeft, visible) self.SetFlag(self.optionCaptionLeft, False) return self.SetFlag(self.optionCaption, visible) def PaneBorder(self, visible=True): """ Indicates that a border should be drawn for the pane. :param `visible`: whether the pane border should be visible or not. """ return self.SetFlag(self.optionPaneBorder, visible) def Gripper(self, visible=True): """ Indicates that a gripper should be drawn for the pane. :param `visible`: whether the gripper should be visible or not. """ return self.SetFlag(self.optionGripper, visible) def GripperTop(self, attop=True): """ Indicates that a gripper should be drawn at the top of the pane. :param `attop`: whether the gripper should be drawn at the top or not. """ return self.SetFlag(self.optionGripperTop, attop) def CloseButton(self, visible=True): """ Indicates that a close button should be drawn for the pane. :param `visible`: whether the close button should be visible or not. """ return self.SetFlag(self.buttonClose, visible) def MaximizeButton(self, visible=True): """ Indicates that a maximize button should be drawn for the pane. :param `visible`: whether the maximize button should be visible or not. """ return self.SetFlag(self.buttonMaximize, visible) def MinimizeButton(self, visible=True): """ Indicates that a minimize button should be drawn for the pane. :param `visible`: whether the minimize button should be visible or not. """ return self.SetFlag(self.buttonMinimize, visible) def PinButton(self, visible=True): """ Indicates that a pin button should be drawn for the pane. :param `visible`: whether the pin button should be visible or not. """ return self.SetFlag(self.buttonPin, visible) def DestroyOnClose(self, b=True): """ Indicates whether a pane should be destroyed when it is closed. Normally a pane is simply hidden when the close button is clicked. Setting `b` to ``True`` will cause the window to be destroyed when the user clicks the pane's close button. :param `b`: whether the pane should be destroyed when it is closed or not. """ return self.SetFlag(self.optionDestroyOnClose, b) def TopDockable(self, b=True): """ Indicates whether a pane can be docked at the top of the frame. :param `b`: whether the pane can be docked at the top or not. """ return self.SetFlag(self.optionTopDockable, b) def BottomDockable(self, b=True): """ Indicates whether a pane can be docked at the bottom of the frame. :param `b`: whether the pane can be docked at the bottom or not. """ return self.SetFlag(self.optionBottomDockable, b) def LeftDockable(self, b=True): """ Indicates whether a pane can be docked on the left of the frame. :param `b`: whether the pane can be docked at the left or not. """ return self.SetFlag(self.optionLeftDockable, b) def RightDockable(self, b=True): """ Indicates whether a pane can be docked on the right of the frame. :param `b`: whether the pane can be docked at the right or not. """ return self.SetFlag(self.optionRightDockable, b) def Floatable(self, b=True): """ Sets whether the user will be able to undock a pane and turn it into a floating window. :param `b`: whether the pane can be floated or not. """ return self.SetFlag(self.optionFloatable, b) def Movable(self, b=True): """ Indicates whether a pane can be moved. :param `b`: whether the pane can be moved or not. """ return self.SetFlag(self.optionMovable, b) def NotebookDockable(self, b=True): """ Indicates whether a pane can be docked in an automatic L{AuiNotebook}. :param `b`: whether the pane can be docked in a notebook or not. """ return self.SetFlag(self.optionNotebookDockable, b) def DockFixed(self, b=True): """ Causes the
please pass async_req=True >>> thread = api.v1_departments_id_history_get_with_http_info(id, async_req=True) >>> result = thread.get() :param id: instance id of department history record (required) :type id: str :param page: :type page: int :param page_size: :type page_size: int :param sort: Sorting criteria in the format: property:asc/desc. Default sort is date:desc. Multiple sort criteria are supported and must be separated with a comma. Example: sort=date:desc,name:asc :type sort: list[str] :param filter: Query in the RSQL format, allowing to filter history notes collection. Default filter is empty query - returning all results for the requested page. Fields allowed in the query: username, date, note, details. This param can be combined with paging and sorting. Example: filter=username!=admin and details==*disabled* and date<2019-12-15 :type filter: str :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(HistorySearchResults, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'id', 'page', 'page_size', 'sort', 'filter' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method v1_departments_id_history_get" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'id' is set if self.api_client.client_side_validation and ('id' not in local_var_params or # noqa: E501 local_var_params['id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `id` when calling `v1_departments_id_history_get`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in local_var_params: path_params['id'] = local_var_params['id'] # noqa: E501 query_params = [] if 'page' in local_var_params and local_var_params['page'] is not None: # noqa: E501 query_params.append(('page', local_var_params['page'])) # noqa: E501 if 'page_size' in local_var_params and local_var_params['page_size'] is not None: # noqa: E501 query_params.append(('page-size', local_var_params['page_size'])) # noqa: E501 if 'sort' in local_var_params and local_var_params['sort'] is not None: # noqa: E501 query_params.append(('sort', local_var_params['sort'])) # noqa: E501 collection_formats['sort'] = 'multi' # noqa: E501 if 'filter' in local_var_params and local_var_params['filter'] is not None: # noqa: E501 query_params.append(('filter', local_var_params['filter'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 response_types_map = { 200: "HistorySearchResults", 404: "ApiError", } return self.api_client.call_api( '/v1/departments/{id}/history', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_types_map=response_types_map, auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def v1_departments_id_history_post(self, id, object_history_note, **kwargs): # noqa: E501 """Add specified Department history object notes # noqa: E501 Adds specified Department history object notes # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.v1_departments_id_history_post(id, object_history_note, async_req=True) >>> result = thread.get() :param id: instance id of department history record (required) :type id: str :param object_history_note: history notes to create (required) :type object_history_note: ObjectHistoryNote :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: HrefResponse """ kwargs['_return_http_data_only'] = True return self.v1_departments_id_history_post_with_http_info(id, object_history_note, **kwargs) # noqa: E501 def v1_departments_id_history_post_with_http_info(self, id, object_history_note, **kwargs): # noqa: E501 """Add specified Department history object notes # noqa: E501 Adds specified Department history object notes # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.v1_departments_id_history_post_with_http_info(id, object_history_note, async_req=True) >>> result = thread.get() :param id: instance id of department history record (required) :type id: str :param object_history_note: history notes to create (required) :type object_history_note: ObjectHistoryNote :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(HrefResponse, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'id', 'object_history_note' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method v1_departments_id_history_post" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'id' is set if self.api_client.client_side_validation and ('id' not in local_var_params or # noqa: E501 local_var_params['id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `id` when calling `v1_departments_id_history_post`") # noqa: E501 # verify the required parameter 'object_history_note' is set if self.api_client.client_side_validation and ('object_history_note' not in local_var_params or # noqa: E501 local_var_params['object_history_note'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `object_history_note` when calling `v1_departments_id_history_post`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in local_var_params: path_params['id'] = local_var_params['id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'object_history_note' in local_var_params: body_params = local_var_params['object_history_note'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 response_types_map = { 201: "HrefResponse", 404: "ApiError", 503: "ApiError", } return self.api_client.call_api( '/v1/departments/{id}/history', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_types_map=response_types_map, auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def v1_departments_id_put(self, id, department, **kwargs): # noqa: E501 """Update specified department object # noqa: E501 Update specified department object # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.v1_departments_id_put(id, department, async_req=True) >>> result = thread.get() :param id: instance id of department record (required) :type id: str :param department: department object to create. ids defined in this body will be ignored (required) :type department: Department :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: Department """ kwargs['_return_http_data_only'] = True return self.v1_departments_id_put_with_http_info(id, department, **kwargs) # noqa: E501 def v1_departments_id_put_with_http_info(self, id, department, **kwargs): # noqa: E501 """Update specified department object # noqa: E501 Update specified department object # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request,
# Copyright 2014 Google Inc. All Rights Reserved. """Command for creating instances.""" import collections from googlecloudsdk.calliope import exceptions from googlecloudsdk.compute.lib import addresses_utils from googlecloudsdk.compute.lib import base_classes from googlecloudsdk.compute.lib import constants from googlecloudsdk.compute.lib import image_utils from googlecloudsdk.compute.lib import instance_utils from googlecloudsdk.compute.lib import metadata_utils from googlecloudsdk.compute.lib import request_helper from googlecloudsdk.compute.lib import utils from googlecloudsdk.compute.lib import windows_password from googlecloudsdk.compute.lib import zone_utils from googlecloudsdk.core import log DISK_METAVAR = ( 'name=NAME [mode={ro,rw}] [boot={yes,no}] [device-name=DEVICE_NAME] ' '[auto-delete={yes,no}]') class Create(base_classes.BaseAsyncCreator, image_utils.ImageExpander, addresses_utils.AddressExpander, zone_utils.ZoneResourceFetcher): """Create Google Compute Engine virtual machine instances.""" @staticmethod def Args(parser): metadata_utils.AddMetadataArgs(parser) instance_utils.AddDiskArgs(parser) instance_utils.AddLocalSsdArgs(parser) instance_utils.AddImageArgs(parser) instance_utils.AddCanIpForwardArgs(parser) instance_utils.AddAddressArgs(parser, instances=True) instance_utils.AddMachineTypeArgs(parser) instance_utils.AddMaintenancePolicyArgs(parser) instance_utils.AddNetworkArgs(parser) instance_utils.AddNoRestartOnFailureArgs(parser) instance_utils.AddScopeArgs(parser) instance_utils.AddTagsArgs(parser) parser.add_argument( '--description', help='Specifies a textual description of the instances.') parser.add_argument( 'names', metavar='NAME', nargs='+', help='The names of the instances to create.') utils.AddZoneFlag( parser, resource_type='instances', operation_type='create') @property def service(self): return self.compute.instances @property def method(self): return 'Insert' @property def resource_type(self): return 'instances' def ValidateLocalSsdFlags(self, args): for local_ssd in args.local_ssd or []: interface = local_ssd.get('interface') if interface and interface not in instance_utils.LOCAL_SSD_INTERFACES: raise exceptions.ToolException( 'Unexpected local SSD interface: [{given}]. ' 'Legal values are [{ok}].' .format(given=interface, ok=', '.join(instance_utils.LOCAL_SSD_INTERFACES))) def ValidateDiskFlags(self, args): """Validates the values of all disk-related flags.""" boot_disk_specified = False for disk in args.disk or []: disk_name = disk.get('name') if not disk_name: raise exceptions.ToolException( '[name] is missing in [--disk]. [--disk] value must be of the form ' '[{0}].'.format(DISK_METAVAR)) mode_value = disk.get('mode') if mode_value and mode_value not in ('rw', 'ro'): raise exceptions.ToolException( 'Value for [mode] in [--disk] must be [rw] or [ro], not [{0}].' .format(mode_value)) # Ensures that the user is not trying to attach a read-write # disk to more than one instance. if len(args.names) > 1 and mode_value == 'rw': raise exceptions.ToolException( 'Cannot attach disk [{0}] in read-write mode to more than one ' 'instance.'.format(disk_name)) boot_value = disk.get('boot') if boot_value and boot_value not in ('yes', 'no'): raise exceptions.ToolException( 'Value for [boot] in [--disk] must be [yes] or [no], not [{0}].' .format(boot_value)) auto_delete_value = disk.get('auto-delete') if auto_delete_value and auto_delete_value not in ['yes', 'no']: raise exceptions.ToolException( 'Value for [auto-delete] in [--disk] must be [yes] or [no], not ' '[{0}].'.format(auto_delete_value)) # If this is a boot disk and we have already seen a boot disk, # we need to fail because only one boot disk can be attached. if boot_value == 'yes': if boot_disk_specified: raise exceptions.ToolException( 'Each instance can have exactly one boot disk. At least two ' 'boot disks were specified through [--disk].') else: boot_disk_specified = True if args.image and boot_disk_specified: raise exceptions.ToolException( 'Each instance can have exactly one boot disk. One boot disk ' 'was specified through [--disk] and another through [--image].') if boot_disk_specified: if args.boot_disk_device_name: raise exceptions.ToolException( '[--boot-disk-device-name] can only be used when creating a new ' 'boot disk.') if args.boot_disk_type: raise exceptions.ToolException( '[--boot-disk-type] can only be used when creating a new boot ' 'disk.') if args.boot_disk_size: raise exceptions.ToolException( '[--boot-disk-size] can only be used when creating a new boot ' 'disk.') if args.no_boot_disk_auto_delete: raise exceptions.ToolException( '[--no-boot-disk-auto-delete] can only be used when creating a ' 'new boot disk.') def UseExistingBootDisk(self, args): """Returns True if the user has specified an existing boot disk.""" return any(disk.get('boot') == 'yes' for disk in args.disk or []) def CreatePersistentAttachedDiskMessages(self, args, instance_ref): """Returns a list of AttachedDisk messages and the boot disk's reference.""" disks = [] boot_disk_ref = None for disk in args.disk or []: name = disk['name'] # Resolves the mode. mode_value = disk.get('mode', 'rw') if mode_value == 'rw': mode = self.messages.AttachedDisk.ModeValueValuesEnum.READ_WRITE else: mode = self.messages.AttachedDisk.ModeValueValuesEnum.READ_ONLY boot = disk.get('boot') == 'yes' auto_delete = disk.get('auto-delete') == 'yes' disk_ref = self.CreateZonalReference( name, instance_ref.zone, resource_type='disks') if boot: boot_disk_ref = disk_ref attached_disk = self.messages.AttachedDisk( autoDelete=auto_delete, boot=boot, deviceName=disk.get('device-name'), mode=mode, source=disk_ref.SelfLink(), type=self.messages.AttachedDisk.TypeValueValuesEnum.PERSISTENT) # The boot disk must end up at index 0. if boot: disks = [attached_disk] + disks else: disks.append(attached_disk) return disks, boot_disk_ref def CreateLocalSsdMessage(self, zone, device_name, interface): disk_type_ref = self.CreateZonalReference('local-ssd', zone, resource_type='diskTypes') maybe_interface_enum = ( self.messages.AttachedDisk.InterfaceValueValuesEnum(interface) if interface else None) return self.messages.AttachedDisk( type=self.messages.AttachedDisk.TypeValueValuesEnum.SCRATCH, autoDelete=True, deviceName=device_name, interface=maybe_interface_enum, mode=self.messages.AttachedDisk.ModeValueValuesEnum.READ_WRITE, initializeParams=self.messages.AttachedDiskInitializeParams( diskType=disk_type_ref.SelfLink()), ) def CreateDefaultBootAttachedDiskMessage( self, args, boot_disk_size_gb, image_uri, instance_ref): """Returns an AttachedDisk message for creating a new boot disk.""" if args.boot_disk_type: disk_type_ref = self.CreateZonalReference( args.boot_disk_type, instance_ref.zone, resource_type='diskTypes') disk_type_uri = disk_type_ref.SelfLink() else: disk_type_ref = None disk_type_uri = None return self.messages.AttachedDisk( autoDelete=not args.no_boot_disk_auto_delete, boot=True, deviceName=args.boot_disk_device_name, initializeParams=self.messages.AttachedDiskInitializeParams( sourceImage=image_uri, diskSizeGb=boot_disk_size_gb, diskType=disk_type_uri), mode=self.messages.AttachedDisk.ModeValueValuesEnum.READ_WRITE, type=self.messages.AttachedDisk.TypeValueValuesEnum.PERSISTENT) def FetchDiskResources(self, disk_refs): """Returns a list of disk resources corresponding to the disk references.""" requests = [] for disk_ref in disk_refs: requests.append(( self.compute.disks, 'Get', self.messages.ComputeDisksGetRequest( disk=disk_ref.Name(), project=disk_ref.project, zone=disk_ref.zone))) errors = [] res = list(request_helper.MakeRequests( requests=requests, http=self.http, batch_url=self.batch_url, errors=errors, custom_get_requests=None)) if errors: utils.RaiseToolException( errors, error_message='Could not fetch some boot disks:') return res def CreateServiceAccountMessages(self, args): """Returns a list of ServiceAccount messages corresponding to --scopes.""" if args.no_scopes: scopes = [] else: scopes = args.scopes or constants.DEFAULT_SCOPES accounts_to_scopes = collections.defaultdict(list) for scope in scopes: parts = scope.split('=') if len(parts) == 1: account = 'default' scope_uri = scope elif len(parts) == 2: account, scope_uri = parts else: raise exceptions.ToolException( '[{0}] is an illegal value for [--scopes]. Values must be of the ' 'form [SCOPE] or [ACCOUNT=SCOPE].'.format(scope)) # Expands the scope if the user provided an alias like # "compute-rw". scope_uri = constants.SCOPES.get(scope_uri, scope_uri) accounts_to_scopes[account].append(scope_uri) res = [] for account, scopes in sorted(accounts_to_scopes.iteritems()): res.append(self.messages.ServiceAccount( email=account, scopes=sorted(scopes))) return res def CreateNetworkInterfaceMessage(self, args, instance_refs): """Returns a new NetworkInterface message.""" network_ref = self.CreateGlobalReference( args.network, resource_type='networks') network_interface = self.messages.NetworkInterface( network=network_ref.SelfLink()) if not args.no_address: access_config = self.messages.AccessConfig( name=constants.DEFAULT_ACCESS_CONFIG_NAME, type=self.messages.AccessConfig.TypeValueValuesEnum.ONE_TO_ONE_NAT) # If the user provided an external IP, populate the access # config with it. if len(instance_refs) == 1: region = utils.ZoneNameToRegionName(instance_refs[0].zone) address = self.ExpandAddressFlag(args, region) if address: access_config.natIP = address network_interface.accessConfigs = [access_config] return network_interface def CreateRequests(self, args): self.ValidateDiskFlags(args) self.ValidateLocalSsdFlags(args) if args.maintenance_policy: on_host_maintenance = ( self.messages.Scheduling.OnHostMaintenanceValueValuesEnum( args.maintenance_policy)) else: on_host_maintenance = None scheduling = self.messages.Scheduling( automaticRestart=not args.no_restart_on_failure, onHostMaintenance=on_host_maintenance) service_accounts = self.CreateServiceAccountMessages(args) if args.tags: tags = self.messages.Tags(items=args.tags) else: tags = None metadata = metadata_utils.ConstructMetadataMessage( self.messages, metadata=args.metadata, metadata_from_file=args.metadata_from_file) # If the user already provided an initial Windows password and # username through metadata, then there is no need to check # whether the image or the boot disk is Windows. windows_username_present = False windows_password_present = False for kv in metadata.items: if kv.key == constants.INITIAL_WINDOWS_USER_METADATA_KEY_NAME: windows_username_present = True if kv.key == constants.INITIAL_WINDOWS_PASSWORD_METADATA_KEY_NAME: windows_password_present = True check_for_windows_image = (not windows_username_present or not windows_password_present) boot_disk_size_gb = utils.BytesToGb(args.boot_disk_size) utils.WarnIfDiskSizeIsTooSmall(boot_disk_size_gb, args.boot_disk_type) instance_refs = self.CreateZonalReferences(args.names, args.zone) # Check if the zone is deprecated or has maintenance coming. self.WarnForZonalCreation(instance_refs) network_interface = self.CreateNetworkInterfaceMessage(args, instance_refs) # The element at index i is the machine type URI for instance # i. We build this list here because we want to delay work that # requires API calls as much as possible. This leads to a better # user experience because the tool can fail fast upon a spelling # mistake instead of delaying the user by making API calls whose # purpose has already been rendered moot by the spelling mistake. machine_type_uris = [] for instance_ref in instance_refs: machine_type_uris.append(self.CreateZonalReference( args.machine_type, instance_ref.zone, resource_type='machineTypes').SelfLink()) create_boot_disk = not self.UseExistingBootDisk(args) add_windows_credentials_to_metadata = False if create_boot_disk: image_uri, image_resource = self.ExpandImageFlag( args, return_image_resource=check_for_windows_image) if (check_for_windows_image and image_utils.HasWindowsLicense(image_resource, self.resources)): log.debug('[%s] is a Windows image.', image_resource.selfLink) add_windows_credentials_to_metadata = True else: image_uri = None # A list of lists where the element at index i contains a list of # disk messages that should be set for the instance at index i. disks_messages = [] # A mapping of zone to boot disk references for all existing boot # disks that are being attached. existing_boot_disks = {} for instance_ref in instance_refs: persistent_disks, boot_disk_ref = ( self.CreatePersistentAttachedDiskMessages(args, instance_ref)) local_ssds = [ self.CreateLocalSsdMessage( instance_ref.zone, x.get('device-name'), x.get('interface')) for x in args.local_ssd or []] if create_boot_disk: boot_disk = self.CreateDefaultBootAttachedDiskMessage( args, boot_disk_size_gb, image_uri, instance_ref) persistent_disks = [boot_disk] + persistent_disks else: existing_boot_disks[boot_disk_ref.zone] = boot_disk_ref disks_messages.append(persistent_disks + local_ssds) # Now for every existing boot disk being attached, we have to # figure out whether it has a Windows license. if check_for_windows_image and existing_boot_disks: # Sorts the disk references by zone, so the code behaves # deterministically. disk_resources = self.FetchDiskResources( disk_ref for _, disk_ref in sorted(existing_boot_disks.iteritems())) for disk_resource in disk_resources: if image_utils.HasWindowsLicense(disk_resource, self.resources):
| ord(self.co.code[index + 3]) def nextsignedword(self): return shortmask(self.nextword()) def opcode_0x00(self): "nop" # JVMS: Push null (== None) def opcode_0x01(self): "aconst_null" self.stack.push(None) def opcode_0x02(self): "iconst_m1" self.stack.push(-1) def opcode_0x03(self): "iconst_0" self.stack.push(0) def opcode_0x04(self): "iconst_1" self.stack.push(1) def opcode_0x05(self): "iconst_2" self.stack.push(2) def opcode_0x06(self): "iconst_3" self.stack.push(3) def opcode_0x07(self): "iconst_4" self.stack.push(4) def opcode_0x08(self): "iconst_5" self.stack.push(5) def opcode_0x09(self): "lconst_0" self.stack.push(r_longlong(0)) def opcode_0x0a(self): "lconst_1" self.stack.push(r_longlong(1)) def opcode_0x0b(self): "fconst_0" self.stack.push(r_singlefloat(0.0)) def opcode_0x0c(self): "fconst_1" self.stack.push(r_singlefloat(1.0)) def opcode_0x0d(self): "fconst_2" self.stack.push(r_singlefloat(2.0)) def opcode_0x0e(self): "dconst_0" self.stack.push(0.0) def opcode_0x0f(self): "dconst_1" self.stack.push(1.0) def opcode_0x10(self): "bipush" self.stack.push(self.nextsignedbyte()) # JVMS: Push short def opcode_0x11(self): "sipush" self.stack.push(self.nextsignedword()) def opcode_0x12(self): "ldc" index = self.nextbyte() const = self.const[index] if isinstance(const, classfile.CONSTANT_String_info): string = self.const[const.string_index] objectref = make_String(string, self.loader) self.stack.push(objectref) elif isinstance(const, classfile.CONSTANT_Float): self.stack.push(float_parse(const.bytes)) ### TODO: floatmask #maybe this is only used in ldc_w elif isinstance(const, classfile.CONSTANT_Class_info): name = self.const[const.name_index] jcls = self.loader.getclass(name) objectref = vmobject_getClass_helper(jcls, self.loader) self.stack.push(objectref) else:# XXX other types? self.stack.push(intmask(const.bytes)) def opcode_0x13(self): "ldc_w" index = self.nextword() const = self.const[index] if isinstance(const, classfile.CONSTANT_String_info): string = self.const[const.string_index] objectref = make_String(string, self.loader) #print objectref self.stack.push(objectref) elif isinstance(const, classfile.CONSTANT_Float): self.stack.push(float_parse(const.bytes)) ### TODO: floatmask elif isinstance(const, classfile.CONSTANT_Class_info): name = self.const[const.name_index] jcls = self.loader.getclass(name, self.method)# for inner-classes objectref = vmobject_getClass_helper(jcls, self.loader) self.stack.push(objectref) else:# XXX other types? self.stack.push(intmask(const.bytes)) #raise NotImplementedError("ldc_w") def opcode_0x14(self): "ldc2_w" indexbyte1 = self.nextbyte() indexbyte2 = self.nextbyte() index = (indexbyte1 << 8) | indexbyte2 const = self.const[index] if isinstance(const, classfile.CONSTANT_Double): int_value =(const.high_bytes << 32) | const.low_bytes self.stack.push(parse_double(int_value)) elif isinstance(const, classfile.CONSTANT_Long_Info): value =(const.high_bytes << 32) | const.low_bytes self.stack.push(r_longlong(value)) else: raise Exception("unknown constant type") def opcode_0x15(self): "iload" loc = self.nextbyte() self.stack.push(self.locals.get(loc,"int")) def opcode_0x16(self): "lload" loc = self.nextbyte() self.stack.push(self.locals.get(loc,"long")) def opcode_0x17(self): "fload" loc = self.nextbyte() self.stack.push(self.locals.get(loc,"float")) def opcode_0x18(self): "dload" loc = self.nextbyte() self.stack.push(self.locals.get(loc,"double")) # JVMS: Load reference from local variable def opcode_0x19(self): "aload" loc = self.nextbyte() self.stack.push(self.locals.get(loc,"ref")) def opcode_0x1a(self): "iload_0" self.stack.push(self.locals.get(0,"int")) def opcode_0x1b(self): "iload_1" self.stack.push(self.locals.get(1,"int")) def opcode_0x1c(self): "iload_2" self.stack.push(self.locals.get(2,"int")) def opcode_0x1d(self): "iload_3" self.stack.push(self.locals.get(3,"int")) def opcode_0x1e(self): "lload_0" self.stack.push(self.locals.get(0,"long")) def opcode_0x1f(self): "lload_1" self.stack.push(self.locals.get(1,"long")) def opcode_0x20(self): "lload_2" self.stack.push(self.locals.get(2,"long")) def opcode_0x21(self): "lload_3" self.stack.push(self.locals.get(3,"long")) def opcode_0x22(self): "fload_0" self.stack.push(self.locals.get(0,"float")) def opcode_0x23(self): "fload_1" self.stack.push(self.locals.get(1,"float")) def opcode_0x24(self): "fload_2" self.stack.push(self.locals.get(2,"float")) def opcode_0x25(self): "fload_3" self.stack.push(self.locals.get(3,"float")) def opcode_0x26(self): "dload_0" self.stack.push(self.locals.get(0,"double")) def opcode_0x27(self): "dload_1" self.stack.push(self.locals.get(1,"double")) def opcode_0x28(self): "dload_2" self.stack.push(self.locals.get(2,"double")) def opcode_0x29(self): "dload_3" self.stack.push(self.locals.get(3,"double")) # JVMS: Load reference from local variable def opcode_0x2a(self): "aload_0" self.stack.push(self.locals.get(0,"ref")) def opcode_0x2b(self): "aload_1" self.stack.push(self.locals.get(1,"ref")) def opcode_0x2c(self): "aload_2" self.stack.push(self.locals.get(2,"ref")) def opcode_0x2d(self): "aload_3" self.stack.push(self.locals.get(3,"ref")) # JVMS: Load int from array def opcode_0x2e(self): "iaload" index = self.stack.pop() array = self.stack.pop() if array==None: throw_NullPointerException(self.loader) if not index < len(array.arrayref): throw_ArrayIndexOutOfBoundsException(self.loader, index) self.stack.push(array.arrayref[index]) def opcode_0x2f(self): "laload" index = self.stack.pop() array = self.stack.pop() if array==None: throw_NullPointerException(self.loader) if not index < len(array.arrayref): throw_ArrayIndexOutOfBoundsException(self.loader, index) self.stack.push(array.arrayref[index]) def opcode_0x30(self): "faload" index = self.stack.pop() array = self.stack.pop() if array==None: throw_NullPointerException(self.loader) if not index < len(array.arrayref): throw_ArrayIndexOutOfBoundsException(self.loader, index) self.stack.push(array.arrayref[index]) def opcode_0x31(self): "daload" index = self.stack.pop() array = self.stack.pop() if array==None: throw_NullPointerException(self.loader) if not index < len(array.arrayref): throw_ArrayIndexOutOfBoundsException(self.loader, index) self.stack.push(array.arrayref[index]) def opcode_0x32(self): "aaload" index = self.stack.pop() array = self.stack.pop() if array==None: throw_NullPointerException(self.loader) if not index < len(array.arrayref): throw_ArrayIndexOutOfBoundsException(self.loader, index) #print "aa",array.arrayref[index].jcls.__name__ #array.arrayref[index].fields.print_map() self.stack.push(array.arrayref[index]) # JVMS: Load byte or boolean from array def opcode_0x33(self): "baload" index = self.stack.pop() array = self.stack.pop() self.stack.push(array.arrayref[index]) def opcode_0x34(self): "caload" index = self.stack.pop() array = self.stack.pop() #print "CA:",index self.stack.push(self.DESCR_UNCAST['char'](array.arrayref[index])) def opcode_0x35(self): "saload" index = self.stack.pop() array = self.stack.pop() self.stack.push(array.arrayref[index]) def opcode_0x36(self): "istore" loc = self.nextbyte() self.locals.set(loc, self.stack.pop(), "int") def opcode_0x37(self): "lstore" loc = self.nextbyte() self.locals.set(loc, self.stack.pop(), "long") def opcode_0x38(self): "fstore" loc = self.nextbyte() self.locals.set(loc, self.stack.pop(), "float") def opcode_0x39(self): "dstore" loc = self.nextbyte() self.locals.set(loc, self.stack.pop(), "double") def opcode_0x3a(self): "astore" loc = self.nextbyte() self.locals.set(loc, self.stack.pop(), "ref") def opcode_0x3b(self): "istore_0" self.locals.set(0, self.stack.pop(), "int") def opcode_0x3c(self): "istore_1" self.locals.set(1, self.stack.pop(), "int") def opcode_0x3d(self): "istore_2" self.locals.set(2, self.stack.pop(), "int") def opcode_0x3e(self): "istore_3" self.locals.set(3, self.stack.pop(), "int") def opcode_0x3f(self): "lstore_0" self.locals.set(0, self.stack.pop(), "long") def opcode_0x40(self): "lstore_1" self.locals.set(1, self.stack.pop(), "long") def opcode_0x41(self): "lstore_2" self.locals.set(2, self.stack.pop(), "long") def opcode_0x42(self): "lstore_3" self.locals.set(3, self.stack.pop(), "long") def opcode_0x43(self): "fstore_0" self.locals.set(0, self.stack.pop(), "float") def opcode_0x44(self): "fstore_1" self.locals.set(1, self.stack.pop(), "float") def opcode_0x45(self): "fstore_2" self.locals.set(2, self.stack.pop(), "float") def opcode_0x46(self): "fstore_3" self.locals.set(3, self.stack.pop(), "float") def opcode_0x47(self): "dstore_0" self.locals.set(0, self.stack.pop(), "double") def opcode_0x48(self): "dstore_1" self.locals.set(1, self.stack.pop(), "double") def opcode_0x49(self): "dstore_2" self.locals.set(2, self.stack.pop(), "double") def opcode_0x4a(self): "dstore_3" self.locals.set(3, self.stack.pop(), "double") def opcode_0x4b(self): "astore_0" self.locals.set(0, self.stack.pop(), "ref") def opcode_0x4c(self): "astore_1" self.locals.set(1, self.stack.pop(), "ref") def opcode_0x4d(self): "astore_2" self.locals.set(2, self.stack.pop(), "ref") def opcode_0x4e(self): "astore_3" self.locals.set(3, self.stack.pop(), "ref") # JVMS: Store into int array def opcode_0x4f(self): "iastore" value = self.stack.pop() index = self.stack.pop() array = self.stack.pop() array.arrayref[index] = value def opcode_0x50(self): "lastore" value = self.stack.pop() index = self.stack.pop() array = self.stack.pop() array.arrayref[index] = value def opcode_0x51(self): "fastore" value = self.stack.pop() index = self.stack.pop() array = self.stack.pop() array.arrayref[index] = value def opcode_0x52(self): "dastore" value = self.stack.pop() index = self.stack.pop() array = self.stack.pop() array.arrayref[index] = value # JVMS: Store into reference array def opcode_0x53(self): "aastore" value = self.stack.pop() index = self.stack.pop() array = self.stack.pop() array.arrayref[index] = value def opcode_0x54(self): "bastore" value = self.stack.pop() index = self.stack.pop() array = self.stack.pop() array.arrayref[index] = value def opcode_0x55(self): "castore" value = self.stack.pop() index = self.stack.pop() array = self.stack.pop() array.arrayref[index] = self.DESCR_CAST['char'](value) def opcode_0x56(self): "sastore" value = self.stack.pop() index = self.stack.pop() array = self.stack.pop() array.arrayref[index] = value # This 6 methods are the only ones which access # istack, astack..., directly # FIXME: no direct use def opcode_0x57(self): "pop" value = self.stack.pop() assert not isinstance(value,float) assert not isinstance(value,r_longlong) # XXX Not Tested yet def opcode_0x58(self): "pop2" value = self.stack.pop() # is "value" a category 2 value? # value is not a long and not a double if not isinstance(value,float) and not isinstance(value,r_longlong): self.stack.pop() def opcode_0x59(self): "dup" last_stack = self.stack.stackhistory[-1] if last_stack == "int": self.stack.push(self.stack.istack[-1]) return elif last_stack == "ref": self.stack.push(self.stack.astack[-1]) return elif last_stack == "float": self.stack.push(self.stack.fstack[-1]) return elif last_satck == "long" or last_satck == "double": raise Exception("category 2 value on stack") else: raise Exception("unknown type on stack") def opcode_0x5a(self): "dup_x1" value1 = self.stack.pop() value2 = self.stack.pop() self.stack.push(value1) self.stack.push(value2) self.stack.push(value1) # Not tested yet def opcode_0x5b(self): "dup_x2" # value1 = self.stack.pop() # value2 = self.stack.pop() # if not isinstance(value1,float) and not isinstance(value1,r_longlong) and not isinstance(value2,float) and not isinstance(value2,r_longlong): # value3 = self.stack.pop() # self.stack.push(value1) # self.stack.push(value3) # self.stack.push(value2) # self.stack.push(value1) # elif not isinstance(value1,float) and not isinstance(value1,r_longlong) and (isinstance(value2,float) or isinstance(value2,r_longlong)): # self.stack.push(value1) # self.stack.push(value2) # self.stack.push(value1) # else: # raise Exception("unexpected or unknown type on stack") raise NotImplementedError("dup_x2") def opcode_0x5c(self): "dup2" value1 = self.stack.pop() if not isinstance(value1,float) and not isinstance(value1,r_longlong): value2 = self.stack.pop() assert not isinstance(value2,float) and not isinstance(value2,r_longlong) self.stack.push(value2) self.stack.push(value1) self.stack.push(value2) self.stack.push(value1) elif isinstance(value1,float) or isinstance(value1,r_longlong): self.stack.push(value1) self.stack.push(value1) else: raise Exception("unexpected or unknown type on stack") # Not tested yet def opcode_0x5d(self): "dup2_x1" # value1 = self.stack.pop() # value2 = self.stack.pop() # if not isinstance(value1,float) and not isinstance(value1,r_longlong) and not isinstance(value2,float) and not isinstance(value1,r_longlong): # value3 = self.stack.pop() # assert not isinstance(value3,float) and not isinstance(value3,r_longlong) # self.stack.push(value2) # self.stack.push(value1) # self.stack.push(value3) # self.stack.push(value2) # self.stack.push(value1) # elif (isinstance(value1,float) or isinstance(value1,r_longlong)) and not isinstance(value2,float) and not isinstance(value2,r_longlong): # self.stack.push(value1) # self.stack.push(value2) # self.stack.push(value1) # else: # raise Exception("unexpected or unknown type on stack") raise NotImplementedError("dup2_x1") # Not tested yet def opcode_0x5e(self): "dup2_x2" # value1 = self.stack.pop() # value2 = self.stack.pop() # if not isinstance(value1,float) and not isinstance(value1,r_longlong) and not isinstance(value2,float) and not isinstance(value2,r_longlong): # value3 = self.stack.pop() # if not isinstance(value3,float) and not isinstance(value3,r_longlong): # value4 = self.stack.pop() # assert not isinstance(value4,float) and not isinstance(value4,r_longlong) # self.stack.push(value2) # self.stack.push(value1) # self.stack.push(value4) # self.stack.push(value3) # self.stack.push(value2) # self.stack.push(value1) # elif isinstance(value3,float) or isinstance(value3,r_longlong): # self.stack.push(value2) # self.stack.push(value1) # self.stack.push(value3) # self.stack.push(value2) # self.stack.push(value1) # else: # raise Exception("unexpected or unknown type on stack # elif (isinstance(value1,float) or isinstance(value1,r_longlong)) and not isinstance(value2,float) and not isinstance(value2,r_longlong): # value3 = self.stack.pop() # assert not isinstance(value3,float) and not isinstance(value3,r_longlong) # self.stack.push(value1) # self.stack.push(value3) # self.stack.push(value2) # self.stack.push(value1) # elif (isinstance(value1,float) or isinstance(value1,r_longlong)) and (isinstance(value2,float) or isinstance(value2,r_longlong)): # self.stack.push(value1) # self.stack.push(value2) # self.stack.push(value1) # else: # raise Exception("unexpected or unknown type on stack raise NotImplementedError("dup2_x2") # Not tested yet def opcode_0x5f(self): "swap" # value1 =
'num_filters' : 128}, 'bypass': 4}, 2 : {'deconv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : n_classes}, 'bypass': [0,1]}, } } def cfg_mom_flat_concat(n_classes, use_cond=False, method='sign', nonlin='relu'): return { 'use_cond': use_cond, # ONLY USED IF use_cond = True!!! 'cond_scale_factor': 4, 'cond_encode_depth': 1, 'cond_encode' : { 1 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 64} }, }, # Encoding the inputs 'main_encode_depth': 4, 'main_encode' : { 1 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 64} }, 2 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 64}, 'pool' : {'size' : 2, 'stride' : 2, 'type' : 'max'}}, 3 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, }, 4 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, 'pool' : {'size' : 2, 'stride' : 2, 'type' : 'max'}}, }, # ONLY USED IF use_cond = True!!! 'encode_depth': 3, 'encode' : { 1 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128} }, 2 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, }, 3 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, #'pool': {'size' : 2, 'stride' : 2, 'type' : 'max'} } }, # Calculate moments 'combine_moments': 'minus' if method is 'sign' else 'concat', # ONLY USED IF combine_moments is 'concat' 'combine_moments_encode_depth' : 1, 'combine_moments_encode' : { 1 : {'conv' : {'filter_size': 3, 'stride': 1, 'num_filters' : 128}, } }, 'moments_encode_depth' : 5, 'moments_encode' : { 1 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, }, 2 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, }, 3 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, }, 4 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, }, 5 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, } }, # Predict next moments 'delta_moments_encode_depth' : 11, 'delta_moments_encode' : { 1 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, 'nonlinearity': nonlin}, 2 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, 'nonlinearity': nonlin}, 3 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, 'nonlinearity': nonlin}, 4 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, 'nonlinearity': nonlin}, 5 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, 'nonlinearity': nonlin}, 6 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, 'nonlinearity': nonlin}, 7 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, 'nonlinearity': nonlin}, 8 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, 'nonlinearity': nonlin}, 9 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, 'nonlinearity': nonlin}, 10 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, 'nonlinearity': nonlin}, 11 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, }, }, 'combine_delta': 'plus' if method is 'sign' else 'concat', # ONLY USED IF combine_delta is 'concat' 'combine_delta_encode_depth' : 1, 'combine_delta_encode' : { 1 : {'conv' : {'filter_size': 3, 'stride': 1, 'num_filters' : 128}, } }, 'deconv_depth': 2, 'deconv' : { 1 : {'deconv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 128}, }, 2 : {'deconv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : n_classes}, }, } } def cfg_mom_concat(n_classes, use_cond=False, method='sign'): return { 'use_cond': use_cond, # ONLY USED IF use_cond = True!!! 'cond_scale_factor': 8, 'cond_encode_depth': 1, 'cond_encode' : { 1 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 64} }, }, # Encoding the inputs 'main_encode_depth': 8, 'main_encode' : { 1 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 64} }, 2 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 64}, 'pool' : {'size' : 2, 'stride' : 2, 'type' : 'max'}}, 3 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, }, 4 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, 'pool' : {'size' : 2, 'stride' : 2, 'type' : 'max'}}, 5 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 256}, }, 6 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 256}, }, 7 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 256}, 'pool' : {'size' : 2, 'stride' : 2, 'type' : 'max'}}, 8 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 512}, }, }, # ONLY USED IF use_cond = True!!! 'encode_depth': 3, 'encode' : { 1 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 512} }, 2 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 512}, }, 3 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 512}, #'pool': {'size' : 2, 'stride' : 2, 'type' : 'max'} } }, # Calculate moments 'combine_moments': 'minus' if method is 'sign' else 'concat', # ONLY USED IF combine_moments is 'concat' 'combine_moments_encode_depth' : 1, 'combine_moments_encode' : { 1 : {'conv' : {'filter_size': 3, 'stride': 1, 'num_filters' : 512}, } }, 'moments_encode_depth' : 5, 'moments_encode' : { 1 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 512}, }, 2 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 512}, }, 3 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 512}, }, 4 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 512}, }, 5 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 512}, } }, # Predict next moments 'delta_moments_encode_depth' : 5, 'delta_moments_encode' : { 1 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 512}, }, 2 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 512}, }, 3 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 512}, }, 4 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 512}, }, 5 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 512}, } }, 'combine_delta': 'plus' if method is 'sign' else 'concat', # ONLY USED IF combine_delta is 'concat' 'combine_delta_encode_depth' : 1, 'combine_delta_encode' : { 1 : {'conv' : {'filter_size': 3, 'stride': 1, 'num_filters' : 512}, } }, 'deconv_depth': 3, 'deconv' : { 1 : {'deconv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 512}, }, 2 : {'deconv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 256}, }, 3 : {'deconv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : n_classes}, }, #4 : {'deconv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : n_classes}, # }, } } def cfg_vgg_jerk_action(n_classes): return { 'cond_scale_factor': 8, 'cond_encode_depth': 1, 'cond_encode' : { 1 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 64} }, }, 'main_encode_depth': 7, 'main_encode' : { 1 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 64} }, 2 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 64}, 'pool' : {'size' : 2, 'stride' : 2, 'type' : 'max'}}, 3 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, }, 4 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 128}, 'pool' : {'size' : 2, 'stride' : 2, 'type' : 'max'}}, 5 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 256}, }, 6 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 256}, }, 7 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 256}, 'pool' : {'size' : 2, 'stride' : 2, 'type' : 'max'}}, }, 'encode_depth': 3, 'encode' : { 1 : {'conv' : {'filter_size'
= color; } else { discard; } } """ } _Margins = namedtuple('Margins', ('left', 'right', 'top', 'bottom')) # Margins used when plot frame is not displayed _NoDisplayMargins = _Margins(0, 0, 0, 0) def __init__(self, margins): """ :param margins: The margins around plot area for axis and labels. :type margins: dict with 'left', 'right', 'top', 'bottom' keys and values as ints. """ self._renderResources = None self._margins = self._Margins(**margins) self.axes = [] # List of PlotAxis to be updated by subclasses self._grid = False self._size = 0., 0. self._title = '' self._displayed = True @property def isDirty(self): """True if it need to refresh graphic rendering, False otherwise.""" return self._renderResources is None GRID_NONE = 0 GRID_MAIN_TICKS = 1 GRID_SUB_TICKS = 2 GRID_ALL_TICKS = (GRID_MAIN_TICKS + GRID_SUB_TICKS) @property def displayed(self): """Whether axes and their labels are displayed or not (bool)""" return self._displayed @displayed.setter def displayed(self, displayed): displayed = bool(displayed) if displayed != self._displayed: self._displayed = displayed self._dirty() @property def margins(self): """Margins in pixels around the plot.""" if not self.displayed: return self._NoDisplayMargins else: return self._margins @property def grid(self): """Grid display mode: - 0: No grid. - 1: Grid on main ticks. - 2: Grid on sub-ticks for log scale axes. - 3: Grid on main and sub ticks.""" return self._grid @grid.setter def grid(self, grid): assert grid in (self.GRID_NONE, self.GRID_MAIN_TICKS, self.GRID_SUB_TICKS, self.GRID_ALL_TICKS) if grid != self._grid: self._grid = grid self._dirty() @property def size(self): """Size in pixels of the plot area including margins.""" return self._size @size.setter def size(self, size): assert len(size) == 2 size = tuple(size) if size != self._size: self._size = size self._dirty() @property def plotOrigin(self): """Plot area origin (left, top) in widget coordinates in pixels.""" return self.margins.left, self.margins.top @property def plotSize(self): """Plot area size (width, height) in pixels.""" w, h = self.size w -= self.margins.left + self.margins.right h -= self.margins.top + self.margins.bottom return w, h @property def title(self): """Main title as a str in latin-1.""" return self._title @title.setter def title(self, title): if title != self._title: self._title = title self._dirty() # In-place update # if self._renderResources is not None: # self._renderResources[-1][-1].text = title def _dirty(self): # When Text2D require discard we need to handle it self._renderResources = None def _buildGridVertices(self): if self._grid == self.GRID_NONE: return [] elif self._grid == self.GRID_MAIN_TICKS: def test(text): return text is not None elif self._grid == self.GRID_SUB_TICKS: def test(text): return text is None elif self._grid == self.GRID_ALL_TICKS: def test(_): return True else: logging.warning('Wrong grid mode: %d' % self._grid) return [] return self._buildGridVerticesWithTest(test) def _buildGridVerticesWithTest(self, test): """Override in subclass to generate grid vertices""" return [] def _buildVerticesAndLabels(self): # To fill with copy of axes lists vertices = [] labels = [] for axis in self.axes: axisVertices, axisLabels = axis.getVerticesAndLabels() vertices += axisVertices labels += axisLabels vertices = numpy.array(vertices, dtype=numpy.float32) # Add main title xTitle = (self.size[0] + self.margins.left - self.margins.right) // 2 yTitle = self.margins.top - self._TICK_LENGTH_IN_PIXELS labels.append(Text2D(text=self.title, x=xTitle, y=yTitle, align=CENTER, valign=BOTTOM)) # grid gridVertices = numpy.array(self._buildGridVertices(), dtype=numpy.float32) self._renderResources = (vertices, gridVertices, labels) _program = Program( _SHADERS['vertex'], _SHADERS['fragment'], attrib0='position') def render(self): if not self.displayed: return if self._renderResources is None: self._buildVerticesAndLabels() vertices, gridVertices, labels = self._renderResources width, height = self.size matProj = mat4Ortho(0, width, height, 0, 1, -1) gl.glViewport(0, 0, width, height) prog = self._program prog.use() gl.glLineWidth(self._LINE_WIDTH) gl.glUniformMatrix4fv(prog.uniforms['matrix'], 1, gl.GL_TRUE, matProj.astype(numpy.float32)) gl.glUniform4f(prog.uniforms['color'], 0., 0., 0., 1.) gl.glUniform1f(prog.uniforms['tickFactor'], 0.) gl.glEnableVertexAttribArray(prog.attributes['position']) gl.glVertexAttribPointer(prog.attributes['position'], 2, gl.GL_FLOAT, gl.GL_FALSE, 0, vertices) gl.glDrawArrays(gl.GL_LINES, 0, len(vertices)) for label in labels: label.render(matProj) def renderGrid(self): if self._grid == self.GRID_NONE: return if self._renderResources is None: self._buildVerticesAndLabels() vertices, gridVertices, labels = self._renderResources width, height = self.size matProj = mat4Ortho(0, width, height, 0, 1, -1) gl.glViewport(0, 0, width, height) prog = self._program prog.use() gl.glLineWidth(self._LINE_WIDTH) gl.glUniformMatrix4fv(prog.uniforms['matrix'], 1, gl.GL_TRUE, matProj.astype(numpy.float32)) gl.glUniform4f(prog.uniforms['color'], 0.7, 0.7, 0.7, 1.) gl.glUniform1f(prog.uniforms['tickFactor'], 0.) # 1/2.) # 1/tickLen gl.glEnableVertexAttribArray(prog.attributes['position']) gl.glVertexAttribPointer(prog.attributes['position'], 2, gl.GL_FLOAT, gl.GL_FALSE, 0, gridVertices) gl.glDrawArrays(gl.GL_LINES, 0, len(gridVertices)) # GLPlotFrame2D ############################################################### class GLPlotFrame2D(GLPlotFrame): def __init__(self, margins): """ :param margins: The margins around plot area for axis and labels. :type margins: dict with 'left', 'right', 'top', 'bottom' keys and values as ints. """ super(GLPlotFrame2D, self).__init__(margins) self.axes.append(PlotAxis(self, tickLength=(0., -5.), labelAlign=CENTER, labelVAlign=TOP, titleAlign=CENTER, titleVAlign=TOP, titleRotate=0, titleOffset=(0, self.margins.bottom // 2))) self._x2AxisCoords = () self.axes.append(PlotAxis(self, tickLength=(5., 0.), labelAlign=RIGHT, labelVAlign=CENTER, titleAlign=CENTER, titleVAlign=BOTTOM, titleRotate=ROTATE_270, titleOffset=(-3 * self.margins.left // 4, 0))) self._y2Axis = PlotAxis(self, tickLength=(-5., 0.), labelAlign=LEFT, labelVAlign=CENTER, titleAlign=CENTER, titleVAlign=TOP, titleRotate=ROTATE_270, titleOffset=(3 * self.margins.right // 4, 0)) self._isYAxisInverted = False self._dataRanges = { 'x': (1., 100.), 'y': (1., 100.), 'y2': (1., 100.)} self._baseVectors = (1., 0.), (0., 1.) self._transformedDataRanges = None self._transformedDataProjMat = None self._transformedDataY2ProjMat = None def _dirty(self): super(GLPlotFrame2D, self)._dirty() self._transformedDataRanges = None self._transformedDataProjMat = None self._transformedDataY2ProjMat = None @property def isDirty(self): """True if it need to refresh graphic rendering, False otherwise.""" return (super(GLPlotFrame2D, self).isDirty or self._transformedDataRanges is None or self._transformedDataProjMat is None or self._transformedDataY2ProjMat is None) @property def xAxis(self): return self.axes[0] @property def yAxis(self): return self.axes[1] @property def y2Axis(self): return self._y2Axis @property def isY2Axis(self): """Whether to display the left Y axis or not.""" return len(self.axes) == 3 @isY2Axis.setter def isY2Axis(self, isY2Axis): if isY2Axis != self.isY2Axis: if isY2Axis: self.axes.append(self._y2Axis) else: self.axes = self.axes[:2] self._dirty() @property def isYAxisInverted(self): """Whether Y axes are inverted or not as a bool.""" return self._isYAxisInverted @isYAxisInverted.setter def isYAxisInverted(self, value): value = bool(value) if value != self._isYAxisInverted: self._isYAxisInverted = value self._dirty() DEFAULT_BASE_VECTORS = (1., 0.), (0., 1.) """Values of baseVectors for orthogonal axes.""" @property def baseVectors(self): """Coordinates of the X and Y axes in the orthogonal plot coords. Raises ValueError if corresponding matrix is singular. 2 tuples of 2 floats: (xx, xy), (yx, yy) """ return self._baseVectors @baseVectors.setter def baseVectors(self, baseVectors): self._dirty() (xx, xy), (yx, yy) = baseVectors vectors = (float(xx), float(xy)), (float(yx), float(yy)) det = (vectors[0][0] * vectors[1][1] - vectors[1][0] * vectors[0][1]) if det == 0.: raise ValueError("Singular matrix for base vectors: " + str(vectors)) if vectors != self._baseVectors: self._baseVectors = vectors self._dirty() @property def dataRanges(self): """Ranges of data visible in the plot on x, y and y2 axes. This is different to the axes range when axes are not orthogonal. Type: ((xMin, xMax), (yMin, yMax), (y2Min, y2Max)) """ return self._DataRanges(self._dataRanges['x'], self._dataRanges['y'], self._dataRanges['y2']) @staticmethod def _clipToSafeRange(min_, max_, isLog): # Clip range if needed minLimit = FLOAT32_MINPOS if isLog else FLOAT32_SAFE_MIN min_ = numpy.clip(min_, minLimit, FLOAT32_SAFE_MAX) max_ = numpy.clip(max_, minLimit, FLOAT32_SAFE_MAX) assert min_ < max_ return min_, max_ def setDataRanges(self, x=None, y=None, y2=None): """Set data range over each axes. The provided ranges are clipped to possible values (i.e., 32 float range + positive range for log scale). :param x: (min, max) data range over X axis :param y: (min, max) data range over Y axis :param y2: (min, max) data range over Y2 axis """ if x is not None: self._dataRanges['x'] = \ self._clipToSafeRange(x[0], x[1], self.xAxis.isLog) if y is not None: self._dataRanges['y'] = \ self._clipToSafeRange(y[0], y[1], self.yAxis.isLog) if y2 is not None: self._dataRanges['y2'] = \ self._clipToSafeRange(y2[0], y2[1], self.y2Axis.isLog) self.xAxis.dataRange = self._dataRanges['x'] self.yAxis.dataRange = self._dataRanges['y'] self.y2Axis.dataRange = self._dataRanges['y2'] _DataRanges = namedtuple('dataRanges', ('x', 'y', 'y2')) @property def transformedDataRanges(self): """Bounds of the displayed area in transformed data coordinates (i.e., log scale applied if any as well as skew) 3-tuple of 2-tuple (min, max) for each axis: x, y, y2. """ if self._transformedDataRanges is None: (xMin, xMax), (yMin, yMax), (y2Min, y2Max) = self.dataRanges if self.xAxis.isLog: try: xMin = math.log10(xMin) except ValueError: _logger.info('xMin: warning log10(%f)', xMin) xMin = 0. try: xMax = math.log10(xMax) except ValueError: _logger.info('xMax: warning log10(%f)', xMax) xMax = 0. if self.yAxis.isLog: try: yMin = math.log10(yMin) except ValueError: _logger.info('yMin: warning log10(%f)', yMin) yMin = 0. try: yMax = math.log10(yMax) except ValueError: _logger.info('yMax: warning log10(%f)', yMax) yMax = 0. try: y2Min = math.log10(y2Min) except ValueError: _logger.info('yMin: warning log10(%f)', y2Min) y2Min = 0. try: y2Max = math.log10(y2Max) except ValueError: _logger.info('yMax: warning log10(%f)', y2Max) y2Max = 0. # Non-orthogonal axes if self.baseVectors != self.DEFAULT_BASE_VECTORS: (xx, xy), (yx, yy) = self.baseVectors skew_mat = numpy.array(((xx, yx), (xy, yy))) corners = [(xMin, yMin), (xMin, yMax), (xMax, yMin), (xMax, yMax), (xMin, y2Min), (xMin, y2Max), (xMax, y2Min), (xMax, y2Max)] corners = numpy.array( [numpy.dot(skew_mat,
<reponame>py-sdl/py-sdl2 import os import sys import ctypes import pytest from io import BytesIO import sdl2 if sys.version_info[0] >= 3: byteify = bytes stringify = lambda x, enc: x.decode(enc) else: byteify = lambda x, enc: x.encode(enc) stringify = lambda x, enc: str(x) @pytest.fixture def testfile_path(): testdir = os.path.dirname(os.path.abspath(__file__)) testfile = os.path.join(testdir, "resources", "rwopstest.txt") testfile = testfile.encode("utf-8") yield testfile @pytest.fixture def with_test_rw(): sdl2.SDL_ClearError() buf = ctypes.create_string_buffer(b"abcdefghijklmnop") rw = sdl2.SDL_RWFromMem(buf, len(buf)) assert sdl2.SDL_GetError() == b"" assert isinstance(rw.contents, sdl2.SDL_RWops) yield (rw, buf) sdl2.SDL_RWclose(rw) @pytest.fixture def test_buf(): buf = BytesIO() buf.write(b"abcdefghijklmnop") buf.seek(0, os.SEEK_SET) yield buf def test_SDL_RWops(): rw = sdl2.SDL_RWops() assert isinstance(rw, sdl2.SDL_RWops) def test_SDL_RWFromFile(testfile_path): rw = sdl2.SDL_RWFromFile(testfile_path, b"r") assert isinstance(rw.contents, sdl2.SDL_RWops) # Read the first 36 bytes(sic!). It should be: # 'This is a test file for sdl2.rwops!' length = 36 buf = BytesIO() while length >= 2: # Reading in two bytes - we have plain text (1-byte encoding), so # we read in 2 characters at a time. This means that the first # character is always stored in the low byte. ch = sdl2.SDL_ReadLE16(rw) buf.write(byteify(chr(ch & 0x00FF), "utf-8")) buf.write(byteify(chr(ch >> 8), "utf-8")) length -= 2 expected = "This is a test file for sdl2.rwops!" assert stringify(buf.getvalue(), "utf-8") == expected @pytest.mark.skip("not implemented") def test_SDL_RWFromFP(): # Requires a C stdio.h file pointer as input, not worth testing pass def test_SDL_RWFromMem(): buf = ctypes.create_string_buffer(b"1234") rw = sdl2.SDL_RWFromMem(buf, len(buf)) assert sdl2.SDL_GetError() == b"" assert isinstance(rw.contents, sdl2.SDL_RWops) # Make sure it's writable value = ( (ord("a")) | (ord("b") << 8) ) assert sdl2.SDL_WriteLE16(rw, value) == 1 assert buf.value == b"ab34" def test_SDL_RWFromConstMem(): buf = ctypes.create_string_buffer(b"1234") rw = sdl2.SDL_RWFromConstMem(buf, len(buf)) assert sdl2.SDL_GetError() == b"" assert isinstance(rw.contents, sdl2.SDL_RWops) # Make sure it isn't writable value = ( (ord("a")) | (ord("b") << 8) ) assert sdl2.SDL_WriteLE16(rw, value) == 0 assert buf.value == b"1234" def test_SDL_RWsize(with_test_rw): rw, buf = with_test_rw assert sdl2.SDL_RWsize(rw) == len(buf) def test_SDL_RWSeekTell(with_test_rw): rw, buf = with_test_rw seek_tests = [ (sdl2.RW_SEEK_END, 0, len(buf)), # Seek to end of RW (sdl2.RW_SEEK_SET, 0, 0), # Seek to start of RW (sdl2.RW_SEEK_CUR, 8, 8), # Seek 8 bytes forward from current pos (sdl2.RW_SEEK_CUR, -3, 5), # Seek 3 bytes back from current pos (sdl2.RW_SEEK_END, -4, len(buf) - 4), # Seek 4 bytes back from end ] for whence, offset, expected in seek_tests: pos1 = sdl2.SDL_RWseek(rw, offset, whence) pos2 = sdl2.SDL_RWtell(rw) assert pos1 == pos2 assert pos1 == expected def test_SDL_RWread(with_test_rw): rw, buf = with_test_rw # Read the first two characters readbuf = ctypes.create_string_buffer(2) read = sdl2.SDL_RWread(rw, readbuf, 1, 2) assert read == 2 assert readbuf.raw == b"ab" # Read the next 5 characters readbuf = ctypes.create_string_buffer(5) read = sdl2.SDL_RWread(rw, readbuf, 1, 5) assert read == 5 assert readbuf.raw == b"cdefg" def test_SDL_RWwrite(with_test_rw): rw, buf = with_test_rw # Overwrite first 2 characters writebuf = ctypes.create_string_buffer(b"12") written = sdl2.SDL_RWwrite(rw, writebuf, 1, 2) assert written == 2 assert buf.value == b"12cdefghijklmnop" # Overwrite last 4 characters writebuf = ctypes.create_string_buffer(b"TEST") sdl2.SDL_RWseek(rw, -5, sdl2.RW_SEEK_END) # NOTE: -5 here b/c of end byte written = sdl2.SDL_RWwrite(rw, writebuf, 1, 4) assert written == 4 assert buf.value == b"12cdefghijklTEST" def test_SDL_RWclose(): buf = ctypes.create_string_buffer(b"abcdefghijklmnop") rw = sdl2.SDL_RWFromMem(buf, len(buf)) assert sdl2.SDL_GetError() == b"" assert isinstance(rw.contents, sdl2.SDL_RWops) # Close the RW object and check for any errors assert sdl2.SDL_RWsize(rw) == len(buf) ret = sdl2.SDL_RWclose(rw) assert sdl2.SDL_GetError() == b"" assert ret == 0 def test_SDL_AllocFreeRW(): rw = sdl2.SDL_AllocRW() assert sdl2.SDL_GetError() == b"" assert isinstance(rw.contents, sdl2.SDL_RWops) sdl2.SDL_FreeRW(rw) assert sdl2.SDL_GetError() == b"" @pytest.mark.skipif(sdl2.dll.version < 2006, reason="not available") def test_SDL_LoadFile_RW(testfile_path): rw = sdl2.SDL_RWFromFile(testfile_path, b"r") assert isinstance(rw.contents, sdl2.SDL_RWops) datasize = ctypes.c_size_t(0) data_p = sdl2.SDL_LoadFile_RW(rw, ctypes.byref(datasize), 0) assert sdl2.SDL_GetError() == b"" assert datasize.value > 0 data = ctypes.string_at(data_p, datasize.value) assert data[:19] == b"This is a test file" @pytest.mark.skipif(sdl2.dll.version < 2006, reason="not available") def test_SDL_LoadFile(testfile_path): datasize = ctypes.c_size_t(0) data_p = sdl2.SDL_LoadFile(testfile_path, ctypes.byref(datasize)) assert sdl2.SDL_GetError() == b"" assert datasize.value > 0 data = ctypes.string_at(data_p, datasize.value) assert data[:19] == b"This is a test file" # SDL RW Read tests def test_SDL_ReadU8(with_test_rw): rw, buf = with_test_rw assert chr(sdl2.SDL_ReadU8(rw)) == "a" pos = sdl2.SDL_RWseek(rw, 8, sdl2.RW_SEEK_SET) assert pos == 8 assert chr(sdl2.SDL_ReadU8(rw)) == "i" def test_SDL_ReadLE16(with_test_rw): rw, buf = with_test_rw ch = sdl2.SDL_ReadLE16(rw) assert chr(ch & 0x00FF) == "a" assert chr(ch >> 8) == "b" pos = sdl2.SDL_RWseek(rw, 8, sdl2.RW_SEEK_SET) assert pos == 8 ch = sdl2.SDL_ReadLE16(rw) assert chr(ch & 0x00FF) == "i" assert chr(ch >> 8) == "j" def test_SDL_ReadBE16(with_test_rw): rw, buf = with_test_rw ch = sdl2.SDL_ReadBE16(rw) assert chr(ch & 0x00FF) == "b" assert chr(ch >> 8) == "a" pos = sdl2.SDL_RWseek(rw, 8, sdl2.RW_SEEK_SET) assert pos == 8 ch = sdl2.SDL_ReadBE16(rw) assert chr(ch & 0x00FF) == "j" assert chr(ch >> 8) == "i" def test_SDL_ReadLE32(with_test_rw): rw, buf = with_test_rw ch = sdl2.SDL_ReadLE32(rw) assert chr(ch & 0x000000FF) == "a" assert chr((ch & 0x0000FF00) >> 8) == "b" assert chr((ch & 0x00FF0000) >> 16) == "c" assert chr((ch & 0xFF000000) >> 24) == "d" pos = sdl2.SDL_RWseek(rw, 8, sdl2.RW_SEEK_SET) assert pos == 8 ch = sdl2.SDL_ReadLE32(rw) assert chr(ch & 0x000000FF) == "i" assert chr((ch & 0x0000FF00) >> 8) == "j" assert chr((ch & 0x00FF0000) >> 16) == "k" assert chr((ch & 0xFF000000) >> 24) == "l" def test_SDL_ReadBE32(with_test_rw): rw, buf = with_test_rw ch = sdl2.SDL_ReadBE32(rw) assert chr(ch & 0x000000FF) == "d" assert chr((ch & 0x0000FF00) >> 8) == "c" assert chr((ch & 0x00FF0000) >> 16) == "b" assert chr((ch & 0xFF000000) >> 24) == "a" pos = sdl2.SDL_RWseek(rw, 8, sdl2.RW_SEEK_SET) assert pos == 8 ch = sdl2.SDL_ReadBE32(rw) assert chr(ch & 0x000000FF) == "l" assert chr((ch & 0x0000FF00) >> 8) == "k" assert chr((ch & 0x00FF0000) >> 16) == "j" assert chr((ch & 0xFF000000) >> 24) == "i" def test_SDL_ReadLE64(with_test_rw): rw, buf = with_test_rw ch = sdl2.SDL_ReadLE64(rw) assert chr(ch & 0x00000000000000FF) == "a" assert chr((ch & 0x000000000000FF00) >> 8) == "b" assert chr((ch & 0x0000000000FF0000) >> 16) == "c" assert chr((ch & 0x00000000FF000000) >> 24) == "d" assert chr((ch & 0x000000FF00000000) >> 32) == "e" assert chr((ch & 0x0000FF0000000000) >> 40) == "f" assert chr((ch & 0x00FF000000000000) >> 48) == "g" assert chr((ch & 0xFF00000000000000) >> 56) == "h" pos = sdl2.SDL_RWseek(rw, 8, sdl2.RW_SEEK_SET) assert pos == 8 ch = sdl2.SDL_ReadLE64(rw) assert chr(ch & 0x00000000000000FF) == "i" assert chr((ch & 0x000000000000FF00) >> 8) == "j" assert chr((ch & 0x0000000000FF0000) >> 16) == "k" assert chr((ch & 0x00000000FF000000) >> 24) == "l" assert chr((ch & 0x000000FF00000000) >> 32) == "m" assert chr((ch & 0x0000FF0000000000) >> 40) == "n" assert chr((ch & 0x00FF000000000000) >> 48) == "o" assert chr((ch & 0xFF00000000000000) >> 56) == "p" def test_SDL_ReadBE64(with_test_rw): rw, buf = with_test_rw ch = sdl2.SDL_ReadBE64(rw) assert chr(ch & 0x00000000000000FF) == "h" assert chr((ch & 0x000000000000FF00) >> 8) == "g" assert chr((ch & 0x0000000000FF0000) >> 16) == "f" assert chr((ch & 0x00000000FF000000) >> 24) == "e" assert chr((ch & 0x000000FF00000000) >> 32) == "d" assert chr((ch & 0x0000FF0000000000) >> 40) == "c" assert chr((ch & 0x00FF000000000000) >> 48) == "b" assert chr((ch & 0xFF00000000000000) >> 56) == "a" pos = sdl2.SDL_RWseek(rw, 8, sdl2.RW_SEEK_SET) assert pos == 8 ch = sdl2.SDL_ReadBE64(rw) assert chr(ch & 0x00000000000000FF) == "p" assert chr((ch & 0x000000000000FF00) >> 8) == "o" assert chr((ch & 0x0000000000FF0000) >> 16) == "n" assert chr((ch & 0x00000000FF000000) >> 24) == "m" assert chr((ch & 0x000000FF00000000) >> 32) == "l" assert chr((ch & 0x0000FF0000000000) >> 40) == "k" assert chr((ch & 0x00FF000000000000) >> 48) == "j" assert chr((ch & 0xFF00000000000000) >> 56) == "i" # SDL RW Write tests def test_SDL_WriteU8(with_test_rw): rw, buf = with_test_rw assert sdl2.SDL_WriteU8(rw, ord("1")) == 1 assert buf.value == b"1bcdefghijklmnop" sdl2.SDL_RWseek(rw, 6, sdl2.RW_SEEK_SET) assert sdl2.SDL_WriteU8(rw, ord("1")) == 1 assert buf.value == b"1bcdef1hijklmnop" def test_SDL_WriteLE16(with_test_rw): rw, buf = with_test_rw value = ( (ord("1") << 8) | (ord("2")) ) assert sdl2.SDL_WriteLE16(rw, value) == 1 assert buf.value == b"21cdefghijklmnop" sdl2.SDL_RWseek(rw, 6, sdl2.RW_SEEK_SET) assert sdl2.SDL_WriteLE16(rw, value) == 1 assert buf.value == b"21cdef21ijklmnop" def test_SDL_WriteBE16(with_test_rw): rw, buf = with_test_rw value = ( (ord("1") << 8) | (ord("2")) ) assert sdl2.SDL_WriteBE16(rw, value) == 1 assert buf.value == b"12cdefghijklmnop" sdl2.SDL_RWseek(rw, 6, sdl2.RW_SEEK_SET) assert sdl2.SDL_WriteBE16(rw, value) == 1 assert buf.value == b"12cdef12ijklmnop" def test_SDL_WriteLE32(with_test_rw): rw, buf = with_test_rw value = ( (ord("1") << 24) | (ord("2")
<gh_stars>1000+ """Conll parser""" import re import argparse import time import os import io import pickle import spacy import numpy as np from tqdm import tqdm from neuralcoref.train.compat import unicode_ from neuralcoref.train.document import ( Mention, Document, Speaker, EmbeddingExtractor, MISSING_WORD, extract_mentions_spans, ) from neuralcoref.train.utils import parallel_process PACKAGE_DIRECTORY = os.path.dirname(os.path.abspath(__file__)) REMOVED_CHAR = ["/", "%", "*"] NORMALIZE_DICT = { "/.": ".", "/?": "?", "-LRB-": "(", "-RRB-": ")", "-LCB-": "{", "-RCB-": "}", "-LSB-": "[", "-RSB-": "]", } CONLL_GENRES = {"bc": 0, "bn": 1, "mz": 2, "nw": 3, "pt": 4, "tc": 5, "wb": 6} FEATURES_NAMES = [ "mentions_features", # 0 "mentions_labels", # 1 "mentions_pairs_length", # 2 "mentions_pairs_start_index", # 3 "mentions_spans", # 4 "mentions_words", # 5 "pairs_ant_index", # 6 "pairs_features", # 7 "pairs_labels", # 8 "locations", # 9 "conll_tokens", # 10 "spacy_lookup", # 11 "doc", # 12 ] MISSED_MENTIONS_FILE = os.path.join( PACKAGE_DIRECTORY, "test_mentions_identification.txt" ) SENTENCES_PATH = os.path.join(PACKAGE_DIRECTORY, "test_sentences.txt") ################### ### UTILITIES ##### def clean_token(token): cleaned_token = token if cleaned_token in NORMALIZE_DICT: cleaned_token = NORMALIZE_DICT[cleaned_token] if cleaned_token not in REMOVED_CHAR: for char in REMOVED_CHAR: cleaned_token = cleaned_token.replace(char, "") if len(cleaned_token) == 0: cleaned_token = "," return cleaned_token def mention_words_idx(embed_extractor, mention, debug=False): # index of the word in the tuned embeddings no need for normalizing, # it is already performed in set_mentions_features() # We take them in the tuned vocabulary which is a smaller voc tailored from conll words = [] for _, w in sorted(mention.words_embeddings_.items()): if w not in embed_extractor.tun_idx: if debug: print( "No matching tokens in tuned voc for word ", w, "surrounding or inside mention", mention, ) words.append(MISSING_WORD) else: words.append(w) return [embed_extractor.tun_idx[w] for w in words] def check_numpy_array(feature, array, n_mentions_list, compressed=True): for n_mentions in n_mentions_list: if feature == FEATURES_NAMES[0]: assert array.shape[0] == len(n_mentions) if compressed: assert np.array_equiv( array[:, 3], np.array([len(n_mentions)] * len(n_mentions)) ) assert np.max(array[:, 2]) == len(n_mentions) - 1 assert np.min(array[:, 2]) == 0 elif feature == FEATURES_NAMES[1]: assert array.shape[0] == len(n_mentions) elif feature == FEATURES_NAMES[2]: assert array.shape[0] == len(n_mentions) assert np.array_equiv(array[:, 0], np.array(list(range(len(n_mentions))))) elif feature == FEATURES_NAMES[3]: assert array.shape[0] == len(n_mentions) assert np.array_equiv( array[:, 0], np.array([p * (p - 1) / 2 for p in range(len(n_mentions))]) ) elif feature == FEATURES_NAMES[4]: assert array.shape[0] == len(n_mentions) elif feature == FEATURES_NAMES[5]: assert array.shape[0] == len(n_mentions) elif feature == FEATURES_NAMES[6]: assert array.shape[0] == len(n_mentions) * (len(n_mentions) - 1) / 2 assert np.max(array) == len(n_mentions) - 2 elif feature == FEATURES_NAMES[7]: if compressed: assert array.shape[0] == len(n_mentions) * (len(n_mentions) - 1) / 2 assert np.max(array[:, 7]) == len(n_mentions) - 2 assert np.min(array[:, 7]) == 0 elif feature == FEATURES_NAMES[8]: assert array.shape[0] == len(n_mentions) * (len(n_mentions) - 1) / 2 ############################################################################################### ### PARALLEL FCT (has to be at top-level of the module to be pickled for multiprocessing) ##### def load_file(full_name, debug=False): """ load a *._conll file Input: full_name: path to the file Output: list of tuples for each conll doc in the file, where the tuple contains: (utts_text ([str]): list of the utterances in the document utts_tokens ([[str]]): list of the tokens (conll words) in the document utts_corefs: list of coref objects (dicts) with the following properties: coref['label']: id of the coreference cluster, coref['start']: start index (index of first token in the utterance), coref['end': end index (index of last token in the utterance). utts_speakers ([str]): list of the speaker associated to each utterances in the document name (str): name of the document part (str): part of the document ) """ docs = [] with io.open(full_name, "rt", encoding="utf-8", errors="strict") as f: lines = list(f) # .readlines() utts_text = [] utts_tokens = [] utts_corefs = [] utts_speakers = [] tokens = [] corefs = [] index = 0 speaker = "" name = "" part = "" for li, line in enumerate(lines): cols = line.split() if debug: print("line", li, "cols:", cols) # End of utterance if len(cols) == 0: if tokens: if debug: print("End of utterance") utts_text.append("".join(t + " " for t in tokens)) utts_tokens.append(tokens) utts_speakers.append(speaker) utts_corefs.append(corefs) tokens = [] corefs = [] index = 0 speaker = "" continue # End of doc elif len(cols) == 2: if debug: print("End of doc") if cols[0] == "#end": if debug: print("Saving doc") docs.append( (utts_text, utts_tokens, utts_corefs, utts_speakers, name, part) ) utts_text = [] utts_tokens = [] utts_corefs = [] utts_speakers = [] else: raise ValueError("Error on end line " + line) # New doc elif len(cols) == 5: if debug: print("New doc") if cols[0] == "#begin": name = re.match(r"\((.*)\);", cols[2]).group(1) try: part = cols[4] except ValueError: print("Error parsing document part " + line) if debug: print("New doc", name, part, name[:2]) tokens = [] corefs = [] index = 0 else: raise ValueError("Error on begin line " + line) # Inside utterance elif len(cols) > 7: if debug: print("Inside utterance") assert cols[0] == name and int(cols[1]) == int(part), ( "Doc name or part error " + line ) assert int(cols[2]) == index, "Index error on " + line if speaker: assert cols[9] == speaker, "Speaker changed in " + line + speaker else: speaker = cols[9] if debug: print("speaker", speaker) if cols[-1] != "-": coref_expr = cols[-1].split("|") if debug: print("coref_expr", coref_expr) if not coref_expr: raise ValueError("Coref expression empty " + line) for tok in coref_expr: if debug: print("coref tok", tok) try: match = re.match(r"^(\(?)(\d+)(\)?)$", tok) except: print("error getting coreferences for line " + line) assert match is not None, ( "Error parsing coref " + tok + " in " + line ) num = match.group(2) assert num is not "", ( "Error parsing coref " + tok + " in " + line ) if match.group(1) == "(": if debug: print("New coref", num) corefs.append({"label": num, "start": index, "end": None}) if match.group(3) == ")": j = None for i in range(len(corefs) - 1, -1, -1): if debug: print("i", i) if ( corefs[i]["label"] == num and corefs[i]["end"] is None ): j = i break assert j is not None, "coref closing error " + line if debug: print("End coref", num) corefs[j]["end"] = index tokens.append(clean_token(cols[3])) index += 1 else: raise ValueError("Line not standard " + line) return docs def set_feats(doc): doc.set_mentions_features() def get_feats(doc, i): return doc.get_feature_array(doc_id=i) def gather_feats(gathering_array, array, feat_name, pairs_ant_index, pairs_start_index): if gathering_array is None: gathering_array = array else: if feat_name == FEATURES_NAMES[6]: array = [a + pairs_ant_index for a in array] elif feat_name == FEATURES_NAMES[3]: array = [a + pairs_start_index for a in array] gathering_array += array return feat_name, gathering_array def read_file(full_name): doc = "" with io.open(full_name, "rt", encoding="utf-8", errors="strict") as f: doc = f.read() return doc ################### ### ConllDoc ##### class ConllDoc(Document): def __init__(self, name, part, *args, **kwargs): self.name = name self.part = part self.feature_matrix = {} self.conll_tokens = [] self.conll_lookup = [] self.gold_corefs = [] self.missed_gold = [] super(ConllDoc, self).__init__(*args, **kwargs) def get_conll_spacy_lookup(self, conll_tokens, spacy_tokens, debug=False): """ Compute a look up table between spacy tokens (from spacy tokenizer) and conll pre-tokenized tokens Output: list[conll_index] => list of associated spacy tokens (assume spacy tokenizer has a finer granularity) """ lookup = [] c_iter = (t for t in conll_tokens) s_iter = enumerate(t for t in spacy_tokens) i, s_tok = next(s_iter) for c_tok in c_iter: # if debug: print("conll", c_tok, "spacy", s_tok, "index", i) c_lookup = [] while i is not None and len(c_tok) and c_tok.startswith(s_tok.text): c_lookup.append(i) c_tok = c_tok[len(s_tok) :] i, s_tok = next(s_iter, (None, None)) if debug and len(c_tok): print("eating token: conll", c_tok, "spacy", s_tok, "index", i) assert len(c_lookup), "Unmatched conll and spacy tokens" lookup.append(c_lookup) return lookup def add_conll_utterance( self, parsed, tokens, corefs, speaker_id, use_gold_mentions, debug=False ): conll_lookup = self.get_conll_spacy_lookup(tokens, parsed) self.conll_tokens.append(tokens) self.conll_lookup.append(conll_lookup) # Convert conll tokens coref index in spacy tokens indexes identified_gold = [False] * len(corefs) for coref in corefs: missing_values = [key for key in ['label', 'start', 'end', ] if coref.get(key, None) is None] if missing_values: found_values = {key: coref[key] for key in ['label', 'start', 'end'] if coref.get(key, None) is not None} raise Exception(f"Coref {self.name} with fields {found_values} has empty values for the keys {missing_values}.") coref["start"] = conll_lookup[coref["start"]][0] coref["end"] = conll_lookup[coref["end"]][-1] if speaker_id not in self.speakers: speaker_name = speaker_id.split("_") if debug: print("New speaker: ", speaker_id, "name: ", speaker_name) self.speakers[speaker_id] = Speaker(speaker_id, speaker_name) if use_gold_mentions: for coref in
the dataframe ################ if 'vbat' not in df.columns.values: raise ValueError("This function requires battery voltage in the loaded dataframe for contextual plotting") ################# Make sure the model is in eval mode ################ model.eval() ################### Take the specific action rnage! ##################### # going to need to set a specific range of actions that we are looking at. print("Looking around the action of: ", action, "\n for a range of: ", act_range) # grab unique actions pwms_vals = np.unique(df[['m1pwm_0', 'm2pwm_0', 'm3pwm_0', 'm4pwm_0']].values) # grabs the actions within the range for each motor pwms_vals_range1 = pwms_vals[(pwms_vals < action[0]+act_range) & (pwms_vals > action[0]-act_range)] pwms_vals_range2 = pwms_vals[(pwms_vals < action[1]+act_range) & (pwms_vals > action[1]-act_range)] pwms_vals_range3 = pwms_vals[(pwms_vals < action[2]+act_range) & (pwms_vals > action[2]-act_range)] pwms_vals_range4 = pwms_vals[(pwms_vals < action[3]+act_range) & (pwms_vals > action[3]-act_range)] # filters the dataframe by these new conditions df_action_filtered = df.loc[(df['m1pwm_0'].isin(pwms_vals_range1) & df['m2pwm_0'].isin(pwms_vals_range2) & df['m3pwm_0'].isin(pwms_vals_range3) & df['m4pwm_0'].isin(pwms_vals_range4))] if len(df_action_filtered) == 0: raise ValueError("Given action not present in dataset") if len(df_action_filtered) < 10: print("WARNING: Low data for this action (<10 points)") print("Number of datapoints found is: ", len(df_action_filtered)) ######################## batch data by rounding voltages ################ df = df_action_filtered.sort_values('vbat') # df = df_action_filtered num_pts = len(df) # spacing = np.linspace(0,num_pts,num_ranges+1, dtype=np.int) # parameters can be changed if desired state_list, input_list, change_list = model.get_training_lists() # For this function append vbat if not in v_in_flag = True if 'vbat' not in input_list: v_in_flag = False input_list.append('vbat') data_params = { # Note the order of these matters. that is the order your array will be in 'states' : state_list, 'inputs' : input_list, 'targets' : change_list, 'battery' : True # Need to include battery here too } # this will hold predictions and the current state for ease of plotting predictions = np.zeros((num_pts, 2*9+1)) X, U, dX = df_to_training(df, data_params) # gather predictions rmse = np.zeros((9)) for n, (x, u, dx) in enumerate(zip(X, U, dX)): # predictions[i, n, 9:] = x[:9]+model.predict(x,u) if ground_truth: predictions[n, 9:-1] = dx else: # hacky solution to comparing models tranined with and without battery if v_in_flag: predictions[n, 9:-1] = model.predict(x,u) else: predictions[n, 9:-1] = model.predict(x,u[:-1]) # calculate root mean squared error for predictions rmse += (predictions[n, 9:-1] - dx)**2 predictions[n, :9] = x[:9] # stores for easily separating generations from plotting predictions[n, -1] = u[-1] rmse /= n rmse = np.sqrt(rmse) print(rmse) # if normalize, normalizes both the raw states and the change in states by # the scalars stored in the model if normalize: scalarX, scalarU, scalardX = model.getNormScalers() prediction_holder = np.concatenate((predictions[:,:9],np.zeros((num_pts, (np.shape(X)[1]-9)))),axis=1) predictions[:,:9] = scalarX.transform(prediction_holder)[:,:9] predictions[:,9:-1] = scalardX.transform(predictions[:,9:-1]) ############################################################################ ############################################################################ ######################### plot this dataset on Euler angles ################ # this will a subplot with a collection of points showing the next state # that originates from a initial state. The different battery voltages will # be different colors. They could be lines, but is easier to thing about # in an (x,y) case without sorting # plot properties font = {'size' : 14} matplotlib.rc('font', **font) matplotlib.rc('lines', linewidth=2.5) ############## PLOT ALL POINTS ON 3 EULER ANGLES ################### if False: with sns.axes_style("whitegrid"): plt.rcParams["axes.edgecolor"] = "0.15" plt.rcParams["axes.linewidth"] = 1.5 fig1, axes = plt.subplots(nrows=1, ncols=3, sharey=True) ax1, ax2, ax3 = axes[:] if ground_truth: plt.suptitle("Measured State Transitions Battery Voltage Context - Action: {0}".format(action)) if normalize: ax1.set_ylabel("Measured Normalized Change in State") else: ax1.set_ylabel("Measured Change in state (Degrees)") else: plt.suptitle("Predicted State Transitions Battery Voltage Context - Action: {0}".format(action)) if normalize: ax1.set_ylabel("Predicted Normalized Change in State") else: ax1.set_ylabel("Predicted Change in state (Degrees)") ax1.set_title("Pitch") ax2.set_title("Roll") ax3.set_title("Yaw") if normalize: ax1.set_xlabel("Normalized Pitch") ax2.set_xlabel("Normalized Roll") ax3.set_xlabel("Normalized Yaw") # ax1.set_xlim([-4,4]) # ax2.set_xlim([-4,4]) # ax3.set_xlim([-2,2]) # ax1.set_xlim([-1,1]) # ax2.set_xlim([-1,1]) # ax3.set_xlim([-2,2]) ax1.set_ylim([-1,1]) ax2.set_ylim([-1,1]) ax3.set_ylim([-1,1]) else: ax1.set_xlabel("Global Pitch") ax2.set_xlabel("Global Roll") ax3.set_xlabel("Global Yaw") ax1.set_xlim([-45,45]) ax2.set_xlim([-45,45]) ax3.set_xlim([-180,180]) fig1.subplots_adjust(right=0.8) cbar_ax1 = fig1.add_axes([0.85, 0.15, 0.02, 0.7]) # ax1 = plt.subplot(131) # ax2 = plt.subplot(132) # ax3 = plt.subplot(133) # normalize batteris between 0 and 1 # TODO: Figure out the coloring # predictions[:,:,-1] = (predictions[:,:,-1] - np.min(predictions[:,:,-1]))/(np.max(predictions[:,:,-1])-np.min(predictions[:,:,-1])) # print(predictions[:,:,-1]) base = 50 prec = 0 vbats = np.around(base * np.around(predictions[:, -1]/base),prec) # vbats = predicitons[:,-1] hm = ax1.scatter(predictions[:,3], predictions[:,3+9], c=vbats, alpha = .7, s=3) ax2.scatter(predictions[:,4], predictions[:,4+9], c=vbats, alpha = .7, s=3) ax3.scatter(predictions[:,5], predictions[:,5+9], c=vbats, alpha = .7, s=3) cbar = fig1.colorbar(hm, cax=cbar_ax1) cbar.ax.set_ylabel('Battery Voltage (mV)') plt.show() ############################################################### ############## PLOT Pitch for battery cutoff ################### if False: battery_cutoff = 3800 battery_cutoff = int(np.mean(predictions[:, -1])) battery_cutoff = int(np.median(predictions[:, -1])) print("Plotting Pitch Dynamics for Above and Below {0} mV".format(battery_cutoff)) with sns.axes_style("darkgrid"): fig2, axes2 = plt.subplots(nrows=1, ncols=2, sharey=True) ax21, ax22 = axes2[:] cmap = matplotlib.cm.viridis norm = matplotlib.colors.Normalize(vmin=np.min(predictions[:, -1]), vmax=np.max(predictions[:, -1])) if ground_truth: plt.suptitle("Measured Pitch Transitions Above and Below Mean Vbat: {0}".format(battery_cutoff)) if normalize: ax21.set_ylabel("Normalized Measured Change in State") else: ax21.set_ylabel("Measured Change in state (Degrees)") else: plt.suptitle("Predicted Pitch Transitions Above and Below Mean Vbat: {0}".format(battery_cutoff)) if normalize: ax21.set_ylabel("Normalized Predicted Change in State") else: ax21.set_ylabel("Predicted Change in state (Degrees)") ax21.set_title("Pitch, Vbat > {0}".format(battery_cutoff)) ax22.set_title("Pitch, Vbat < {0}".format(battery_cutoff)) if normalize: ax21.set_xlabel("Normalized Pitch") ax22.set_xlabel("Normalized Pitch") # ax21.set_xlim([-4,4]) # ax22.set_xlim([-4,4]) ax21.set_ylim([-1,1]) ax22.set_ylim([-1,1]) else: ax21.set_xlabel("Global Pitch") ax22.set_xlabel("Global Pitch") ax21.set_xlim([-45,45]) ax22.set_xlim([-45,45]) fig2.subplots_adjust(right=0.8) cbar_ax = fig2.add_axes([0.85, 0.15, 0.02, 0.7]) dim = 3 base = 50 prec = 1 vbats = np.around(base * np.around(predictions[:, -1]/base),prec) flag = vbats > battery_cutoff notflag = np.invert(flag) # hm2 = plt.scatter(predictions[:,3], predictions[:,3+9], c=predictions[:, -1], alpha = .7, s=3) # plt.clf() ax21.scatter(predictions[flag, dim], predictions[flag, dim+9], cmap=cmap, norm=norm, c=vbats[flag], alpha = .7, s=3) ax22.scatter(predictions[notflag, dim], predictions[notflag, dim+9], cmap=cmap, norm=norm, c=vbats[notflag], alpha = .7, s=3) cbar = fig2.colorbar(hm, cax=cbar_ax) cbar.ax.set_ylabel('Battery Voltage (mV)') plt.show() ############################################################### if False: num_subplots = 9 vbats = predictions[:, -1] # generate battery ranges for the plot pts = len(vbats) pts_breaks = np.linspace(0,pts-1, num_subplots+1, dtype =np.int) bat_ranges = vbats[pts_breaks] # bat_ranges = np.linspace(np.min(vbats), np.max(vbats),num_subplots+1) with sns.axes_style("darkgrid"): fig3, axes3 = plt.subplots(nrows=3, ncols=3, sharey=True, sharex=True) # ax31, ax32, ax33, ax34, ax35, ax36 = axes3[:,:] cmap = matplotlib.cm.viridis norm = matplotlib.colors.Normalize(vmin=bat_ranges[0], vmax=bat_ranges[-1]) if ground_truth: plt.suptitle("Measured Pitch Transitions For Varying Battery Voltage") if normalize: fig3.text(0.5, 0.04, 'Normalize Global State', ha='center') fig3.text(0.04, 0.5, 'Normalized Measured Change in State', va='center', rotation='vertical') else: fig3.text(0.5, 0.04, 'Global State', ha='center') fig3.text(0.04, 0.5, 'Measured Change in State', va='center', rotation='vertical') else: plt.suptitle("Predicted Pitch Transitions For Varying Battery Voltage") if normalize: fig3.text(0.5, 0.04, 'Normalize Global State', ha='center') fig3.text(0.04, 0.5, 'Normalized Predicted Change in State', va='center', rotation='vertical') else: fig3.text(0.5, 0.04, 'Global State', ha='center') fig3.text(0.04, 0.5, 'Predicted Change in State', va='center', rotation='vertical') for i, ax in enumerate(axes3.flatten()): # get range values low = bat_ranges[i] high = bat_ranges[i+1] ax.set_title("Voltage [{0},{1}]".format(int(low), int(high))) if normalize: # ax.set_xlabel("Normalized Pitch") ax.set_ylim([-1,1]) else: # ax.set_xlabel("Global Pitch") ax.set_xlim([-45,45]) dim = 4 flag = (vbats > low) & (vbats < high) hm = ax.scatter(predictions[flag, dim], predictions[flag, dim+9], cmap = cmap, norm = norm, c=vbats[flag], alpha = .7, s=3) if normalize: ax.set_ylim([-1,1]) else: ax.set_ylim([-3,3]) fig3.subplots_adjust(right=0.8) cbar_ax1 = fig3.add_axes([0.85, 0.15, 0.02, 0.7]) cbar = fig3.colorbar(hm, cax=cbar_ax1) cbar.ax.set_ylabel('Battery Voltage (mV)') plt.show() ############################################################### ############## PLOT single angle for ground truth, with battery, without battery ################### if True: # gather predictions for second model # this will hold predictions and the current state for ease of plotting predictions_nobat = np.zeros((num_pts, 2*9+1)) pred_ground_truth = np.zeros((num_pts, 2*9+1)) # gather predictions rmse = np.zeros((9)) for n, (x, u, dx) in enumerate(zip(X, U, dX)): # predictions[i, n, 9:] = x[:9]+model.predict(x,u) pred_ground_truth[n, 9:-1] = dx predictions_nobat[n, 9:-1] = model_nobat.predict(x, u[:-1]) # calculate root mean squared error for predictions rmse += (predictions_nobat[n, 9:-1] - dx)**2 # stores for easily separating generations from plotting predictions_nobat[n, :9] = x[:9] predictions_nobat[n, -1] = u[-1] # rmse /= n # rmse = np.sqrt(rmse) # print(rmse) if normalize: scalarX, scalarU, scalardX = model.getNormScalers() pred_ground_truth_holder = np.concatenate( (pred_ground_truth[:, :9], np.zeros((num_pts, (np.shape(X)[1]-9)))), axis=1) pred_ground_truth[:, :9] = scalarX.transform( pred_ground_truth_holder)[:, :9] pred_ground_truth[:, 9:- 1] = scalardX.transform(pred_ground_truth[:, 9:-1]) prediction_nobat_holder = np.concatenate( (predictions_nobat[:, :9], np.zeros((num_pts, (np.shape(X)[1]-9)))), axis=1) predictions_nobat[:, :9] = scalarX.transform( prediction_nobat_holder)[:, :9] predictions_nobat[:, 9:- 1] = scalardX.transform(predictions_nobat[:, 9:-1]) # Plot here, will be a 3x5 plot of voltage context n_row = 3 num_subplots = 5 vbats = predictions[:, -1] # generate battery
<filename>easyawscli.py #!/usr/bin/python3 from os import system, name import boto3 from botocore.exceptions import ClientError import getpass import requests # from SecureString import clearmem source_code_url = "https://github.com/navilg/easyawscli" def main_menu(): print("\n\n---Main Menu---\n") print("0. Logout\n1. Start EC2 instance\n2. Stop EC2 instance\n3. Tag an instance\n4. Add inbound rule in Security Group") print("5. Remove an inbound rule from Security Group\n6. Autoscaling Group suspend process") main_menu_choice = int(input("Choose from above (0 to 6) >> ")) return main_menu_choice def submenu(action_name=""): print("\n\n---Sub Menu---\n") print("\n0. Logout\n1. Repeat '" + str(action_name) + "'\n2. Main Menu") subchoice = int(input("Choose from above (0 to 2) >> ")) return subchoice def login(): print("\n\n---Login---\n") region = set_region() if region == "": exit(0) key = str(input("Enter AWS access key >> ")) try: secret = getpass.getpass(prompt='Enter AWS secret (Input text will NOT be visible) >> ') except Exception as error: print('ERROR', error) exit(1) try: session = boto3.Session(aws_access_key_id=key, aws_secret_access_key=secret, region_name=region) # clearmem(secret) except ClientError as e: print(e.response['Error']['Message']) # clearmem(secret) exit(1) print("Validating your credentials...") try: sts = session.client('sts') sts.get_caller_identity() except ClientError as e: print(e.response['Error']['Message']) print("Login failed") exit(1) except Exception as e: print(e, ":", type(e).__name__) if type(e).__name__ == "EndpointConnectionError": print("'"+region+"'","may not be a valid AWS region.") print("Login Failed") exit(1) return region,session def set_region(): print("Choose one region from list below.") print("------------------------------------------------------------------------------------------------------------" "-------------------------------------") print("| 1. us-east-1 (N. Virginia)\t\t2. us-east-2 (Ohio)\t\t3. us-west-1 (N. California)\t\t4. us-west-2 (" "Oregon)\t\t|") print("| 5. af-south-1 (Cape Town)\t\t6. ap-east-1 (Hong Kong)\t7. ap-south-1 (Mumbai)\t\t\t8. " "ap-northeast-3 ( " "Osaka)\t|") print("| 9. ap-northeast-2 (Seoul)\t\t10. ap-southeast-1 (Singapore)\t11. ap-southeast-2 (Sydney)\t\t12. " "ap-northeast-1 (Tokyo)\t|") print("| 13. ca-central-1 (Canada/Central)\t14. eu-central-1 (Frankfurt)\t15. eu-west-1 (Ireland)\t\t\t16. " "eu-west-2 (London)\t\t|") print("| 17. eu-south-1 (Milan)\t\t18. eu-west-3 (Paris)\t\t19. eu-north-1 (Stockholm)\t\t20. me-south-1 (" "Bahrain)\t|") print("| 21. sa-east-1 (Sao Paulo)\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t|") print("------------------------------------------------------------------------------------------------------------" "-------------------------------------\n") while True: try: region_name = int(input("Choose a region from above (1 to 21). Type 0 to exit: ")) except ValueError as e: print('Invalid choice') continue except Exception as e: print("Error:", e) return "" if region_name == 1: return "us-east-1" elif region_name == 2: return "us-east-2" elif region_name == 3: return "us-west-1" elif region_name == 4: return "us-west-2" elif region_name == 5: return "af-south-1" elif region_name == 6: return "ap-east-1" elif region_name == 7: return "ap-south-1" elif region_name == 8: return "ap-northeast-3" elif region_name == 9: return "ap-northeast-2" elif region_name == 10: return "ap-southeast-1" elif region_name == 11: return "ap-southeast-2" elif region_name == 12: return "ap-northeast-1" elif region_name == 13: return "ca-central-1" elif region_name == 14: return "eu-central-1" elif region_name == 15: return "eu-west-1" elif region_name == 16: return "eu-west-2" elif region_name == 17: return "eu-south-1" elif region_name == 18: return "eu-west-3" elif region_name == 19: return "eu-north-1" elif region_name == 20: return "me-south-1" elif region_name == 21: return "sa-east-1" elif region_name == 0: return "" else: print("Invalid choice.") def get_ec2(region,state,tagname,tagvalue,session): print("Searching instances with tag","'"+tagname+":", tagvalue+"'","in region", region) reservations = [] ec2_obj = session.client('ec2',region_name=region) if state == "all": filters = [{'Name': 'tag:' + tagname, 'Values': [tagvalue]}] else: filters = [{'Name': 'instance-state-name','Values': [state]},{'Name': 'tag:'+tagname,'Values': [tagvalue]}] reservations = ec2_obj.describe_instances(Filters=filters).get("Reservations") return reservations,ec2_obj def startEC2(region,session): print("\n\n---Start EC2 Instance---\n") print("Active region:",region) tagname = str(input("Enter tag name >> ")) tagvalue = str(input("Enter tag value >> ")) reservations,ec2_obj = get_ec2(region,'stopped',tagname,tagvalue,session) # If list is empty if not reservations: print("No stopped instances to start.") return [],0 print("\nBelow instances found with tag '" + tagname + "':'" + tagvalue + "'") print("No.\tInstance_ID\t\t" + tagname + "\t\tPrivate_IP_Address\t\tLaunch_Time") i = 0 for reservation in reservations: for instance in reservation["Instances"]: i += 1 instance_id = instance["InstanceId"] private_ip = instance["PrivateIpAddress"] launch_time = instance["LaunchTime"] print(str(i)+"\t"+str(instance_id)+"\t"+tagvalue+"\t\t"+str(private_ip)+"\t\t"+str(launch_time)) print("\nChoose instances to start from above list (0 to "+str(i)+"). Separate them by commas. Just type 0 to return to submenu.") start_choice = input("Example: 1,3,4 >> ") if start_choice == '0': return [],0 choice_list = start_choice.rstrip().split(",") print("Instances to start:", choice_list) confirm = str(input("Do you confirm ? (Type 'confirm') >> ")) if confirm != 'confirm': print("You seem to be confused.") return [],0 print("Starting Instances...") instance_state_changed = 0 instances_started = [] i = 0 for reservation in reservations: for instance in reservation["Instances"]: i += 1 if str(i) in choice_list: try: print("Starting instance ", instance["InstanceId"]) ec2_obj.start_instances(InstanceIds=[instance["InstanceId"]]) instances_started.append(instance["InstanceId"]) instance_state_changed += 1 except ClientError as e: print(e.response['Error']['Message']) return instances_started,instance_state_changed def stopEC2(region,session): print("\n\n---Stop EC2 Instance---\n") print("Active region:",region) tagname = str(input("Enter tag name >> ")) tagvalue = str(input("Enter tag value >> ")) reservations,ec2_obj = get_ec2(region,'running',tagname,tagvalue,session) # If list is empty if not reservations: print("No running instances to stop.") return [],0 print("\nBelow instances found with tag '" + tagname + "':'" + tagvalue + "'") print("No.\tInstance_ID\t\t" + tagname + "\t\tPrivate_IP_Address\t\tLaunch_Time") i = 0 for reservation in reservations: for instance in reservation["Instances"]: i += 1 instance_id = instance["InstanceId"] private_ip = instance["PrivateIpAddress"] launch_time = instance["LaunchTime"] print(str(i) + "\t" + str(instance_id) + "\t" + tagvalue + "\t\t" + str(private_ip) + "\t\t" + str(launch_time)) print("\nChoose instances to stop from above list (0 to " + str(i) + "). Separate them by commas. Just type 0 to return to submenu.") stop_choice = input("Example: 1,3,4 >> ") if stop_choice == '0': return [],0 choice_list = stop_choice.rstrip().split(",") print("Instances to stop:", choice_list) confirm = str(input("Do you confirm ? (Type 'confirm') >> ")) if confirm != 'confirm': print("You seem to be confused.") return [], 0 print("Stopping Instances...") instance_state_changed = 0 instances_stopped = [] i = 0 for reservation in reservations: for instance in reservation["Instances"]: i += 1 if str(i) in choice_list: try: print("Stopping instance ", instance["InstanceId"]) ec2_obj.stop_instances(InstanceIds=[instance["InstanceId"]]) instances_stopped.append(instance["InstanceId"]) instance_state_changed += 1 except ClientError as e: print(e.response['Error']['Message']) return instances_stopped,instance_state_changed def tagInstance(): print("Tag Instance. Coming soon...") def add_inbound_rule_in_sg(region,session): print("\n\n---Add inbound rule in Security Group---\n") print("Active region:", region) print("Enter tag name and its value to filter the EC2 instances.") tagname = str(input("Enter tag name >> ")) tagvalue = str(input("Enter tag value >> ")) reservations, ec2_obj = get_ec2(region, 'all', tagname, tagvalue, session) # If list is empty if not reservations: print("No instances found.") return "" print("\nBelow instances found with tag '" + tagname + "':'" + tagvalue + "'") print("No.\tInstance_ID\t\t" + tagname + "\t\tVPC_ID\t\tPrivate_IP_Address\t\tLaunch_Time") i = 0 for reservation in reservations: for instance in reservation["Instances"]: i += 1 instance_id = instance["InstanceId"] private_ip = instance["PrivateIpAddress"] launch_time = instance["LaunchTime"] vpc_id = instance["VpcId"] print(str(i) + "\t" + str(instance_id) + "\t" + tagvalue + "\t\t" + str(vpc_id) + "\t\t" + str(private_ip) + "\t\t" + str(launch_time)) print("\nChoose one instances from above list (0 to " + str(i) + "). 0 to return to submenu") instance_choice = int(input("Example: 3 >> ")) if instance_choice == 0: return "" print("Below Security Groups are attached to chosen instance.") print("No.\tSecurity_Group_ID\t\tSecurity_Group_Name") i = 0 security_group_id_list = [] security_group_name_list = [] for reservation in reservations: for instance in reservation["Instances"]: i += 1 if i == instance_choice: security_groups = instance["SecurityGroups"] j = 0 for security_group in security_groups: j += 1 security_group_name = security_group["GroupName"] security_group_id = security_group["GroupId"] security_group_name_list.append(security_group_name) security_group_id_list.append(security_group_id) print(str(j) + "\t" + str(security_group_id) + "\t\t" + security_group_name) break print("\nChoose one security group from above (0 to", j,"). Type 0 to return to submenu.") security_group_choice = int(input(">> ")) if security_group_choice == 0: return "" security_group_details = ec2_obj.describe_security_groups(GroupIds=[security_group_id_list[security_group_choice - 1]]) print("Below inbound rules are currently authorized to security group", security_group_id_list[security_group_choice - 1]) print("No.\tPorts\t\tIP_Protocol\tSource\t\t\t\tDescription") i = 0 for ip_permission in security_group_details['SecurityGroups'][0]['IpPermissions']: i += 1 current_ip_protocol = ip_permission['IpProtocol'] current_ip_ranges = ip_permission['IpRanges'] current_cidrs = [] current_description = [] for current_ip_range in current_ip_ranges: current_cidrs.append(current_ip_range['CidrIp']) if 'Description' in current_ip_range: current_description.append(current_ip_range['Description']) else: current_description.append('') current_to_port = ip_permission['ToPort'] print(str(i) + "\t" + str(current_to_port) + "\t\t" + str(current_ip_protocol) + "\t\t" + str(current_cidrs) + "\t\t\t\t" + str(current_description)) if i == 0: print("No inbound rule authorized to security group", security_group_id_list[security_group_choice - 1]) print("\nEnter below details for new inbound rule.") ip_protocol = str(input("Enter IP Protocol (tcp/udp) >> ")).lower() to_port = int(input("Enter port number >> ")) your_public_ip = str(requests.get('http://ipinfo.io/json').json()['ip']) + "/32" ip_range = str(input("Enter CIDR IP (default: {}) >> ".format(your_public_ip))) description = str(input("Enter description (default: '') >> ")) if ip_range == "": ip_range = your_public_ip ip_perm = [{'IpProtocol': ip_protocol, 'ToPort': to_port, 'FromPort': to_port, 'IpRanges': [{'CidrIp': ip_range, 'Description': description}]}] print(ip_perm) confirm = str(input("Do you confirm ? (Type 'confirm') >> ")) if confirm != 'confirm': print("You seem to be confused.") return "" print("Adding inbound
for name, ext in required_fields: field = cls.__fields__[name] ext_field = cls.__fields__[ext] value = values.get(field.alias, _missing) if value not in (_missing, None): continue ext_value = values.get(ext_field.alias, _missing) missing_ext = True if ext_value not in (_missing, None): if isinstance(ext_value, dict): missing_ext = len(ext_value.get("extension", [])) == 0 elif ( getattr(ext_value.__class__, "get_resource_type", _fallback)() == "FHIRPrimitiveExtension" ): if ext_value.extension and len(ext_value.extension) > 0: missing_ext = False else: validate_pass = True for validator in ext_field.type_.__get_validators__(): try: ext_value = validator(v=ext_value) except ValidationError as exc: errors.append(ErrorWrapper(exc, loc=ext_field.alias)) validate_pass = False if not validate_pass: continue if ext_value.extension and len(ext_value.extension) > 0: missing_ext = False if missing_ext: if value is _missing: errors.append(ErrorWrapper(MissingError(), loc=field.alias)) else: errors.append( ErrorWrapper(NoneIsNotAllowedError(), loc=field.alias) ) if len(errors) > 0: raise ValidationError(errors, cls) # type: ignore return values class ClaimResponseItemAdjudication(backboneelement.BackboneElement): """Disclaimer: Any field name ends with ``__ext`` does't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. Adjudication details. The adjudication results. """ resource_type = Field("ClaimResponseItemAdjudication", const=True) amount: fhirtypes.MoneyType = Field( None, alias="amount", title="Monetary amount", description="Monetary amount associated with the code.", # if property is element of this resource. element_property=True, ) category: fhirtypes.CodeableConceptType = Field( ..., alias="category", title="Adjudication category such as co-pay, eligible, benefit, etc.", description="Code indicating: Co-Pay, deductible, eligible, benefit, tax, etc.", # if property is element of this resource. element_property=True, ) reason: fhirtypes.CodeableConceptType = Field( None, alias="reason", title="Explanation of Adjudication outcome", description="Adjudication reason such as limit reached.", # if property is element of this resource. element_property=True, ) value: fhirtypes.Decimal = Field( None, alias="value", title="Non-monetary value", description=( "A non-monetary value for example a percentage. Mutually exclusive to " "the amount element above." ), # if property is element of this resource. element_property=True, ) value__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_value", title="Extension field for ``value``." ) class ClaimResponseItemDetail(backboneelement.BackboneElement): """Disclaimer: Any field name ends with ``__ext`` does't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. Detail line items. The second tier service adjudications for submitted services. """ resource_type = Field("ClaimResponseItemDetail", const=True) adjudication: typing.List[fhirtypes.ClaimResponseItemAdjudicationType] = Field( None, alias="adjudication", title="Detail level adjudication details", description="The adjudications results.", # if property is element of this resource. element_property=True, ) noteNumber: typing.List[fhirtypes.PositiveInt] = Field( None, alias="noteNumber", title="List of note numbers which apply", description="A list of note references to the notes provided below.", # if property is element of this resource. element_property=True, ) noteNumber__ext: typing.List[ typing.Union[fhirtypes.FHIRPrimitiveExtensionType, None] ] = Field(None, alias="_noteNumber", title="Extension field for ``noteNumber``.") sequenceLinkId: fhirtypes.PositiveInt = Field( None, alias="sequenceLinkId", title="Service instance", description="A service line number.", # if property is element of this resource. element_property=True, element_required=True, ) sequenceLinkId__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_sequenceLinkId", title="Extension field for ``sequenceLinkId``." ) subDetail: typing.List[fhirtypes.ClaimResponseItemDetailSubDetailType] = Field( None, alias="subDetail", title="Subdetail line items", description="The third tier service adjudications for submitted services.", # if property is element of this resource. element_property=True, ) @root_validator(pre=True, allow_reuse=True) def validate_required_primitive_elements_2502( cls, values: typing.Dict[str, typing.Any] ) -> typing.Dict[str, typing.Any]: """https://www.hl7.org/fhir/extensibility.html#Special-Case In some cases, implementers might find that they do not have appropriate data for an element with minimum cardinality = 1. In this case, the element must be present, but unless the resource or a profile on it has made the actual value of the primitive data type mandatory, it is possible to provide an extension that explains why the primitive value is not present. """ required_fields = [("sequenceLinkId", "sequenceLinkId__ext")] _missing = object() def _fallback(): return "" errors: typing.List["ErrorWrapper"] = [] for name, ext in required_fields: field = cls.__fields__[name] ext_field = cls.__fields__[ext] value = values.get(field.alias, _missing) if value not in (_missing, None): continue ext_value = values.get(ext_field.alias, _missing) missing_ext = True if ext_value not in (_missing, None): if isinstance(ext_value, dict): missing_ext = len(ext_value.get("extension", [])) == 0 elif ( getattr(ext_value.__class__, "get_resource_type", _fallback)() == "FHIRPrimitiveExtension" ): if ext_value.extension and len(ext_value.extension) > 0: missing_ext = False else: validate_pass = True for validator in ext_field.type_.__get_validators__(): try: ext_value = validator(v=ext_value) except ValidationError as exc: errors.append(ErrorWrapper(exc, loc=ext_field.alias)) validate_pass = False if not validate_pass: continue if ext_value.extension and len(ext_value.extension) > 0: missing_ext = False if missing_ext: if value is _missing: errors.append(ErrorWrapper(MissingError(), loc=field.alias)) else: errors.append( ErrorWrapper(NoneIsNotAllowedError(), loc=field.alias) ) if len(errors) > 0: raise ValidationError(errors, cls) # type: ignore return values class ClaimResponseItemDetailSubDetail(backboneelement.BackboneElement): """Disclaimer: Any field name ends with ``__ext`` does't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. Subdetail line items. The third tier service adjudications for submitted services. """ resource_type = Field("ClaimResponseItemDetailSubDetail", const=True) adjudication: typing.List[fhirtypes.ClaimResponseItemAdjudicationType] = Field( None, alias="adjudication", title="Subdetail level adjudication details", description="The adjudications results.", # if property is element of this resource. element_property=True, ) noteNumber: typing.List[fhirtypes.PositiveInt] = Field( None, alias="noteNumber", title="List of note numbers which apply", description="A list of note references to the notes provided below.", # if property is element of this resource. element_property=True, ) noteNumber__ext: typing.List[ typing.Union[fhirtypes.FHIRPrimitiveExtensionType, None] ] = Field(None, alias="_noteNumber", title="Extension field for ``noteNumber``.") sequenceLinkId: fhirtypes.PositiveInt = Field( None, alias="sequenceLinkId", title="Service instance", description="A service line number.", # if property is element of this resource. element_property=True, element_required=True, ) sequenceLinkId__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_sequenceLinkId", title="Extension field for ``sequenceLinkId``." ) @root_validator(pre=True, allow_reuse=True) def validate_required_primitive_elements_3395( cls, values: typing.Dict[str, typing.Any] ) -> typing.Dict[str, typing.Any]: """https://www.hl7.org/fhir/extensibility.html#Special-Case In some cases, implementers might find that they do not have appropriate data for an element with minimum cardinality = 1. In this case, the element must be present, but unless the resource or a profile on it has made the actual value of the primitive data type mandatory, it is possible to provide an extension that explains why the primitive value is not present. """ required_fields = [("sequenceLinkId", "sequenceLinkId__ext")] _missing = object() def _fallback(): return "" errors: typing.List["ErrorWrapper"] = [] for name, ext in required_fields: field = cls.__fields__[name] ext_field = cls.__fields__[ext] value = values.get(field.alias, _missing) if value not in (_missing, None): continue ext_value = values.get(ext_field.alias, _missing) missing_ext = True if ext_value not in (_missing, None): if isinstance(ext_value, dict): missing_ext = len(ext_value.get("extension", [])) == 0 elif ( getattr(ext_value.__class__, "get_resource_type", _fallback)() == "FHIRPrimitiveExtension" ): if ext_value.extension and len(ext_value.extension) > 0: missing_ext = False else: validate_pass = True for validator in ext_field.type_.__get_validators__(): try: ext_value = validator(v=ext_value) except ValidationError as exc: errors.append(ErrorWrapper(exc, loc=ext_field.alias)) validate_pass = False if not validate_pass: continue if ext_value.extension and len(ext_value.extension) > 0: missing_ext = False if missing_ext: if value is _missing: errors.append(ErrorWrapper(MissingError(), loc=field.alias)) else: errors.append( ErrorWrapper(NoneIsNotAllowedError(), loc=field.alias) ) if len(errors) > 0: raise ValidationError(errors, cls) # type: ignore return values class ClaimResponsePayment(backboneelement.BackboneElement): """Disclaimer: Any field name ends with ``__ext`` does't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. Payment details, if paid. Payment details for the claim if the claim has been paid. """ resource_type = Field("ClaimResponsePayment", const=True) adjustment: fhirtypes.MoneyType = Field( None, alias="adjustment", title="Payment adjustment for non-Claim issues", description=( "Adjustment to the payment of this transaction which is not related to " "adjudication of this transaction." ), # if property is element of this resource. element_property=True, ) adjustmentReason: fhirtypes.CodeableConceptType = Field( None, alias="adjustmentReason", title="Explanation for the non-claim adjustment", description="Reason for the payment adjustment.", # if property is element of this resource. element_property=True, ) amount: fhirtypes.MoneyType = Field( None, alias="amount", title="Payable amount after adjustment", description="Payable less any payment adjustment.", # if property is element of this resource. element_property=True, ) date: fhirtypes.Date = Field( None, alias="date", title="Expected data of Payment", description="Estimated payment data.", # if property is element of this resource. element_property=True, ) date__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_date", title="Extension field for ``date``." ) identifier: fhirtypes.IdentifierType = Field( None, alias="identifier", title="Identifier of the payment instrument", description="Payment identifier.", # if property is element of this resource. element_property=True, ) type: fhirtypes.CodeableConceptType = Field( None, alias="type", title="Partial or Complete", description="Whether this represents partial or complete payment of the claim.", # if property is element of this resource. element_property=True, ) class ClaimResponseProcessNote(backboneelement.BackboneElement): """Disclaimer: Any field name ends with ``__ext`` does't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. Processing notes. Note text. """ resource_type = Field("ClaimResponseProcessNote", const=True) language: fhirtypes.CodeableConceptType = Field( None, alias="language", title="Language
= scale_data_1[loc_mask] if self.scale_mode == 'linear': scale_space -= min_scale ## smallest value is 0 scale_space *= 1.0/( max_scale - min_scale ) ## largest value is 1 else: # log scale_space *= 1.0/min_scale ## smallist is 0 np.log(scale_space, out=scale_space) scale_space *= 1.0/np.log( max_scale/min_scale ) ## largest is 1 time_scale = self.time_scale_space[:len(plotX)] time_scale[:] = scale_space space_scale = scale_space time_scale *= self.time_dot_scale if self.pol_mode == 'line': space_scale *= self.space_line_scale else: ## none space_scale *= self.space_dot_scale N_before = len(plotX) # if self.max_num_points > 0 and self.max_num_points < N_before: # decimation_factor = self.max_num_points / float(N_before) # # data = self.decimation_TMP[:N_before] # mask = self.decimation_mask[:N_before] # # data[:] = decimation_factor # np.cumsum(data, out=data) # np.floor(data, out=data) # np.greater(data[1:], data[:-1], out=mask[1:]) # mask[0] = 0 # # plotX = plotX[mask] # plotY = plotY[mask] # plotZ = plotZ[mask] # plotZt = plotZt[mask] # plotT = plotT[mask] # # try: # B4 = color[mask] # color = B4 ## hope this works? # except: # pass print(self.name, "plotting", len(plotX), '/', len(self.X_array) )#, "have:", N_before) try: if not self._ignore_time: self.AltVsT_paths = AltVsT_axes.scatter(x=plotT, y=plotZt, c=color, marker='o', s=time_scale, cmap=self.cmap, vmin=color_min, vmax=color_max) if self.pol_mode == 'none': self.AltVsEw_paths = AltVsEw_axes.scatter(x=plotX, y=plotZ, c=color, marker='o', s=space_scale, cmap=self.cmap, vmin=color_min, vmax=color_max) self.NsVsEw_paths = NsVsEw_axes.scatter(x=plotX, y=plotY, c=color, marker='o', s=space_scale, cmap=self.cmap, vmin=color_min, vmax=color_max) self.NsVsAlt_paths = NsVsAlt_axes.scatter(x=plotZ, y=plotY, c=color, marker='o', s=space_scale, cmap=self.cmap, vmin=color_min, vmax=color_max) else: print('a') dirX_tmp = self.dirX_memory[:len(plotX)] dirY_tmp = self.dirY_memory[:len(plotX)] dirZ_tmp = self.dirZ_memory[:len(plotX)] dirX_tmp[:] = self.dirX_array[self.total_mask][loc_mask] dirY_tmp[:] = self.dirY_array[self.total_mask][loc_mask] dirZ_tmp[:] = self.dirZ_array[self.total_mask][loc_mask] dirX_tmp *= 0.5 dirY_tmp *= 0.5 dirZ_tmp *= 0.5 dirX_tmp *= space_scale dirY_tmp *= space_scale dirZ_tmp *= space_scale # dirX_tmp *= self.pol_scale*0.5 # dirY_tmp *= self.pol_scale*0.5 # dirZ_tmp *= self.pol_scale*0.5 # # if self.pol_mode=='intensity' or self.pol_mode=='log_intensity': # intensity_tmp = np.array( self.intensity_array[self.total_mask][loc_mask] ) # # if self.pol_mode=='log_intensity': # np.log(intensity_tmp, out=intensity_tmp) # # intensity_tmp /= np.max( intensity_tmp ) # # dirX_tmp *= intensity_tmp # dirY_tmp *= intensity_tmp # dirZ_tmp *= intensity_tmp X_low = np.array(plotX) X_high = np.array(plotX) X_low -= dirX_tmp X_high += dirX_tmp Y_low = np.array(plotY) Y_high = np.array(plotY) Y_low -= dirY_tmp Y_high += dirY_tmp Z_low = np.array(plotZ) Z_high = np.array(plotZ) Z_low -= dirZ_tmp Z_high += dirZ_tmp for i in range(len(X_low)): X = [ X_low[i], X_high[i] ] Y = [ Y_low[i], Y_high[i] ] Z = [ Z_low[i], Z_high[i] ] c = None if (color_min is not None) and (color_max is not None): c = color[i] c -= color_min c /= color_max-color_min c = self.cmap( c ) else: c = color AltVsEw_axes.plot(X,Z,'-', lw=self.line_width, c=c) # cmap=self.cmap, vmin=color_min, vmax=color_max) NsVsEw_axes.plot(X,Y,'-', lw=self.line_width, c=c) # cmap=self.cmap, vmin=color_min, vmax=color_max) NsVsAlt_axes.plot(Z,Y,'-', lw=self.line_width, c=c) # cmap=self.cmap, vmin=color_min, vmax=color_max) except Exception as e: print(e) # def get_viewed_events(self): # print("get viewed events not implemented") # return [] # return [PSE for PSE in self.PSE_list if # (self.loc_filter(PSE.PolE_loc) and PSE.PolE_RMS<self.max_RMS and PSE.num_even_antennas>self.min_numAntennas) # or (self.loc_filter(PSE.PolO_loc) and PSE.PolO_RMS<self.max_RMS and PSE.num_odd_antennas>self.min_numAntennas) ] def clear(self): pass def use_ancillary_axes(self): return False def toggle_on(self): self.display = True def toggle_off(self): self.display = False self.clear() ## the res of this is wrong def ignore_time(self, ignore=None): if ignore is not None: self._ignore_time = ignore return self._ignore_time def print_info(self, coordinate_system): self.set_total_mask() N = np.sum(self.total_mask) #### random book keeping #### self.clear() # if self.color_mode in self.color_options: # color = self.color_options[self.color_mode][self.total_mask] ## should fix this to not make memory #### set cuts and transforms self.X_TMP[:] = self.X_array self.Y_TMP[:] = self.Y_array self.Z_TMP[:] = self.Z_array self.T_TMP[:] = self.T_array Xtmp = self.X_TMP[:N] Ytmp = self.Y_TMP[:N] Ztmp = self.Z_TMP[:N] Ttmp = self.T_TMP[:N] np.compress(self.total_mask, self.X_TMP, out=Xtmp) np.compress(self.total_mask, self.Y_TMP, out=Ytmp) np.compress(self.total_mask, self.Z_TMP, out=Ztmp) np.compress(self.total_mask, self.T_TMP, out=Ttmp) Xtmp += self.X_offset Ytmp += self.Y_offset Ztmp += self.Z_offset Ttmp += self.T_offset if self.transform_memory is None: self.transform_memory = coordinate_system.make_workingMemory(len(self.X_array)) coordinate_system.set_workingMemory(self.transform_memory) loc_mask = np.empty(N, dtype=np.bool) plotX, plotY, plotZ, plotZt, plotT = coordinate_system.transform_and_filter( Xtmp, Ytmp, Ztmp, Ttmp, make_copy=False, ignore_T=self._ignore_time, bool_workspace=loc_mask) print( "dataset:", self.name ) IDS = self.source_IDs[self.total_mask][loc_mask] inX = self.X_array[self.total_mask][loc_mask] inY = self.Y_array[self.total_mask][loc_mask] inZ = self.Z_array[self.total_mask][loc_mask] inT = self.T_array[self.total_mask][loc_mask] infoplot = { key:data[self.total_mask][loc_mask] for key,data in self.extra_info.items() } for i in range(len(IDS)): print(inT[i], ', #', inX[i], inY[i], inZ[i]) # print('source', IDS[i]) # print(' plot at', plotX[i], plotY[i], plotZ[i], plotZt[i] ) # print(' plot t:', plotT[i] ) # print(' at', inX[i], inY[i], inZ[i]) # print(' T', inT[i]) # for key, d in infoplot.items(): # print(' ', key, d[i]) # print() def LMAHeader_to_StationLocs(LMAheader, groupLOFARStations=False, center='LOFAR', name='stations', color=None, marker='s', textsize=None): station_names = [] stationX = [] stationY = [] for station in LMAheader.antenna_info_list: name = station.name use = True if groupLOFARStations: LOFAR_SID = int(name[:3]) name = SId_to_Sname[ LOFAR_SID ] if name in station_names: use = False if use: station_names.append( name ) stationXYZ = station.get_XYZ(center=center) stationX.append( stationXYZ[0] ) stationY.append( stationXYZ[1] ) return station_locations_DataSet( stationX, stationY, station_names, name='stations', color=color, marker=marker, textsize=textsize ) def IterMapper_StationLocs(header, name='stations', color=None, marker='s', textsize=None): station_names = [] stationX = [] stationY = [] for name, antList in zip(header.station_names, header.antenna_info): station_names.append( name ) ant = antList[0] stationX.append( ant.location[0] ) stationY.append( ant.location[1] ) return station_locations_DataSet( stationX, stationY, station_names, name='stations', color=color, marker=marker, textsize=textsize ) class station_locations_DataSet( DataSet_Type ): def __init__(self, station_X_array, station_Y_array, station_names, name, color, marker, textsize ): self.marker = marker self.marker_size = 10 self.color = color self.name = name self.textsize = textsize self.display= True self.X_array = station_X_array self.Y_array = station_Y_array self.station_names = station_names self.X_TMP = np.empty(len(self.X_array), dtype=np.double) self.Y_TMP = np.empty(len(self.X_array), dtype=np.double) self.Z_TMP = np.empty(len(self.X_array), dtype=np.double) self.T_TMP = np.empty(len(self.X_array), dtype=np.double) self.transform_memory = None self.show_text = True def set_show_all(self, coordinate_system, do_set_limits=True): if do_set_limits: self.X_TMP[:] = self.X_array self.Y_TMP[:] = self.Y_array self.Z_TMP[:] = 0.0 self.T_TMP[:] = 0.0 if self.transform_memory is None: self.transform_memory = coordinate_system.make_workingMemory( len(self.X_array) ) coordinate_system.set_workingMemory( self.transform_memory ) plotX, plotY, plotZ, plotZt, plotT = coordinate_system.transform( self.X_TMP, self.Y_TMP, self.Z_TMP, self.T_TMP, make_copy=False) if len(plotX) > 0: coordinate_system.set_plotX( np.min(plotX), np.max(plotX) ) coordinate_system.set_plotY( np.min(plotY), np.max(plotY) ) def bounding_box(self, coordinate_system): self.X_TMP[:] = self.X_array self.Y_TMP[:] = self.Y_array self.Z_TMP[:] = 0.0 self.T_TMP[:] = 0.0 if self.transform_memory is None: self.transform_memory = coordinate_system.make_workingMemory( len(self.X_array) ) coordinate_system.set_workingMemory( self.transform_memory ) ## transform plotX, plotY, plotZ, plotZt, plotT = coordinate_system.transform( self.X_TMP, self.Y_TMP, self.Z_TMP, self.T_TMP, make_copy=False) ## return actual bounds if len(plotX) > 0: Xbounds = [np.min(plotX), np.max(plotX)] Ybounds = [np.min(plotY), np.max(plotY)] else: Xbounds = [0,1] Ybounds = [0,1] Zbounds = [np.nan,np.nan] Ztbounds = [np.nan,np.nan] Tbounds = [np.nan,np.nan] return Xbounds, Ybounds, Zbounds, Ztbounds, Tbounds def T_bounds(self, coordinate_system): return [np.nan, np.nan] def get_all_properties(self): ret = {"marker size":str(self.marker_size), 'name':self.name, 'marker':self.marker, "color":self.color, "textsize":str(self.textsize), "show text": str(int(self.show_text))} return ret def set_property(self, name, str_value): try: if name == "marker size": self.marker_size = int(str_value) elif name == "color": self.color = str_value elif name == 'name': self.name = str_value elif name == 'marker': self.marker = str_value elif name == 'textsize': self.textsize = int(str_value) elif name == 'show text': self.show_text = bool(int(str_value)) else: print("do not have property:", name) except: print("error in setting property", name, str_value) pass def clear(self): pass def use_ancillary_axes(self): return False def toggle_on(self): self.display = True def toggle_off(self): self.display = False self.clear() def plot(self, AltVsT_axes, AltVsEw_axes, NsVsEw_axes, NsVsAlt_axes, ancillary_axes, coordinate_system): self.X_TMP[:] = self.X_array self.Y_TMP[:] = self.Y_array self.Z_TMP[:] = 0.0 self.T_TMP[:] = 0.0 if self.transform_memory is None: self.transform_memory = coordinate_system.make_workingMemory( len(self.X_array) ) coordinate_system.set_workingMemory( self.transform_memory ) ## transform plotX, plotY, plotZ, plotZt, plotT = coordinate_system.transform( self.X_TMP, self.Y_TMP, self.Z_TMP, self.T_TMP, make_copy=False) if (not self.display) or len(plotX)==0: print(self.name, "not display.") return print(self.name, "plotting") try: self.NsVsEw_paths = NsVsEw_axes.scatter(x=plotX, y=plotY, c=self.color, marker=self.marker, s=self.marker_size) if self.show_text: for sname, X, Y in zip(self.station_names, plotX, plotY): NsVsEw_axes.annotate(sname, (X,Y), size=self.textsize) except Exception as e: print(e) class linearSpline_DataSet(DataSet_Type): ### NOTE: this whole thing only works in plot-coordinates. Thus, only functional if consistantly used with cartesian system def __init__(self, name, color, linewidth=None, initial_points=None): self.name = name self.display = True self.color = color self.LW = linewidth if
#!/usr/bin/python # -*- coding: utf-8 -*- DOCUMENTATION = ''' --- module: oracle_asmdg short_description: Manage diskgroups in an Oracle database description: - Manage diskgroups in an Oracle database version_added: "2.1.0.0" options: name: description: - The name of the diskgroup required: true default: None aliases: ['diskgroup','dg'] state: description: - The intended state of the diskgroup. 'status' will just show the status of the diskgroup default: present choices: ['present','absent','status'] disks: description: - A list of disks that should be part of the diskgroup. Only the listed disks will be part of the DG, meaning if the disk is removed from the list it will also be removed from the DG default: None redundancy: description: - The redundancy configuration for the diskgroup, It does not yet support putting disks in specific failure groups default: external choices: ['external','normal','high'] attribute_name: description: - The attribute name (e.g compatible.rdbms) default: None aliases: ['an'] attribute_value: description: - The attribute value (e.g 172.16.31.10) default: None aliases: ['av'] username: description: - The ASM username required: false default: sys aliases: ['un'] password: description: - The password for the ASM user required: false default: None aliases: ['pw'] service_name: description: - The diskgroup_name to connect to the database if using dbms_diskgroup. required: false default: +ASM aliases: ['sn'] hostname: description: - The host of the database if using dbms_diskgroup required: false default: localhost aliases: ['host'] port: description: - The listener port to connect to the database if using dbms_diskgroup required: false default: 1521 oracle_home: description: - The GI ORACLE_HOME required: false default: None aliases: ['oh'] notes: - cx_Oracle needs to be installed requirements: [ "cx_Oracle" ] author: <NAME>, <EMAIL>, @oravirt ''' EXAMPLES = ''' # Create a diskgroup oracle_asmdg: name: MYDG1 disks: - ORCL:MYDG1 - ORCL:MYDG2 attribute_name: compatible.asm attribute_value: 172.16.31.10 redundancy: external state: present un: sys pw: oracle123 sn: '+ASM' host: localhost oh: /u01/app/oracle/192.168.3.11/grid oracle_asmdg: name: DATA disks: - /dev/oracle/data1 - /dev/oracle/data2 attributes: - {name: compatible.asm, value: 12.2.0.1.0 } - {name: compatible.rdbms, value: 12.2.0.1.0 } redundancy: external state: present un: sys pw: oracle123 sn: '+ASM' host: localhost oh: /u01/app/oracle/192.168.127.12/grid ''' import os try: import cx_Oracle except ImportError: cx_oracle_exists = False else: cx_oracle_exists = True # Check if the diskgroup exists def check_diskgroup_exists(cursor, module, msg, name): sql = 'select count(*) from gv$asm_diskgroup where lower (name) = \'%s\'' % (name.lower()) result = execute_sql_get(module, msg, cursor, sql) #msg = 'Normal Result is: %s, [0] is: %s, [0][0] is: %s, len is: %s, type is: %s' % (result,result[0],result[0][0],len(result), type(result)) #module.exit_json(msg=msg) if result[0][0] > 0: return True else: return False def create_diskgroup(cursor, module, msg, oracle_home, name, disks, redundancy, attribute_name, attribute_value): add_attr = False if not any(x == 'None' for x in attribute_name): add_attr = True if not any(x == None for x in attribute_name): add_attr = True if add_attr: attributes =','.join(['\''+str(n)+'\'' +'='+'\''+ str(v) + '\'' for n,v in zip(attribute_name,attribute_value)]) disklist = "','".join(disks) sql = 'create diskgroup %s ' % (name) sql += '%s redundancy ' % (redundancy) sql += 'disk \'%s\' ' % (disklist) if add_attr: sql += ' attribute %s' % (attributes.lower()) if execute_sql(module, msg, cursor, sql): if rac: command = '%s/bin/srvctl start diskgroup -g %s' % (oracle_home, name.lower()) (rc, stdout, stderr) = module.run_command(command) if rc != 0: if 'CRS-5702' in stdout: #'Edge-case', where there is only one instance in the cluster. The diskgroup is already running after create statement so this command errors return True else: msg = 'Error, couldn\'t mount the dg on all nodes. stdout: %s, stderr: %s, command is %s' % (stdout, stderr, command) module.fail_json(msg=msg, changed=False) else: return True else: return True else: msg = 'error in exec sql create' module.fail_json(msg=msg, changed=False) return False def remove_diskgroup(cursor, module, msg, oracle_home, name): mountsql = 'alter diskgroup %s mount' % (name.lower()) dropsql = 'drop diskgroup %s' % (name.lower()) # If in a rac config, we need to unmount the dg on all nodes, then mount if rac: command = '%s/bin/srvctl stop diskgroup -g %s' % (oracle_home, name.lower()) (rc, stdout, stderr) = module.run_command(command) if rc != 0: msg = 'Error, couldn\'t unmount the dg. stdout: %s, stderr: %s, command is %s' % (stdout, stderr, command) return False if execute_sql(module, msg, cursor, mountsql): if execute_sql(module, msg, cursor, dropsql): return True else: return False else: return False else: if execute_sql(module, msg, cursor, dropsql): return True else: return False def ensure_diskgroup_state(cursor, module, msg, name, state, disks, attribute_name, attribute_value): total_sql = [] #disk_sql = [] disk_sql = 'alter diskgroup %s ' % (name.upper()) change_attr = False change_disk = False get_ro_attr_sql = 'select distinct(name) from v$asm_attribute where read_only = \'Y\'' read_only_attributes = [] # Deal with attribute differences if (attribute_name and attribute_value): # Get all read only attributes get_ro_attr = execute_sql_get(module, msg, cursor, get_ro_attr_sql) for a in get_ro_attr: read_only_attributes.append(a[0]) # Make sure properties are lower case attribute_name = [x.lower() for x in attribute_name] attribute_value = [y.lower() for y in attribute_value] wanted_attributes = zip(attribute_name,attribute_value) # Make sure we don't try to modify read only attributes. Removing them from the wanted_attributes list for a in wanted_attributes: if a[0] in read_only_attributes: wanted_attributes.remove(a) # Check the current attributes attribute_names_ =','.join(['\''+str(n[0])+'\'' for n in (wanted_attributes)]) # Only get current attributes if we still have attributes in the wanted list if len(attribute_names_) != 0: current_properties = get_current_properties (cursor, module, msg, name, attribute_names_) # Convert to dict and compare current with wanted if cmp(dict(current_properties),dict(wanted_attributes)) is not 0: change_attr = True for i in wanted_attributes: total_sql.append("alter diskgroup %s set attribute '%s'='%s'" % (name, i[0], i[1])) list_current_name = [] list_current_path = [] list_wanted = [x.upper() if ':' in x else x for x in disks] list_current = get_current_disks(cursor, module, msg, name) for p,n in list_current: list_current_name.append(n) list_current_path.append(p) # List of disks to add list_add=set(list_wanted).difference(list_current_path) # List of disks to remove list_remove=set(list_current_path).difference(list_wanted) # Pick out the v$asm_disk.name from the diskgroup remove_disks = [a[1] for a in list_current if a[0] in list_remove ] add_disk = "','".join(list_add) remove_disk= "','".join(remove_disks) if sorted(list_current_path) == sorted(list_wanted) and change_attr == False: msg = "Diskgroup %s is in the intended state" % (name) module.exit_json(msg=msg, changed=False) if len(list_add)>= 1: change_disk = True disk_sql += ' add disk ' disk_sql += "'%s'" % add_disk if len(list_remove) >= 1: #disk_sql = 'alter diskgroup %s ' % (name.upper()) change_disk = True disk_sql += ' drop disk ' disk_sql += "'%s'" % remove_disk if change_disk: total_sql.append(disk_sql) if ensure_diskgroup_state_sql(module,msg,cursor,total_sql): msg = 'Diskgroup %s has been put in the intended state' % (name) module.exit_json(msg=msg, changed=True) else: return False def ensure_diskgroup_state_sql(module,msg,cursor,total_sql): for a in total_sql: execute_sql(module, msg, cursor, a) return True def get_current_disks(cursor, module, msg, name): sql = 'select d.path,d.name from v$asm_disk d, v$asm_diskgroup dg ' sql += 'where dg.group_number = d.group_number ' sql += 'and upper(dg.name) = \'%s\'' % (name.upper()) result = execute_sql_get(module, msg, cursor, sql) return result def get_current_properties(cursor, module, msg, name,attribute_names_): sql = 'select lower(a.name),lower(a.value) from v$asm_attribute a, v$asm_diskgroup dg ' sql += 'where dg.group_number = a.group_number ' sql += 'and upper(dg.name) = \'%s\' ' % (name.upper()) sql += 'and a.name in (%s) ' % (attribute_names_.lower()) result = execute_sql_get(module, msg, cursor, sql) return result def execute_sql_get(module, msg, cursor, sql): #module.exit_json(msg="In execute_sql_get", changed=False) try: cursor.execute(sql) result = (cursor.fetchall()) except cx_Oracle.DatabaseError as exc: error, = exc.args msg = 'Something went wrong while executing sql_get - %s sql: %s' % (error.message, sql) module.fail_json(msg=msg, changed=False) return False return result def execute_sql(module, msg, cursor, sql): try: cursor.execute(sql) except cx_Oracle.DatabaseError as exc: error, = exc.args msg = 'Something went wrong while executing sql - %s sql: %s' % (error.message, sql) module.fail_json(msg=msg, changed=False) return False return True def main(): msg = [''] cursor = None mode = 'sysasm' global rac module = AnsibleModule( argument_spec = dict( name = dict(required=True, aliases = ['diskgroup','dg']), disks = dict(required=False, type='list'), redundancy = dict(default="external", choices = ["external","normal","high","flex"]), attribute_name = dict(required=False, type='list', aliases=['an']), attribute_value = dict(required=False, type='list', aliases=['av']), state = dict(default="present", choices = ["present", "absent", "status"]), user = dict(required=False, aliases = ['un','username']), password = dict(required=False, no_log=True, aliases = ['pw']), hostname = dict(required=False, default = 'localhost', aliases = ['host']), port = dict(required=False, default = 1521), service_name = dict(required=False, default = '+ASM', aliases = ['sn']), oracle_home = dict(required=False, aliases = ['oh']), ), ) name = module.params["name"] disks = module.params["disks"] redundancy = module.params["redundancy"] attribute_name = module.params["attribute_name"] attribute_value = module.params["attribute_value"] state = module.params["state"] user = module.params["user"] password = module.params["password"] hostname = module.params["hostname"] port = module.params["port"] service_name = module.params["service_name"] oracle_home = module.params["oracle_home"] if not cx_oracle_exists: msg = "The cx_Oracle module is required. 'pip install cx_Oracle' should do the trick. If cx_Oracle is installed, make sure ORACLE_HOME & LD_LIBRARY_PATH is set" module.fail_json(msg=msg) wallet_connect = '/@%s' % service_name try: if (not user and not password) : # If neither user or password is supplied, the use of an
for scope in cmds_formatted: permissions = {} new_cmds = cmds_formatted[scope] existing_cmds = await self.req.get_all_commands(guild_id=scope) existing_by_name = {} to_send = [] changed = False for cmd in existing_cmds: existing_by_name[cmd["name"]] = model.CommandData(**cmd) if len(new_cmds) != len(existing_cmds): changed = True for command in new_cmds: cmd_name = command["name"] permissions[cmd_name] = command.pop("permissions") if cmd_name in existing_by_name: cmd_data = model.CommandData(**command) existing_cmd = existing_by_name[cmd_name] if cmd_data != existing_cmd: changed = True to_send.append(command) else: command_with_id = command command_with_id["id"] = existing_cmd.id to_send.append(command_with_id) else: changed = True to_send.append(command) if changed: self.logger.debug( f"Detected changes on {scope if scope is not None else 'global'}, updating them" ) try: existing_cmds = await self.req.put_slash_commands( slash_commands=to_send, guild_id=scope ) except discord.HTTPException as ex: if ex.status == 400: # catch bad requests cmd_nums = set( re.findall(r"In\s(\d).", ex.args[0]) ) # find all discords references to commands error_string = ex.args[0] for num in cmd_nums: error_command = to_send[int(num)] error_string = error_string.replace( f"In {num}", f"'{error_command.get('name')}'", ) ex.args = (error_string,) raise ex else: self.logger.debug( f"Detected no changes on {scope if scope is not None else 'global'}, skipping" ) id_name_map = {} for cmd in existing_cmds: id_name_map[cmd["name"]] = cmd["id"] for cmd_name in permissions: cmd_permissions = permissions[cmd_name] cmd_id = id_name_map[cmd_name] for applicable_guild in cmd_permissions: if applicable_guild not in permissions_map: permissions_map[applicable_guild] = [] permission = { "id": cmd_id, "guild_id": applicable_guild, "permissions": cmd_permissions[applicable_guild], } permissions_map[applicable_guild].append(permission) self.logger.info("Syncing permissions...") self.logger.debug(f"Commands permission data are {permissions_map}") for scope in permissions_map: existing_perms = await self.req.get_all_guild_commands_permissions(scope) new_perms = permissions_map[scope] changed = False if len(existing_perms) != len(new_perms): changed = True else: existing_perms_model = {} for existing_perm in existing_perms: existing_perms_model[existing_perm["id"]] = model.GuildPermissionsData( **existing_perm ) for new_perm in new_perms: if new_perm["id"] not in existing_perms_model: changed = True break if existing_perms_model[new_perm["id"]] != model.GuildPermissionsData( **new_perm ): changed = True break if changed: self.logger.debug(f"Detected permissions changes on {scope}, updating them") await self.req.update_guild_commands_permissions(scope, new_perms) else: self.logger.debug(f"Detected no permissions changes on {scope}, skipping") if delete_from_unused_guilds: self.logger.info("Deleting unused guild commands...") other_guilds = [ guild.id for guild in self._discord.guilds if guild.id not in cmds["guild"] ] # This is an extremly bad way to do this, because slash cmds can be in guilds the bot isn't in # But it's the only way until discord makes an endpoint to request all the guild with cmds registered. for guild in other_guilds: with suppress(discord.Forbidden): existing = await self.req.get_all_commands(guild_id=guild) if len(existing) != 0: self.logger.debug(f"Deleting commands from {guild}") await self.req.put_slash_commands(slash_commands=[], guild_id=guild) if delete_perms_from_unused_guilds: self.logger.info("Deleting unused guild permissions...") other_guilds = [ guild.id for guild in self._discord.guilds if guild.id not in permissions_map.keys() ] for guild in other_guilds: with suppress(discord.Forbidden): self.logger.debug(f"Deleting permissions from {guild}") existing_perms = await self.req.get_all_guild_commands_permissions(guild) if len(existing_perms) != 0: await self.req.update_guild_commands_permissions(guild, []) self.logger.info("Completed syncing all commands!") def add_slash_command( self, cmd, name: str = None, description: str = None, guild_ids: typing.List[int] = None, options: list = None, default_permission: bool = True, permissions: typing.Dict[int, list] = None, connector: dict = None, has_subcommands: bool = False, ): """ Registers slash command to SlashCommand. .. warning:: Just using this won't register slash command to Discord API. To register it, check :meth:`.utils.manage_commands.add_slash_command` or simply enable `sync_commands`. :param cmd: Command Coroutine. :type cmd: Coroutine :param name: Name of the slash command. Default name of the coroutine. :type name: str :param description: Description of the slash command. Defaults to command docstring or ``None``. :type description: str :param guild_ids: List of Guild ID of where the command will be used. Default ``None``, which will be global command. :type guild_ids: List[int] :param options: Options of the slash command. This will affect ``auto_convert`` and command data at Discord API. Default ``None``. :type options: list :param default_permission: Sets if users have permission to run slash command by default, when no permissions are set. Default ``True``. :type default_permission: bool :param permissions: Dictionary of permissions of the slash command. Key being target guild_id and value being a list of permissions to apply. Default ``None``. :type permissions: dict :param connector: Kwargs connector for the command. Default ``None``. :type connector: dict :param has_subcommands: Whether it has subcommand. Default ``False``. :type has_subcommands: bool """ name = name or cmd.__name__ name = name.lower() guild_ids = guild_ids if guild_ids else [] if not all(isinstance(item, int) for item in guild_ids): raise error.IncorrectGuildIDType( f"The snowflake IDs {guild_ids} given are not a list of integers. Because of discord.py convention, please use integer IDs instead. Furthermore, the command '{name}' will be deactivated and broken until fixed." ) if name in self.commands: tgt = self.commands[name] if not tgt.has_subcommands: raise error.DuplicateCommand(name) has_subcommands = tgt.has_subcommands for x in tgt.allowed_guild_ids: if x not in guild_ids: guild_ids.append(x) description = description or getdoc(cmd) if options is None: options = manage_commands.generate_options(cmd, description, connector) _cmd = { "func": cmd, "description": description, "guild_ids": guild_ids, "api_options": options, "default_permission": default_permission, "api_permissions": permissions, "connector": connector or {}, "has_subcommands": has_subcommands, } obj = model.BaseCommandObject(name, _cmd) self.commands[name] = obj self.logger.debug(f"Added command `{name}`") return obj def add_subcommand( self, cmd, base, subcommand_group=None, name=None, description: str = None, base_description: str = None, base_default_permission: bool = True, base_permissions: typing.Dict[int, list] = None, subcommand_group_description: str = None, guild_ids: typing.List[int] = None, options: list = None, connector: dict = None, ): """ Registers subcommand to SlashCommand. :param cmd: Subcommand Coroutine. :type cmd: Coroutine :param base: Name of the base command. :type base: str :param subcommand_group: Name of the subcommand group, if any. Default ``None`` which represents there is no sub group. :type subcommand_group: str :param name: Name of the subcommand. Default name of the coroutine. :type name: str :param description: Description of the subcommand. Defaults to command docstring or ``None``. :type description: str :param base_description: Description of the base command. Default ``None``. :type base_description: str :param default_permission: Sets if users have permission to run base command by default, when no permissions are set. Default ``True``. :type default_permission: bool :param base_permissions: Dictionary of permissions of the slash command. Key being target guild_id and value being a list of permissions to apply. Default ``None``. :type base_permissions: dict :param subcommand_group_description: Description of the subcommand_group. Default ``None``. :type subcommand_group_description: str :param guild_ids: List of guild ID of where the command will be used. Default ``None``, which will be global command. :type guild_ids: List[int] :param options: Options of the subcommand. This will affect ``auto_convert`` and command data at Discord API. Default ``None``. :type options: list :param connector: Kwargs connector for the command. Default ``None``. :type connector: dict """ base = base.lower() subcommand_group = subcommand_group.lower() if subcommand_group else subcommand_group name = name or cmd.__name__ name = name.lower() description = description or getdoc(cmd) guild_ids = guild_ids if guild_ids else [] if not all(isinstance(item, int) for item in guild_ids): raise error.IncorrectGuildIDType( f"The snowflake IDs {guild_ids} given are not a list of integers. Because of discord.py convention, please use integer IDs instead. Furthermore, the command '{name}' will be deactivated and broken until fixed." ) if base in self.commands: for x in guild_ids: if x not in self.commands[base].allowed_guild_ids: self.commands[base].allowed_guild_ids.append(x) if options is None: options = manage_commands.generate_options(cmd, description, connector) _cmd = { "func": None, "description": base_description, "guild_ids": guild_ids.copy(), "api_options": [], "default_permission": base_default_permission, "api_permissions": base_permissions, "connector": {}, "has_subcommands": True, } _sub = { "func": cmd, "name": name, "description": description, "base_desc": base_description, "sub_group_desc": subcommand_group_description, "guild_ids": guild_ids, "api_options": options, "connector": connector or {}, } if base not in self.commands: self.commands[base] = model.BaseCommandObject(base, _cmd) else: base_command = self.commands[base] base_command.has_subcommands = True if base_permissions: for applicable_guild in base_permissions: if applicable_guild not in base_command.permissions: base_command.permissions[applicable_guild] = [] base_command.permissions[applicable_guild].extend( base_permissions[applicable_guild] ) if base_command.description: _cmd["description"] = base_command.description if base not in self.subcommands: self.subcommands[base] = {} if subcommand_group: if subcommand_group not in self.subcommands[base]: self.subcommands[base][subcommand_group] = {} if name in self.subcommands[base][subcommand_group]: raise error.DuplicateCommand(f"{base} {subcommand_group} {name}") obj = model.SubcommandObject(_sub, base, name, subcommand_group) self.subcommands[base][subcommand_group][name] = obj else: if name in self.subcommands[base]: raise error.DuplicateCommand(f"{base} {name}") obj = model.SubcommandObject(_sub, base, name) self.subcommands[base][name] = obj self.logger.debug( f"Added subcommand `{base} {subcommand_group or ''} {name or cmd.__name__}`" ) return obj def slash( self, *, name: str = None, description: str = None, guild_ids: typing.List[int] = None, options: typing.List[dict] = None, default_permission: bool = True, permissions: dict =
= parser.get_metadata('ascii') return parser def parse(self): line_no = 0 section_line_no = 0 for line in self.voxfile: section_line_no += 1 line_no += 1 debug().current_line_num = line_no line = line.strip() if line.startswith('//'): continue if line.startswith('#'): token_state = self.State.from_token(line.split('#')[1]) if token_state is None: continue if type(token_state) is tuple: self.state = token_state[0] self.state_track = int(token_state[1]) else: self.state = token_state section_line_no = 0 elif line.startswith('define\t'): splitted = line.split('\t') if len(splitted) != 3: debug().record(Debug.Level.WARNING, 'fx_define', f'define line "{line}" does not have 3 operands') continue self.vox_defines[splitted[1]] = int(splitted[2]) if int(splitted[2]) != 0: self.effect_defines[int(splitted[2])] = KshEffectDefine.from_pre_v4_vox_sound_id(int(splitted[2])) elif self.state is not None: self.process_state(line, section_line_no) self.finalized = True def process_state(self, line, section_line_num): splitted = line.split('\t') if line == '': return now = Timing.from_time_str(splitted[0]) if now is not None: self.timing_point(now) if self.state == self.State.FORMAT_VERSION: self.vox_version = int(line) elif self.state == self.State.BEAT_INFO: timesig = TimeSignature(int(splitted[1]), int(splitted[2])) self.events[now][EventKind.TIMESIG] = timesig elif self.state == self.State.BPM: now = Timing(1, 1, 0) self.timing_point(now) try: self.events[now][EventKind.BPM] = float(line) except ValueError: # Jomanda adv seems to have the string "BAROFF" at one point. debug().record_last_exception(Debug.Level.ABNORMALITY, tag='bpm_parse') elif self.state == self.State.BPM_INFO: if splitted[2].endswith('-'): # There is a stop. self.stop_point = StopEvent() self.stop_point.moment = now last_timesig = None for t, e in self.time_iter(Timing(1, 1, 0), self.events[Timing(1, 1, 0)][EventKind.TIMESIG]): if t.measure > MAX_MEASURES: # When parsing a Stop event, the end of the chart may not yet be parsed, so we make an # assumption for how long a chart could possibly be. break if e is not None and EventKind.TIMESIG in e: last_timesig = e[EventKind.TIMESIG] if e is not None and t == now: self.stop_point.timesig = last_timesig if self.stop_point.timesig is None: raise VoxParseError('bpm_info', 'unable to find end for stop event') else: if self.stop_point is not None: self.events[self.stop_point.moment][EventKind.STOP] = now.diff( self.stop_point.moment, self.stop_point.timesig) self.stop_point = None if splitted[2] != '4' and splitted[2] != '4-': debug().record(Debug.Level.ABNORMALITY, 'bpm_info', f'non-4 beat division in bpm info: {splitted[2]}') self.events[now][EventKind.BPM] = float(splitted[1]) elif self.state == self.State.TILT_INFO: try: self.events[now][EventKind.TILTMODE] = TiltMode.from_vox_id(int(splitted[1])) except ValueError: debug().record_last_exception(level=Debug.Level.WARNING) elif self.state == self.State.END_POSITION: self.end = now elif self.state == self.State.SOUND_ID: # The `define` handler takes care of this outside of this loop. debug().record(Debug.Level.WARNING, 'vox_parse', f'({self.state}) line other than a #define was encountered in SOUND ID') elif self.state == self.State.TAB_EFFECT: # TODO Tab effects if TabEffectInfo.line_is_abnormal(section_line_num, line): debug().record(Debug.Level.ABNORMALITY, 'tab_effect', f'tab effect info abnormal: {line}') elif self.state == self.State.FXBUTTON_EFFECT: if self.vox_version < 6: # Below v6, the defines come one after another with no spacing between other than the newline. try: self.effect_defines[section_line_num - 1] = KshEffectDefine.from_effect_info_line(line) except ValueError: self.effect_defines[section_line_num - 1] = KshEffectDefine.default_effect() debug().record_last_exception(tag='fx_load') else: if (section_line_num - 1) % 3 < 2: # The < 2 condition will allow the second line to override the first. if line.isspace(): debug().record(Debug.Level.WARNING, 'fx_load', 'fx effect info line is blank') elif splitted[0] != '0,': index = int(section_line_num / 3) try: self.effect_defines[index] = KshEffectDefine.from_effect_info_line(line) except ValueError: self.effect_defines[index] = KshEffectDefine.default_effect() debug().record_last_exception(level=Debug.Level.WARNING, tag='fx_load') elif self.state == self.State.TAB_PARAM_ASSIGN: if TabParamAssignInfo.line_is_abnormal(line): debug().record(Debug.Level.ABNORMALITY, 'tab_param_assign', f'tab param assign info abnormal: {line}') elif self.state == self.State.SPCONTROLLER: try: param = SpcParam.from_vox_name(splitted[1]) except ValueError: debug().record_last_exception(tag='spcontroller_load') return if param is not None: try: self.events[now][(EventKind.SPCONTROLLER, param)] = CameraNode( float(splitted[4]), float(splitted[5]), int(splitted[3])) except ValueError: # Just record it as an abnormality. pass if SpcParam.line_is_abnormal(param, splitted): debug().record(Debug.Level.ABNORMALITY, 'spcontroller_load', 'spcontroller line is abnormal') elif self.state == self.state.TRACK: if self.state_track == 1 or self.state_track == 8: laser_node = LaserNode.Builder() laser_node.side = LaserSide.LEFT if self.state_track == 1 else LaserSide.RIGHT laser_node.position = int(splitted[1]) laser_node.node_type = LaserCont(int(splitted[2])) try: laser_node.roll_kind = next(iter([r for r in RollKind if r.value == int(splitted[3])])) except StopIteration: if splitted[3] != '0': debug().record(Debug.Level.ABNORMALITY, 'roll_parse', f'roll type: {splitted[3]}') if len(splitted) > 4: try: laser_node.filter = KshFilter.from_vox_filter_id(int(splitted[4])) except ValueError: debug().record_last_exception(tag='laser_load') if len(splitted) > 5: laser_node.range = int(splitted[5]) laser_node = LaserNode(laser_node) # Check if it's a slam. if (EventKind.TRACK, self.state_track) in self.events[now]: self.new_laser = False else: self.new_laser = True if not (EventKind.TRACK, self.state_track) in self.events[now]: self.events[now][(EventKind.TRACK, self.state_track)] = laser_node else: slam_start = self.events[now][(EventKind.TRACK, self.state_track)] if type(slam_start) is LaserSlam: # A few charts have three laser nodes at the same time point for some reason. slam_start = slam_start.end try: slam = LaserSlam(slam_start, laser_node) except ValueError: debug().record_last_exception(Debug.Level.WARNING, tag='slam_parse') return self.events[now][(EventKind.TRACK, self.state_track)] = slam else: try: button = Button.from_track_num(self.state_track) except ValueError: debug().record_last_exception(tag='button_load') return if button is None: # Ignore track 9 buttons. return fx_data = None duration = int(splitted[1]) if button.is_fx(): # Process effect assignment. if duration > 0: # Fx hold. if self.vox_version < 4: fx_data = int(splitted[3]) if splitted[3].isdigit() else int(self.vox_defines[splitted[3]]) else: if 2 <= int(splitted[2]) <= 13: # It's a regular effect. fx_data = int(splitted[2]) - 2 elif int(splitted[2]) == 254: debug().record(Debug.Level.WARNING, 'button_fx', 'reverb effect is unimplemented, using fallback') fx_data = -1 else: debug().record(Debug.Level.WARNING, 'button_fx', 'out of bounds fx index for FX hold, using fallback') fx_data = -1 else: # Fx chip, check for sound. if self.vox_version >= 9: sound_id = int(splitted[2]) if sound_id != -1 and sound_id != 255 and (sound_id >= FX_CHIP_SOUND_COUNT or sound_id < 0): debug().record(Debug.Level.WARNING, 'chip_sound_parse', f'unhandled chip sound id {sound_id}') elif 1 <= sound_id < FX_CHIP_SOUND_COUNT: fx_data = sound_id self.required_chip_sounds.add(sound_id) self.events[now][(EventKind.TRACK, self.state_track)] = ButtonPress(button, int(splitted[1]), fx_data) def write_to_ksh(self, jacket_idx=None, using_difficulty_audio=None, file=sys.stdout): global args track_basename = f'track_{self.difficulty.to_abbreviation()}{AUDIO_EXTENSION}' if using_difficulty_audio else \ f'track{AUDIO_EXTENSION}' jacket_basename = '' if jacket_idx is None else f'jacket_{jacket_idx}.png' track_bg = Background.from_vox_id(int(self.get_metadata('bg_no'))) header = f'''// Source: {self.source_file_name} // Created by vox2ksh-{os.popen('git rev-parse HEAD').read()[:8].strip()}. title={self.get_metadata('title_name')} artist={self.get_metadata('artist_name')} effect={self.get_metadata('effected_by', True)} sorttitle={self.get_metadata('title_yomigana')} sortartist={self.get_metadata('artist_yomigana')} jacket={jacket_basename} illustrator={self.get_metadata('illustrator', True)} difficulty={self.difficulty.to_ksh_name()} level={self.get_metadata('difnum', True)} t={self.bpm_string()} m={track_basename} mvol={self.get_metadata('volume')} o=0 bg={track_bg} layer={track_bg} po={int(config['Audio']['hidden_preview_position']) * 1000} plength=11000 pfiltergain={KSH_DEFAULT_FILTER_GAIN} filtertype=peak chokkakuautovol=0 chokkakuvol={KSH_DEFAULT_SLAM_VOL} ver=167''' print(header, file=file) print('--', file=file) class SpControllerCountdown(dataobject): event: CameraNode time_left: int # Below begins the main printing loop. # We iterate through each tick of the song and print a KSH line. If there are events, we put stuff on that line. # The currently active BT holds. holds = {} # The currently active SpController nodes. ongoing_spcontroller_events = {p: None for p in SpcParam} # Whether there is an ongoing laser on either side. lasers = {s: None for s in LaserSide} slam_status = {} last_laser_timing = {s: None for s in LaserSide} last_filter = KshFilter.PEAK current_timesig = self.events[Timing(1, 1, 0)][EventKind.TIMESIG] debug().current_line_num = len(header.split('\n')) + 1 measure_iter = range(self.end.measure) for m in measure_iter: measure = m + 1 now = Timing(measure, 1, 0) # Laser range resets every measure in ksh. laser_range = {LaserSide.LEFT: 1, LaserSide.RIGHT: 1} if now in self.events and EventKind.TIMESIG in self.events[now]: current_timesig = self.events[now][EventKind.TIMESIG] print(f'beat={current_timesig.top}/{current_timesig.bottom}', file=file) for b in range(current_timesig.top): # Vox beats are also 1-indexed. beat = b + 1 print(f'// #{measure},{beat}', file=file) for o in range(int(float(TICKS_PER_BEAT) * (4 / current_timesig.bottom))): # However, vox offsets are 0-indexed. now = Timing(measure, beat, o) buffer = KshLineBuf() if now in self.events: for kind, event in self.events[now].items(): if kind == EventKind.TIMESIG and (beat != 1 or o != 0): raise KshConvertError('time signature change in the middle of a measure') elif kind == EventKind.BPM: event: float buffer.meta.append(f't={str(event).rstrip("0").rstrip(".").strip()}') elif kind == EventKind.STOP: event: int buffer.meta.append(f'stop={event}') elif type(kind) is tuple and kind[0] == EventKind.SPCONTROLLER: event: CameraNode cam_param: SpcParam = kind[1] if cam_param.to_ksh_value() is not None: if ongoing_spcontroller_events[cam_param] is not None and ongoing_spcontroller_events[cam_param].time_left != 0: debug().record(Debug.Level.WARNING, 'spnode_output', f'spcontroller node at {now} interrupts another of same kind ({cam_param})') ongoing_spcontroller_events[cam_param] = SpControllerCountdown(event=event, time_left=event.duration) buffer.meta.append(f'{cam_param.to_ksh_name()}={cam_param.to_ksh_value(event.start_param)}') elif cam_param.is_state(): buffer.meta.append(f'{cam_param.to_ksh_name()}={event.duration}') elif kind == EventKind.TILTMODE: event: TiltMode buffer.meta.append(f'tilt={event.to_ksh_name()}') elif type(kind) is tuple and kind[0] == EventKind.TRACK: if kind[1] == 1 or kind[1] == 8: # Laser if type(event) is LaserSlam: event: LaserSlam # TODO Laser countdown for different timesigs laser = event.start if event.side in map(lambda x: x.side(), slam_status): raise KshConvertError('new laser node spawn while trying to resolve slam') slam_status[event] = SLAM_TICKS if laser.roll_kind is not None: if buffer.spin != '': debug().record(Debug.Level.WARNING, 'ksh_laser', 'spin on both lasers') if laser.roll_kind.value <= 3: buffer.spin = '@' if event.direction() == LaserSlam.Direction.LEFT: buffer.spin += '(' else: buffer.spin += ')' # My assumption right now is that the MEASURE kind will always take one # measure's worth of ticks. Likewise for the other ones. if laser.roll_kind == RollKind.MEASURE: buffer.spin += str(int(current_timesig.top * current_timesig.ticks_per_beat() * 0.85)) elif laser.roll_kind == RollKind.HALF_MEASURE: buffer.spin += str(int((current_timesig.top * current_timesig.ticks_per_beat()) / 2.95)) elif laser.roll_kind ==
<reponame>gmr/dynamodb-backup #!/usr/bin/env python3 """ Backup DynamoDB to CSV or Avro """ import argparse import base64 import csv import datetime import gzip import io import json import logging import multiprocessing import pathlib import queue import sys import tempfile import time import typing from urllib import parse import boto3 from botocore import exceptions import coloredlogs import fastavro from fastavro import validation import requests try: import snappy except ImportError: snappy = None from dynamodb_backup import version LOGGER = logging.getLogger(__name__) LOGGERS = { 'boto3', 'botocore', 'botocore.vendored.requests.packages.urllib3.connectionpool', 'requests', 's3transfer', 'urllib3'} CODEC_CHOICES = {'none', 'deflate'} if snappy: CODEC_CHOICES.add('snappy') LOGGING_FORMAT = '%(asctime)s %(levelname) -10s %(name) -10s %(message)s' LOGGING_FIELD_STYLES = {'hostname': {'color': 'magenta'}, 'programname': {'color': 'cyan'}, 'name': {'color': 'blue'}, 'levelname': {'color': 'white', 'bold': True}, 'asctime': {'color': 'white'}} MAX_QUEUE_DEPTH = 100000 class Process(multiprocessing.Process): """Child process for paginating from DynamoDB and putting rows in the work queue. """ def __init__(self, group=None, target=None, name=None, args=None, kwargs=None): super().__init__(group, target, name, args or (), kwargs or {}) self.cli_args = kwargs['cli_args'] self.error_exit = kwargs['error_exit'] self.finished = kwargs['finished'] self.queued = kwargs['queued'] self.processed = kwargs['processed'] self.segment = kwargs['segment'] self.units = kwargs['unit_count'] self.work_queue = kwargs['work_queue'] def run(self) -> typing.NoReturn: """Executes on start, paginate through the table""" _configure_logging(self.cli_args) client = boto3.client('dynamodb') paginator = client.get_paginator('scan') LOGGER.debug('Starting to page through %s for segment %s of %s', self.cli_args.table, self.segment + 1, self.cli_args.processes) kwargs = {'TableName': self.cli_args.table, 'TotalSegments': self.cli_args.processes, 'ConsistentRead': True, 'PaginationConfig': {'PageSize': 500}, 'ReturnConsumedCapacity': 'TOTAL', 'Segment': self.segment} if self.cli_args.expression: self.cli_args.expression.seek(0) kwargs.update(json.load(self.cli_args.expression)) queued = 0 for page in paginator.paginate(**kwargs): if self.error_exit.is_set(): break for row in [_unmarshall(i) for i in page.get('Items', [])]: self.work_queue.put(row) with self.queued.get_lock(): self.queued.value += 1 queued += 1 if self.error_exit.is_set(): break with self.units.get_lock(): self.units.value += page['ConsumedCapacity']['CapacityUnits'] while self._queue_size(queued) > 0: if self.error_exit.is_set(): break LOGGER.debug('Waiting for %i items in queue', self._queue_size(queued)) try: time.sleep(0.25) except KeyboardInterrupt: self.error_exit.set() break LOGGER.debug('Finished paginating in segment %i', self.segment + 1) with self.finished.get_lock(): self.finished.value += 1 if self.finished.value == self.cli_args.processes: LOGGER.debug('Closing the queue') self.work_queue.close() LOGGER.debug('Exiting process %i', self.segment + 1) def _queue_size(self, queued: int) -> int: try: return self.work_queue.qsize() except NotImplementedError: return queued - self.processed.value class QueueIterator: """Generator to return the records from the DynamoDB table""" def __init__(self, error_exit: multiprocessing.Event, finished: multiprocessing.Value, processed: multiprocessing.Value, queued: multiprocessing.Value, segments: int, status_interval: int, units: multiprocessing.Value, work_queue: multiprocessing.Queue): self.error_exit = error_exit self.finished = finished self.processed = processed self.queued = queued self.records = 0 self.segments = segments self.status_interval = status_interval or 10000 self.units = units self.work_queue = work_queue def __iter__(self): return self def __next__(self) -> dict: if self._should_exit: LOGGER.debug('%i items in queue, %i processed', self._queue_size, self.processed.value) LOGGER.debug('Exiting iterator on __next__') raise StopIteration while not self._should_exit: try: return self._get_record() except queue.Empty: LOGGER.debug('Queue get timeout %r', self._should_exit) if self._should_exit: LOGGER.debug('Exiting iterator on __next__ queue.Empty') raise StopIteration LOGGER.debug('%i items in queue, %i processed', self._queue_size, self.processed.value) raise StopIteration def _get_record(self) -> dict: record = self.work_queue.get(True, 3) self.records += 1 if self.records % self.status_interval == 0: LOGGER.debug( 'Wrote %i records, %.2f units consumed, %i records queued', self.records, self.units.value, self._queue_size) return record @property def _queue_size(self) -> int: try: return self.work_queue.qsize() except NotImplementedError: return self.records - self.processed.value @property def _should_exit(self) -> bool: return (self.error_exit.is_set() or (self.finished.value == self.segments and self.queued.value == self.processed.value)) class Writer: EXTENSION = 'txt' def __init__(self, args: argparse.Namespace, iterator: QueueIterator, error_exit: multiprocessing.Event, processed: multiprocessing.Value): self.args = args self.chunk = 0 self.dirty = False self.error_exit = error_exit self.iterator = iterator self.processed = processed self.s3uri = self.args.s3.rstrip('/') if self.args.s3 else None self.file = self._get_file() def close(self) -> typing.NoReturn: if self.s3uri and not self.error_exit.is_set() and self.dirty: LOGGER.debug('Uploading to S3 on close') self._upload_to_s3() if not self.file.closed: self.file.close() if not self.dirty: LOGGER.debug('Removing empty final file') self._file_path.unlink() @property def destination(self) -> pathlib.Path: return self.s3uri if self.s3uri else pathlib.Path(self.args.directory) @property def extension(self) -> str: return self.EXTENSION @property def _file_path(self) -> pathlib.Path: if self.args.chunk: return self.destination / '{}-{:03d}.{}'.format( self.args.table, self.chunk, self.extension) return self.destination / '{}.{}'.format( self.args.table, self.extension) def _get_file(self) -> typing.Union[tempfile.NamedTemporaryFile, typing.BinaryIO]: self.dirty = False if self.args.s3: return tempfile.NamedTemporaryFile('xb+') return self._file_path.open('wb+') def _s3_key(self): parsed = parse.urlparse(self.s3uri, 's3') filename = '{}.{}'.format(self.args.table, self.extension) if self.args.chunk: filename = '{}-{:03d}.{}'.format( self.args.table, self.chunk, self.extension) return datetime.date.today().strftime( '{}/%Y/%m/%d/{}'.format(parsed.path.strip('/'), filename)) def _upload_to_s3(self): """Create the backup as a file on AmazonS3""" self.file.flush() self.file.seek(0) parsed = parse.urlparse(self.s3uri, 's3') key = self._s3_key() LOGGER.info('Uploading to s3://%s/%s', parsed.netloc, key) try: boto3.client('s3').upload_file(self.file.name, parsed.netloc, key) except exceptions.ClientError as error: LOGGER.error('Error uploading: %s', error) self.error_exit.set() class AvroWriter(Writer): EXTENSION = 'avro' def __init__(self, args: argparse.Namespace, iterator: QueueIterator, error_exit: multiprocessing.Event, processed: multiprocessing.Value, schema: dict): super().__init__(args, iterator, error_exit, processed) self.schema = schema def write_from_queue(self) -> typing.NoReturn: if self.args.chunk: rows = [] for row in self._iterator: rows.append(row) if len(rows) == self.args.chunk_size: fastavro.writer( self.file, self.schema, rows, self.args.codec) if self.s3uri: self._upload_to_s3() self.file.close() self.chunk += 1 self.file = self._get_file() rows = [] # Write the remaining rows if rows: self.dirty = True fastavro.writer( self.file, self.schema, rows, self.args.codec) else: self.dirty = True fastavro.writer( self.file, self.schema, self._iterator, self.args.codec) LOGGER.debug('Exiting writer') @property def _iterator(self): for record in self.iterator: self.processed.value += 1 if self._validate(record): yield record def _validate(self, record: dict) -> bool: try: validation.validate(record, self.schema) except validation.ValidationError as error: LOGGER.warning('Record failed to validate: %s', str(error).replace('\n', '')) LOGGER.debug('Invalid record: %r', record) return False return True class CSVWriter(Writer): EXTENSION = 'csv' def __init__(self, args: argparse.Namespace, iterator: QueueIterator, error_exit: multiprocessing.Event, processed: multiprocessing.Value): super().__init__(args, iterator, error_exit, processed) self.fields = self._get_fields() def close(self) -> typing.NoReturn: super(CSVWriter, self).close() if not self.dirty and not self.s3uri: self._file_path.unlink() @property def extension(self) -> str: if self.args.compress: return '{}.gz'.format(self.EXTENSION) return self.EXTENSION def write_from_queue(self) -> typing.NoReturn: handle, writer = self._get_writer() for record in self.iterator: self.dirty = True writer.writerow(record) self.processed.value += 1 if self.args.chunk and \ self.processed.value % self.args.chunk_size == 0: self.chunk += 1 self._finish_file(handle) handle, writer = self._get_writer() self._finish_file(handle, False) def _finish_file(self, handle: typing.TextIO, open_new: bool = True) -> typing.NoReturn: handle.seek(0) if self.args.compress: self.file.write(gzip.compress(handle.read().encode('UTF-8'))) else: self.file.write(handle.read().encode('UTF-8')) if self.s3uri: self._upload_to_s3() self.file.close() if open_new: self.file = self._get_file() def _get_fields(self) -> list: client = boto3.client('dynamodb') result = client.scan(TableName=self.args.table, Limit=1, Select='ALL_ATTRIBUTES') return sorted(result['Items'][0].keys()) def _get_writer(self) -> (typing.TextIO, csv.DictWriter): handle = io.StringIO() writer = csv.DictWriter(handle, self.fields) if self.args.write_header: writer.writeheader() return handle, writer def main() -> typing.NoReturn: """Setup and run the backup.""" args = _parse_cli_args() _configure_logging(args) _execute(args) def _configure_logging(args: argparse.Namespace) -> typing.NoReturn: level = logging.DEBUG if args.verbose else logging.INFO coloredlogs.install( level=level, fmt=LOGGING_FORMAT, field_styles=LOGGING_FIELD_STYLES) for logger in LOGGERS: logging.getLogger(logger).setLevel(logging.WARNING) def _execute(args: argparse.Namespace) -> typing.NoReturn: """What executes when your application is run. It will spawn the specified number of threads, reading in the data from the specified file, adding them to the shared queue. The worker threads will work the queue, and the application will exit when the queue is empty. """ error_exit = multiprocessing.Event() finished = multiprocessing.Value('f', 0, lock=True) processed = multiprocessing.Value('f', 0, lock=True) queued = multiprocessing.Value('f', 0, lock=True) units = multiprocessing.Value('f', 0, lock=True) work_queue = multiprocessing.Queue() iterator = QueueIterator( error_exit, finished, processed, queued, args.processes, args.chunk_size, units, work_queue) if args.format == 'csv': writer = CSVWriter(args, iterator, error_exit, processed) else: writer = AvroWriter( args, iterator, error_exit, processed, _schema(args.schema)) processes = [] LOGGER.debug('Creating %i processes', args.processes) for index in range(0, args.processes): proc = Process(kwargs={'cli_args': args, 'error_exit': error_exit, 'finished': finished, 'processed': processed, 'queued': queued, 'segment': index, 'unit_count': units, 'work_queue': work_queue}) proc.daemon = True proc.start() processes.append(proc) LOGGER.info('Preparing to backup %s from DynamoDB to %s', args.table, writer.destination) start_time = time.time() try: writer.write_from_queue() except KeyboardInterrupt: LOGGER.error('CTRL-C caught, aborting backup') error_exit.set() if error_exit.is_set(): LOGGER.error('Exiting in error') sys.exit(1) for proc in processes: if proc.is_alive(): proc.terminate() # Wait for processes to close out while sum(1 if p.is_alive() else 0 for p in processes): alive = sum(1 if p.is_alive() else 0 for p in processes) LOGGER.debug('Waiting for %i processes to finish', alive) try: time.sleep(0.5) except KeyboardInterrupt: error_exit.set() break writer.close() LOGGER.info( 'Queued %i records and wrote %i records, using %i DynamoDB ' 'units in %.2f seconds', queued.value, writer.iterator.records, units.value, time.time() - start_time) def _parse_cli_args() -> argparse.Namespace: """Construct the CLI argument parser and return the parsed the arguments""" parser = argparse.ArgumentParser( description='Backup a DynamoDB table', formatter_class=argparse.ArgumentDefaultsHelpFormatter) dest = parser.add_mutually_exclusive_group(required=True) dest.add_argument('-d', '--directory', help='Write the output to the specified directory') dest.add_argument('--s3', help='S3 URI to upload output to') f_parser = parser.add_subparsers(title='Output Format', dest='format') csv_parser = f_parser.add_parser('csv', help='Output to CSV') csv_parser.add_argument('-c', '--compress', action='store_true', help='GZip compress CSV output') csv_parser.add_argument('-w', '--write-header', action='store_true', help='Write the CSV header line') avro_parser = f_parser.add_parser('avro', help='Output to Avro Container') avro_parser.add_argument('-c', '--codec', choices=CODEC_CHOICES, default='deflate', help='Compression Codec') avro_parser.add_argument('-s', '--schema', required=True, help='Avro Schema to use') f_parser = parser.add_argument_group('Filter Expression Options')
same length as the paths), fscan will assign a different integration time to each acquisition point. -If integ_time is positive, it specifies seconds and if negative, specifies monitor counts. IMPORTANT Notes: -no spaces are allowed in the indepvar string. -all funcs must evaluate to the same number of points >>> fscan x=[1,3,5,7,9],y=arange(5) 0.1 motor1 x**2 motor2 sqrt(y*x+3) >>> fscan x=[1,3,5,7,9],y=arange(5) [0.1,0.2,0.3,0.4,0.5] motor1 x**2 \ motor2 sqrt(y*x+3) """ # ['integ_time', Type.String, None, 'Integration time'] hints = {'scan': 'fscan', 'allowsHooks': ('pre-scan', 'pre-move', 'post-move', 'pre-acq', 'post-acq', 'post-step', 'post-scan')} env = ('ActiveMntGrp',) param_def = [ ['indepvars', Type.String, None, 'Independent Variables'], ['integ_time', Type.String, None, 'Integration time'], ['motor_funcs', ParamRepeat(['motor', Type.Moveable, None, 'motor'], ['func', Type.String, None, 'curve defining path']), None, 'List of motor and path curves'] ] def prepare(self, *args, **opts): if args[0].lower() in ["!", "*", "none", None]: indepvars = {} else: indepvars = SafeEvaluator({'dict': dict}).eval( 'dict(%s)' % args[0]) # create a dict containing the indepvars self.motors = [item[0] for item in args[2]] self.funcstrings = [item[1] for item in args[2]] globals_lst = [dict(list(zip(indepvars, values))) for values in zip(*list(indepvars.values()))] self.paths = [[SafeEvaluator(globals).eval( func) for globals in globals_lst] for func in self.funcstrings] self._integ_time = numpy.array(eval(args[1]), dtype='d') self.opts = opts if len(self.motors) == len(self.paths) > 0: self.N = len(self.motors) else: raise ValueError( 'Moveable and func lists must be non-empty and same length') npoints = len(self.paths[0]) try: # if everything is OK, the following lines should return a 2D array # n which each motor path is a row. # Typical failure is due to shape mismatch due to inconsistent # input self.paths = numpy.array(self.paths, dtype='d') self.paths.reshape((self.N, npoints)) except Exception: # shape mismatch? # try to give a meaningful description of the error for p, fs in zip(self.paths, self.funcstrings): if len(p) != npoints: raise ValueError('"%s" and "%s" yield different number ' 'of points (%i vs %i)' % (self.funcstrings[0], fs, npoints, len(p))) raise # the problem wasn't a shape mismatch self._nb_points = npoints if self._integ_time.size == 1: self._integ_time = self._integ_time * \ numpy.ones(self._nb_points) # extend integ_time elif self._integ_time.size != self._nb_points: raise ValueError('time_integ must either be a scalar or ' 'length=npoints (%i)' % self._nb_points) self.name = opts.get('name', 'fscan') generator = self._generator moveables = self.motors env = opts.get('env', {}) constrains = [getCallable(cns) for cns in opts.get( 'constrains', [UNCONSTRAINED])] # Hooks are not always set at this point. We will call getHooks # later on in the scan_loop # self.pre_scan_hooks = self.getHooks('pre-scan') # self.post_scan_hooks = self.getHooks('post-scan' self._gScan = SScan(self, generator, moveables, env, constrains) # _data is the default member where the Macro class stores the data. # Assign the date produced by GScan (or its subclasses) to it so all # the Macro infrastructure related to the data works e.g. getter, # property, etc. self.setData(self._gScan.data) def _generator(self): step = {} step["pre-move-hooks"] = self.getHooks('pre-move') step["post-move-hooks"] = self.getHooks('post-move') step["pre-acq-hooks"] = self.getHooks('pre-acq') step["post-acq-hooks"] = (self.getHooks('post-acq') + self.getHooks('_NOHINTS_')) step["post-step-hooks"] = self.getHooks('post-step') step["check_func"] = [] for i in range(self._nb_points): step["positions"] = self.paths[:, i] step["integ_time"] = self._integ_time[i] step["point_id"] = i yield step def run(self, *args): for step in self._gScan.step_scan(): yield step def _get_nr_points(self): msg = ("nr_points is deprecated since version Jan20. " "Use nb_points instead.") self.warning(msg) return self.nb_points nr_points = property(_get_nr_points) class ascanh(aNscan, Macro): """Do an absolute scan of the specified motor. ascan scans one motor, as specified by motor. The motor starts at the position given by start_pos and ends at the position given by final_pos. The step size is (start_pos-final_pos)/nr_interv. The number of data points collected will be nr_interv+1. Count time is given by time which if positive, specifies seconds and if negative, specifies monitor counts. """ param_def = [ ['motor', Type.Moveable, None, 'Moveable to move'], ['start_pos', Type.Float, None, 'Scan start position'], ['final_pos', Type.Float, None, 'Scan final position'], ['nr_interv', Type.Integer, None, 'Number of scan intervals'], ['integ_time', Type.Float, None, 'Integration time'] ] def prepare(self, motor, start_pos, final_pos, nr_interv, integ_time, **opts): self._prepare([motor], [start_pos], [final_pos], nr_interv, integ_time, mode=HybridMode, **opts) class scanhist(Macro): """Shows scan history information. Give optional parameter scan number to display details about a specific scan""" param_def = [ ['scan number', Type.Integer, -1, 'scan number. [default=-1 meaning show all scans]'], ] def run(self, scan_number): try: hist = self.getEnv("ScanHistory") except UnknownEnv: print("No scan recorded in history") return if scan_number < 0: self.show_all(hist) else: self.show_one(hist, scan_number) def show_one(self, hist, scan_number): item = None for h in hist: if h['serialno'] == scan_number: item = h break if item is None: self.warning("Could not find scan number %s", scan_number) return serialno, title = h['serialno'], h['title'] start = datetime.datetime.fromtimestamp(h['startts']) end = datetime.datetime.fromtimestamp(h['endts']) total_time = end - start start, end, total_time = start.ctime(), end.ctime(), str(total_time) scan_dir, scan_file = h['ScanDir'], h['ScanFile'] deadtime = '%.1f%%' % h['deadtime'] user = h['user'] store = "Not stored!" if scan_dir is not None and scan_file is not None: if isinstance(scan_file, str): store = os.path.join(scan_dir, scan_file) else: store = scan_dir + os.path.sep + str(scan_file) channels = ", ".join(h['channels']) cols = ["#", "Title", "Start time", "End time", "Took", "Dead time", "User", "Stored", "Channels"] data = [serialno, title, start, end, total_time, deadtime, user, store, channels] table = Table([data], row_head_str=cols, row_head_fmt='%*s', elem_fmt=['%-*s'], col_sep=' : ') for line in table.genOutput(): self.output(line) def show_all(self, hist): cols = "#", "Title", "Start time", "End time", "Stored" width = -1, -1, -1, -1, -1 out = List(cols, max_col_width=width) today = datetime.datetime.today().date() for h in hist: start = datetime.datetime.fromtimestamp(h['startts']) if start.date() == today: start = start.time().strftime("%H:%M:%S") else: start = start.strftime("%Y-%m-%d %H:%M:%S") end = datetime.datetime.fromtimestamp(h['endts']) if end.date() == today: end = end.time().strftime("%H:%M:%S") else: end = end.strftime("%Y-%m-%d %H:%M:%S") scan_file = h['ScanFile'] store = "Not stored!" if scan_file is not None: store = ", ".join(scan_file) row = h['serialno'], h['title'], start, end, store out.appendRow(row) for line in out.genOutput(): self.output(line) class ascanc(aNscan, Macro): """Do an absolute continuous scan of the specified motor. ascanc scans one motor, as specified by motor.""" param_def = [ ['motor', Type.Moveable, None, 'Moveable to move'], ['start_pos', Type.Float, None, 'Scan start position'], ['final_pos', Type.Float, None, 'Scan final position'], ['integ_time', Type.Float, None, 'Integration time'], ['slow_down', Type.Float, 1, 'global scan slow down factor (0, 1]'], ] def prepare(self, motor, start_pos, final_pos, integ_time, slow_down, **opts): self._prepare([motor], [start_pos], [final_pos], slow_down, integ_time, mode=ContinuousMode, **opts) class a2scanc(aNscan, Macro): """two-motor continuous scan""" param_def = [ ['motor1', Type.Moveable, None, 'Moveable 1 to move'], ['start_pos1', Type.Float, None, 'Scan start position 1'], ['final_pos1', Type.Float, None, 'Scan final position 1'], ['motor2', Type.Moveable, None, 'Moveable 2 to move'], ['start_pos2', Type.Float, None, 'Scan start position 2'], ['final_pos2', Type.Float, None, 'Scan final position 2'], ['integ_time', Type.Float, None, 'Integration time'], ['slow_down', Type.Float, 1, 'global scan slow down factor (0, 1]'], ] def prepare(self, motor1, start_pos1, final_pos1, motor2, start_pos2, final_pos2, integ_time, slow_down, **opts): self._prepare([motor1, motor2], [start_pos1, start_pos2], [final_pos1, final_pos2], slow_down, integ_time, mode=ContinuousMode, **opts) class a3scanc(aNscan, Macro): """three-motor continuous scan""" param_def = [ ['motor1', Type.Moveable, None, 'Moveable 1 to move'], ['start_pos1', Type.Float, None, 'Scan start position 1'], ['final_pos1', Type.Float, None, 'Scan final position 1'], ['motor2', Type.Moveable, None, 'Moveable 2 to move'], ['start_pos2', Type.Float, None, 'Scan start position 2'], ['final_pos2', Type.Float, None, 'Scan final position 2'], ['motor3', Type.Moveable, None, 'Moveable 3 to move'], ['start_pos3', Type.Float, None, 'Scan start position 3'], ['final_pos3', Type.Float, None, 'Scan final position 3'], ['integ_time', Type.Float, None, 'Integration time'], ['slow_down', Type.Float, 1, 'global scan slow down factor (0, 1]'], ] def prepare(self, m1, s1, f1, m2, s2, f2, m3, s3, f3, integ_time, slow_down, **opts): self._prepare([m1, m2, m3], [s1, s2, s3], [f1, f2, f3], slow_down, integ_time, mode=ContinuousMode, **opts) class a4scanc(aNscan, Macro): """four-motor continuous scan""" param_def = [ ['motor1', Type.Moveable, None, 'Moveable 1 to move'], ['start_pos1', Type.Float, None, 'Scan start position 1'], ['final_pos1', Type.Float, None, 'Scan final position 1'], ['motor2', Type.Moveable, None, 'Moveable 2 to move'], ['start_pos2', Type.Float, None, 'Scan start position 2'], ['final_pos2', Type.Float, None, 'Scan final position 2'], ['motor3', Type.Moveable, None, 'Moveable 3 to move'], ['start_pos3', Type.Float, None, 'Scan start position 3'], ['final_pos3', Type.Float, None, 'Scan final position 3'], ['motor4', Type.Moveable, None, 'Moveable 3 to move'], ['start_pos4', Type.Float, None, 'Scan start position 3'], ['final_pos4', Type.Float, None, 'Scan final position 3'], ['integ_time', Type.Float, None, 'Integration time'], ['slow_down', Type.Float, 1,
<filename>Assistant.py import pyttsx3 #pip install pyttsx3 import speech_recognition as sr #pip install speechRecognition import datetime import wikipedia #pip install wikipedia import webbrowser import os import smtplib import requests import json import wolframalpha import subprocess import wolframalpha import pyttsx3 import tkinter import json import random import operator import speech_recognition as sr import datetime import wikipedia import webbrowser import os import winshell import pyjokes import feedparser import smtplib import ctypes import time import requests import shutil from twilio.rest import Client from clint.textui import progress from bs4 import BeautifulSoup import win32com.client as wincl from urllib.request import urlopen print("Donut Assistant 12.4.0") print("Assistant for PCs") print("Donut Corp @ 2022") assistanttype = input("Please Select any one: \n \t 1.Donut Assistant Mike \n \t 2.Donut Assistant Annie \n \t 3.Donut Assistant Chloe \n : ") default_engine = input("Select a default search engine: \n \t Google \n \t Bing \n") if assistanttype == "1": engine = pyttsx3.init('sapi5') voices = engine.getProperty('voices') engine.setProperty('voice', voices[0].id) def speak(audio): engine.say(audio) engine.runAndWait() def wishMe(): hour = int(datetime.datetime.now().hour) if hour>=0 and hour<12: print("Good Morning!") speak("Good Morning!") elif hour>=12 and hour<14: print("Good Afternoon!") speak("Good Afternoon!") else: print("Good Evening!") speak("Good Evening!") print("I am <NAME>. Please tell me how may I help you") speak("I am <NAME>. Ask me anything!!!") def takeCommand(): #It takes microphone input from the user and returns string output r = sr.Recognizer() with sr.Microphone() as source: print("Listening...") r.pause_threshold = 1 audio = r.listen(source) try: print("Recognizing...") query = r.recognize_google(audio, language='en-in') print(f"User said: {query}\n") except Exception as e: # print(e) print("Say that again please...") speak('I didnt hear anything, if you said anything please speak loud and clear') return "None" return query def sendEmail(to, content): server = smtplib.SMTP('smtp.gmail.com', 587) server.ehlo() server.starttls() email = input("Enter your gmail username: ") psswrd = input("Enter yourn gmail password: ") server.login(email, psswrd) server.sendmail(email, to, content) server.close() if __name__ == "__main__": wishMe() while True: # if 1: query = takeCommand().lower() # Logic for executing tasks based on query if 'wikipedia' in query: speak('Searching Wikipedia...') query = query.replace("wikipedia", "") results = wikipedia.summary(query, sentences=2) speak("According to Wikipedia") print(results) speak(results) elif query == "tell me some jokes" or query == "tell some jokes" or query == "tell a joke" or query == "joke" or query == "jokes": My_joke = pyjokes.get_joke(language="en", category="neutral") print(My_joke) speak(My_joke) elif 'search' in query: speak('Searching '+ default_engine) query = query.replace(default_engine, "") results = wikipedia.summary(query, sentences=2) speak("According to " + default_engine) print(results) speak(results) elif 'question' in query: speak('I can answer to computational and geographical questions and what question do you want to ask now') question=takeCommand() app_id="NULL" client = wolframalpha.Client('R2K75H-7ELALHR35X') res = client.query(question) answer = next(res.results).text speak(answer) print(answer) elif 'weather' in query: from bs4 import BeautifulSoup import requests headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win32; x32) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} def weather(city): city = city.replace(" ", "+") res = requests.get( f'https://www.google.com/search?q={city}&oq={city}&aqs=chrome.0.35i39l2j0l4j46j69i60.6128j1j7&sourceid=chrome&ie=UTF-8', headers=headers) print("Searching...\n") soup = BeautifulSoup(res.text, 'html.parser') location = soup.select('#wob_loc')[0].getText().strip() time = soup.select('#wob_dts')[0].getText().strip() info = soup.select('#wob_dc')[0].getText().strip() weather = soup.select('#wob_tm')[0].getText().strip() print(location) speak(location) print(time) speak(time) print(info) speak(info) print(weather+"°C") speak(weather+"°C") city = input("Enter the Name of City -> ") city = city+" weather" weather(city) print("Have a Nice Day:)") elif "calculate" in query: app_id = "Wolframalpha api id" client = wolframalpha.Client(app_id) indx = query.lower().split().index('calculate') query = query.split()[indx + 1:] res = client.query(' '.join(query)) answer = next(res.results).text print("The answer is " + answer) speak("The answer is " + answer) elif 'open youtube' in query: speak('OK, I will open YouTube in your default browser') webbrowser.open("youtube.com") elif 'open browser' in query: webbrowser.open("bing.com" or "google.com") elif 'open bing' in query: speak('Opening bing in your default browser') webbrowser.open("bing.com") elif 'send feedback' in query: speak('This will open Donut Support Website in your default browser, you can give feedback there!') webbrowser.open("Donutsupport.simdif.com") elif 'open google' in query: speak('Opening google in your default browser') webbrowser.open("google.com") elif 'open stackoverflow' in query: speak('Opening StackOverflow in your default browser') webbrowser.open("stackoverflow.com") elif 'play music' in query: try: musidir = input("Enter directory address: ") music_dir = musidir songs = os.listdir(music_dir) print(songs) os.startfile(os.path.join(music_dir, songs[0])) except: speak("Sorry Friend!! I couldn't find the directory specified") elif 'time' in query: strTime = datetime.datetime.now().strftime("%H:%M:%S") print(strTime) speak(f"Friend, the time is {strTime}") elif 'text to speech' in query: text = input("Type: ") speak(text) elif 'when is your birthday' in query: print("1st March 2022") speak('I made my debut on 1st March 2022') elif 'your developers name' in query: print("<NAME>") speak("<NAME>") elif 'open code' in query: codePath = "C:\\Users\\gauth\\AppData\\Local\\Programs\\Microsoft VS Code\\Code.exe" os.startfile(codePath) elif 'what is your name' in query: speak('As I told you in the beginning, my name is <NAME>') print("I am Don<NAME>") elif 'who made you' in query: speak('Who made me??? <NAME>') speak('He is super genius') elif 'what do you eat' in query: speak("I dont't eat the food that humans eat, but i like to have bits and bytes") elif 'where do you live' in query: speak("I live in your computer") elif 'can you sing a song' in query: speak('Im noot good at singing, since i am a bot') speak('But since you asked me, i will sing it for you') speak("I will sing my favourite song") speak("The song is <NAME>'s Smooth Criminal") speak('''As he came into the window!!!! Was the sound of a crescendo!!! He came into her apartment!!! He left the bloodstains on the carpet!!! She ran underneath the table!!! He could see she was unable!!! So she ran into the bedroom!!! She was struck down, it was her doom!!! Annie, are you okay? So, Annie, are you okay? Are you okay, Annie? Annie, are you okay? So, Annie, are you okay? Are you okay, Annie? Annie, are you okay? So, Annie, are you okay? Are you okay, Annie? Annie, are you okay? So, Annie, are you okay? Are you okay, Annie? Annie, are you okay? Will you tell us that you're okay? There's a sound at the window Then he struck you, a crescendo Annie He came into your apartment He left the bloodstains on the carpet And then you ran into the bedroom You were struck down It was your doom Annie, are you okay? So, Annie, are you okay? Are you okay, Annie? Annie, are you okay? So, Annie, are you okay? Are you okay, Annie? Annie, are you okay? So, Annie, are you okay? Are you okay, Annie? You've been hit by- You've been hit by- A smooth criminal So they came in to the outway It was Sunday, what a black day Mouth-to-mouth resuscitation Sounding heartbeats, intimidation Annie, are you okay? So, Annie, are you okay? Are you okay, Annie? Annie, are you okay? So, Annie, are you okay? Are you okay, Annie? Annie, are you okay? So, Annie, are you okay? Are you okay, Annie? Annie, are you okay? So, Annie, are you okay? Are you okay, Annie? Annie, are you okay? Will you tell us that you're okay? There's a sound at the window That he struck you a crescendo Annie He came into your apartment He left the bloodstains on the carpet Then you ran into the bedroom You were struck down It was your doom Annie, are you okay? So, Annie, are you okay? Are you okay, Annie? You've been hit by- You've been struck by- A smooth criminal Okay, I want everybody to clear the area right now Annie, are you okay? (I don't know) Will you tell us, that you're okay? (I don't know) There's a sound at the window (I don't know) Then he struck you, a crescendo Annie (I don't know) He came into your apartment (I don't know) Left bloodstains on the carpet (I don't know why, baby) And then you ran into the bedroom (help me) You were struck down It was your doom, Annie (dag gone it) Annie, are you okay? (Dag gone it-baby) Will you tell us that you're okay? (Dag gone it-baby) There's a sound at the window (dag gone it-baby) Then he struck you, a crescendo Annie He came into your apartment (dag gone it) Left bloodstains on the carpet (hoo, hoo, hoo) And then you ran into the bedroom
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `tf.data.experimental.SqlDataset`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl.testing import parameterized from tensorflow.python.data.experimental.kernel_tests import sql_dataset_test_base from tensorflow.python.data.experimental.ops import readers from tensorflow.python.data.kernel_tests import checkpoint_test_base from tensorflow.python.data.kernel_tests import test_base from tensorflow.python.framework import combinations from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class SqlDatasetTest(sql_dataset_test_base.SqlDatasetTestBase, parameterized.TestCase): # Test that SqlDataset can read from a database table. @combinations.generate(test_base.default_test_combinations()) def testReadResultSet(self): for _ in range(2): # Run twice to verify statelessness of db operations. dataset = self._createSqlDataset( query="SELECT first_name, last_name, motto FROM students " "ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.string, dtypes.string), num_repeats=2) self.assertDatasetProduces( dataset, expected_output=[(b"John", b"Doe", b"Hi!"), (b"Jane", b"Moe", b"Hi again!")] * 2, num_test_iterations=2) # Test that SqlDataset works on a join query. @combinations.generate(test_base.default_test_combinations()) def testReadResultSetJoinQuery(self): get_next = self.getNext( self._createSqlDataset( query="SELECT students.first_name, state, motto FROM students " "INNER JOIN people " "ON students.first_name = people.first_name " "AND students.last_name = people.last_name", output_types=(dtypes.string, dtypes.string, dtypes.string))) self.assertEqual((b"John", b"California", b"Hi!"), self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) # Test that SqlDataset can read a database entry with a null-terminator # in the middle of the text and place the entry in a `string` tensor. @combinations.generate(test_base.default_test_combinations()) def testReadResultSetNullTerminator(self): get_next = self.getNext( self._createSqlDataset( query="SELECT first_name, last_name, favorite_nonsense_word " "FROM students ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.string, dtypes.string))) self.assertEqual((b"John", b"Doe", b"n\0nsense"), self.evaluate(get_next())) self.assertEqual((b"Jane", b"Moe", b"nonsense\0"), self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) # Test that SqlDataset works when used on two different queries. # Because the output types of the dataset must be determined at graph-creation # time, the two queries must have the same number and types of columns. @combinations.generate(test_base.default_test_combinations()) def testReadResultSetReuseSqlDataset(self): get_next = self.getNext( self._createSqlDataset( query="SELECT first_name, last_name, motto FROM students " "ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.string, dtypes.string))) self.assertEqual((b"John", b"Doe", b"Hi!"), self.evaluate(get_next())) self.assertEqual((b"Jane", b"Moe", b"Hi again!"), self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) get_next = self.getNext( self._createSqlDataset( query="SELECT first_name, last_name, state FROM people " "ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.string, dtypes.string))) self.assertEqual((b"John", b"Doe", b"California"), self.evaluate(get_next())) self.assertEqual((b"Benjamin", b"Franklin", b"Pennsylvania"), self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) # Test that an `OutOfRangeError` is raised on the first call to # `get_next_str_only` if result set is empty. @combinations.generate(test_base.default_test_combinations()) def testReadEmptyResultSet(self): get_next = self.getNext( self._createSqlDataset( query="SELECT first_name, last_name, motto FROM students " "WHERE first_name = 'Nonexistent'", output_types=(dtypes.string, dtypes.string, dtypes.string))) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) # Test that an error is raised when `driver_name` is invalid. @combinations.generate(test_base.default_test_combinations()) def testReadResultSetWithInvalidDriverName(self): with self.assertRaises(errors.InvalidArgumentError): dataset = self._createSqlDataset( driver_name="sqlfake", query="SELECT first_name, last_name, motto FROM students " "ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.string, dtypes.string)) self.assertDatasetProduces(dataset, expected_output=[]) # Test that an error is raised when a column name in `query` is nonexistent @combinations.generate(test_base.default_test_combinations()) def testReadResultSetWithInvalidColumnName(self): get_next = self.getNext( self._createSqlDataset( query="SELECT first_name, last_name, fake_column FROM students " "ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.string, dtypes.string))) with self.assertRaises(errors.UnknownError): self.evaluate(get_next()) # Test that an error is raised when there is a syntax error in `query`. @combinations.generate(test_base.default_test_combinations()) def testReadResultSetOfQueryWithSyntaxError(self): get_next = self.getNext( self._createSqlDataset( query="SELEmispellECT first_name, last_name, motto FROM students " "ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.string, dtypes.string))) with self.assertRaises(errors.UnknownError): self.evaluate(get_next()) # Test that an error is raised when the number of columns in `query` # does not match the length of `, output_types`. @combinations.generate(test_base.default_test_combinations()) def testReadResultSetWithMismatchBetweenColumnsAndOutputTypes(self): get_next = self.getNext( self._createSqlDataset( query="SELECT first_name, last_name FROM students " "ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.string, dtypes.string))) with self.assertRaises(errors.InvalidArgumentError): self.evaluate(get_next()) # Test that no results are returned when `query` is an insert query rather # than a select query. In particular, the error refers to the number of # output types passed to the op not matching the number of columns in the # result set of the query (namely, 0 for an insert statement.) @combinations.generate(test_base.default_test_combinations()) def testReadResultSetOfInsertQuery(self): get_next = self.getNext( self._createSqlDataset( query="INSERT INTO students (first_name, last_name, motto) " "VALUES ('Foo', 'Bar', 'Baz'), ('Fizz', 'Buzz', 'Fizzbuzz')", output_types=(dtypes.string, dtypes.string, dtypes.string))) with self.assertRaises(errors.InvalidArgumentError): self.evaluate(get_next()) # Test that `SqlDataset` can read an integer from a SQLite database table and # place it in an `int8` tensor. @combinations.generate(test_base.default_test_combinations()) def testReadResultSetInt8(self): get_next = self.getNext( self._createSqlDataset( query="SELECT first_name, desk_number FROM students " "ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.int8))) self.assertEqual((b"John", 9), self.evaluate(get_next())) self.assertEqual((b"Jane", 127), self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) # Test that `SqlDataset` can read a negative or 0-valued integer from a # SQLite database table and place it in an `int8` tensor. @combinations.generate(test_base.default_test_combinations()) def testReadResultSetInt8NegativeAndZero(self): get_next = self.getNext( self._createSqlDataset( query="SELECT first_name, income, favorite_negative_number " "FROM students " "WHERE first_name = 'John' ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.int8, dtypes.int8))) self.assertEqual((b"John", 0, -2), self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) # Test that `SqlDataset` can read a large (positive or negative) integer from # a SQLite database table and place it in an `int8` tensor. @combinations.generate(test_base.default_test_combinations()) def testReadResultSetInt8MaxValues(self): get_next = self.getNext( self._createSqlDataset( query="SELECT desk_number, favorite_negative_number FROM students " "ORDER BY first_name DESC", output_types=(dtypes.int8, dtypes.int8))) self.assertEqual((9, -2), self.evaluate(get_next())) # Max and min values of int8 self.assertEqual((127, -128), self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) # Test that `SqlDataset` can read an integer from a SQLite database table and # place it in an `int16` tensor. @combinations.generate(test_base.default_test_combinations()) def testReadResultSetInt16(self): get_next = self.getNext( self._createSqlDataset( query="SELECT first_name, desk_number FROM students " "ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.int16))) self.assertEqual((b"John", 9), self.evaluate(get_next())) self.assertEqual((b"Jane", 127), self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) # Test that `SqlDataset` can read a negative or 0-valued integer from a # SQLite database table and place it in an `int16` tensor. @combinations.generate(test_base.default_test_combinations()) def testReadResultSetInt16NegativeAndZero(self): get_next = self.getNext( self._createSqlDataset( query="SELECT first_name, income, favorite_negative_number " "FROM students " "WHERE first_name = 'John' ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.int16, dtypes.int16))) self.assertEqual((b"John", 0, -2), self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) # Test that `SqlDataset` can read a large (positive or negative) integer from # a SQLite database table and place it in an `int16` tensor. @combinations.generate(test_base.default_test_combinations()) def testReadResultSetInt16MaxValues(self): get_next = self.getNext( self._createSqlDataset( query="SELECT first_name, favorite_medium_sized_number " "FROM students ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.int16))) # Max value of int16 self.assertEqual((b"John", 32767), self.evaluate(get_next())) # Min value of int16 self.assertEqual((b"Jane", -32768), self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) # Test that `SqlDataset` can read an integer from a SQLite database table and # place it in an `int32` tensor. @combinations.generate(test_base.default_test_combinations()) def testReadResultSetInt32(self): get_next = self.getNext( self._createSqlDataset( query="SELECT first_name, desk_number FROM students " "ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.int32))) self.assertEqual((b"John", 9), self.evaluate(get_next())) self.assertEqual((b"Jane", 127), self.evaluate(get_next())) # Test that `SqlDataset` can read a negative or 0-valued integer from a # SQLite database table and place it in an `int32` tensor. @combinations.generate(test_base.default_test_combinations()) def testReadResultSetInt32NegativeAndZero(self): get_next = self.getNext( self._createSqlDataset( query="SELECT first_name, income FROM students " "ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.int32))) self.assertEqual((b"John", 0), self.evaluate(get_next())) self.assertEqual((b"Jane", -20000), self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) # Test that `SqlDataset` can read a large (positive or negative) integer from # a SQLite database table and place it in an `int32` tensor. @combinations.generate(test_base.default_test_combinations()) def testReadResultSetInt32MaxValues(self): get_next = self.getNext( self._createSqlDataset( query="SELECT first_name, favorite_number FROM students " "ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.int32))) # Max value of int32 self.assertEqual((b"John", 2147483647), self.evaluate(get_next())) # Min value of int32 self.assertEqual((b"Jane", -2147483648), self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) # Test that `SqlDataset` can read a numeric `varchar` from a SQLite database # table and place it in an `int32` tensor. @combinations.generate(test_base.default_test_combinations()) def testReadResultSetInt32VarCharColumnAsInt(self): get_next = self.getNext( self._createSqlDataset( query="SELECT first_name, school_id FROM students " "ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.int32))) self.assertEqual((b"John", 123), self.evaluate(get_next())) self.assertEqual((b"Jane", 1000), self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) # Test that `SqlDataset` can read an integer from a SQLite database table # and place it in an `int64` tensor. @combinations.generate(test_base.default_test_combinations()) def testReadResultSetInt64(self): get_next = self.getNext( self._createSqlDataset( query="SELECT first_name, desk_number FROM students " "ORDER BY first_name DESC", output_types=(dtypes.string, dtypes.int64))) self.assertEqual((b"John", 9), self.evaluate(get_next())) self.assertEqual((b"Jane", 127), self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) # Test that `SqlDataset` can read a
" + outdirfile + " -h " + size + " -D -b '#ffffff'" fileonweb = '/get?image=' + outfile if format == 'shapefile': thisfilter = year + '_' + code + '_' infile = year + '_' + code + '_' + 'tmp.json' outfile = year + '_' + code + '_' + 'tmp.shp' indirfile = imagepathloc + '/' + infile outdirfile = imagepathloc + '/' + outfile webapicmd = website + "/api/maps?format=geojson&year=" + year if province: webapicmd = webapicmd + "&province=" + province cmd = "/usr/bin/wget \"" + webapicmd +"\" -O " + indirfile p = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True) result = p.communicate()[0] cmd = "/usr/bin/ogr2ogr -f \"ESRI Shapefile\" " + outdirfile + " " + indirfile p = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True) result = p.communicate()[0] if outdirfile: cmd = "cd " + imagepathloc + ";tar -cf " + thisfilter + ".tar *" + thisfilter + "*;gzip " + thisfilter + ".tar;rm -rf *" + thisfilter + "*tmp*" shapefile = '/get?nlgis=' + thisfilter + ".tar.gz" if format == 'pdf': outfile = year + '_' + code + '_' + 'map.PDF' outdirfile = imagepathloc + '/' + outfile cmd = "/usr/bin/inkscape " + filesvg + " --export-pdf=" + outdirfile + " -D -b '#ffffff'" fileonweb = '' pdffile = '/get?pdf=' + outfile if cmd: p = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True) result = p.communicate()[0] image = outfile if shapefile: return "<a href=\"" + shapefile + "\">Download ShapeFile</a>" resp = make_response(render_template('download.html', image=fileonweb, svgfile=svgfileout, pdffile=pdffile)) return resp @app.route('/treemap') def treemap(settings=''): (years, ctrlist) = ([], '') showpanel = 'yes' config = configuration() if config['error']: return config['error'] (historical, handle, handles, thisyear) = ('', '', [], '') if request.args.get('face'): facehandle = request.args.get('face') if facehandle not in handles: handles.append(facehandle) handle = facehandle if request.args.get('handle'): handledataset = request.args.get('handle') try: (pids, pidslist) = pidfrompanel(handledataset) handle = pids[0] handles.append(handle) except: handles.append(handledataset) handle = handledataset nopanel = 'yes' if request.args.get('historical'): historical = request.args.get('historical') if request.args.get('year'): thisyear = request.args.get('year') if request.args.get('hist'): historical = request.args.get('hist') if request.args.get('ctrlist'): ctrlist = request.args.get('ctrlist') if ctrlist == config['ctrlist']: ctrlist = '' mainlink = '&handle=' + str(handle) try: (title, units, years) = dpemetadata(config, handle) except: (title, units, years) = ('Panel Data', '', []) if historical: mainlink = str(mainlink) + '&historical=on' if thisyear: mainlink = str(mainlink) + '&year=' + str(thisyear) if ctrlist: mainlink = str(mainlink) + '&ctrlist=' + str(ctrlist) links = graphlinks(mainlink) apitreemap = config['apiroot'] + "/api/treemap?action=showyears&handle=" + str(handles[0]) + "&ctrlist=" + str(ctrlist) years = load_api_data(apitreemap, 1) total = len(years) lastyear = years[-1] resp = make_response(render_template('treemap.html', handle=handle, chartlib=links['chartlib'], barlib=links['barlib'], panellib=links['panellib'], treemaplib=links['treemaplib'], q=handle, showpanel=showpanel, historical=historical, title=title, thisyear=thisyear, years=years, total=total, lastyear=lastyear, ctrlist=ctrlist)) return resp # Visualize @app.route('/visualize') def visualize(): config = configuration() resp = 'visualize' view = 'panel' if request.args.get('view'): view = request.args.get('view') if config['error']: return config['error'] if view == 'panel': resp = panel() elif view == 'time-series': resp = chartlib() elif view == 'treemap': resp = treemap() return resp @app.route('/panel') def panel(settings=''): showpanel = '' handle = '' handler = '' config = configuration() if config['error']: return config['error'] f = request.args for q in f: value = f[q] if value: handle = str(handle) + '&' + str(q) + '=' + str(f[q]) # Default countris try: if not f['yearmin']: handle = str(handle) + '&yearmin=1500&yearmax=2013' except: handle = str(handle) + '&yearmin=1500&yearmax=2013' try: if not f['ctrlist']: handle = str(handle) + '&ctrlist=' + config['ctrlist'] except: handle = str(handle) + '&ctrlist=' + config['ctrlist'] try: if f['print']: showpanel = '' except: showpanel = 'yes' try: (title, units, years) = dpemetadata(config, handle) except: (title, units, years) = ('Panel Data', '', []) links = graphlinks(handle) resp = make_response(render_template('panel.html', handle=handle, chartlib=links['chartlib'], barlib=links['barlib'], panellib=links['panellib'], treemaplib=links['treemaplib'], q=handle, showpanel=showpanel, title=title)) return resp @app.route('/chartlib') def chartlib(): (thismapurl, apilink, ctrlist, title, units, switch, hist) = ('', '', '', 'Title', 'Units', 'modern', '') handleface = [] config = configuration() ctrlist = config['ctrlist'] if config['error']: return config['error'] urlmatch = re.search(r'(.+)\&face', request.url) try: if urlmatch.group(0): thismapurl = urlmatch.group(1) except: thismapurl = request.url if 'sandbox' not in thismapurl: thismapurl = thismapurl.replace('http://', 'https://') handles = [] showpanel = 'yes' try: if request.args.get('print'): showpanel = '' except: showpanel = 'yes' f = request.args handle = '' for q in f: value = f[q] if value: handle = str(handle) + '&' + str(q) + '=' + str(f[q]) if request.args.get('ctrlist'): ctrlist = request.args.get('ctrlist') if request.args.get('hist'): switch = 'historical' hist = request.args.get('hist') if request.args.get('handle'): handledataset = request.args.get('handle') try: (pids, pidslist) = pidfrompanel(handledataset) handles.append(pids[0]) except: handles.append(handledataset) nopanel = 'yes' if pids[0]: apilink = "/api/tabledata?handle=" + str(pids[0]) if ctrlist: apilink = apilink + '&ctrlist=' + ctrlist if request.args.get('hist'): apilink = apilink + '&hist=' + hist if request.args.get('face'): handles = [] handleface = request.args.get('face') handles.append(handleface) if handleface: apilink = "/api/tabledata?handle=" + str(handleface) if ctrlist: apilink = apilink + '&ctrlist=' + ctrlist if request.args.get('hist'): apilink = apilink + '&hist=' + hist try: pids.remove(handleface) except: nothing = 1 if set(pids) == set(handles): pids[:] = [] links = graphlinks('&face=' + str(handles[0]) + '&hist=' + hist) (geocoder, geolist, oecd2webmapper, modern, historical) = request_geocoder(config, '') # vty hist (origdata, maindata, metadata) = request_datasets(config, switch, modern, historical, handles, geolist) try: title = metadata[handles[0]]['title'] units = metadata[handles[0]]['units'] except: skip = 0 handledict = {} if handles: handle = handles[0] if pids: try: if handles[1]: pids.remove(handles[0]) except: skip = 1 hquery = formdatasetquery(pids,'') d = readdatasets('datasets', json.loads(hquery)) for x in d: thishandle = x['handle'] if thishandle != handle: handledict[thishandle] = x['title'] resp = make_response(render_template('chartlib.html', thismapurl=thismapurl, indicators=handledict, apilink=apilink, title=title, units=units, showpanel=showpanel, handle=handle, chartlib=links['chartlib'], barlib=links['barlib'], panellib=links['panellib'], treemaplib=links['treemaplib'])) return resp @app.route('/graphlib') def graphlib(settings=''): showpanel = 'yes' try: if request.args.get('print'): showpanel = '' except: showpanel = 'yes' f = request.args handle = '' for q in f: value = f[q] if value: handle = str(handle) + '&' + str(q) + '=' + str(f[q]) links = graphlinks(handle) resp = make_response(render_template('graphlib.html', handle=handle, chartlib=links['chartlib'], barlib=links['barlib'], panellib=links['panellib'], treemaplib=links['treemaplib'], q=handle, showpanel=showpanel)) return resp @app.route('/datasetspace') def datasetspace(settings=''): (where, query, datasets, metadata, s, permissions) = ({}, '', [], [], {}, 'yes') where = {'collab': '', 'iish': '', 'harvard': ''} pagetitle = "Public datasets" config = configuration() if config['error']: return config['error'] root = config['apiroot'] dataversename = 'global' if request.args.get('dv'): dataversename = request.args.get('dv') if request.args.get('q'): query = request.args.get('q') if request.args.get('permissions'): permissions = request.args.get('permissions') if request.args.get('where'): where[request.args.get('where')] = 'checked="checked"' settings = Configuration() sconnection = ExtrasearchAPI(settings.config['dataverseroot'], dataversename) if where['harvard']: # Extract host for Dataverse connection findhost = re.search('(http\:\/\/|https\:\/\/)(.+)', settings.config['harvarddataverse']) if findhost: settings.config['dataversehostname'] = findhost.group(2) connection = Connection(settings.config['dataversehostname'], settings.config['harvardkey']) else: try: connection = Connection(config['hostname'], settings.config['key']) except: return 'Error: no connection to Dataverse. Please try later...' handlestr = '' if query: s['q'] = query metadata = search_by_keyword(connection, s) else: try: dataverse = connection.get_dataverse(dataversename) item = dataverse.get_contents() active = 'yes' except: active = None if active: try: for item in dataverse.get_contents(): handlestr+= item['identifier'] + ' ' active = 'yes' except: active = None if not active: handlestr = sconnection.read_all_datasets() if handlestr: s['q'] = handlestr s['per_page'] = 100 metadata = search_by_keyword(connection, s) #return str(metadata['items']) for dataset in metadata['items']: active = '' # Private datasets if permissions == 'closed': pagetitle = "Restricted datasets" try: if (sconnection.has_restricted_data(dataset['global_id'])): active = 'yes' except: active = '' # Public data else: try: if not (sconnection.has_restricted_data(dataset['global_id'])): active = 'yes' except: active = '' if active: try: for author in dataset['authors']: dataset['author'] = str(author) + ', ' dataset['author'] = dataset['author'][:-2] except: dataset['author'] = str(dataset['description']) datasets.append(dataset) if where['harvard']: datasets.append(dataset) (username, projectname) = ('','') fields = {} resp = make_response(render_template('search.html', projectname=projectname, username=username, datasets=datasets, searchq=query, pagetitle=pagetitle, where=where, fields=fields)) return resp @app.route('/') def start(settings=''): activepage = 'Home' config = configuration() if config['error']: return config['error'] path = config['path'] pages = getindex(activepage) perlbin = "/usr/bin/perl " project = "frontpage" base = '' varproject = request.args.get('project') varbase = request.args.get('base') if varproject: project = varproject if varbase: base = varbase cmd = perlbin + path + "/../../bin/collab2api.pl " + project + " '' " + " " + base p = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True) maincontent = p.communicate()[0] resp = make_response(render_template('clioinfra.html', maincontent=maincontent)) return resp @app.route('/benford') def benford(cmddataset='', cmdyear='', settings=''): varbase = request.args.get('base') dataset = request.args.get('dataset') if cmddataset: dataset = cmddataset if cmdyear: year = cmdyear m = re.search(r'(\S+)\/(\S+)\:(\d+)\:(\d+)', dataset) handle = m.group(2) + m.group(3) + '_' + m.group(4) if not handle: return 'no dataset' year = request.args.get('year') action = request.args.get('action') apiurl = "http://localhost/api/data?db=strikes_test&handle=" + handle + "&categories=8&datarange=calculate" if year: varyear = year else: varyear = '1890'
# -*- coding:utf-8 -*- import os import time import six import eventlet import cPickle import contextlib import mysql import mysql.connector from simpleutil.config import cfg from simpleutil.log import log as logging from simpleutil.utils.systemutils import ExitBySIG from simpleutil.utils.systemutils import UnExceptExit from simpleservice.ormdb.tools.backup import mysqldump from simpleservice.ormdb.tools.backup import mysqlload from simpleflow.utils.storage_utils import build_session from simpleflow.api import load from simpleflow.task import Task from simpleflow.types import failure from simpleflow.patterns import linear_flow as lf from simpleflow.patterns import unordered_flow as uf from goperation.manager.rpc.agent import sqlite from simpleflow.storage.middleware import LogBook from simpleflow.storage import Connection from simpleflow.engines.engine import ParallelActionEngine from goperation.utils import safe_fork from goperation.manager import common as manager_common from gogamechen3 import common from gogamechen3.api import exceptions CONF = cfg.CONF LOG = logging.getLogger(__name__) SWALLOW = 'SWALLOW' DUMPING = 'DUMPING' SWALLOWED = 'SWALLOWED' INSERT = 'INSERT' FINISHED = 'FINISHED' def sqlfile(entity): return '%s-db-%d.sql' % (common.GAMESERVER, entity) @contextlib.contextmanager def dbconnect(host, port, user, passwd, schema, raise_on_warnings=True): if not schema: raise ValueError('Schema is none?') kwargs = dict(user=user, passwd=passwd, host=host, port=port, database=schema, raise_on_warnings=raise_on_warnings) conn = mysql.connector.connect(**kwargs) try: yield conn finally: conn.close() def cleandb(host, port, user, passwd, schema): """drop 所有表""" with dbconnect(host=host, port=port, user=user, passwd=<PASSWORD>, schema=schema) as conn: cursor = conn.cursor() cursor.execute('show tables') tables = cursor.fetchall() for table in tables: cursor.execute('drop table %s' % table[0]) # cursor.fetchall() cursor.close() class Swallow(Task): def __init__(self, uuid, steps, entity, endpoint): self.endpoint = endpoint self.entity = entity self.stpes = steps self.uuid = uuid super(Swallow, self).__init__(name='swallow_%d' % entity, provides='db_%d' % entity) def execute(self, entity, timeout): step = self.stpes[self.entity] if step in (DUMPING, SWALLOW): with self.endpoint.mlock: result = self.endpoint.client.swallow_entity(self.entity, self.uuid, entity) if result.get('resultcode') != manager_common.RESULT_SUCCESS or not result.get('data'): LOG.error('Swallow success, but can not find database from result') return None data = result.get('data') databases = data[0].get('databases') if not databases: LOG.error('Swallow success, databases is empty') return None self.stpes[self.entity] = DUMPING return databases return None class DumpData(Task): NODUMPTABLES = [ 'battlefield_log_lowfight', 'limit_level', 'mining_area', 'pay_censoring', 'player_censoring', 'quick_report', 'pvp_arena_pet_rank', 'var_world', 'pvp_cupmatch_fight_log', 'oper_record_plot', 'timer_boss', 'pvp_arena_rank', 'pve_campaign_log', ] DUMPONLYONE = [ 'var_world' ] def __init__(self, uuid, steps, entity, endpoint=None, skip_only_one=True): self.entity = entity self.stpes = steps self.uuid = uuid self.endpoint = endpoint self.skip_only_one = skip_only_one super(DumpData, self).__init__(name='dump_%d' % entity, rebind=['mergeroot', 'dtimeout', 'db_%d' % entity]) def _ext_args(self, schema): extargs = ['-t', '-c'] nodumps = (self.NODUMPTABLES + self.DUMPONLYONE) if self.skip_only_one else self.NODUMPTABLES for table in nodumps: extargs.append('--ignore-table=%s.%s' % (schema, table)) return extargs @staticmethod def _prepare_database(databases): return databases[common.DATADB] def execute(self, root, timeout, databases): """ 导出需要合并的实体数据库 如果init.sql文件不存在,导出一份init.sql文件 """ step = self.stpes[self.entity] if step == DUMPING: _file = os.path.join(root, sqlfile(self.entity)) if os.path.exists(_file): return database = DumpData._prepare_database(databases) try: mysqldump(_file, database.get('host'), database.get('port'), database.get('user'), database.get('passwd'), database.get('schema'), character_set=None, extargs=self._ext_args(database.get('schema')), logfile=None, callable=safe_fork, timeout=timeout) except (ExitBySIG, UnExceptExit): LOG.error('Dump database of entity %d fail' % self.entity) if os.path.exists(_file): try: os.remove(_file) except (OSError, OSError): LOG.error('Try remove file %d fail!' % _file) raise exceptions.MergeException('Remove error file %s fail' % _file) else: self.stpes[self.entity] = SWALLOWED # create init file initfile = os.path.join(root, 'init.sql') if not os.path.exists(initfile): try: with self.endpoint.mlock: if not os.path.exists(initfile): LOG.info('Dump init sql from entity %d, schema %s' % (self.entity, database.get('schema'))) mysqldump(initfile, database.get('host'), database.get('port'), database.get('user'), database.get('passwd'), database.get('schema'), character_set=None, extargs=['-R', '-d'], logfile=None, callable=safe_fork, timeout=timeout) except (ExitBySIG, UnExceptExit): if os.path.exists(initfile): try: os.remove(initfile) except (OSError, OSError): LOG.error('Try remove init sql file fail!') class Swallowed(Task): def __init__(self, uuid, steps, entity, endpoint): self.endpoint = endpoint self.entity = entity self.stpes = steps self.uuid = uuid super(Swallowed, self).__init__(name='swallowed_%d' % entity) def execute(self, entity, timeout): step = self.stpes[self.entity] if step == SWALLOWED: with self.endpoint.mlock: result = self.endpoint.client.swallowed_entity(self.entity, self.uuid, entity) try: if result.get('resultcode') != manager_common.RESULT_SUCCESS or not result.get('data'): LOG.error('Swallowed success, but can not find areas from result') return None data = result.get('data') areas = data[0].get('areas') if not areas: raise KeyError('Not areas found') except KeyError as e: LOG.error('Get areas fail %s' % e.message) else: self.stpes[self.entity] = INSERT for i in range(5): if entity not in self.endpoint.konwn_appentitys: eventlet.sleep(3) try: self.endpoint.konwn_appentitys[entity]['areas'].extend(areas) except KeyError: raise exceptions.MergeException('Target entity %d not in konwn appentitys' % entity) LOG.debug('Extend new areas of konwn appentitys success') class SafeCleanDb(Task): def __init__(self): super(SafeCleanDb, self).__init__(name='cleandb') def execute(self, root, database): """清空前备份数据库,正常情况下备份内容为空""" LOG.debug('Try backup database before clean') safebak = os.path.join(root, 'safebak.%d.gz' % time.time()) # back up database mysqldump(safebak, database.get('host'), database.get('port'), database.get('user'), database.get('passwd'), database.get('schema'), character_set=None, extargs=['-R'], logfile=None, callable=safe_fork, timeout=15) LOG.debug('Backup database before clean success, try clean it') # drop all table cleandb(host=database.get('host'), port=database.get('port'), user=database.get('user'), passwd=database.<PASSWORD>('passwd'), schema=database.get('schema')) class InitDb(Task): def __init__(self): super(InitDb, self).__init__(name='initdb') @staticmethod def _predo(root, database): """对原始数据库做特殊处理""" prefile = os.path.join(root, 'pre.sql') if os.path.exists(prefile): mysqlload(prefile, database.get('host'), database.get('port'), database.get('user'), database.get('passwd'), database.get('schema'), character_set=None, extargs=None, logfile=None, callable=safe_fork, timeout=30) def execute(self, timeline, root, database): LOG.debug('Try init databases') initfile = os.path.join(root, 'init.sql') logfile = os.path.join(root, 'initdb.err.%d.log' % timeline) mysqlload(initfile, database.get('host'), database.get('port'), database.get('user'), database.get('passwd'), database.get('schema'), character_set=None, extargs=None, logfile=logfile, callable=safe_fork, timeout=15) LOG.debug('Init databases success, try call pre.sql') os.remove(logfile) self._predo(root, database) class InserDb(Task): """插入各个实体的数据库""" def __init__(self, entity, stoper): self.entity = entity self.stoper = stoper super(InserDb, self).__init__(name='insert-%d' % entity) def execute(self, timeline, root, database, timeout): if self.stoper[0]: raise exceptions.MergeException('Stop mark is true') _file = os.path.join(root, sqlfile(self.entity)) logfile = os.path.join(root, 'insert-%d.err.%d.log' % (self.entity, timeline)) LOG.info('Insert database of entity %d, sql file %s' % (self.entity, _file)) mysqlload(_file, database.get('host'), database.get('port'), database.get('user'), database.get('passwd'), database.get('schema'), character_set=None, extargs=None, logfile=logfile, callable=safe_fork, timeout=timeout) LOG.info('Insert database of entity %d success' % self.entity) os.remove(logfile) def revert(self, result, database, **kwargs): """插入失败清空数据库""" if isinstance(result, failure.Failure): if not self.stoper[0]: LOG.warning('Insert database of entity %d fail' % self.entity) self.stoper[0] = 1 else: LOG.warning('Insert database of entity %d get stop mark' % self.entity) class PostDo(Task): def __init__(self, uuid, endpoint): self.uuid = uuid self.endpoint = endpoint super(PostDo, self).__init__(name='postdo') @staticmethod def _postdo(root, database): """合并完成后特殊处理""" postfile = os.path.join(root, 'post.sql') if not os.path.exists(postfile): with open(postfile, 'w') as f: f.write('delete from var_player where `key` = 100;\n') f.write('update guilds set is_change_name = 0;\n') if os.path.exists(postfile): mysqlload(postfile, database.get('host'), database.get('port'), database.get('user'), database.get('passwd'), database.get('schema'), character_set=None, extargs=None, logfile=None, callable=safe_fork, timeout=30) def execute(self, root, database): """post execute""" try: self._postdo(root, database) except Exception: LOG.exception('Post databse execute fail') raise def create_merge(appendpoint, uuid, entitys, middleware, opentime, chiefs): mergepath = 'merge-%s' % uuid mergeroot = os.path.join(appendpoint.endpoint_backup, mergepath) if not os.path.exists(mergeroot): os.makedirs(mergeroot) stepsfile = os.path.join(mergeroot, 'steps.dat') if os.path.exists(stepsfile): raise exceptions.MergeException('Steps file exist, can not merge') data = {} steps = {} for _entity in entitys: steps[_entity] = SWALLOW data['opentime'] = opentime data['chiefs'] = chiefs data['steps'] = steps with open(stepsfile, 'wb') as f: cPickle.dump(data, f) merge_entitys(appendpoint, uuid, middleware.entity, middleware.databases) def merge_entitys(appendpoint, uuid, entity, databases): datadb = databases[common.DATADB] mergepath = 'merge-%s' % uuid mergeroot = os.path.join(appendpoint.endpoint_backup, mergepath) stepsfile = os.path.join(mergeroot, 'steps.dat') initfile = os.path.join(mergeroot, 'init.sql') if not os.path.exists(stepsfile): raise exceptions.MergeException('Steps file not exist') with open(stepsfile, 'rb') as f: data = cPickle.load(f) steps = data['steps'] prepares = [] for _entity, step in six.iteritems(steps): # 一些post sql执行错误对整体无影响情况下 # 可以直接讲step改为FINISHED避免重复合服步骤 if step == FINISHED: for _step in six.itervalues(steps): if _step != FINISHED: raise exceptions.MergeException('Steps is finish?') appendpoint.client.finish_merge(uuid) appendpoint.flush_config(entity, databases, opentime=data['opentime'], chiefs=data['chiefs']) return if step != INSERT: prepares.append(_entity) mini_entity = min(prepares) if prepares: name = 'prepare-merge-at-%d' % int(time.time()) book = LogBook(name=name) store = dict(timeout=5, dtimeout=600, mergeroot=mergeroot, entity=entity) taskflow_session = build_session('sqlite:///%s' % os.path.join(mergeroot, '%s.db' % name)) connection = Connection(taskflow_session) prepare_uflow = uf.Flow(name) for _entity in prepares: entity_flow = lf.Flow('prepare-%d' % _entity) entity_flow.add(Swallow(uuid, steps, _entity, appendpoint)) entity_flow.add(DumpData(uuid, steps, _entity, appendpoint, _entity != mini_entity)) entity_flow.add(Swallowed(uuid, steps, _entity, appendpoint)) prepare_uflow.add(entity_flow) engine = load(connection, prepare_uflow, store=store, book=book, engine_cls=ParallelActionEngine, max_workers=4) try: engine.run() except Exception as e: if LOG.isEnabledFor(logging.DEBUG): LOG.exception('Prepare merge task execute fail') raise exceptions.MergeException('Prepare merge task execute fail, %s %s' % (e.__class__.__name__, str(e))) finally: connection.session = None taskflow_session.close() with open(stepsfile, 'wb') as f: cPickle.dump(data, f) for _entity, step in six.iteritems(steps): if step != INSERT: raise exceptions.MergeException('Some step not on %s' % INSERT) if not os.path.exists(os.path.join(mergeroot, sqlfile(_entity))): raise exceptions.MergeException('Entity %d sql file not exist' % _entity) if not os.path.exists(initfile): LOG.error('Init database file not exist') raise exceptions.MergeException('Init database file not exist') LOG.info('Prepare merge success, try merge database') now = int(time.time()) name = 'merge-at-%d' % now book = LogBook(name=name) store = dict(timeout=1800, root=mergeroot, database=datadb, timeline=now) taskflow_session = build_session('sqlite:///%s' % os.path.join(mergeroot, '%s.db' % name)) connection = Connection(taskflow_session) merge_flow = lf.Flow('merge-to') merge_flow.add(SafeCleanDb()) merge_flow.add(InitDb()) insert_lflow = lf.Flow('insert-db') stoper = [0] for _entity in steps: insert_lflow.add(InserDb(_entity, stoper)) merge_flow.add(insert_lflow) merge_flow.add(PostDo(uuid, appendpoint)) engine = load(connection, merge_flow, store=store, book=book, engine_cls=ParallelActionEngine, max_workers=4) try: engine.run() except Exception as e: if LOG.isEnabledFor(logging.DEBUG): LOG.exception('Merge database task execute fail') raise exceptions.MergeException('Merge database task execute fail, %s %s' % (e.__class__.__name__, str(e))) else: for _entity in steps: steps[_entity] = FINISHED with open(stepsfile, 'wb') as f: cPickle.dump(data, f) appendpoint.client.finish_merge(uuid) appendpoint.flush_config(entity, databases, opentime=data['opentime'], chiefs=data['chiefs']) LOG.info('Merge
''' Original repository: https://github.com/eriklindernoren/PyTorch-YOLOv3 https://github.com/junsukchoe/ADL ''' from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches from .model_utils import build_targets, to_cpu, non_max_suppression __all__ = ['ADL', 'Upsample', 'EmptyLayer', 'YOLOLayer'] class ADL(nn.Module): ''' attention drop layer default: 0.75 0.8 ''' def __init__(self, adl_drop_rate=0.5, adl_drop_threshold=0.5): super(ADL, self).__init__() if not (0 <= adl_drop_rate <= 1): raise ValueError("Drop rate must be in range [0, 1].") if not (0 <= adl_drop_threshold <= 1): raise ValueError("Drop threshold must be in range [0, 1].") self.adl_drop_rate = adl_drop_rate self.adl_drop_threshold = adl_drop_threshold self.attention = None self.drop_mask = None def forward(self, input_): if self.training: attention = torch.mean(input_, dim=1, keepdim=True) importance_map = torch.sigmoid(attention) drop_mask = self._drop_mask(attention) selected_map = self._select_map(importance_map, drop_mask) return input_.mul(selected_map) else: return input_ def _select_map(self, importance_map, drop_mask): random_tensor = torch.rand([], dtype=torch.float32) + self.adl_drop_rate binary_tensor = random_tensor.floor() return (1. - binary_tensor) * importance_map + binary_tensor * drop_mask def _drop_mask(self, attention): b_size = attention.size(0) max_val, _ = torch.max(attention.view(b_size, -1), dim=1, keepdim=True) thr_val = max_val * self.adl_drop_threshold thr_val = thr_val.view(b_size, 1, 1, 1) return (attention < thr_val).float() def extra_repr(self): return 'adl_drop_rate={}, adl_drop_threshold={}'.format( self.adl_drop_rate, self.adl_drop_threshold) class Upsample(nn.Module): """ nn.Upsample is deprecated """ def __init__(self, scale_factor, mode="nearest"): super(Upsample, self).__init__() self.scale_factor = scale_factor self.mode = mode def forward(self, x): x = F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode) return x class EmptyLayer(nn.Module): """Placeholder for 'route' and 'shortcut' layers""" def __init__(self): super(EmptyLayer, self).__init__() class YOLOLayer(nn.Module): """Detection layer""" def __init__(self, anchors, img_dim=512): # def __init__(self, anchors, num_classes, img_dim=416): super(YOLOLayer, self).__init__() self.anchors = anchors self.num_anchors = len(anchors) # self.num_classes = num_classes self.num_classes = 0 self.ignore_thres = 0.5 self.mse_loss = nn.MSELoss() self.bce_loss = nn.BCELoss() self.obj_scale = 1 self.noobj_scale = 100 self.metrics = {} self.img_dim1 = img_dim self.img_dim2 = img_dim self.img_dim = (self.img_dim1,self.img_dim2) self.grid_size1 = -1 # grid size self.grid_size2 = -1 # grid size self.grid_size = (self.grid_size1,self.grid_size2) def compute_grid_offsets(self, grid_size, cuda=True): self.grid_size1, self.grid_size2 = self.grid_size = grid_size g1, g2 = self.grid_size FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor self.stride1 = self.img_dim1 / self.grid_size1 self.stride2 = self.img_dim2 / self.grid_size2 self.stride = (self.stride1,self.stride2) # Calculate offsets for each grid self.grid_x = torch.arange(g2).repeat(g1, 1).view([1, 1, g1, g2]).type(FloatTensor) self.grid_y = torch.arange(g1).repeat(g2, 1).t().view([1, 1, g1, g2]).type(FloatTensor) self.scaled_anchors = FloatTensor([(a_w / self.stride2, a_h / self.stride1) for a_w, a_h in self.anchors]) self.anchor_w = self.scaled_anchors[:, 0:1].view((1, self.num_anchors, 1, 1)) self.anchor_h = self.scaled_anchors[:, 1:2].view((1, self.num_anchors, 1, 1)) def forward(self, x, targets=None, img_dim=None, scene_conf=None): # Tensors for cuda support FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor ByteTensor = torch.cuda.ByteTensor if x.is_cuda else torch.ByteTensor self.img_dim1 = img_dim[0] self.img_dim2 = img_dim[1] self.img_dim = (self.img_dim1,self.img_dim2) num_samples = x.size(0) grid_size1 = x.size(2) grid_size2 = x.size(3) grid_size = (grid_size1,grid_size2) prediction = ( x.view(num_samples, self.num_anchors, self.num_classes + 5, grid_size1, grid_size2) .permute(0, 1, 3, 4, 2) .contiguous() ) # Get outputs x = torch.sigmoid(prediction[..., 0]) # Center x y = torch.sigmoid(prediction[..., 1]) # Center y w = prediction[..., 2] # Width h = prediction[..., 3] # Height pred_conf = torch.sigmoid(prediction[..., 4]) # Conf # pred_cls = torch.sigmoid(prediction[..., 5:]) # No Cls pred. # If grid size does not match current we compute new offsets if grid_size != self.grid_size: self.compute_grid_offsets(grid_size, cuda=x.is_cuda) # Add offset and scale with anchors pred_boxes = FloatTensor(prediction[..., :4].shape) pred_boxes[..., 0] = (x.data + self.grid_x) * self.stride1 pred_boxes[..., 1] = (y.data + self.grid_y) * self.stride2 pred_boxes[..., 2] = (torch.exp(w.data) * self.anchor_w) * self.stride1 pred_boxes[..., 3] = (torch.exp(h.data) * self.anchor_h)* self.stride2 # print('image :', self.img_dim) # print('grid : ',self.grid_size) # print('stride: ',self.stride) if scene_conf is not None: # scene_align = F.interpolate(scene_conf,scale_factor=grid_size/scene_conf.size(2),mode='nearest') scene_align = F.interpolate(scene_conf,scale_factor=grid_size1/scene_conf.size(2),mode='area') pred_conf = pred_conf * scene_align output = torch.cat( ( pred_boxes.view(num_samples, -1, 4), # pred_boxes.view(num_samples, -1, 4) * self.stride, pred_conf.view(num_samples, -1, 1), # pred_cls.view(num_samples, -1, self.num_classes), ), -1, ) if targets is None: return output, 0 else: # iou_scores, class_mask, obj_mask, noobj_mask, tx, ty, tw, th, tcls, tconf = build_targets( iou_scores, obj_mask, noobj_mask, tx, ty, tw, th, tconf = build_targets( pred_boxes=pred_boxes, # pred_cls=pred_cls, target=targets, anchors=self.scaled_anchors, ignore_thres=self.ignore_thres, ) # Loss : Mask outputs to ignore non-existing objects (except with conf. loss) loss_x = self.mse_loss(x[obj_mask], tx[obj_mask]) loss_y = self.mse_loss(y[obj_mask], ty[obj_mask]) loss_w = self.mse_loss(w[obj_mask], tw[obj_mask]) loss_h = self.mse_loss(h[obj_mask], th[obj_mask]) loss_conf_obj = self.bce_loss(pred_conf[obj_mask], tconf[obj_mask]) loss_conf_noobj = self.bce_loss(pred_conf[noobj_mask], tconf[noobj_mask]) loss_conf = self.obj_scale * loss_conf_obj + self.noobj_scale * loss_conf_noobj # loss_cls = self.bce_loss(pred_cls[obj_mask], tcls[obj_mask]) # total_loss = loss_x + loss_y + loss_w + loss_h + loss_conf + loss_cls total_loss = loss_x + loss_y + loss_w + loss_h + loss_conf # Metrics # cls_acc = 100 * class_mask[obj_mask].mean() conf_obj = pred_conf[obj_mask].mean() conf_noobj = pred_conf[noobj_mask].mean() conf50 = (pred_conf > 0.5).float() iou50 = (iou_scores > 0.5).float() iou75 = (iou_scores > 0.75).float() # detected_mask = conf50 * class_mask * tconf detected_mask = conf50 * tconf precision = torch.sum(iou50 * detected_mask) / (conf50.sum() + 1e-16) recall50 = torch.sum(iou50 * detected_mask) / (obj_mask.sum() + 1e-16) recall75 = torch.sum(iou75 * detected_mask) / (obj_mask.sum() + 1e-16) self.metrics = { "loss": to_cpu(total_loss).item(), "x": to_cpu(loss_x).item(), "y": to_cpu(loss_y).item(), "w": to_cpu(loss_w).item(), "h": to_cpu(loss_h).item(), "conf": to_cpu(loss_conf).item(), "recall50": to_cpu(recall50).item(), "recall75": to_cpu(recall75).item(), "precision": to_cpu(precision).item(), "conf_obj": to_cpu(conf_obj).item(), "conf_noobj": to_cpu(conf_noobj).item(), "grid_size": grid_size[0], } return output, total_loss class YOLOLayer_BAK(nn.Module): """ Detection layer: only for square images """ def __init__(self, anchors, img_dim=512): # def __init__(self, anchors, num_classes, img_dim=416): super(YOLOLayer, self).__init__() self.anchors = anchors self.num_anchors = len(anchors) # self.num_classes = num_classes self.num_classes = 0 self.ignore_thres = 0.5 self.mse_loss = nn.MSELoss() self.bce_loss = nn.BCELoss() self.obj_scale = 1 self.noobj_scale = 100 self.metrics = {} self.img_dim = img_dim self.grid_size = -1 # grid size def compute_grid_offsets(self, grid_size, cuda=True): self.grid_size = grid_size g = self.grid_size FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor self.stride = self.img_dim / self.grid_size # Calculate offsets for each grid self.grid_x = torch.arange(g).repeat(g, 1).view([1, 1, g, g]).type(FloatTensor) self.grid_y = torch.arange(g).repeat(g, 1).t().view([1, 1, g, g]).type(FloatTensor) self.scaled_anchors = FloatTensor([(a_w / self.stride, a_h / self.stride) for a_w, a_h in self.anchors]) self.anchor_w = self.scaled_anchors[:, 0:1].view((1, self.num_anchors, 1, 1)) self.anchor_h = self.scaled_anchors[:, 1:2].view((1, self.num_anchors, 1, 1)) def forward(self, x, targets=None, img_dim=None, scene_conf=None): # Tensors for cuda support FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor ByteTensor = torch.cuda.ByteTensor if x.is_cuda else torch.ByteTensor self.img_dim = img_dim[0] num_samples = x.size(0) grid_size = x.size(2) prediction = ( x.view(num_samples, self.num_anchors, self.num_classes + 5, grid_size, grid_size) .permute(0, 1, 3, 4, 2) .contiguous() ) # Get outputs x = torch.sigmoid(prediction[..., 0]) # Center x y = torch.sigmoid(prediction[..., 1]) # Center y w = prediction[..., 2] # Width h = prediction[..., 3] # Height pred_conf = torch.sigmoid(prediction[..., 4]) # Conf # pred_cls = torch.sigmoid(prediction[..., 5:]) # No Cls pred. # If grid size does not match current we compute new offsets if grid_size != self.grid_size: self.compute_grid_offsets(grid_size, cuda=x.is_cuda) # Add offset and scale with anchors pred_boxes = FloatTensor(prediction[..., :4].shape) pred_boxes[..., 0] = x.data + self.grid_x pred_boxes[..., 1] = y.data + self.grid_y pred_boxes[..., 2] = torch.exp(w.data) * self.anchor_w pred_boxes[..., 3] = torch.exp(h.data) * self.anchor_h if scene_conf is not None: # scene_align = F.interpolate(scene_conf,scale_factor=grid_size/scene_conf.size(2),mode='nearest') scene_align = F.interpolate(scene_conf,scale_factor=grid_size/scene_conf.size(2),mode='area') pred_conf = pred_conf * scene_align output = torch.cat( ( pred_boxes.view(num_samples, -1, 4) * self.stride, pred_conf.view(num_samples, -1, 1), # pred_cls.view(num_samples, -1, self.num_classes), ), -1, ) if targets is None: return output, 0 else: # iou_scores, class_mask, obj_mask, noobj_mask, tx, ty, tw, th, tcls, tconf = build_targets( iou_scores, obj_mask, noobj_mask, tx, ty, tw, th, tconf = build_targets( pred_boxes=pred_boxes, # pred_cls=pred_cls, target=targets, anchors=self.scaled_anchors, ignore_thres=self.ignore_thres, ) # Loss : Mask outputs to ignore non-existing objects (except with conf. loss) loss_x = self.mse_loss(x[obj_mask], tx[obj_mask]) loss_y = self.mse_loss(y[obj_mask], ty[obj_mask]) loss_w = self.mse_loss(w[obj_mask], tw[obj_mask]) loss_h = self.mse_loss(h[obj_mask], th[obj_mask]) loss_conf_obj = self.bce_loss(pred_conf[obj_mask], tconf[obj_mask]) loss_conf_noobj = self.bce_loss(pred_conf[noobj_mask], tconf[noobj_mask]) loss_conf = self.obj_scale * loss_conf_obj + self.noobj_scale * loss_conf_noobj # loss_cls = self.bce_loss(pred_cls[obj_mask], tcls[obj_mask]) # total_loss = loss_x + loss_y + loss_w + loss_h + loss_conf + loss_cls total_loss = loss_x + loss_y + loss_w + loss_h + loss_conf # Metrics # cls_acc = 100 * class_mask[obj_mask].mean() conf_obj = pred_conf[obj_mask].mean() conf_noobj = pred_conf[noobj_mask].mean() conf50 = (pred_conf > 0.5).float() iou50 = (iou_scores
physics" and other longitudinal studies (where we ask you to come back for more than one session), we'll be collecting enough data to give you a report of your child's responses after you complete all the sessions. Because this is a fairly labor-intensive process (we generally have two undergraduates watch each video and record where your child is looking each frame, and then we do some analysis to create a summary), it may take us several weeks to produce your report.</p> <p>Please note that none of the measures we collect are diagnostic! For instance, while we hope you'll be interested to learn that your child looked 70% of the time at videos where things fell up versus falling down, we won't be able to tell you whether this means your child is going to be especially good at physics.</p> <p>We are generally able to provide general feedback (confirming that we got your video and will be able to use it) within a week. To see this feedback, log in, then go to "Studies" and select "Past Studies."</p> <p>If you're interested in getting individual results right away, please see our <a href="/resources">Resources</a> section for fun at-home activities you can try with your child.</p> </div> </div> </div> </div> </div> <h3>Technical</h3> <div class="panel-group" role="tablist"> <div class="panel panel-default"> <div class="panel-heading" role="tab"> <h4 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#collapse18">What browsers are supported?</a></h4> </div> <div id="collapse18" class="panel-collapse collapse"> <div class="panel-body"> <div> <p>Lookit supports recent versions of Chrome, Firefox, and Safari. We are not currently able to support Internet Explorer.</p> </div> </div> </div> </div> <div class="panel panel-default"> <div class="panel-heading" role="tab"> <h4 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#collapse19">Can we do a study on my phone or tablet?</a></h4> </div> <div id="collapse19" class="panel-collapse collapse"> <div class="panel-body"> <div> <p>Not yet! Because we're measuring kids' looking patterns, we need a reasonably stable view of their eyes and a big enough screen that we can tell whether they're looking at the left or the right side of it. We're excited about the potential for touchscreen studies that allow us to observe infants and toddlers exploring, though!</p> </div> </div> </div> </div> </div> </div> </div> </div> """, ), dict( url="/scientists/", title="The Scientists", content=f""" <div class="main"> <div class="lookit-row lookit-page-title"> <div class="container"> <h2>Meet the Scientists</h2> </div> </div> <div class="lookit-row scientists-row"> <div class="container"> <div class="row"> <div class="lookit-scientist col-sm-6 col-md-4 col-lg-3"> <div class="profile-img"><img src="{settings.STATIC_URL}images/kimandremy.png"></div> <h3><NAME></h3> <p>Kim is a graduate student in the Early Childhood Cognition Lab and Mama to six-year-old Remy. She developed Lookit partly to enable other single parents to participate in research!</p> <p>Research interests: Origins of conscious experience--or what it's like to be a baby</p> <p>Hobbies: Board games, aerial silks, bicycling</p> </div> <div class="lookit-scientist col-sm-6 col-md-4 col-lg-3"> <div class="profile-img"><img src="{settings.STATIC_URL}images/laura.jpg"></div> <h3><NAME></h3> <p>Laura is the PI of the Early Childhood Cognition Lab.</p> <p>Research interests: How children arrive at a common-sense understanding of the physical and social world through exploration and instruction.</p> <p>Hobbies: hiking, reading, and playing</p> </div> <div class="lookit-scientist col-sm-6 col-md-4 col-lg-3"> <div class="profile-img"><img src="{settings.STATIC_URL}images/molly.jpg"></div> <h3><NAME></h3> <p>Molly is a graduate student in the Lab for Developmental Studies at Harvard. She’ll be starting her own lab in July 2017 as an Assistant Professor at NYU. Molly explores the origins of abstract thought, especially in the domains of geometry and number.</p> <p>Hobbies: ballet, tennis, speaking French</p> </div> </div> <div class="row"> <h3>Alumni &amp; Collaborators</h3> <hr> <div class="lookit-scientist col-sm-6 col-md-4 col-lg-3"> <div class="profile-img"><img src="{settings.STATIC_URL}images/jessica.jpg"></div> <h3><NAME></h3> <p>Undergraduate, MIT</p> <p>Hobbies: Playing cards, eating watermelon, and hanging out with friends</p> </div> <div class="lookit-scientist col-sm-6 col-md-4 col-lg-3"> <div class="profile-img"><img src="{settings.STATIC_URL}images/audrey.jpg"></div> <h3><NAME> (Summer 2016)</h3> <p>Undergraduate, MIT</p> <p>Hobbies: Biking, learning and exploring</p> </div> <div class="lookit-scientist col-sm-6 col-md-4 col-lg-3"> <div class="profile-img"><img src="{settings.STATIC_URL}images/hope.jpg"></div> <h3>Hope Fuller-Becker (Sp 2015, Sp 2016)</h3> <p>Undergraduate, Wellesley College</p> <p>Hobbies: drawing, painting, reading and running</p> </div> <div class="lookit-scientist col-sm-6 col-md-4 col-lg-3"> <div class="profile-img"><img src="{settings.STATIC_URL}images/rianna.jpg"></div> <h3><NAME> (IAP, Sp, Fall 2015; IAP, Sp 2016)</h3> <p>Undergraduate, MIT</p> <p>Hobbies: Singing, playing the piano, and karate!</p> </div> <div class="lookit-scientist col-sm-6 col-md-4 col-lg-3"> <div class="profile-img"><img src="{settings.STATIC_URL}images/junyi.jpg"></div> <h3><NAME> (Summer 2015)</h3> <p>Recent graduate, Vanderbilt University</p> <p>Hobbies: Rock climbing, board and card games</p> </div> <div class="lookit-scientist col-sm-6 col-md-4 col-lg-3"> <div class="profile-img"><img src="{settings.STATIC_URL}images/joseph.jpg"></div> <h3><NAME> (Summer 2015)</h3> <p>Undergraduate, Skidmore College</p> <p>Hobbies: Creating, discovering, and playing electric guitar!</p> </div> <div class="lookit-scientist col-sm-6 col-md-4 col-lg-3"> <div class="profile-img"><img src="{settings.STATIC_URL}images/annie.jpg"></div> <h3><NAME> (IAP, Sp 2015)</h3> <p>Undergraduate, MIT</p> <p>Hobbies: Running, spending time outdoors, listening to music</p> </div> <div class="lookit-scientist col-sm-6 col-md-4 col-lg-3"> <div class="profile-img"><img src="{settings.STATIC_URL}images/jeanyu.jpg"></div> <h3><NAME> (IAP, Sp 2015)</h3> <p>Undergraduate, Wellesley College</p> <p>Hobbies: ballet, figure skating, piano, making art, learning about art, reading about art, learning about the brain</p> </div> <div class="lookit-scientist col-sm-6 col-md-4 col-lg-3"> <div class="profile-img"><img src="{settings.STATIC_URL}images/daniela.jpg"></div> <h3><NAME> (Sp 2015)</h3> <p>Undergraduate, MIT</p> <p>Hobbies: Crossfit athlete, swimming, boxing, painting and sketching</p> </div> <div class="lookit-scientist col-sm-6 col-md-4 col-lg-3"> <div class="profile-img"><img src="{settings.STATIC_URL}images/jean.jpg"></div> <h3><NAME> (Fa 2014)</h3> <p>Undergraduate, MIT</p> <p>Research interests: cognitive development and learning in young children</p> <p>Hobbies: Running, cycling, Taekwondo, art, being outdoors, chilling with her dog</p> </div> <div class="lookit-scientist col-sm-6 col-md-4 col-lg-3"> <div class="profile-img"><img src="{settings.STATIC_URL}images/melissa.png"></div> <h3><NAME></h3> <p>As a graduate student in the Early Childhood Cognition Lab, Melissa advised and designed stimuli for the "Learning New Verbs" study.</p> <p>Hobbies: Sewing, tango, and singing.</p> </div> <div class="lookit-scientist col-sm-6 col-md-4 col-lg-3"> <div class="profile-img"><img src="{settings.STATIC_URL}images/rachel.png"></div> <h3><NAME></h3> <p>Rachel is now a graduate student at ECCL; in her two years as our lab coordinator she helped get Lookit off the ground!</p> <p>Hobbies: Reading historical fiction and cooking</p> </div> </div> </div> </div> </div> """, ), dict( url="/resources/", title="Resources", content=f""" <div class="main"> <div class="lookit-row lookit-page-title"> <div class="container"> <h2>Resources</h2> </div> </div> <div class="lookit-row resources-row"> <div class="container"> <div class="resources-item"> <h3>Find a developmental lab near you</h3> <p>Interested in participating in research in person? Find a list of labs that study child development in your state.</p> <p>Did we miss your lab, or one you know about? Our apologies, and please let us know at <a href="mailto:<EMAIL>"><EMAIL></a></p> <div> <div class="row resources-local"> <div class="col-md-4"> <select id="state-select" onchange="populateLabList(this.value)"> <option></option> <option>Alabama</option> <option>Alaska</option> <option>Arizona</option> <option>Arkansas</option> <option>California</option> <option>Colorado</option> <option>Connecticut</option> <option>Delaware</option> <option>Florida</option> <option>Georgia</option> <option>Hawaii</option> <option>Idaho</option> <option>Illinois</option> <option>Indiana</option> <option>Iowa</option> <option>Kansas</option> <option>Kentucky</option> <option>Louisiana</option> <option>Maine</option> <option>Maryland</option> <option>Massachusetts</option> <option>Michigan</option> <option>Minnesota</option> <option>Mississippi</option> <option>Missouri</option> <option>Montana</option> <option>Nebraska</option> <option>Nevada</option> <option>New Hampshire</option> <option>New Jersey</option> <option>New Mexico</option> <option>New York</option> <option>North Carolina</option> <option>North Dakota</option> <option>Ohio</option> <option>Oklahoma</option> <option>Oregon</option> <option>Pennsylvania</option> <option>Rhode Island</option> <option>South Carolina</option> <option>South Dakota</option> <option>Tennessee</option> <option>Texas</option> <option>Utah</option> <option>Vermont</option> <option>Virginia</option> <option>Washington</option> <option>West Virginia</option> <option>Wisconsin</option> <option>Wyoming</option> </select> </div> <div class="col-md-8"> <b class='selected-state'></b> <p id="nothing-to-show"></p> <ul id="lab-list"> </ul> </div> </div> </div> </div> <hr> <div class="resources-item"> <h3>Looking for other 'citizen science' projects your family can help?</h3> <p>Check out <a href="http://scistarter.com/index.html">SciStarter</a>, which has many projects suitable for elementary school age children and up, and for the whole family to explore together!</p> </div> <hr> <div class="resources-item"> <h3>Activities to try at home</h3> <p>Want to learn more about cognitive development? Here are some activities that may give you some insight into your own child's developing mind. Instead of studies our lab is running, these are "at home labs" for parents to try on their own--but please feel free to contact us with any questions!</p> <h4>Learning about other minds: your child's developing theory of mind</h4><iframe allowfullscreen frameborder="0" height="315" src="https://www.youtube.com/embed/uxyVYATX9-M" width="560"></iframe> <p><strong>Age range</strong>: 2.5 to 5 years</p> <p><strong>What you'll need</strong>: For the "Maxi and the chocolate" story, any props you'd like (you can try drawing a picture or acting out the story). For the word-learning task, two containers to hold two objects your child doesn't know a name for (weird household objects like whisks or bike parts work great).</p> <p>In this lab, you'll see how your child thinks about what other people are thinking. Children under about four years of age tend to show a lot of trouble expressing what's going on in situations where someone else knows less than they do. They will often absolutely insist that everyone knows what they themselves know!</p> <h4>Learning to count: measuring your child's N-knower level</h4><iframe allowfullscreen frameborder="0" height="315" src="https://www.youtube.com/embed/i0q6H8MRXo8" width="560"></iframe> <p><strong>Age range</strong>: 1 to 5 years</p> <p><strong>What you'll need</strong>: At least ten small objects your child can pick up, like pegs or
<gh_stars>100-1000 """Variables common across modules""" # pylint: disable=too-many-lines import os import ssl import string import sys import platform import re GAM_AUTHOR = '<NAME> <<EMAIL>>' GAM_VERSION = '6.22' GAM_LICENSE = 'Apache License 2.0 (http://www.apache.org/licenses/LICENSE-2.0)' GAM_URL = 'https://jaylee.us/gam' GAM_INFO = ( f'GAM {GAM_VERSION} - {GAM_URL} / {GAM_AUTHOR} / ' f'Python {platform.python_version()} {sys.version_info.releaselevel} / ' f'{platform.platform()} {platform.machine()}') GAM_RELEASES = 'https://github.com/GAM-team/GAM/releases' GAM_WIKI = 'https://github.com/GAM-team/GAM/wiki' GAM_ALL_RELEASES = 'https://api.github.com/repos/GAM-team/GAM/releases' GAM_LATEST_RELEASE = GAM_ALL_RELEASES + '/latest' GAM_PROJECT_FILEPATH = 'https://raw.githubusercontent.com/GAM-team/GAM/master/src/' true_values = ['on', 'yes', 'enabled', 'true', '1'] false_values = ['off', 'no', 'disabled', 'false', '0'] usergroup_types = [ 'user', 'users', 'group', 'group_ns', 'group_susp', 'group_inde', 'ou', 'org', 'ou_ns', 'org_ns', 'ou_susp', 'org_susp', 'ou_and_children', 'ou_and_child', 'ou_and_children_ns', 'ou_and_child_ns', 'ou_and_children_susp', 'ou_and_child_susp', 'query', 'queries', 'license', 'licenses', 'licence', 'licences', 'file', 'csv', 'csvfile', 'all', 'cros', 'cros_sn', 'crosquery', 'crosqueries', 'crosfile', 'croscsv', 'croscsvfile' ] ERROR_PREFIX = 'ERROR: ' WARNING_PREFIX = 'WARNING: ' UTF8 = 'utf-8' UTF8_SIG = 'utf-8-sig' FN_ENABLEDASA_TXT = 'enabledasa.txt' FN_EXTRA_ARGS_TXT = 'extra-args.txt' FN_LAST_UPDATE_CHECK_TXT = 'lastupdatecheck.txt' MY_CUSTOMER = 'my_customer' # See https://support.google.com/drive/answer/37603 MAX_GOOGLE_SHEET_CELLS = 10000000 MAX_LOCAL_GOOGLE_TIME_OFFSET = 30 SKUS = { '1010010001': { 'product': '101001', 'aliases': ['identity', 'cloudidentity'], 'displayName': 'Cloud Identity' }, '1010050001': { 'product': '101005', 'aliases': ['identitypremium', 'cloudidentitypremium'], 'displayName': 'Cloud Identity Premium' }, '1010350001': { 'product': '101035', 'aliases': ['cloudsearch'], 'displayName': 'Google Cloud Search', }, '1010310002': { 'product': '101031', 'aliases': ['gsefe', 'e4e', 'gsuiteenterpriseeducation'], 'displayName': 'Google Workspace for Education Plus - Legacy' }, '1010310003': { 'product': '101031', 'aliases': ['gsefes', 'e4es', 'gsuiteenterpriseeducationstudent'], 'displayName': 'Google Workspace for Education Plus - Legacy (Student)' }, '1010310005': { 'product': '101031', 'aliases': ['gwes', 'workspaceeducationstandard'], 'displayName': 'Google Workspace for Education Standard' }, '1010310006': { 'product': '101031', 'aliases': ['gwesstaff', 'workspaceeducationstandardstaff'], 'displayName': 'Google Workspace for Education Standard (Staff)' }, '1010310007': { 'product': '101031', 'aliases': ['gwesstudent', 'workspaceeducationstandardstudent'], 'displayName': 'Google Workspace for Education Standard (Extra Student)' }, '1010310008': { 'product': '101031', 'aliases': ['gwep', 'workspaceeducationplus'], 'displayName': 'Google Workspace for Education Plus' }, '1010310009': { 'product': '101031', 'aliases': ['gwepstaff', 'workspaceeducationplusstaff'], 'displayName': 'Google Workspace for Education Plus (Staff)' }, '1010310010': { 'product': '101031', 'aliases': ['gwepstudent', 'workspaceeducationplusstudent'], 'displayName': 'Google Workspace for Education Plus (Extra Student)' }, '1010330003': { 'product': '101033', 'aliases': ['gvstarter', 'voicestarter', 'googlevoicestarter'], 'displayName': 'Google Voice Starter' }, '1010330004': { 'product': '101033', 'aliases': ['gvstandard', 'voicestandard', 'googlevoicestandard'], 'displayName': 'Google Voice Standard' }, '1010330002': { 'product': '101033', 'aliases': ['gvpremier', 'voicepremier', 'googlevoicepremier'], 'displayName': 'Google Voice Premier' }, '1010360001': { 'product': '101036', 'aliases': ['meetdialing','googlemeetglobaldialing'], 'displayName': 'Google Meet Global Dialing' }, '1010370001': { 'product': '101037', 'aliases': ['gwetlu', 'workspaceeducationupgrade'], 'displayName': 'Google Workspace for Education: Teaching and Learning Upgrade' }, 'Google-Apps': { 'product': 'Google-Apps', 'aliases': ['standard', 'free'], 'displayName': 'G Suite Legacy' }, 'Google-Apps-For-Business': { 'product': 'Google-Apps', 'aliases': ['gafb', 'gafw', 'basic', 'gsuitebasic'], 'displayName': 'G Suite Basic' }, 'Google-Apps-For-Government': { 'product': 'Google-Apps', 'aliases': ['gafg', 'gsuitegovernment', 'gsuitegov'], 'displayName': 'G Suite Government' }, 'Google-Apps-For-Postini': { 'product': 'Google-Apps', 'aliases': [ 'gams', 'postini', 'gsuitegams', 'gsuitepostini', 'gsuitemessagesecurity' ], 'displayName': 'G Suite Message Security' }, 'Google-Apps-Lite': { 'product': 'Google-Apps', 'aliases': ['gal', 'gsl', 'lite', 'gsuitelite'], 'displayName': 'G Suite Lite' }, 'Google-Apps-Unlimited': { 'product': 'Google-Apps', 'aliases': ['gau', 'gsb', 'unlimited', 'gsuitebusiness'], 'displayName': 'G Suite Business' }, '1010020027': { 'product': 'Google-Apps', 'aliases': ['wsbizstart', 'workspacebusinessstarter'], 'displayName': 'Workspace Business Starter' }, '1010020028': { 'product': 'Google-Apps', 'aliases': ['wsbizstan', 'workspacebusinessstandard'], 'displayName': 'Workspace Business Standard' }, '1010020025': { 'product': 'Google-Apps', 'aliases': ['wsbizplus', 'workspacebusinessplus'], 'displayName': 'Workspace Business Plus' }, '1010060001': { 'product': 'Google-Apps', 'aliases': [ 'gsuiteessentials', 'essentials', 'd4e', 'driveenterprise', 'drive4enterprise', 'wsess', 'workspaceesentials' ], 'displayName': 'Google Workspace Essentials' }, '1010060003': { 'product': 'Google-Apps', 'aliases': ['wsentess', 'workspaceenterpriseessentials'], 'displayName': 'Workspace Enterprise Essentials' }, '1010020026': { 'product': 'Google-Apps', 'aliases': ['wsentstan', 'workspaceenterprisestandard'], 'displayName': 'Workspace Enterprise Standard' }, '1010020020': { 'product': 'Google-Apps', 'aliases': ['gae', 'gse', 'enterprise', 'gsuiteenterprise', 'wsentplus', 'workspaceenterpriseplus'], 'displayName': 'Workspace Enterprise Plus' }, '1010020029': { 'product': 'Google-Apps', 'aliases': ['wes', 'workspaceenterprisestarter'], 'displayName': 'Workspace Enterprise Starter' }, '1010020030': { 'product': 'Google-Apps', 'aliases': ['workspacefrontline', 'workspacefrontlineworker'], 'displayName': 'Workspace Frontline' }, '1010340002': { 'product': '101034', 'aliases': ['gsbau', 'businessarchived', 'gsuitebusinessarchived'], 'displayName': 'G Suite Business Archived' }, '1010340001': { 'product': '101034', 'aliases': ['gseau', 'enterprisearchived', 'gsuiteenterprisearchived'], 'displayName': 'Google Workspace Enterprise Plus Archived' }, 'Google-Drive-storage-20GB': { 'product': 'Google-Drive-storage', 'aliases': ['drive20gb', '20gb', 'googledrivestorage20gb'], 'displayName': 'Google Drive Storage 20GB' }, 'Google-Drive-storage-50GB': { 'product': 'Google-Drive-storage', 'aliases': ['drive50gb', '50gb', 'googledrivestorage50gb'], 'displayName': 'Google Drive Storage 50GB' }, 'Google-Drive-storage-200GB': { 'product': 'Google-Drive-storage', 'aliases': ['drive200gb', '200gb', 'googledrivestorage200gb'], 'displayName': 'Google Drive Storage 200GB' }, 'Google-Drive-storage-400GB': { 'product': 'Google-Drive-storage', 'aliases': ['drive400gb', '400gb', 'googledrivestorage400gb'], 'displayName': 'Google Drive Storage 400GB' }, 'Google-Drive-storage-1TB': { 'product': 'Google-Drive-storage', 'aliases': ['drive1tb', '1tb', 'googledrivestorage1tb'], 'displayName': 'Google Drive Storage 1TB' }, 'Google-Drive-storage-2TB': { 'product': 'Google-Drive-storage', 'aliases': ['drive2tb', '2tb', 'googledrivestorage2tb'], 'displayName': 'Google Drive Storage 2TB' }, 'Google-Drive-storage-4TB': { 'product': 'Google-Drive-storage', 'aliases': ['drive4tb', '4tb', 'googledrivestorage4tb'], 'displayName': 'Google Drive Storage 4TB' }, 'Google-Drive-storage-8TB': { 'product': 'Google-Drive-storage', 'aliases': ['drive8tb', '8tb', 'googledrivestorage8tb'], 'displayName': 'Google Drive Storage 8TB' }, 'Google-Drive-storage-16TB': { 'product': 'Google-Drive-storage', 'aliases': ['drive16tb', '16tb', 'googledrivestorage16tb'], 'displayName': 'Google Drive Storage 16TB' }, 'Google-Vault': { 'product': 'Google-Vault', 'aliases': ['vault', 'googlevault'], 'displayName': 'Google Vault' }, 'Google-Vault-Former-Employee': { 'product': 'Google-Vault', 'aliases': ['vfe', 'googlevaultformeremployee'], 'displayName': 'Google Vault Former Employee' }, 'Google-Chrome-Device-Management': { 'product': 'Google-Chrome-Device-Management', 'aliases': ['chrome', 'cdm', 'googlechromedevicemanagement'], 'displayName': 'Google Chrome Device Management' } } PRODUCTID_NAME_MAPPINGS = { '101001': 'Cloud Identity Free', '101005': 'Cloud Identity Premium', '101031': 'G Suite Workspace for Education', '101033': 'Google Voice', '101034': 'G Suite Archived', '101035': 'Cloud Search', '101036': 'Google Meet Global Dialing', '101037': 'G Suite Workspace for Education', 'Google-Apps': 'Google Workspace', 'Google-Chrome-Device-Management': 'Google Chrome Device Management', 'Google-Drive-storage': 'Google Drive Storage', 'Google-Vault': 'Google Vault', } # Legacy APIs that use v1 discovery. Newer APIs should all use v2. V1_DISCOVERY_APIS = { 'drive', 'oauth2', } API_NAME_MAPPING = { 'directory': 'admin', 'directory_beta': 'admin', 'reports': 'admin', 'datatransfer': 'admin', 'drive3': 'drive', 'calendar': 'calendar-json', 'cloudidentity_beta': 'cloudidentity', } API_VER_MAPPING = { 'accesscontextmanager': 'v1', 'alertcenter': 'v1beta1', 'driveactivity': 'v2', 'calendar': 'v3', 'cbcm': 'v1.1beta1', 'chromemanagement': 'v1', 'chromepolicy': 'v1', 'classroom': 'v1', 'cloudidentity': 'v1', 'cloudidentity_beta': 'v1beta1', 'cloudresourcemanager': 'v3', 'contactdelegation': 'v1', 'datatransfer': 'datatransfer_v1', 'directory': 'directory_v1', 'directory_beta': 'directory_v1.1beta1', 'drive': 'v2', 'drive3': 'v3', 'gmail': 'v1', 'groupssettings': 'v1', 'iam': 'v1', 'iap': 'v1', 'licensing': 'v1', 'oauth2': 'v2', 'pubsub': 'v1', 'reports': 'reports_v1', 'reseller': 'v1', 'servicemanagement': 'v1', 'serviceusage': 'v1', 'sheets': 'v4', 'siteVerification': 'v1', 'storage': 'v1', 'vault': 'v1', 'versionhistory': 'v1', } USERINFO_EMAIL_SCOPE = 'https://www.googleapis.com/auth/userinfo.email' API_SCOPE_MAPPING = { 'alertcenter': ['https://www.googleapis.com/auth/apps.alerts',], 'driveactivity': [ 'https://www.googleapis.com/auth/drive.activity', 'https://www.googleapis.com/auth/drive', ], 'calendar': ['https://www.googleapis.com/auth/calendar',], 'cloudidentity': ['https://www.googleapis.com/auth/cloud-identity'], 'cloudidentity_beta': ['https://www.googleapis.com/auth/cloud-identity'], 'drive': ['https://www.googleapis.com/auth/drive',], 'drive3': ['https://www.googleapis.com/auth/drive',], 'gmail': [ 'https://mail.google.com/', 'https://www.googleapis.com/auth/gmail.settings.basic', 'https://www.googleapis.com/auth/gmail.settings.sharing', ], 'sheets': ['https://www.googleapis.com/auth/spreadsheets',], } ADDRESS_FIELDS_PRINT_ORDER = [ 'contactName', 'organizationName', 'addressLine1', 'addressLine2', 'addressLine3', 'locality', 'region', 'postalCode', 'countryCode', ] ADDRESS_FIELDS_ARGUMENT_MAP = { 'contact': 'contactName', 'contactname': 'contactName', 'name': 'organizationName', 'organizationname': 'organizationName', 'address': 'addressLine1', 'address1': 'addressLine1', 'addressline1': 'addressLine1', 'address2': 'addressLine2', 'addressline2': 'addressLine2', 'address3': 'addressLine3', 'addressline3': 'addressLine3', 'city': 'locality', 'locality': 'locality', 'state': 'region', 'region': 'region', 'zipcode': 'postalCode', 'postal': 'postalCode', 'postalcode': 'postalCode', 'country': 'countryCode', 'countrycode': 'countryCode', } SERVICE_NAME_TO_ID_MAP = { 'Calendar': '435070579839', 'Currents': '553547912911', 'Drive and Docs': '55656082996', 'Google Data Studio': '810260081642', } SERVICE_NAME_CHOICES_MAP = { 'calendar': 'Calendar', 'currents': 'Currents', 'datastudio': 'Google Data Studio', 'google data studio': 'Google Data Studio', 'drive': 'Drive and Docs', 'drive and docs': 'Drive and Docs', 'googledrive': 'Drive and Docs', 'gdrive': 'Drive and Docs', } PRINTJOB_ASCENDINGORDER_MAP = { 'createtime': 'CREATE_TIME', 'status': 'STATUS', 'title': 'TITLE', } PRINTJOB_DESCENDINGORDER_MAP = { 'CREATE_TIME': 'CREATE_TIME_DESC', 'STATUS': 'STATUS_DESC', 'TITLE': 'TITLE_DESC', } PRINTJOBS_DEFAULT_JOB_LIMIT = 0 PRINTJOBS_DEFAULT_MAX_RESULTS = 100 CALENDAR_REMINDER_METHODS = [ 'email', 'sms', 'popup', ] CALENDAR_NOTIFICATION_METHODS = [ 'email', 'sms', ] CALENDAR_NOTIFICATION_TYPES_MAP = { 'eventcreation': 'eventCreation', 'eventchange': 'eventChange', 'eventcancellation': 'eventCancellation', 'eventresponse': 'eventResponse', 'agenda': 'agenda', } DEVICE_ORDERBY_CHOICES_MAP = { 'createtime': 'create_time', 'devicetype': 'device_type', 'lastsynctime': 'last_sync_time', 'model': 'model', 'osversion': 'os_version', 'serialnumber': 'serial_number' } DRIVEFILE_FIELDS_CHOICES_MAP = { 'alternatelink': 'alternateLink', 'appdatacontents': 'appDataContents', 'cancomment': 'canComment', 'canreadrevisions': 'canReadRevisions', 'contentrestrictions': 'contentRestrictions', 'copyable': 'copyable', 'copyrequireswriterpermission': 'copyRequiresWriterPermission', 'createddate': 'createdDate', 'createdtime': 'createdDate', 'description': 'description', 'driveid': 'driveId', 'editable': 'editable', 'explicitlytrashed': 'explicitlyTrashed', 'fileextension': 'fileExtension', 'filesize': 'fileSize', 'foldercolorrgb': 'folderColorRgb', 'fullfileextension': 'fullFileExtension', 'headrevisionid': 'headRevisionId', 'iconlink': 'iconLink', 'id': 'id', 'lastmodifyinguser': 'lastModifyingUser', 'lastmodifyingusername': 'lastModifyingUserName', 'lastviewedbyme': 'lastViewedByMeDate', 'lastviewedbymedate': 'lastViewedByMeDate', 'lastviewedbymetime': 'lastViewedByMeDate', 'lastviewedbyuser': 'lastViewedByMeDate', 'linksharemetadata': 'linkShareMetadata', 'md5': 'md5Checksum', 'md5checksum': 'md5Checksum', 'md5sum': 'md5Checksum', 'mime': 'mimeType', 'mimetype': 'mimeType', 'modifiedbyme': 'modifiedByMeDate', 'modifiedbymedate': 'modifiedByMeDate', 'modifiedbymetime': 'modifiedByMeDate', 'modifiedbyuser': 'modifiedByMeDate', 'modifieddate': 'modifiedDate', 'modifiedtime': 'modifiedDate', 'name': 'title', 'originalfilename': 'originalFilename', 'ownedbyme': 'ownedByMe', 'ownernames': 'ownerNames', 'owners': 'owners', 'parents': 'parents', 'permissions': 'permissions', 'resourcekey': 'resourceKey', 'quotabytesused': 'quotaBytesUsed', 'quotaused': 'quotaBytesUsed', 'shareable': 'shareable', 'shared': 'shared', 'sharedwithmedate': 'sharedWithMeDate', 'sharedwithmetime': 'sharedWithMeDate', 'sharinguser': 'sharingUser', 'shortcutdetails': 'shortcutDetails', 'spaces': 'spaces', 'thumbnaillink': 'thumbnailLink', 'title': 'title', 'userpermission': 'userPermission', 'version': 'version', 'viewedbyme': 'labels(viewed)', 'viewedbymedate': 'lastViewedByMeDate', 'viewedbymetime': 'lastViewedByMeDate', 'viewerscancopycontent': 'labels(restricted)', 'webcontentlink': 'webContentLink', 'webviewlink': 'webViewLink', 'writerscanshare': 'writersCanShare', } DRIVEFILE_LABEL_CHOICES_MAP = { 'restricted': 'restricted', 'restrict': 'restricted', 'starred': 'starred', 'star': 'starred', 'trashed': 'trashed', 'trash': 'trashed', 'viewed': 'viewed', 'view': 'viewed', } DRIVEFILE_ORDERBY_CHOICES_MAP = { 'createddate': 'createdDate', 'folder': 'folder', 'lastviewedbyme': 'lastViewedByMeDate', 'lastviewedbymedate': 'lastViewedByMeDate', 'lastviewedbyuser': 'lastViewedByMeDate', 'modifiedbyme': 'modifiedByMeDate', 'modifiedbymedate': 'modifiedByMeDate', 'modifiedbyuser': 'modifiedByMeDate', 'modifieddate': 'modifiedDate', 'name': 'title', 'quotabytesused': 'quotaBytesUsed', 'quotaused': 'quotaBytesUsed', 'recency': 'recency', 'sharedwithmedate': 'sharedWithMeDate', 'starred': 'starred', 'title': 'title', 'viewedbymedate': 'lastViewedByMeDate', } DELETE_DRIVEFILE_FUNCTION_TO_ACTION_MAP = { 'delete':
#!/usr/bin/env python3 # ******************************************************* # Copyright (c) VMware, Inc. 2020. All Rights Reserved. # SPDX-License-Identifier: MIT # ******************************************************* # * # * DISCLAIMER. THIS PROGRAM IS PROVIDED TO YOU "AS IS" WITHOUT # * WARRANTIES OR CONDITIONS OF ANY KIND, WHETHER ORAL OR WRITTEN, # * EXPRESS OR IMPLIED. THE AUTHOR SPECIFICALLY DISCLAIMS ANY IMPLIED # * WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, # * NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. """Definition of the CBCloudAPI object, the core object for interacting with the Carbon Black Cloud SDK.""" from cbc_sdk.connection import BaseAPI from cbc_sdk.errors import ApiError, CredentialError, ServerError from cbc_sdk.live_response_api import LiveResponseSessionManager from cbc_sdk.audit_remediation import Run, RunHistory from cbc_sdk.enterprise_edr.threat_intelligence import ReportSeverity import logging import time from concurrent.futures import ThreadPoolExecutor log = logging.getLogger(__name__) class CBCloudAPI(BaseAPI): """The main entry point into the CBCloudAPI. :param str profile: (optional) Use the credentials in the named profile when connecting to the Carbon Black server. Uses the profile named 'default' when not specified. Usage:: >>> from cbc_sdk import CBCloudAPI >>> cb = CBCloudAPI(profile="production") """ def __init__(self, *args, **kwargs): super(CBCloudAPI, self).__init__(*args, **kwargs) self._thread_pool_count = kwargs.pop('thread_pool_count', 1) self._lr_scheduler = None self._async_executor = None if not self.credentials.org_key: raise CredentialError("No organization key specified") def _perform_query(self, cls, **kwargs): if hasattr(cls, "_query_implementation"): return cls._query_implementation(self, **kwargs) else: raise ApiError("All Carbon Black Cloud models must provide _query_implementation") # ---- Async def _async_submit(self, callable, *args, **kwargs): """ Submit a task to the executor, creating it if it doesn't yet exist. Args: callable (func): A callable to be executed as a background task. *args (list): Arguments to be passed to the callable. **kwargs (dict): Keyword arguments to be passed to the callable. Returns: Future: A future object representing the background task, which will pass along the result. """ if not self._async_executor: self._async_executor = ThreadPoolExecutor(max_workers=self._thread_pool_count) return self._async_executor.submit(callable, args, kwargs) # ---- LiveOps @property def live_response(self): if self._lr_scheduler is None: self._lr_scheduler = LiveResponseSessionManager(self) return self._lr_scheduler def _request_lr_session(self, sensor_id): return self.live_response.request_session(sensor_id) # ---- Audit and Remediation def audit_remediation(self, sql): return self.select(Run).where(sql=sql) def audit_remediation_history(self, query=None): return self.select(RunHistory).where(query) # ---- Notifications def notification_listener(self, interval=60): """Generator to continually poll the Cb Endpoint Standard server for notifications (alerts). Note that this can only be used with a 'SIEM' key generated in the Cb Endpoint Standard console. """ while True: for notification in self.get_notifications(): yield notification time.sleep(interval) def get_notifications(self): """Retrieve queued notifications (alerts) from the Cb Endpoint Standard server. Note that this can only be used with a 'SIEM' key generated in the Cb Endpoint Standard console. :returns: list of dictionary objects representing the notifications, or an empty list if none available. """ res = self.get_object("/integrationServices/v3/notification") return res.get("notifications", []) # ---- Device API def _raw_device_action(self, request): """ Invokes the API method for a device action. :param dict request: The request body to be passed as JSON to the API method. :return: The parsed JSON output from the request. :raises ServerError: If the API method returns an HTTP error code. """ url = "/appservices/v6/orgs/{0}/device_actions".format(self.credentials.org_key) resp = self.post_object(url, body=request) if resp.status_code == 200: return resp.json() elif resp.status_code == 204: return None else: raise ServerError(error_code=resp.status_code, message="Device action error: {0}".format(resp.content)) def _device_action(self, device_ids, action_type, options=None): """ Executes a device action on multiple device IDs. :param list device_ids: The list of device IDs to execute the action on. :param str action_type: The action type to be performed. :param dict options: Options for the bulk device action. Default None. """ request = {"action_type": action_type, "device_id": device_ids} if options: request["options"] = options return self._raw_device_action(request) def _action_toggle(self, flag): """ Converts a boolean flag value into a "toggle" option. :param boolean flag: The value to be converted. :return: A dict containing the appropriate "toggle" element. """ if flag: return {"toggle": "ON"} else: return {"toggle": "OFF"} def device_background_scan(self, device_ids, scan): """ Set the background scan option for the specified devices. :param list device_ids: List of IDs of devices to be set. :param boolean scan: True to turn background scan on, False to turn it off. """ return self._device_action(device_ids, "BACKGROUND_SCAN", self._action_toggle(scan)) def device_bypass(self, device_ids, enable): """ Set the bypass option for the specified devices. :param list device_ids: List of IDs of devices to be set. :param boolean enable: True to enable bypass, False to disable it. """ return self._device_action(device_ids, "BYPASS", self._action_toggle(enable)) def device_delete_sensor(self, device_ids): """ Delete the specified sensor devices. :param list device_ids: List of IDs of devices to be deleted. """ return self._device_action(device_ids, "DELETE_SENSOR") def device_uninstall_sensor(self, device_ids): """ Uninstall the specified sensor devices. :param list device_ids: List of IDs of devices to be uninstalled. """ return self._device_action(device_ids, "UNINSTALL_SENSOR") def device_quarantine(self, device_ids, enable): """ Set the quarantine option for the specified devices. :param list device_ids: List of IDs of devices to be set. :param boolean enable: True to enable quarantine, False to disable it. """ return self._device_action(device_ids, "QUARANTINE", self._action_toggle(enable)) def device_update_policy(self, device_ids, policy_id): """ Set the current policy for the specified devices. :param list device_ids: List of IDs of devices to be changed. :param int policy_id: ID of the policy to set for the devices. """ return self._device_action(device_ids, "UPDATE_POLICY", {"policy_id": policy_id}) def device_update_sensor_version(self, device_ids, sensor_version): """ Update the sensor version for the specified devices. :param list device_ids: List of IDs of devices to be changed. :param dict sensor_version: New version properties for the sensor. """ return self._device_action(device_ids, "UPDATE_SENSOR_VERSION", {"sensor_version": sensor_version}) # ---- Alerts API def alert_search_suggestions(self, query): """ Returns suggestions for keys and field values that can be used in a search. :param query str: A search query to use. :return: A list of search suggestions expressed as dict objects. """ query_params = {"suggest.q": query} url = "/appservices/v6/orgs/{0}/alerts/search_suggestions".format(self.credentials.org_key) output = self.get_object(url, query_params) return output["suggestions"] def _bulk_threat_update_status(self, threat_ids, status, remediation, comment): """ Update the status of alerts associated with multiple threat IDs, past and future. :param list threat_ids: List of string threat IDs. :param str status: The status to set for all alerts, either "OPEN" or "DISMISSED". :param str remediation: The remediation state to set for all alerts. :param str comment: The comment to set for all alerts. """ if not all(isinstance(t, str) for t in threat_ids): raise ApiError("One or more invalid threat ID values") request = {"state": status, "threat_id": threat_ids} if remediation is not None: request["remediation_state"] = remediation if comment is not None: request["comment"] = comment url = "/appservices/v6/orgs/{0}/threat/workflow/_criteria".format(self.credentials.org_key) resp = self.post_object(url, body=request) output = resp.json() return output["request_id"] def bulk_threat_update(self, threat_ids, remediation=None, comment=None): """ Update the alert status of alerts associated with multiple threat IDs. The alerts will be left in an OPEN state after this request. :param threat_ids list: List of string threat IDs. :param remediation str: The remediation state to set for all alerts. :param comment str: The comment to set for all alerts. :return: The request ID, which may be used to select a WorkflowStatus object. """ return self._bulk_threat_update_status(threat_ids, "OPEN", remediation, comment) def bulk_threat_dismiss(self, threat_ids, remediation=None, comment=None): """ Dismiss the alerts associated with multiple threat IDs. The alerts will be left in a DISMISSED state after this request. :param threat_ids list: List of string threat IDs. :param remediation str: The remediation state to set for all alerts. :param comment str: The comment to set for all alerts. :return: The request ID, which may be used to select a WorkflowStatus object. """ return self._bulk_threat_update_status(threat_ids, "DISMISSED", remediation, comment) # ---- Enterprise EDR def create(self, cls, data=None): """Creates a new model. >>> feed = cb.create(Feed, feed_data) :param cls: The model being created :param data: The data to pre-populate the model with :type data: dict(str, object) :return: an instance of `cls` """ return cls(self, initial_data=data) def validate_process_query(self, query): """Validates the given IOC query. >>> cb.validate_query("process_name:chrome.exe") # True :param str query: the query to validate :return: whether or not the query is valid :rtype: bool """ args = {"q": query} url = "/api/investigate/v1/orgs/{}/processes/search_validation".format( self.credentials.org_key ) resp = self.get_object(url, query_parameters=args) return resp.get("valid", False) def convert_feed_query(self, query): """Converts a legacy CB Response query to a ThreatHunter query. :param str query: the query to convert :return: the converted query :rtype: str """ args = {"query": query} resp = self.post_object("/threathunter/feedmgr/v2/query/translate", args).json()
h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4f_branch2c'] a = dset['res4f_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4f_branch2c'] a = dset['bn4f_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4g_branch2a'] a = dset['res4g_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4g_branch2a'] a = dset['bn4g_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4g_branch2b'] a = dset['res4g_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4g_branch2b'] a = dset['bn4g_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4g_branch2c'] a = dset['res4g_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4g_branch2c'] a = dset['bn4g_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4h_branch2a'] a = dset['res4h_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4h_branch2a'] a = dset['bn4h_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4h_branch2b'] a = dset['res4h_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4h_branch2b'] a = dset['bn4h_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4h_branch2c'] a = dset['res4h_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4h_branch2c'] a = dset['bn4h_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4i_branch2a'] a = dset['res4i_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4i_branch2a'] a = dset['bn4i_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4i_branch2b'] a = dset['res4i_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4i_branch2b'] a = dset['bn4i_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4i_branch2c'] a = dset['res4i_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4i_branch2c'] a = dset['bn4i_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4j_branch2a'] a = dset['res4j_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4j_branch2a'] a = dset['bn4j_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4j_branch2b'] a = dset['res4j_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4j_branch2b'] a = dset['bn4j_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4j_branch2c'] a = dset['res4j_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4j_branch2c'] a = dset['bn4j_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4k_branch2a'] a = dset['res4k_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4k_branch2a'] a = dset['bn4k_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4k_branch2b'] a = dset['res4k_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4k_branch2b'] a = dset['bn4k_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4k_branch2c'] a = dset['res4k_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4k_branch2c'] a = dset['bn4k_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4l_branch2a'] a = dset['res4l_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4l_branch2a'] a = dset['bn4l_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4l_branch2b'] a = dset['res4l_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4l_branch2b'] a = dset['bn4l_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4l_branch2c'] a = dset['res4l_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4l_branch2c'] a = dset['bn4l_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4m_branch2a'] a = dset['res4m_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4m_branch2a'] a = dset['bn4m_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4m_branch2b'] a = dset['res4m_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4m_branch2b'] a = dset['bn4m_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'],
<reponame>nikunjpansari/stochastic-optimization """ Clinical Trials Policy class <NAME> (c) 2018 Adapted from code by <NAME> (c) 2018 """ from collections import namedtuple import numpy as np from scipy.stats import binom import scipy import math import pandas as pd import copy from ClinicalTrialsModel import ClinicalTrialsModel import time def trunc_poisson_fn(count, mean): """ returns list of truncated Poisson distribution with given mean and values count :param count: int - maximal value considered by the distribution :param mean: float - mean of Poisson distribution :return list(float) - vector of truncated Poisson pmfs """ trunc_probs = [] sum = 0.0 for r in range(0, count): trunc_probs.insert(r, 1/math.factorial(r)*(mean**r)*np.exp(-mean)) sum += trunc_probs[r] trunc_probs.insert(count, 1-sum) return trunc_probs class ClinicalTrialsPolicy(): """ Base class for decision policy """ def __init__(self, model, policy_names): """ initializes the policy :param model: the ClinicalTrialsModel that the policy is being implemented on :param policy_names: list(str) - list of policies """ self.model = model self.policy_names = policy_names self.Policy = namedtuple('Policy', policy_names) def build_policy(self, info): """ builds the policies depending on the parameters provided :param info: dict - contains all policy information :return: namedtuple - a policy object """ return self.Policy(*[info[k] for k in self.policy_names]) def model_A_policy(self, state, info_tuple): """ implements deterministic lookahead policy based on Model A :param state: namedtuple - the state of the model at a given time :param info_tuple: tuple - contains the parameters needed to run the policy :return: a decision made based on the policy """ success_A = info_tuple[0] stop_A = info_tuple[1] sim_model = ClinicalTrialsModel(self.model.state_variables, self.model.decision_variables, self.model.initial_state, True) sim_model.state = copy.deepcopy(state) if stop_A==False: value_dict={} sol_dict,value_dict = model_A_value_fn(sim_model, 0, success_A,value_dict) new_decision = sol_dict['optimal_enroll'] else: new_decision=0 return new_decision def model_B_policy(self, state, info_tuple): """ implements lookahead policy based on Model B :param state: namedtuple - the state of the model at a given time :param info_tuple: tuple - contains the parameters needed to run the policy :return: a decision made based on the policy """ success_B = info_tuple[0] stop_B = info_tuple[1] sim_model = ClinicalTrialsModel(self.model.state_variables, self.model.decision_variables, self.model.initial_state, True) sim_model.state = copy.deepcopy(state) if stop_B==False: value_dict={} sol_dict,value_dict = model_B_value_fn(sim_model, 0, success_B,value_dict) new_decision = sol_dict['optimal_enroll'] else: new_decision=0 return new_decision def model_C_extension_policy(self, state, info_tuple): """ implements lookahead policy based on the extension of Model C :param state: namedtuple - the state of the model at a given time :param info_tuple: tuple - contains the parameters needed to run the policy :return: a decision made based on the policy """ success_C_extension = info_tuple[0] stop_C_extension = info_tuple[1] sim_model = ClinicalTrialsModel(self.model.state_variables, self.model.decision_variables, self.model.initial_state, True) sim_model.state = copy.deepcopy(state) if stop_C_extension==False: value_dict={} sol_dict,value_dict = model_C_extension_value_fn(sim_model, 0, success_C_extension,value_dict) new_decision = sol_dict['optimal_enroll'] else: new_decision=0 return new_decision def model_C_policy(self, state, info_tuple, time): """ implements hybrid policy for Model C using backward ADP :param state: namedtuple - the state of the model at a given time :param info_tuple: tuple - contains the parameters needed to run the policy :param time: int - start time :return: a decision made based on the policy """ success_C = info_tuple[0] stop_C = info_tuple[1] sim_model = ClinicalTrialsModel(self.model.state_variables, self.model.decision_variables, self.model.initial_state, True) sim_model.state = copy.deepcopy(state) parameters = parameters_fn(sim_model) if stop_C == True: new_decision = 0 else: vals = [] decs = [] for x_enroll in range(self.model.initial_state['enroll_min'], self.model.initial_state['enroll_max']+self.model.initial_state['enroll_step'], self.model.initial_state['enroll_step']): pseudo_state = [state.potential_pop + x_enroll, state.success, state.failure, state.l_response] if len(parameters[time]) < 8: value = func_simple(pseudo_state, parameters[time][0], parameters[time][1], parameters[time][2], parameters[time][3]) else: value = func(pseudo_state, parameters[time][0], parameters[time][1], parameters[time][2], parameters[time][3], parameters[time][4], parameters[time][5], parameters[time][6], parameters[time][7]) cost = -(self.model.initial_state['program_cost'] + self.model.initial_state['patient_cost'] * x_enroll) vals.append(value + cost) decs.append(x_enroll) val_max = max(vals) new_decision = decs[vals.index(val_max)] return new_decision def run_policy(self, policy_info, policy, t): """ runs the model with a selected policy :param policy_info: dict - dictionary of policies and their associated parameters :param policy: str - the name of the chosen policy :param time: int - start time :return: float - calculated contribution """ time_run = time.time() model_copy = copy.deepcopy(self.model) while t <= model_copy.initial_state['trial_size'] and policy_info[policy][1] == False: time_t = time.time() # build decision policy p = self.build_policy(policy_info) # implements sampled distribution for p_true p_true_samples = np.random.beta(model_copy.state.success, model_copy.state.failure, model_copy.initial_state['K']) p_belief = model_copy.state.success / (model_copy.state.success + model_copy.state.failure) # drug_success = 1 if successful, 0 if failure, -1 if continue trial (for all policies) if p_belief > model_copy.initial_state['theta_stop_high']: decision = {'prog_continue': 0, 'drug_success': 1} policy_info[policy][1] = True elif p_belief < model_copy.initial_state['theta_stop_low']: decision = {'prog_continue': 0, 'drug_success': 0} policy_info[policy][1] = True else: decision = {'prog_continue': 1, 'drug_success': -1} # makes enrollment decision based on chosen policy if policy == "model_A": decision['enroll'] = self.model_A_policy(model_copy.state, p.model_A) elif policy == "model_B": decision['enroll'] = self.model_B_policy(model_copy.state, p.model_B) elif policy == "model_C_extension": decision['enroll'] = self.model_C_extension_policy(model_copy.state, p.model_C_extension) elif policy == "model_C": decision['enroll'] = self.model_C_policy(model_copy.state, p.model_C, t) x = model_copy.build_decision(decision) print("Base Model t={}, obj={:,}, state.potential_pop={}, state.success={}, state.failure={}, x={}, elapsed time={:.2f} sec".format(t, model_copy.objective, model_copy.state.potential_pop, model_copy.state.success, model_copy.state.failure, x,time.time()-time_t)) # steps the model forward one iteration model_copy.step(x) # updates policy info policy_info[policy][0] = decision['drug_success'] # increments time t += 1 print("Base Model: Stopping time t={}, obj(revenue)={:,}, rhobar={:.2f}, Elapsed time={:.2f} sec".format(t, model_copy.objective, model_copy.state.success/(model_copy.state.success+model_copy.state.failure),time.time()-time_run)) policy_value = model_copy.objective return policy_value def model_A_value_fn(model, iteration, success_index,value_dict): """ solves the deterministic shortest path problem for Model A (over given horizon); returns the value of the current state and its optimal number of new potential patients to enroll :param model: ClinicalTrialsModel - model which contains all state variables (physical and belief states) :param iteration: int - tracks the horizon in the deteministic shortest path problem :param success_index: int - 1 if drug is declared successful, 0 if failure, -1 if continue trial :return: value of current node and its optimal enrollment count """ # computes value and optimal enrollments corresponding to current state if success_index == -1: if iteration < model.initial_state['H']: bellman_vals = [] bellman_decisions = [] for x_enroll in range(model.initial_state['enroll_min'], model.initial_state['enroll_max']+model.initial_state['enroll_step'], model.initial_state['enroll_step']): bellman_potential_pop = model.state.potential_pop + x_enroll #print("Starting bellman - ite: {}, R: {}, x_enroll: {}, R_t+1: {}".format(iteration, model.state.potential_pop,x_enroll,bellman_potential_pop)) bellman_cost = -(model.initial_state['program_cost'] + model.initial_state['patient_cost'] * x_enroll) bellman_state = copy.deepcopy(model.initial_state) bellman_state['potential_pop'] = bellman_potential_pop bellman_M = ClinicalTrialsModel(model.state_variables, model.decision_variables, bellman_state, True) value_key=(iteration+1,bellman_state['potential_pop']) count=-1 # the drug success probability stays fixed bellman_p_belief = bellman_M.state.success / (bellman_M.state.success + bellman_M.state.failure) if bellman_p_belief > bellman_M.initial_state['theta_stop_high']: success_index = 1 step_value = model.initial_state['success_rev'] elif bellman_p_belief < bellman_M.initial_state['theta_stop_low']: success_index = 0 step_value = 0 else: if value_key in value_dict: step_value = value_dict[value_key][0] count = value_dict[value_key][1] #print("key: {} value: {:.2f} count: {} lendict:{}".format(value_key,step_value,count,len(value_dict))) else: sol_dict,value_dict = model_A_value_fn(bellman_M, iteration+1, success_index,value_dict) step_value = sol_dict['value'] value_dict.update({value_key:[step_value,count+1]}) bellman_cost += step_value bellman_decisions.append(x_enroll) bellman_vals.append(bellman_cost) #print("Ending - ite: {}, R: {}, x_enroll: {}, R_t+1: {}, Cost: {}".format(iteration, model.state.potential_pop,x_enroll,bellman_potential_pop,bellman_cost)) value = max(bellman_vals) optimal_enroll = bellman_decisions[bellman_vals.index(value)] #print("********Ending State- ite: {}, R: {}, arg_max: {}, opt_value {} ".format(iteration, model.state.potential_pop,optimal_enroll,value)) return {"value": value, "optimal_enroll": optimal_enroll},value_dict # stops iterating at horizon t' = t + H else: return {"value": 0,"optimal_enroll": 0},value_dict # stops experiment at node if drug is declared success or failure else: return {"value": model.initial_state['success_rev'] * success_index, "optimal_enroll": 0},value_dict def model_B_value_fn(model, iteration, success_index,value_dict): """ solves the stochastic lookahead problem for Model B (over given horizon); returns the value of the current state and its optimal number of new potential patients to enroll :param model: ClinicalTrialsModel - model which contains all state variables (physical and belief states) :param iteration: int - tracks the horizon in the stochastic lookahead problem :param success_index: int - 1 if drug is declared successful, 0 if failure, -1 if continue trial :return: value of current node and its optimal enrollment count """ # computes value and optimal enrollments corresponding to current state if success_index == -1: if iteration < model.initial_state['H']: bellman_vals = [] bellman_decisions = [] for x_enroll in range(model.initial_state['enroll_min'], model.initial_state['enroll_max']+model.initial_state['enroll_step'], model.initial_state['enroll_step']): # "simulated" exogenous info that helps us get from (t, t') to (t, t'+1) bellman_potential_pop = model.state.potential_pop + x_enroll bellman_enrollments = math.floor(model.state.l_response * bellman_potential_pop) bellman_cost = -(model.initial_state['program_cost'] + model.initial_state['patient_cost'] * x_enroll) # loops over success values in increments of step_succ step_succ = int(bellman_enrollments / 3) + 1 for set_succ in range(0, bellman_enrollments, step_succ): bellman_state = copy.deepcopy(model.initial_state) bellman_state['potential_pop'] = bellman_potential_pop bellman_state['success'] = model.state.success + set_succ bellman_state['failure'] = model.state.failure + (bellman_enrollments - set_succ) bellman_M = ClinicalTrialsModel(model.state_variables, model.decision_variables, bellman_state, True) value_key=(iteration+1,bellman_state['potential_pop'],bellman_state['success'],bellman_state['failure']) #Remember to include here bellman_state['l_response'] when solving question 6 count=-1 # implements sampled distribution for bellman_p_true bellman_p_samples = np.random.beta(bellman_M.state.success, bellman_M.state.failure, bellman_M.initial_state['K']) bellman_p_belief = bellman_M.state.success / (bellman_M.state.success + bellman_M.state.failure) if bellman_p_belief > bellman_M.initial_state['theta_stop_high']: success_index = 1 step_value = model.initial_state['success_rev'] #print("LA State: {}, ({}, {}), {} - Stopping time {}".format(bellman_state['potential_pop'],bellman_state['success'],bellman_state['failure'],model.state.l_response,iteration)) elif bellman_p_belief < bellman_M.initial_state['theta_stop_low']: success_index = 0 step_value = 0 else: if value_key in value_dict: step_value = value_dict[value_key][0] count = value_dict[value_key][1] #print("key: {} value: {:.2f} count: {} lendict:{}".format(value_key,step_value,count,len(value_dict))) else: sol_dict,value_dict = model_B_value_fn(bellman_M, iteration+1, success_index,value_dict) step_value = sol_dict['value'] value_dict.update({value_key:[step_value,count+1]}) for k in range(0, bellman_M.initial_state['K']): bellman_cost += binom.pmf(set_succ, bellman_enrollments, bellman_p_samples[k]) * 1/bellman_M.initial_state['K'] * step_value bellman_decisions.append(x_enroll) bellman_vals.append(bellman_cost) value = max(bellman_vals) optimal_enroll = bellman_decisions[bellman_vals.index(value)] return {"value": value, "optimal_enroll": optimal_enroll},value_dict # stops iterating at horizon t' = t + H else: return {"value": 0,"optimal_enroll": 0},value_dict # stops experiment at node if drug is declared success or failure else: return {"value": model.initial_state['success_rev'] * success_index,"optimal_enroll": 0},value_dict #Copy model_B_value_fn here and do the modifications for question 6 def model_C_extension_value_fn(model, iteration, success_index,value_dict): return {} #Get rid of this # def func_simple(pseudo_state, a, b, c, d): """ linear fit function for the Bellman value at given pseudo-state (for small number of data points) :param pseudo_state: list(float) - list of the four state variables for a given state :param a, b, c, d, e: float - parameters of the linear fit function """ sum = a*pseudo_state[0] + b*pseudo_state[1] + c*pseudo_state[2] + d*pseudo_state[3] return sum def func(pseudo_state, a1, a2, b1, b2, c1, c2, d1, d2): """ quadratic fit function for the Bellman value at given pseudo-state :param pseudo_state: list(float) - list of the four state variables for a given state :param a1, a2, ... d2: float - parameters of the quadratic fit function """ sum = a1*pseudo_state[0]**2 + a2*pseudo_state[0] sum
<gh_stars>1-10 # Copyright (c) 2013-2020 <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import re import sys import copy import logging from .exceptions import (NetError, ASNRegistryError, ASNParseError, ASNLookupError, HTTPLookupError, WhoisLookupError, WhoisRateLimitError, ASNOriginLookupError) if sys.version_info >= (3, 3): # pragma: no cover from ipaddress import ip_network else: # pragma: no cover from ipaddr import IPNetwork as ip_network log = logging.getLogger(__name__) BASE_NET = { 'cidr': None, 'description': None, 'maintainer': None, 'updated': None, 'source': None } ASN_ORIGIN_WHOIS = { 'radb': { 'server': 'whois.radb.net', 'fields': { 'description': r'(descr):[^\S\n]+(?P<val>.+?)\n', 'maintainer': r'(mnt-by):[^\S\n]+(?P<val>.+?)\n', 'updated': r'(changed):[^\S\n]+(?P<val>.+?)\n', 'source': r'(source):[^\S\n]+(?P<val>.+?)\n', } }, } ASN_ORIGIN_HTTP = { 'radb': { 'url': 'http://www.radb.net/query', 'form_data_asn_field': 'keywords', 'form_data': { 'advanced_query': '1', 'query': 'Query', # '-T option': 'inet-rtr', 'ip_option': '', '-i': '1', '-i option': 'origin' }, 'fields': { 'description': r'(descr):[^\S\n]+(?P<val>.+?)\n', 'maintainer': r'(mnt-by):[^\S\n]+(?P<val>.+?)\n', 'updated': r'(changed):[^\S\n]+(?P<val>.+?)\n', 'source': r'(source):[^\S\n]+(?P<val>.+?)\<', } }, } class IPASN: """ The class for parsing ASN data for an IP address. Args: net (:obj:`ipwhois.net.Net`): A ipwhois.net.Net object. Raises: NetError: The parameter provided is not an instance of ipwhois.net.Net """ def __init__(self, net): from .net import (Net, ORG_MAP) from .whois import RIR_WHOIS # ipwhois.net.Net validation if isinstance(net, Net): self._net = net else: raise NetError('The provided net parameter is not an instance of ' 'ipwhois.net.Net') self.org_map = ORG_MAP self.rir_whois = RIR_WHOIS def parse_fields_dns(self, response): """ The function for parsing ASN fields from a dns response. Args: response (:obj:`str`): The response from the ASN dns server. Returns: dict: The ASN lookup results :: { 'asn' (str) - The Autonomous System Number 'asn_date' (str) - The ASN Allocation date 'asn_registry' (str) - The assigned ASN registry 'asn_cidr' (str) - The assigned ASN CIDR 'asn_country_code' (str) - The assigned ASN country code 'asn_description' (None) - Cannot retrieve with this method. } Raises: ASNRegistryError: The ASN registry is not known. ASNParseError: ASN parsing failed. """ try: temp = response.split('|') # Parse out the ASN information. ret = {'asn_registry': temp[3].strip(' \n')} if ret['asn_registry'] not in self.rir_whois.keys(): raise ASNRegistryError( 'ASN registry {0} is not known.'.format( ret['asn_registry']) ) ret['asn'] = temp[0].strip(' "\n').split()[0] ret['asn_cidr'] = temp[1].strip(' \n') ret['asn_country_code'] = temp[2].strip(' \n').upper() ret['asn_date'] = temp[4].strip(' "\n') ret['asn_description'] = None except ASNRegistryError: raise except Exception as e: raise ASNParseError('Parsing failed for "{0}" with exception: {1}.' ''.format(response, e)[:100]) return ret def parse_fields_verbose_dns(self, response): """ The function for parsing ASN fields from a verbose dns response. Args: response (:obj:`str`): The response from the ASN dns server. Returns: dict: The ASN lookup results :: { 'asn' (str) - The Autonomous System Number 'asn_date' (str) - The ASN Allocation date 'asn_registry' (str) - The assigned ASN registry 'asn_cidr' (None) - Cannot retrieve with this method. 'asn_country_code' (str) - The assigned ASN country code 'asn_description' (str) - The ASN description } Raises: ASNRegistryError: The ASN registry is not known. ASNParseError: ASN parsing failed. """ try: temp = response.split('|') # Parse out the ASN information. ret = {'asn_registry': temp[2].strip(' \n')} if ret['asn_registry'] not in self.rir_whois.keys(): raise ASNRegistryError( 'ASN registry {0} is not known.'.format( ret['asn_registry']) ) ret['asn'] = temp[0].strip(' "\n') ret['asn_cidr'] = None ret['asn_country_code'] = temp[1].strip(' \n').upper() ret['asn_date'] = temp[3].strip(' \n') ret['asn_description'] = temp[4].strip(' "\n') except ASNRegistryError: raise except Exception as e: raise ASNParseError('Parsing failed for "{0}" with exception: {1}.' ''.format(response, e)[:100]) return ret def parse_fields_whois(self, response): """ The function for parsing ASN fields from a whois response. Args: response (:obj:`str`): The response from the ASN whois server. Returns: dict: The ASN lookup results :: { 'asn' (str) - The Autonomous System Number 'asn_date' (str) - The ASN Allocation date 'asn_registry' (str) - The assigned ASN registry 'asn_cidr' (str) - The assigned ASN CIDR 'asn_country_code' (str) - The assigned ASN country code 'asn_description' (str) - The ASN description } Raises: ASNRegistryError: The ASN registry is not known. ASNParseError: ASN parsing failed. """ try: temp = response.split('|') # Parse out the ASN information. ret = {'asn_registry': temp[4].strip(' \n')} if ret['asn_registry'] not in self.rir_whois.keys(): raise ASNRegistryError( 'ASN registry {0} is not known.'.format( ret['asn_registry']) ) ret['asn'] = temp[0].strip(' \n') ret['asn_cidr'] = temp[2].strip(' \n') ret['asn_country_code'] = temp[3].strip(' \n').upper() ret['asn_date'] = temp[5].strip(' \n') ret['asn_description'] = temp[6].strip(' \n') except ASNRegistryError: raise except Exception as e: raise ASNParseError('Parsing failed for "{0}" with exception: {1}.' ''.format(response, e)[:100]) return ret def parse_fields_http(self, response, extra_org_map=None): """ The function for parsing ASN fields from a http response. Args: response (:obj:`str`): The response from the ASN http server. extra_org_map (:obj:`dict`): Dictionary mapping org handles to RIRs. This is for limited cases where ARIN REST (ASN fallback HTTP lookup) does not show an RIR as the org handle e.g., DNIC (which is now the built in ORG_MAP) e.g., {'DNIC': 'arin'}. Valid RIR values are (note the case-sensitive - this is meant to match the REST result): 'ARIN', 'RIPE', 'apnic', 'lacnic', 'afrinic'. Defaults to None. Returns: dict: The ASN lookup results :: { 'asn' (None) - Cannot retrieve with this method. 'asn_date' (None) - Cannot retrieve with this method. 'asn_registry' (str) - The assigned ASN registry 'asn_cidr' (None) - Cannot retrieve with this method. 'asn_country_code' (None) - Cannot retrieve with this method. 'asn_description' (None) - Cannot retrieve with this method. } Raises: ASNRegistryError: The ASN registry is not known. ASNParseError: ASN parsing failed. """ # Set the org_map. Map the orgRef handle to an RIR. org_map = self.org_map.copy() try: org_map.update(extra_org_map) except (TypeError, ValueError, IndexError, KeyError): pass try: asn_data = { 'asn_registry': None, 'asn': None, 'asn_cidr': None, 'asn_country_code': None, 'asn_date': None, 'asn_description': None } try: net_list = response['nets']['net'] if not isinstance(net_list, list): net_list = [net_list] except (KeyError, TypeError): log.debug('No networks found') net_list = [] for n in reversed(net_list): try: asn_data['asn_registry'] = ( org_map[n['orgRef']['@handle'].upper()] ) except KeyError as e: log.debug('Could not parse ASN registry via HTTP: ' '{0}'.format(str(e))) continue break if not asn_data['asn_registry']: log.debug('Could not parse ASN registry via HTTP') raise ASNRegistryError('ASN registry lookup failed.') except ASNRegistryError: raise except Exception as e: # pragma: no cover raise ASNParseError('Parsing failed for "{0}" with exception: {1}.' ''.format(response, e)[:100]) return asn_data def lookup(self, inc_raw=False, retry_count=3, extra_org_map=None, asn_methods=None, get_asn_description=True): """ The wrapper function for retrieving and parsing ASN information for an IP address. Args: inc_raw (:obj:`bool`): Whether to include the raw results in the returned dictionary. Defaults to False. retry_count (:obj:`int`): The number of times to retry in case socket errors, timeouts, connection resets, etc. are encountered. Defaults to 3. extra_org_map (:obj:`dict`): Mapping org handles to RIRs. This is for limited cases where ARIN REST (ASN fallback HTTP lookup) does not show an RIR as the org handle e.g., DNIC (which is now the built in ORG_MAP) e.g., {'DNIC': 'arin'}. Valid RIR values are (note the case-sensitive - this is meant to match the REST result): 'ARIN', 'RIPE', 'apnic', 'lacnic', 'afrinic' Defaults to None. asn_methods (:obj:`list`): ASN lookup types to attempt, in order. If None, defaults to all: ['dns', 'whois', 'http']. get_asn_description (:obj:`bool`): Whether to run an additional query when pulling ASN information via dns, in order to get
# # Copyright (c) 2008-2015 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nitro.resource.base.base_resource import base_resource from nitro.resource.base.base_resource import base_response from nitro.service.options import options from nitro.exception.nitro_exception import nitro_exception from nitro.util.nitro_util import nitro_util class protocolip_stats(base_resource) : """Statistics for protocolip resource.""" def __init__(self) : self._clearstats = "" self._iptotrxpkts = 0 self._iprxpktsrate = 0 self._iptotrxbytes = 0 self._iprxbytesrate = 0 self._iptottxpkts = 0 self._iptxpktsrate = 0 self._iptottxbytes = 0 self._iptxbytesrate = 0 self._iptotrxmbits = 0 self._iprxmbitsrate = 0 self._iptottxmbits = 0 self._iptxmbitsrate = 0 self._iptotroutedpkts = 0 self._iproutedpktsrate = 0 self._iptotroutedmbits = 0 self._iproutedmbitsrate = 0 self._iptotfragments = 0 self._iptotsuccreassembly = 0 self._iptotreassemblyattempt = 0 self._iptotaddrlookup = 0 self._iptotaddrlookupfail = 0 self._iptotudpfragmentsfwd = 0 self._iptottcpfragmentsfwd = 0 self._iptotfragpktsgen = 0 self._iptotbadchecksums = 0 self._iptotunsuccreassembly = 0 self._iptottoobig = 0 self._iptotzerofragmentlen = 0 self._iptotdupfragments = 0 self._iptotoutoforderfrag = 0 self._iptotunknowndstrcvd = 0 self._iptotbadtransport = 0 self._iptotvipdown = 0 self._iptotfixheaderfail = 0 self._iptotttlexpired = 0 self._iptotmaxclients = 0 self._iptotunknownsvcs = 0 self._iptotlandattacks = 0 self._iptotinvalidheadersz = 0 self._iptotinvalidpacketsize = 0 self._iptottruncatedpackets = 0 self._noniptottruncatedpackets = 0 self._iptotzeronexthop = 0 self._iptotbadlens = 0 self._iptotbadmacaddrs = 0 @property def clearstats(self) : """Clear the statsistics / counters.<br/>Possible values = basic, full.""" try : return self._clearstats except Exception as e: raise e @clearstats.setter def clearstats(self, clearstats) : """Clear the statsistics / counters :param clearstats: """ try : self._clearstats = clearstats except Exception as e: raise e @property def iproutedpktsrate(self) : """Rate (/s) counter for iptotroutedpkts.""" try : return self._iproutedpktsrate except Exception as e: raise e @property def iptotoutoforderfrag(self) : """Fragments received that are out of order.""" try : return self._iptotoutoforderfrag except Exception as e: raise e @property def noniptottruncatedpackets(self) : """Truncated non-IP packets received.""" try : return self._noniptottruncatedpackets except Exception as e: raise e @property def iptotmaxclients(self) : """Attempts to open a new connection to a service for which the maximum limit has been exceeded. Default value, 0, applies no limit.""" try : return self._iptotmaxclients except Exception as e: raise e @property def iptotzerofragmentlen(self) : """Packets received with a fragment length of 0 bytes.""" try : return self._iptotzerofragmentlen except Exception as e: raise e @property def iptxbytesrate(self) : """Rate (/s) counter for iptottxbytes.""" try : return self._iptxbytesrate except Exception as e: raise e @property def iptotvipdown(self) : """Packets received for which the VIP is down. This can occur when all the services bound to the VIP are down or the VIP is manually disabled.""" try : return self._iptotvipdown except Exception as e: raise e @property def iptotroutedpkts(self) : """Total routed packets.""" try : return self._iptotroutedpkts except Exception as e: raise e @property def iprxmbitsrate(self) : """Rate (/s) counter for iptotrxmbits.""" try : return self._iprxmbitsrate except Exception as e: raise e @property def iprxpktsrate(self) : """Rate (/s) counter for iptotrxpkts.""" try : return self._iprxpktsrate except Exception as e: raise e @property def iptxmbitsrate(self) : """Rate (/s) counter for iptottxmbits.""" try : return self._iptxmbitsrate except Exception as e: raise e @property def iptotroutedmbits(self) : """Total routed Mbits.""" try : return self._iptotroutedmbits except Exception as e: raise e @property def iptotinvalidheadersz(self) : """Packets received in which an invalid data length is specified, or the value in the length field and the actual data length do not match. The range for the Ethernet packet data length is 0-1500 bytes.""" try : return self._iptotinvalidheadersz except Exception as e: raise e @property def iptotaddrlookupfail(self) : """IP address lookups performed by the NetScaler that have failed because the destination IP address of the packet does not match any of the NetScaler owned IP addresses.""" try : return self._iptotaddrlookupfail except Exception as e: raise e @property def iptotbadtransport(self) : """Packets received in which the protocol specified in the IP header is unknown to the NetScaler.""" try : return self._iptotbadtransport except Exception as e: raise e @property def iptotfragpktsgen(self) : """Fragmented packets created by the NetScaler.""" try : return self._iptotfragpktsgen except Exception as e: raise e @property def iptotsuccreassembly(self) : """Fragmented IP packets successfully reassembled on the NetScaler.""" try : return self._iptotsuccreassembly except Exception as e: raise e @property def iptotrxmbits(self) : """Megabits of IP data received.""" try : return self._iptotrxmbits except Exception as e: raise e @property def iptottxbytes(self) : """Bytes of IP data transmitted.""" try : return self._iptottxbytes except Exception as e: raise e @property def iptotbadmacaddrs(self) : """IP packets transmitted with a bad MAC address.""" try : return self._iptotbadmacaddrs except Exception as e: raise e @property def iptottcpfragmentsfwd(self) : """TCP fragments forwarded to the client or the server.""" try : return self._iptottcpfragmentsfwd except Exception as e: raise e @property def iptotrxpkts(self) : """IP packets received.""" try : return self._iptotrxpkts except Exception as e: raise e @property def iptotrxbytes(self) : """Bytes of IP data received.""" try : return self._iptotrxbytes except Exception as e: raise e @property def iptotlandattacks(self) : """Land-attack packets received. The source and destination addresses are the same.""" try : return self._iptotlandattacks except Exception as e: raise e @property def iptotunknowndstrcvd(self) : """Packets received in which the destination IP address was not reachable or not owned by the NetScaler.""" try : return self._iptotunknowndstrcvd except Exception as e: raise e @property def iptottruncatedpackets(self) : """Truncated IP packets received. An overflow in the routers along the path can truncate IP packets.""" try : return self._iptottruncatedpackets except Exception as e: raise e @property def iptotttlexpired(self) : """Packets for which the time-to-live (TTL) expired during transit. These packets are dropped.""" try : return self._iptotttlexpired except Exception as e: raise e @property def iprxbytesrate(self) : """Rate (/s) counter for iptotrxbytes.""" try : return self._iprxbytesrate except Exception as e: raise e @property def iptottxmbits(self) : """Megabits of IP data transmitted.""" try : return self._iptottxmbits except Exception as e: raise e @property def iptotbadlens(self) : """Packets received with a length greater than the normal maximum transmission unit of 1514 bytes.""" try : return self._iptotbadlens except Exception as e: raise e @property def iptotunknownsvcs(self) : """Packets received on a port or service that is not configured.""" try : return self._iptotunknownsvcs except Exception as e: raise e @property def iptotdupfragments(self) : """Duplicate IP fragments received. This can occur when the acknowledgement was not received within the expected time.""" try : return self._iptotdupfragments except Exception as e: raise e @property def iptottoobig(self) : """Packets received for which the reassembled data exceeds the Ethernet packet data length of 1500 bytes.""" try : return self._iptottoobig except Exception as e: raise e @property def iptotzeronexthop(self) : """Packets received that contain a 0 value in the next hop field. These packets are dropped.""" try : return self._iptotzeronexthop except Exception as e: raise e @property def iptotaddrlookup(self) : """IP address lookups performed by the NetScaler. When a packet is received on a non-established session, the NetScaler checks if the destination IP address is one of the NetScaler owned IP addresses.""" try : return self._iptotaddrlookup except Exception as e: raise e @property def iptotfragments(self) : """IP fragments received.""" try : return self._iptotfragments except Exception as e: raise e @property def iptotinvalidpacketsize(self) : """Total number of packets received by NetScaler with invalid IP packet size.""" try : return self._iptotinvalidpacketsize except Exception as e: raise e @property def iptotunsuccreassembly(self) : """Packets received that could not be reassembled. This can occur when there is a checksum failure, an identification field mismatch, or when one of the fragments is missing.""" try : return self._iptotunsuccreassembly except Exception as e: raise e @property def iptotreassemblyattempt(self) : """IP packets
# INTERNAL_ONLY_PROPERTIES defines the properties in the config that, while settable, should # not be documented for external users. These will generally be used for internal test or only # given to customers when they have been briefed on the side effects of using them. INTERNAL_ONLY_PROPERTIES = { "__module__", "__doc__", "create_transaction", "SESSION_COOKIE_NAME", "SESSION_COOKIE_HTTPONLY", "SESSION_COOKIE_SAMESITE", "DATABASE_SECRET_KEY", "V22_NAMESPACE_BLACKLIST", "MAXIMUM_CNR_LAYER_SIZE", "OCI_NAMESPACE_WHITELIST", "FEATURE_GENERAL_OCI_SUPPORT", "FEATURE_HELM_OCI_SUPPORT", "FEATURE_NAMESPACE_GARBAGE_COLLECTION", "FEATURE_REPOSITORY_GARBAGE_COLLECTION", "FEATURE_REPOSITORY_ACTION_COUNTER", "APP_REGISTRY_PACKAGE_LIST_CACHE_WHITELIST", "APP_REGISTRY_SHOW_PACKAGE_CACHE_WHITELIST", "FEATURE_MANIFEST_SIZE_BACKFILL", "TESTING", "SEND_FILE_MAX_AGE_DEFAULT", "DISABLED_FOR_AUDIT_LOGS", "DISABLED_FOR_PULL_LOGS", "FEATURE_DISABLE_PULL_LOGS_FOR_FREE_NAMESPACES", "FEATURE_CLEAR_EXPIRED_RAC_ENTRIES", "ACTION_LOG_MAX_PAGE", "NON_RATE_LIMITED_NAMESPACES", "REPLICATION_QUEUE_NAME", "DOCKERFILE_BUILD_QUEUE_NAME", "CHUNK_CLEANUP_QUEUE_NAME", "SECURITY_SCANNER_ISSUER_NAME", "NOTIFICATION_QUEUE_NAME", "REPOSITORY_GC_QUEUE_NAME", "NAMESPACE_GC_QUEUE_NAME", "EXPORT_ACTION_LOGS_QUEUE_NAME", "SECSCAN_V4_NOTIFICATION_QUEUE_NAME", "FEATURE_BILLING", "BILLING_TYPE", "INSTANCE_SERVICE_KEY_LOCATION", "INSTANCE_SERVICE_KEY_REFRESH", "INSTANCE_SERVICE_KEY_SERVICE", "INSTANCE_SERVICE_KEY_KID_LOCATION", "INSTANCE_SERVICE_KEY_EXPIRATION", "UNAPPROVED_SERVICE_KEY_TTL_SEC", "EXPIRED_SERVICE_KEY_TTL_SEC", "REGISTRY_JWT_AUTH_MAX_FRESH_S", "SERVICE_LOG_ACCOUNT_ID", "BUILDLOGS_OPTIONS", "LIBRARY_NAMESPACE", "STAGGER_WORKERS", "QUEUE_WORKER_METRICS_REFRESH_SECONDS", "PUSH_TEMP_TAG_EXPIRATION_SEC", "GARBAGE_COLLECTION_FREQUENCY", "PAGE_TOKEN_KEY", "BUILD_MANAGER", "JWTPROXY_AUDIENCE", "JWTPROXY_SIGNER", "SECURITY_SCANNER_INDEXING_MIN_ID", "SECURITY_SCANNER_V4_REINDEX_THRESHOLD", "STATIC_SITE_BUCKET", "LABEL_KEY_RESERVED_PREFIXES", "TEAM_SYNC_WORKER_FREQUENCY", "JSONIFY_PRETTYPRINT_REGULAR", "TUF_GUN_PREFIX", "LOGGING_LEVEL", "SIGNED_GRANT_EXPIRATION_SEC", "PROMETHEUS_PUSHGATEWAY_URL", "DB_TRANSACTION_FACTORY", "NOTIFICATION_SEND_TIMEOUT", "QUEUE_METRICS_TYPE", "MAIL_FAIL_SILENTLY", "LOCAL_OAUTH_HANDLER", "USE_CDN", "ANALYTICS_TYPE", "LAST_ACCESSED_UPDATE_THRESHOLD_S", "GREENLET_TRACING", "EXCEPTION_LOG_TYPE", "SENTRY_DSN", "SENTRY_PUBLIC_DSN", "BILLED_NAMESPACE_MAXIMUM_BUILD_COUNT", "THREAT_NAMESPACE_MAXIMUM_BUILD_COUNT", "IP_DATA_API_KEY", "SECURITY_SCANNER_ENDPOINT_BATCH", "SECURITY_SCANNER_API_TIMEOUT_SECONDS", "SECURITY_SCANNER_API_TIMEOUT_POST_SECONDS", "SECURITY_SCANNER_ENGINE_VERSION_TARGET", "SECURITY_SCANNER_READONLY_FAILOVER_ENDPOINTS", "SECURITY_SCANNER_API_VERSION", "REPO_MIRROR_INTERVAL", "DATA_MODEL_CACHE_CONFIG", # TODO: move this into the schema once we support signing in QE. "FEATURE_SIGNING", "TUF_SERVER", "V1_ONLY_DOMAIN", "LOGS_MODEL", "LOGS_MODEL_CONFIG", "APP_REGISTRY_RESULTS_LIMIT", "V3_UPGRADE_MODE", # Deprecated old flag "ACCOUNT_RECOVERY_MODE", } CONFIG_SCHEMA = { "type": "object", "description": "Schema for Quay configuration", "required": [ "PREFERRED_URL_SCHEME", "SERVER_HOSTNAME", "DB_URI", "AUTHENTICATION_TYPE", "DISTRIBUTED_STORAGE_CONFIG", "BUILDLOGS_REDIS", "USER_EVENTS_REDIS", "DISTRIBUTED_STORAGE_PREFERENCE", "DEFAULT_TAG_EXPIRATION", "TAG_EXPIRATION_OPTIONS", ], "properties": { "REGISTRY_STATE": { "type": "string", "description": "The state of the registry.", "enum": ["normal", "readonly"], "x-example": "readonly", }, # Hosting. "PREFERRED_URL_SCHEME": { "type": "string", "description": "The URL scheme to use when hitting Quay. If Quay is behind SSL *at all*, this *must* be `https`", "enum": ["http", "https"], "x-example": "https", }, "SERVER_HOSTNAME": { "type": "string", "description": "The URL at which Quay is accessible, without the scheme.", "x-example": "quay.io", }, "EXTERNAL_TLS_TERMINATION": { "type": "boolean", "description": "If TLS is supported, but terminated at a layer before Quay, must be true.", "x-example": True, }, # SSL/TLS. "SSL_CIPHERS": { "type": "array", "description": "If specified, the nginx-defined list of SSL ciphers to enabled and disabled", "x-example": ["CAMELLIA", "!3DES"], "x-reference": "http://nginx.org/en/docs/http/ngx_http_ssl_module.html#ssl_ciphers", }, "SSL_PROTOCOLS": { "type": "array", "description": "If specified, the nginx-defined list of SSL protocols to enabled and disabled", "x-example": ["TLSv1.1", "TLSv1.2"], "x-reference": "http://nginx.org/en/docs/http/ngx_http_ssl_module.html#ssl_protocols", }, # User-visible configuration. "REGISTRY_TITLE": { "type": "string", "description": "If specified, the long-form title for the registry. Defaults to `Red Hat Quay`.", "x-example": "Corp Container Service", }, "REGISTRY_TITLE_SHORT": { "type": "string", "description": "If specified, the short-form title for the registry. Defaults to `Red Hat Quay`.", "x-example": "CCS", }, "CONTACT_INFO": { "type": "array", "uniqueItems": True, "description": "If specified, contact information to display on the contact page. " + "If only a single piece of contact information is specified, the contact footer will link directly.", "items": [ { "type": "string", "pattern": "^mailto:(.)+$", "x-example": "mailto:<EMAIL>", "description": "Adds a link to send an e-mail", }, { "type": "string", "pattern": "^irc://(.)+$", "x-example": "irc://chat.freenode.net:6665/quay", "description": "Adds a link to visit an IRC chat room", }, { "type": "string", "pattern": "^tel:(.)+$", "x-example": "tel:+1-888-930-3475", "description": "Adds a link to call a phone number", }, { "type": "string", "pattern": "^http(s)?://(.)+$", "x-example": "https://twitter.com/quayio", "description": "Adds a link to a defined URL", }, ], }, "SEARCH_RESULTS_PER_PAGE": { "type": "number", "description": "Number of results returned per page by search page. Defaults to 10", "x-example": 10, }, "SEARCH_MAX_RESULT_PAGE_COUNT": { "type": "number", "description": "Maximum number of pages the user can paginate in search before they are limited. Defaults to 10", "x-example": 10, }, # E-mail. "FEATURE_MAILING": { "type": "boolean", "description": "Whether emails are enabled. Defaults to True", "x-example": True, }, "MAIL_SERVER": { "type": "string", "description": "The SMTP server to use for sending e-mails. Only required if FEATURE_MAILING is set to true.", "x-example": "smtp.somedomain.com", }, "MAIL_USE_TLS": { "type": "boolean", "description": "If specified, whether to use TLS for sending e-mails.", "x-example": True, }, "MAIL_PORT": { "type": "number", "description": "The SMTP port to use. If not specified, defaults to 587.", "x-example": 588, }, "MAIL_USERNAME": { "type": ["string", "null"], "description": "The SMTP username to use when sending e-mails.", "x-example": "myuser", }, "MAIL_PASSWORD": { "type": ["string", "null"], "description": "The SMTP password to use when sending e-mails.", "x-example": "<PASSWORD>", }, "MAIL_DEFAULT_SENDER": { "type": ["string", "null"], "description": "If specified, the e-mail address used as the `from` when Quay sends e-mails. If none, defaults to `<EMAIL>`.", "x-example": "<EMAIL>", }, # Database. "DB_URI": { "type": "string", "description": "The URI at which to access the database, including any credentials.", "x-example": "mysql+pymysql://username:[email protected]/quay", "x-reference": "https://www.postgresql.org/docs/9.3/static/libpq-connect.html#AEN39495", }, "DB_CONNECTION_ARGS": { "type": "object", "description": "If specified, connection arguments for the database such as timeouts and SSL.", "properties": { "threadlocals": { "type": "boolean", "description": "Whether to use thread-local connections. Should *ALWAYS* be `true`", }, "autorollback": { "type": "boolean", "description": "Whether to use auto-rollback connections. Should *ALWAYS* be `true`", }, "ssl": { "type": "object", "description": "SSL connection configuration", "properties": { "ca": { "type": "string", "description": "*Absolute container path* to the CA certificate to use for SSL connections", "x-example": "conf/stack/ssl-ca-cert.pem", }, }, "required": ["ca"], }, }, "required": ["threadlocals", "autorollback"], }, "ALLOW_PULLS_WITHOUT_STRICT_LOGGING": { "type": "boolean", "description": "If true, pulls in which the pull audit log entry cannot be written will " + "still succeed. Useful if the database can fallback into a read-only state " + "and it is desired for pulls to continue during that time. Defaults to False.", "x-example": True, }, # Storage. "FEATURE_STORAGE_REPLICATION": { "type": "boolean", "description": "Whether to automatically replicate between storage engines. Defaults to False", "x-example": False, }, "FEATURE_PROXY_STORAGE": { "type": "boolean", "description": "Whether to proxy all direct download URLs in storage via the registry nginx. Defaults to False", "x-example": False, }, "MAXIMUM_LAYER_SIZE": { "type": "string", "description": "Maximum allowed size of an image layer. Defaults to 20G", "x-example": "100G", "pattern": "^[0-9]+(G|M)$", }, "DISTRIBUTED_STORAGE_CONFIG": { "type": "object", "description": "Configuration for storage engine(s) to use in Quay. Each key is a unique ID" + " for a storage engine, with the value being a tuple of the type and " + " configuration for that engine.", "x-example": { "local_storage": ["LocalStorage", {"storage_path": "some/path/"}], }, "items": { "type": "array", }, }, "DISTRIBUTED_STORAGE_PREFERENCE": { "type": "array", "description": "The preferred storage engine(s) (by ID in DISTRIBUTED_STORAGE_CONFIG) to " + "use. A preferred engine means it is first checked for pullig and images are " + "pushed to it.", "items": { "type": "string", "uniqueItems": True, }, "x-example": ["s3_us_east", "s3_us_west"], }, "DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS": { "type": "array", "description": "The list of storage engine(s) (by ID in DISTRIBUTED_STORAGE_CONFIG) whose " + "images should be fully replicated, by default, to all other storage engines.", "items": { "type": "string", "uniqueItems": True, }, "x-example": ["s3_us_east", "s3_us_west"], }, "USERFILES_LOCATION": { "type": "string", "description": "ID of the storage engine in which to place user-uploaded files", "x-example": "s3_us_east", }, "USERFILES_PATH": { "type": "string", "description": "Path under storage in which to place user-uploaded files", "x-example": "userfiles", }, "ACTION_LOG_ARCHIVE_LOCATION": { "type": "string", "description": "If action log archiving is enabled, the storage engine in which to place the " + "archived data.", "x-example": "s3_us_east", }, "ACTION_LOG_ARCHIVE_PATH": { "type": "string", "description": "If action log archiving is enabled, the path in storage in which to place the " + "archived data.", "x-example": "archives/actionlogs", }, "ACTION_LOG_ROTATION_THRESHOLD": { "type": "string", "description": "If action log archiving is enabled, the time interval after which to " + "archive data.", "x-example": "30d", }, "LOG_ARCHIVE_LOCATION": { "type": "string", "description": "If builds are enabled, the storage engine in which to place the " + "archived build logs.", "x-example": "s3_us_east", }, "LOG_ARCHIVE_PATH": { "type": "string", "description": "If builds are enabled, the path in storage in which to place the " + "archived build logs.", "x-example": "archives/buildlogs", }, # Authentication. "AUTHENTICATION_TYPE": { "type": "string", "description": "The authentication engine to use for credential authentication.", "x-example": "Database", "enum": ["Database", "LDAP", "JWT", "Keystone", "OIDC", "AppToken"], }, "SUPER_USERS": { "type": "array", "description": "Quay usernames of those users to be granted superuser privileges", "uniqueItems": True, "items": { "type": "string", }, }, "DIRECT_OAUTH_CLIENTID_WHITELIST": { "type": "array", "description": "A list of client IDs of *Quay-managed* applications that are allowed " + "to perform direct OAuth approval without user approval.", "x-reference": "https://coreos.com/quay-enterprise/docs/latest/direct-oauth.html", "uniqueItems": True, "items": { "type": "string", }, }, # Redis. "BUILDLOGS_REDIS": { "type": "object", "description": "Connection information
at the start handler.assert_allclose( funcs["DVCon1_volume_constraint_0"], 4.0 * np.ones(1), name="volume_base", rtol=1e-7, atol=1e-7 ) def test_4(self, train=False, refDeriv=False): """ Test 4: LeTe Constraint using the ilow, ihigh method There's no need to test this with the rectangular box because it doesn't depend on a projected pointset (only the FFD) """ refFile = os.path.join(self.base_path, "ref/test_DVConstraints_04.ref") with BaseRegTest(refFile, train=train) as handler: handler.root_print("Test 4: LETE constraint, C172 wing") DVGeo, DVCon = self.generate_dvgeo_dvcon_c172() DVCon.addLeTeConstraints(0, "iLow") DVCon.addLeTeConstraints(0, "iHigh") funcs, funcsSens = self.generic_test_base(DVGeo, DVCon, handler) # LeTe constraints should be all zero at the start for i in range(2): handler.assert_allclose( funcs["DVCon1_lete_constraint_" + str(i)], np.zeros(4), name="lete_" + str(i), rtol=1e-7, atol=1e-7 ) funcs, funcsSens = self.c172_test_twist(DVGeo, DVCon, handler) # Global DVs should produce no change, especially twist for i in range(2): handler.assert_allclose( funcs["DVCon1_lete_constraint_" + str(i)], np.zeros(4), name="lete_twisted_" + str(i), rtol=1e-7, atol=1e-7, ) funcs, funcsSens = self.c172_test_deformed(DVGeo, DVCon, handler) def test_5(self, train=False, refDeriv=False): """ Test 5: Thickness-to-chord constraint There's no need to test this with the rectangular box because it doesn't depend on a projected pointset (only the FFD) """ refFile = os.path.join(self.base_path, "ref/test_DVConstraints_05.ref") with BaseRegTest(refFile, train=train) as handler: handler.root_print("Test 5: t/c constraint, C172 wing") DVGeo, DVCon = self.generate_dvgeo_dvcon_c172() ptList = [[0.8, 0.0, 0.1], [0.8, 0.0, 5.0]] DVCon.addThicknessToChordConstraints1D(ptList, nCon=10, axis=[0, 1, 0], chordDir=[1, 0, 0]) funcs, funcsSens = self.generic_test_base(DVGeo, DVCon, handler) handler.assert_allclose( funcs["DVCon1_thickness_to_chord_constraints_0"], np.ones(10), name="toverc_base", rtol=1e-7, atol=1e-7 ) funcs, funcsSens = self.c172_test_twist(DVGeo, DVCon, handler) handler.assert_allclose( funcs["DVCon1_thickness_to_chord_constraints_0"], np.ones(10), name="toverc_twisted", rtol=1e-3, atol=1e-3, ) funcs, funcsSens = self.c172_test_deformed(DVGeo, DVCon, handler) def test_6(self, train=False, refDeriv=False): """ Test 6: Surface area constraint """ refFile = os.path.join(self.base_path, "ref/test_DVConstraints_06.ref") with BaseRegTest(refFile, train=train) as handler: handler.root_print("Test 6: surface area constraint, C172 wing") DVGeo, DVCon = self.generate_dvgeo_dvcon_c172() DVCon.addSurfaceAreaConstraint() funcs, funcsSens = self.generic_test_base(DVGeo, DVCon, handler) handler.assert_allclose( funcs["DVCon1_surfaceArea_constraints_0"], np.ones(1), name="surface_area_base", rtol=1e-7, atol=1e-7 ) funcs, funcsSens = self.c172_test_twist(DVGeo, DVCon, handler) handler.assert_allclose( funcs["DVCon1_surfaceArea_constraints_0"], np.ones(1), name="surface_area_twisted", rtol=1e-3, atol=1e-3 ) funcs, funcsSens = self.c172_test_deformed(DVGeo, DVCon, handler) def test_6b(self, train=False, refDeriv=False): """ Test 6b: Surface area constraint """ refFile = os.path.join(self.base_path, "ref/test_DVConstraints_06b.ref") with BaseRegTest(refFile, train=train) as handler: handler.root_print("Test 6: surface area constraint, rectangular box") DVGeo, DVCon = self.generate_dvgeo_dvcon_rect() DVCon.addSurfaceAreaConstraint(scaled=False) # 2x1x8 box has surface area 2*(8*2+1*2+8*1) = 52 funcs, funcsSens = self.generic_test_base(DVGeo, DVCon, handler) handler.assert_allclose( funcs["DVCon1_surfaceArea_constraints_0"], 52.0 * np.ones(1), name="surface_area_base", rtol=1e-7, atol=1e-7, ) def test_7(self, train=False, refDeriv=False): """ Test 7: Projected area constraint """ refFile = os.path.join(self.base_path, "ref/test_DVConstraints_07.ref") with BaseRegTest(refFile, train=train) as handler: handler.root_print("Test 7: projected area constraint, C172 wing") DVGeo, DVCon = self.generate_dvgeo_dvcon_c172() DVCon.addProjectedAreaConstraint() funcs, funcsSens = self.generic_test_base(DVGeo, DVCon, handler) handler.assert_allclose( funcs["DVCon1_projectedArea_constraints_0"], np.ones(1), name="projected_area_base", rtol=1e-7, atol=1e-7, ) funcs, funcsSens = self.c172_test_twist(DVGeo, DVCon, handler) funcs, funcsSens = self.c172_test_deformed(DVGeo, DVCon, handler) def test_7b(self, train=False, refDeriv=False): """ Test 7b: Projected area constraint """ refFile = os.path.join(self.base_path, "ref/test_DVConstraints_07b.ref") with BaseRegTest(refFile, train=train) as handler: handler.root_print("Test 7b: projected area constraint, rectangular box") DVGeo, DVCon = self.generate_dvgeo_dvcon_rect() DVCon.addProjectedAreaConstraint(scaled=False) DVCon.addProjectedAreaConstraint(axis="z", scaled=False) DVCon.addProjectedAreaConstraint(axis="x", scaled=False) funcs, funcsSens = self.generic_test_base(DVGeo, DVCon, handler, checkDerivs=False) handler.assert_allclose( funcs["DVCon1_projectedArea_constraints_0"], 8 * 2 * np.ones(1), name="projected_area_base", rtol=1e-7, atol=1e-7, ) handler.assert_allclose( funcs["DVCon1_projectedArea_constraints_1"], 1 * 2 * np.ones(1), name="projected_area_base", rtol=1e-7, atol=1e-7, ) handler.assert_allclose( funcs["DVCon1_projectedArea_constraints_2"], 8 * 1 * np.ones(1), name="projected_area_base", rtol=1e-7, atol=1e-7, ) def test_8(self, train=False, refDeriv=False): """ Test 8: Circularity constraint No need to test this with the rectangular box because it only depends on the FFD, no projected points """ refFile = os.path.join(self.base_path, "ref/test_DVConstraints_08.ref") with BaseRegTest(refFile, train=train) as handler: handler.root_print("Test 8: Circularity constraint, C172 wing") DVGeo, DVCon = self.generate_dvgeo_dvcon_c172() DVCon.addCircularityConstraint( origin=[0.8, 0.0, 2.5], rotAxis=[0.0, 0.0, 1.0], radius=0.1, zeroAxis=[0.0, 1.0, 0.0], angleCW=180.0, angleCCW=180.0, nPts=10, ) funcs, funcsSens = self.generic_test_base(DVGeo, DVCon, handler) handler.assert_allclose( funcs["DVCon1_circularity_constraints_0"], np.ones(9), name="circularity_base", rtol=1e-7, atol=1e-7 ) funcs, funcsSens = self.c172_test_twist(DVGeo, DVCon, handler) handler.assert_allclose( funcs["DVCon1_circularity_constraints_0"], np.ones(9), name="circularity_twisted", rtol=1e-7, atol=1e-7 ) funcs, funcsSens = self.c172_test_deformed(DVGeo, DVCon, handler) def test_9(self, train=False, refDeriv=False): """ Test 9: Colinearity constraint No need to test this with the rectangular box because it only depends on the FFD, no projected points """ refFile = os.path.join(self.base_path, "ref/test_DVConstraints_09.ref") with BaseRegTest(refFile, train=train) as handler: handler.root_print("Test 9: Colinearity constraint, C172 wing") DVGeo, DVCon = self.generate_dvgeo_dvcon_c172() DVCon.addColinearityConstraint( np.array([0.7, 0.0, 1.0]), lineAxis=np.array([0.0, 0.0, 1.0]), distances=[0.0, 1.0, 2.5] ) # Skip derivatives check here because true zero values cause difficulties for the partials funcs, funcsSens = self.generic_test_base(DVGeo, DVCon, handler, checkDerivs=False) handler.assert_allclose( funcs["DVCon1_colinearity_constraints_0"], np.zeros(3), name="colinearity_base", rtol=1e-7, atol=1e-7 ) funcs, funcsSens = self.c172_test_twist(DVGeo, DVCon, handler) funcs, funcsSens = self.c172_test_deformed(DVGeo, DVCon, handler) def test_10(self, train=False, refDeriv=False): """ Test 10: LinearConstraintShape No need to test this with the rectangular box because it only depends on the FFD, no projected points """ refFile = os.path.join(self.base_path, "ref/test_DVConstraints_10.ref") with BaseRegTest(refFile, train=train) as handler: handler.root_print("Test 10: LinearConstraintShape, C172 wing") DVGeo, DVCon = self.generate_dvgeo_dvcon_c172() lIndex = DVGeo.getLocalIndex(0) indSetA = [] indSetB = [] for i in range(lIndex.shape[0]): indSetA.append(lIndex[i, 0, 0]) indSetB.append(lIndex[i, 0, 1]) DVCon.addLinearConstraintsShape(indSetA, indSetB, factorA=1.0, factorB=-1.0, lower=0, upper=0) funcs, funcsSens = self.generic_test_base(DVGeo, DVCon, handler) funcs, funcsSens = self.c172_test_twist(DVGeo, DVCon, handler) funcs, funcsSens = self.c172_test_deformed(DVGeo, DVCon, handler) def test_11(self, train=False, refDeriv=False): refFile = os.path.join(self.base_path, "ref/test_DVConstraints_11.ref") with BaseRegTest(refFile, train=train) as handler: handler.root_print("Test 11: CompositeVolumeConstraint, rectangular box") DVGeo, DVCon = self.generate_dvgeo_dvcon_rect() # this projects in the z direction which is of dimension 8 # 1x0.5x8 = 4 leList = [[-0.5, -0.25, 0.1], [0.5, -0.25, 0.1]] teList = [[-0.5, 0.25, 0.1], [0.5, 0.25, 0.1]] # this projects in the x direction which is of dimension 2 # 2x0.6x7.8 = 9.36 leList2 = [[0.0, -0.25, 0.1], [0.0, -0.25, 7.9]] teList2 = [[0.0, 0.35, 0.1], [0.0, 0.35, 7.9]] DVCon.addVolumeConstraint(leList, teList, 4, 4, scaled=False, addToPyOpt=False) DVCon.addVolumeConstraint(leList2, teList2, 4, 4, scaled=False, addToPyOpt=False) vols = ["DVCon1_volume_constraint_0", "DVCon1_volume_constraint_1"] DVCon.addCompositeVolumeConstraint(vols=vols, scaled=False) funcs, funcsSens = self.generic_test_base(DVGeo, DVCon, handler) # Volume should be normalized to 1 at the start handler.assert_allclose( funcs["DVCon1_volume_constraint_0"], 4.0 * np.ones(1), name="volume1_base", rtol=1e-7, atol=1e-7 ) handler.assert_allclose( funcs["DVCon1_volume_constraint_1"], 9.36 * np.ones(1), name="volume2_base", rtol=1e-7, atol=1e-7 ) handler.assert_allclose( funcs["DVCon1_composite_volume_constraint_2"], 13.36 * np.ones(1), name="volume_composite_base", rtol=1e-7, atol=1e-7, ) def test_12(self, train=False, refDeriv=False): refFile = os.path.join(self.base_path, "ref/test_DVConstraints_12.ref") with BaseRegTest(refFile, train=train) as handler: handler.root_print("Test 12: LocationConstraints1D, rectangular box") DVGeo, DVCon = self.generate_dvgeo_dvcon_rect() ptList = [[0.0, 0.0, 0.0], [0.0, 0.0, 8.0]] ptList2 = [[0.0, 0.2, 0.0], [0.0, -0.2, 8.0]] # TODO this constraint seems buggy. for example, when scaled, returns a bunch of NaNs DVCon.addLocationConstraints1D(ptList=ptList, nCon=10, scaled=False) DVCon.addProjectedLocationConstraints1D(ptList=ptList2, nCon=10, scaled=False, axis=[0.0, 1.0, 0.0]) funcs, funcsSens = self.generic_test_base(DVGeo, DVCon, handler) exact_vals = np.zeros((30,)) exact_vals[2::3] = np.linspace(0, 8, 10) # should be 10 evenly spaced points along the z axis originating from 0,0,0 handler.assert_allclose( funcs["DVCon1_location_constraints_0"], exact_vals, name="locations_match", rtol=1e-7, atol=1e-7 ) handler.assert_allclose( funcs["DVCon1_location_constraints_1"], exact_vals, name="projected_locations_match", rtol=1e-7, atol=1e-7, ) def test_13(self, train=False, refDeriv=False): refFile = os.path.join(self.base_path, "ref/test_DVConstraints_13.ref") with BaseRegTest(refFile, train=train) as handler: handler.root_print("Test 13: PlanarityConstraint, rectangular box") DVGeo, DVCon = self.generate_dvgeo_dvcon_rect() DVCon.addPlanarityConstraint(origin=[0.0, 0.5, 0.0], planeAxis=[0.0, 1.0, 0.0]) funcs, funcsSens = self.generic_test_base(DVGeo, DVCon, handler) def test_13b(self, train=False, refDeriv=False): refFile = os.path.join(self.base_path, "ref/test_DVConstraints_13b.ref") with BaseRegTest(refFile, train=train) as handler: handler.root_print("Test 13: PlanarityConstraint, rectangular box") ffdfile = os.path.join(self.base_path, "../inputFiles/2x1x8_rectangle.xyz") DVGeo = DVGeometry(ffdfile) DVGeo.addGeoDVLocal("local", lower=-0.5, upper=0.5, axis="y", scale=1) # create a DVConstraints object with a simple plane consisting of 2 triangles DVCon = DVConstraints() DVCon.setDVGeo(DVGeo) p0 = np.zeros(shape=(2, 3)) p1 = np.zeros(shape=(2, 3)) p2 = np.zeros(shape=(2, 3)) vertex1 = np.array([0.5, -0.25, 0.0]) vertex2 = np.array([0.5, -0.25, 4.0]) vertex3 = np.array([-0.5, -0.25, 0.0]) vertex4 = np.array([-0.5, -0.25, 4.0]) p0[:, :] = vertex1 p2[:, :] = vertex4 p1[0, :] = vertex2 p1[1, :] = vertex3 v1 = p1 - p0 v2 = p2 - p0 DVCon.setSurface([p0, v1, v2]) DVCon.addPlanarityConstraint(origin=[0.0, -0.25, 2.0], planeAxis=[0.0, 1.0, 0.0]) funcs, funcsSens = self.generic_test_base(DVGeo, DVCon, handler, checkDerivs=False) # this should be coplanar and the planarity constraint shoudl be zero handler.assert_allclose( funcs["DVCon1_planarity_constraints_0"], np.zeros(1), name="planarity", rtol=1e-7, atol=1e-7 ) def test_14(self, train=False, refDeriv=False): """ Test 14: Monotonic constraint """ refFile = os.path.join(self.base_path, "ref/test_DVConstraints_14.ref") with BaseRegTest(refFile, train=train) as handler: handler.root_print("Test 14: Monotonic constraint, C172 wing") DVGeo, DVCon = self.generate_dvgeo_dvcon_c172() DVCon.addMonotonicConstraints("twist") DVCon.addMonotonicConstraints("twist", start=1, stop=2) funcs, funcsSens = self.generic_test_base(DVGeo, DVCon, handler) handler.assert_allclose( funcs["DVCon1_monotonic_constraint_0"], np.zeros(2), name="monotonicity", rtol=1e-7, atol=1e-7 ) funcs, funcsSens = self.c172_test_twist(DVGeo, DVCon, handler) handler.assert_allclose( funcs["DVCon1_monotonic_constraint_0"], -5.0 * np.ones(2), name="monotonicity_twisted", rtol=1e-7, atol=1e-7, ) funcs = dict() funcsSens = dict() # change the DVs arbitrarily xDV = DVGeo.getValues() xDV["twist"][0] = 1.0 xDV["twist"][1] = -3.5 xDV["twist"][2] =
<reponame>phoenix-xhuang/ymir from enum import Enum import json import os import shutil import time from typing import Any, Callable, Dict, List, Optional, Tuple import uuid import xml.etree.ElementTree as ElementTree import lmdb from PIL import Image, UnidentifiedImageError from mir.protos import mir_command_pb2 as mirpb from mir.tools import class_ids, data_reader from mir.tools.code import MirCode from mir.tools.errors import MirRuntimeError class AssetFormat(str, Enum): ASSET_FORMAT_UNKNOWN = 'unknown' ASSET_FORMAT_RAW = 'raw' ASSET_FORMAT_LMDB = 'lmdb' class AnnoFormat(str, Enum): ANNO_FORMAT_UNKNOWN = 'unknown' ANNO_FORMAT_NO_ANNOTATION = 'none' ANNO_FORMAT_ARK = 'ark' ANNO_FORMAT_VOC = 'voc' ANNO_FORMAT_LS_JSON = 'ls_json' # label studio json format def check_support_format(anno_format: str) -> bool: return anno_format in support_format_type() def support_format_type() -> List[str]: return [f.value for f in AnnoFormat] def support_asset_format_type() -> List[str]: return [f.value for f in AssetFormat] def format_type_from_str(anno_format: str) -> AnnoFormat: return AnnoFormat(anno_format.lower()) def asset_format_type_from_str(asset_format: str) -> AssetFormat: return AssetFormat(asset_format.lower()) def get_export_type(type_str: str) -> Tuple[AnnoFormat, AssetFormat]: if not type_str: return (AnnoFormat.ANNO_FORMAT_ARK, AssetFormat.ASSET_FORMAT_RAW) ef, af = type_str.split(':') return (AnnoFormat(ef), AssetFormat(af)) def _format_file_output_func(anno_format: AnnoFormat) -> Callable: _format_func_map = { AnnoFormat.ANNO_FORMAT_ARK: _single_image_annotations_to_ark, AnnoFormat.ANNO_FORMAT_VOC: _single_image_annotations_to_voc, AnnoFormat.ANNO_FORMAT_LS_JSON: _single_image_annotations_to_ls_json, } return _format_func_map[anno_format] def _format_file_ext(anno_format: AnnoFormat) -> str: _format_ext_map = { AnnoFormat.ANNO_FORMAT_ARK: '.txt', AnnoFormat.ANNO_FORMAT_VOC: '.xml', AnnoFormat.ANNO_FORMAT_LS_JSON: '.json', } return _format_ext_map[anno_format] def _single_image_annotations_to_ark(asset_id: str, attrs: mirpb.MetadataAttributes, image_annotations: mirpb.SingleImageAnnotations, image_cks: mirpb.SingleImageCks, class_type_mapping: Optional[Dict[int, int]], cls_id_mgr: class_ids.ClassIdManager, asset_filename: str) -> str: output_str = "" for annotation in image_annotations.annotations: mapped_id = class_type_mapping[annotation.class_id] if class_type_mapping else annotation.class_id output_str += f"{mapped_id}, {annotation.box.x}, {annotation.box.y}, " output_str += f"{annotation.box.x + annotation.box.w - 1}, {annotation.box.y + annotation.box.h - 1}, " output_str += f"{annotation.anno_quality}\n" return output_str def _single_image_annotations_to_voc(asset_id: str, attrs: mirpb.MetadataAttributes, image_annotations: mirpb.SingleImageAnnotations, image_cks: mirpb.SingleImageCks, class_type_mapping: Optional[Dict[int, int]], cls_id_mgr: class_ids.ClassIdManager, asset_filename: str) -> str: annotations = image_annotations.annotations # annotation annotation_node = ElementTree.Element('annotation') # annotation: folder folder_node = ElementTree.SubElement(annotation_node, 'folder') folder_node.text = 'folder' # annotation: filename filename_node = ElementTree.SubElement(annotation_node, 'filename') filename_node.text = asset_filename # annotation: source source_node = ElementTree.SubElement(annotation_node, 'source') # annotation: source: database database_node = ElementTree.SubElement(source_node, 'database') database_node.text = attrs.dataset_name or 'unknown' # annotation: source: annotation annotation2_node = ElementTree.SubElement(source_node, 'annotation') annotation2_node.text = 'unknown' # annotation: source: image image_node = ElementTree.SubElement(source_node, 'image') image_node.text = 'unknown' # annotation: size size_node = ElementTree.SubElement(annotation_node, 'size') # annotation: size: width width_node = ElementTree.SubElement(size_node, 'width') width_node.text = str(attrs.width) # annotation: size: height height_node = ElementTree.SubElement(size_node, 'height') height_node.text = str(attrs.height) # annotation: size: depth depth_node = ElementTree.SubElement(size_node, 'depth') depth_node.text = str(attrs.image_channels) # annotation: segmented segmented_node = ElementTree.SubElement(annotation_node, 'segmented') segmented_node.text = '0' # annotation: cks and sub nodes cks_node = ElementTree.SubElement(annotation_node, 'cks') for k, v in image_cks.cks.items(): ElementTree.SubElement(cks_node, k).text = v # annotation: image_quality image_quality_node = ElementTree.SubElement(annotation_node, 'image_quality') image_quality_node.text = f"{image_cks.image_quality:.4f}" # annotation: object(s) for annotation in annotations: object_node = ElementTree.SubElement(annotation_node, 'object') name_node = ElementTree.SubElement(object_node, 'name') name_node.text = cls_id_mgr.main_name_for_id(annotation.class_id) or 'unknown' pose_node = ElementTree.SubElement(object_node, 'pose') pose_node.text = 'unknown' truncated_node = ElementTree.SubElement(object_node, 'truncated') truncated_node.text = 'unknown' occluded_node = ElementTree.SubElement(object_node, 'occluded') occluded_node.text = '0' bndbox_node = ElementTree.SubElement(object_node, 'bndbox') xmin_node = ElementTree.SubElement(bndbox_node, 'xmin') xmin_node.text = str(annotation.box.x) ymin_node = ElementTree.SubElement(bndbox_node, 'ymin') ymin_node.text = str(annotation.box.y) xmax_node = ElementTree.SubElement(bndbox_node, 'xmax') xmax_node.text = str(annotation.box.x + annotation.box.w - 1) ymax_node = ElementTree.SubElement(bndbox_node, 'ymax') ymax_node.text = str(annotation.box.y + annotation.box.h - 1) difficult_node = ElementTree.SubElement(object_node, 'difficult') difficult_node.text = '0' tags_node = ElementTree.SubElement(object_node, 'tags') for k, v in annotation.tags.items(): ElementTree.SubElement(tags_node, k).text = v box_quality_node = ElementTree.SubElement(object_node, 'box_quality') box_quality_node.text = f"{annotation.anno_quality:.4f}" return ElementTree.tostring(element=annotation_node, encoding='unicode') def _single_image_annotations_to_ls_json(asset_id: str, attrs: mirpb.MetadataAttributes, image_annotations: mirpb.SingleImageAnnotations, image_cks: mirpb.SingleImageCks, class_type_mapping: Optional[Dict[int, int]], cls_id_mgr: class_ids.ClassIdManager, asset_filename: str) -> str: annotations = image_annotations.annotations out_type = "predictions" # out_type: annotation type - "annotations" or "predictions" to_name = 'image' # to_name: object name from Label Studio labeling config from_name = 'label' # control tag name from Label Studio labeling config task: Dict = { out_type: [{ "result": [], "ground_truth": False, }], "data": { "image": asset_filename } } for annotation in annotations: bbox_x, bbox_y = float(annotation.box.x), float(annotation.box.y) bbox_width, bbox_height = float(annotation.box.w), float(annotation.box.h) img_width, img_height = attrs.width, attrs.height item = { "id": uuid.uuid4().hex[0:10], # random id to identify this annotation. "type": "rectanglelabels", "value": { # Units of image annotations in label studio is percentage of image width/height. # https://labelstud.io/guide/predictions.html#Units-of-image-annotations "x": bbox_x / img_width * 100, "y": bbox_y / img_height * 100, "width": bbox_width / img_width * 100, "height": bbox_height / img_height * 100, "rotation": 0, "rectanglelabels": [cls_id_mgr.main_name_for_id(annotation.class_id) or 'unknown'] }, "to_name": to_name, "from_name": from_name, "image_rotation": 0, "original_width": img_width, "original_height": img_height } task[out_type][0]['result'].append(item) return json.dumps(task) class BaseDataWriter: def __init__(self, mir_root: str, assets_location: str, class_ids_mapping: Dict[int, int], format_type: AnnoFormat) -> None: if not assets_location: raise MirRuntimeError(error_code=MirCode.RC_CMD_INVALID_ARGS, error_message='empty assets_location') self._class_id_manager = class_ids.ClassIdManager(mir_root=mir_root) self._assets_location = assets_location self._class_ids_mapping = class_ids_mapping self._format_type = format_type def _write(self, asset_id: str, attrs: mirpb.MetadataAttributes, image_annotations: mirpb.SingleImageAnnotations, gt_annotations: mirpb.SingleImageAnnotations, image_cks: mirpb.SingleImageCks) -> None: """ write assets and annotations to destination with proper format Args: asset_id (str): asset hash code attrs (mirpb.MetadataAttributes): attributes to this asset image_annotations (mirpb.SingleImageAnnotations): annotations to this asset image_cks (mirpb.SingleImageCks): cks to this asset """ raise NotImplementedError('not implemented') def _close(self) -> None: """ close writer """ raise NotImplementedError('not implemented') def write_all(self, dr: data_reader.MirDataReader) -> None: """ write all datas from data reader """ raise NotImplementedError('not implemented') class RawDataWriter(BaseDataWriter): def __init__(self, mir_root: str, assets_location: str, assets_dir: str, annotations_dir: str, need_ext: bool, need_id_sub_folder: bool, overwrite: bool, class_ids_mapping: Dict[int, int], format_type: AnnoFormat, index_file_path: str = '', gt_dir: str = '', gt_index_file_path: str = '', index_assets_prefix: str = '', index_annotations_prefix: str = '', index_gt_prefix: str = '') -> None: """ Args: assets_location (str): path to assets storage directory assets_dir (str): export asset directory annotations_dir (str): export annotation directory, if format_type is NO_ANNOTATION, this could be None gt_dir (str): export ground-truth directory, if format_type is NO_ANNOTATION, this could be None need_ext (bool): if true, all export assets will have it's type as ext, jpg, png, etc. need_id_sub_folder (bool): if True, use last 2 chars of asset id as a sub folder name format_type (AnnoFormat): format type, NONE means exports no annotations overwrite (bool): if true, export assets even if they are exist in destination position class_ids_mapping (Dict[int, int]): key: ymir class id, value: class id in exported annotation files index_file_path (str): path to index file, if None, generates no index file gt_index_file_path (str): path to gt_index file, if None, generates no index file index_assets_prefix (str): prefix path added to each asset index path index_annotations_prefix (str): prefix path added to each annotation index path index_gt_prefix (str): prefix path added to each groundtruth index path """ super().__init__(mir_root=mir_root, assets_location=assets_location, class_ids_mapping=class_ids_mapping, format_type=format_type) # prepare out dirs os.makedirs(assets_dir, exist_ok=True) if annotations_dir: os.makedirs(annotations_dir, exist_ok=True) if gt_dir: os.makedirs(gt_dir, exist_ok=True) if index_file_path: os.makedirs(os.path.dirname(index_file_path), exist_ok=True) if gt_index_file_path: if index_file_path == gt_index_file_path: raise MirRuntimeError(error_code=MirCode.RC_CMD_INVALID_ARGS, error_message='cannot set same value for index_file_path/gt_index_file_path') os.makedirs(os.path.dirname(gt_index_file_path), exist_ok=True) self._assets_dir = assets_dir self._annotations_dir = annotations_dir self._gt_dir = gt_dir self._need_ext = need_ext self._need_id_sub_folder = need_id_sub_folder self._format_type = format_type self._index_file = open(index_file_path, 'w') if index_file_path else None self._gt_index_file = open(gt_index_file_path, 'w') if gt_index_file_path else None self._index_assets_prefix = index_assets_prefix self._index_annotations_prefix = index_annotations_prefix self._index_gt_prefix = index_gt_prefix self._overwrite = overwrite def _write(self, asset_id: str, attrs: mirpb.MetadataAttributes, image_annotations: mirpb.SingleImageAnnotations, gt_annotations: mirpb.SingleImageAnnotations, image_cks: mirpb.SingleImageCks) -> None: # write asset asset_src_path = os.path.join(self._assets_location, asset_id) sub_folder_name = asset_id[-2:] if self._need_id_sub_folder else '' asset_file_name = asset_id if self._need_ext: try: asset_image = Image.open(asset_src_path) asset_file_name = f"{asset_file_name}.{asset_image.format.lower()}" # type: ignore except UnidentifiedImageError: asset_file_name = f"{asset_file_name}.unknown" asset_dest_dir = os.path.join(self._assets_dir, sub_folder_name) os.makedirs(asset_dest_dir, exist_ok=True) asset_dest_path = os.path.join(asset_dest_dir, asset_file_name) if self._overwrite or not os.path.isfile(asset_dest_path): shutil.copyfile(asset_src_path, asset_dest_path) anno_file_name = '' if self._format_type != AnnoFormat.ANNO_FORMAT_NO_ANNOTATION: anno_file_name = f"{asset_id}{_format_file_ext(self._format_type)}" format_func = _format_file_output_func(anno_format=self._format_type) # write annotations if self._annotations_dir: anno_str: str = format_func(asset_id=asset_id, attrs=attrs, image_annotations=image_annotations, image_cks=image_cks, class_type_mapping=self._class_ids_mapping, cls_id_mgr=self._class_id_manager, asset_filename=asset_file_name) anno_dest_dir = os.path.join(self._annotations_dir, sub_folder_name) os.makedirs(anno_dest_dir, exist_ok=True) anno_dest_path = os.path.join(anno_dest_dir, anno_file_name) with open(anno_dest_path, 'w') as f: f.write(anno_str) # write groundtruth if self._gt_dir: gt_str: str = format_func(asset_id=asset_id, attrs=attrs, image_annotations=gt_annotations, image_cks=image_cks, class_type_mapping=self._class_ids_mapping, cls_id_mgr=self._class_id_manager, asset_filename=asset_file_name) gt_dest_dir = os.path.join(self._gt_dir, sub_folder_name) os.makedirs(gt_dest_dir, exist_ok=True) gt_dest_path = os.path.join(gt_dest_dir, anno_file_name) with open(gt_dest_path, 'w') as f: f.write(gt_str) # write index file asset_path_in_index_file = os.path.join(self._index_assets_prefix, sub_folder_name, asset_file_name) if self._index_file: if self._format_type != AnnoFormat.ANNO_FORMAT_NO_ANNOTATION: anno_path_in_index_file = os.path.join(self._index_annotations_prefix, sub_folder_name, anno_file_name) self._index_file.write(f"{asset_path_in_index_file}\t{anno_path_in_index_file}\n") else: self._index_file.write(f"{asset_path_in_index_file}\n") if self._gt_index_file: if self._format_type != AnnoFormat.ANNO_FORMAT_NO_ANNOTATION: gt_path_in_index_file = os.path.join(self._index_gt_prefix, sub_folder_name, anno_file_name) self._gt_index_file.write(f"{asset_path_in_index_file}\t{gt_path_in_index_file}\n") else: self._gt_index_file.write(f"{asset_path_in_index_file}\n") def _close(self) -> None: if self._index_file: self._index_file.close() self._index_file = None if self._gt_index_file: self._gt_index_file.close() self._gt_index_file = None def write_all(self, dr: data_reader.MirDataReader) -> None: for v in dr.read(): self._write(*v) self._close() class LmdbDataWriter(BaseDataWriter): def __init__( self, mir_root: str,
# Reverse photography ##h3D-II sensor size # 36 * 48 mm, 0.036 x 0.048m ## focal length # 28mm, 0.028m ## multiplier # 1.0 from skimage import io import matplotlib.pyplot as plt import numpy as np import cv2 from scipy.spatial import distance import shapefile as shp def buildshape(corners, filename): """build a shapefile geometry from the vertices of the image in world coordinates, then save it using the image name. Sub critical""" #create a shapefile instance #shape = shp.writer(shape.POLYGON) #shape.poly(parts = [[proj_coords[:,0], proj_coords[:,1]], [proj_coords[:,1], proj_coords[:,2]] # [proj_coords[:,3], proj_coords[:,2]], [proj_coords[:,0], proj_coords[:,3]]] #shape.save("./", filename) def worldfile(corners, im_pix, filename, filepath): """build a world file from the vertices of the image in world coordinates, then save it using the image name. here we build a small array and then dump it to a file input is: - the image file name - projected corners in world coordinates (*not* bounding box) - pxel resolution as a two-element vector [pix_x, pix_y] - path to warped image files reference: http://support.esri.com/en/knowledgebase/techarticles/detail/17489 """ world_arr = np.zeros([6,1]) #line 1 is the X pixel resolution in M world_arr[0] = im_pix[0] #line 2 is the Y pixel resolution in M world_arr[3] = -im_pix[1] #now the X coord of the top left corner world_arr[4] = np.min(corners[0,:]) #and the Y coordinate of the top left corner world_arr[5] = np.max(corners[1,:]) #strip some parts from the filename filename = filename[0:len(filename)-4] np.savetxt(filepath + filename + '.jpgw', world_arr, "%.3f") #------ # 2D homogeneous vectors and transformations def hom2(x, y): """2D homogeneous column vector.""" return np.matrix([x, y, 1]).T def scale2d(s_x, s_y): """Scale matrix that scales 2D homogeneous coordinates""" return np.matrix([[s_x, 0, 0], [0, s_y, 0], [0, 0, 1]] ) def trans2d(t_x, t_y): """Translation matrix that moves a (homogeneous) vector [v_x, v_y, 1] to [v_x + t_x, v_y + t_y, 1]""" return np.matrix([[1, 0, t_x], [0, 1, t_y], [0, 0, 1]] ) #----- # 3D homogeneous vectors and transformations def hom3(x, y, z): """3D homogeneous column vector.""" return np.matrix([x, y, z, 1]).T def unhom(v): """Convert homogeneous coords (v_x, v_y, v_z, v_w) to 3D by (v_x, v_y, v_z) / v_w.""" return v[:-1]/v[-1] def trans3d(t): """Translation matrix that moves a (homogeneous) vector [v_x, v_y, v_z, 1] to [v_x + t_x, v_y + t_y, v_z + t_z, 1].""" I = np.matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]) return np.hstack([I, t]) # return np.matrix([[1, 0, 0, t_x], # [0, 1, 0, t_y], # [0, 0, 1, t_z], # [0, 0, 0, 1 ]] ) def persp3d(v_x, v_y, v_z): """Perspective transformation in homogeneous coordinates where v represents the viewer's position relative to the display surface (i.e., (v_x, v_y) is centre, v_z is focal distance.""" return np.matrix([[1, 0, -v_x/v_z, 0], [0, 1, -v_y/v_z, 0], [0, 0, 1, 0], [0, 0, 1/v_z, 0]] ) def cross(a, b): """Compute 3D cross product of homogeneous vectors, returning the result as a 3D column vector.""" a3, b3 = unhom(a), unhom(b) return np.matrix(np.cross(a3.T, b3.T)).T # Compute zero point in hom. coords ZERO = hom3(0,0,0) #------- # Homogeneous lines, planes, and their intersections # Based on the discussion here: # http://math.stackexchange.com/questions/400268/equation-for-a-line-through-a-plane-in-homogeneous-coordinates def line(v, x): """A homoegeneous line with direction v through a point x is the pair (v, x `cross` v).""" return np.vstack([unhom(v), cross(x, v)]) def plane(n, x): """A plane with normal n passing through x is represented homogeneously by (n, -x.n).""" n3 = unhom(n) x3 = unhom(x) return np.vstack([n3, -(x3.T * n3)]) def meet(P): """Compute the meet operator for the given plane W.""" n, d = P[:3], P[3].item(0,0) nx = np.matrix([[0, -n[2], -n[1]], [n[2], 0, -n[0]], [-n[1], n[0], 0]]) left = np.vstack([np.diag([-d, -d, -d]), n.T]) right = np.vstack([nx, np.matrix([0, 0, 0])]) return np.hstack([left, right]) def intersect(L, P): """Compute the point of intersection between the line L and plane P. Returned point is homogenous.""" return meet(P) * L #------- # Camera class Attitude: def __init__(self, heading, pitch, roll): """Construct a new attitude. Input in degrees, stored in radians. ADS: adjusted heading by 180 to keep corner procession intact. TL_im -> TL_grnd, TR_im -> TR_gnd, BR_im -> BR_gnd, BL_im -> BR_gnd """ self.heading = heading * np.pi / 180.0 self.pitch = pitch * np.pi / 180.0 self.roll = roll * np.pi / 180.0 def rotation(self): """4 x 4 rotation matrix for 3D hom. vectors for this attitude.""" heading, pitch, roll = self.heading, self.pitch, self.roll RX = np.matrix( [[1, 0, 0, 0], [0, np.cos(pitch), -np.sin(pitch), 0], [0, np.sin(pitch), np.cos(pitch), 0], [0, 0, 0, 1]] ) RY = np.matrix( [[np.cos(roll), 0, np.sin(roll), 0], [0, 1, 0, 0], [-np.sin(roll), 0, np.cos(roll), 0], [0, 0, 0, 1]] ) RZ = np.matrix( [[np.cos(heading), -np.sin(heading), 0, 0], [np.sin(heading), np.cos(heading), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]] ) return RZ * RY * RX """original rotations RX = np.matrix( [[1, 0, 0, 0], [0, np.cos(roll), -np.sin(roll), 0], [0, np.sin(roll), np.cos(roll), 0], [0, 0, 0, 1]] ) RY = np.matrix( [[np.cos(pitch), 0, np.sin(pitch), 0], [0, 1, 0, 0], [-np.sin(pitch), 0, np.cos(pitch), 0], [0, 0, 0, 1]] ) """ class Sensor: def __init__(self, pixel_dim, sensor_dim, focal_length): """New sensor of given focal length, sensor dimensions (width, height) in metres, and pixel dimensions (width, height).""" self.pixels = pixel_dim self.screen = sensor_dim self.f = focal_length def pixel_to_screen(self): """Returns a 3x3 matrix transformation that takes 2D hom. pixel coordinates to 2D hom. sensor coordinates.""" px,sc = self.pixels, self.screen T_centre = trans2d(-px[0]/2, -px[1]/2) T_scale = scale2d(sc[0]/px[0], sc[1]/px[1]) return T_scale * T_centre def fov_angle(self): """Get the FOV angle for this sensor.""" return 2 * np.arctan(self.w / (2 * self.f)) class Camera: def __init__(self, position, attitude, sensor): self.position = position self.attitude = attitude self.sensor = sensor def pix_to_world(self): """Compute the matrix transform from image to world coordinates. Returns a 4 x 3 matrix that converts 2D hom. coords to 3D hom. coords.""" T_px_to_sc = self.sensor.pixel_to_screen() T_2d3d = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 0], [0, 0, 1]], dtype = 'float64' ) T_trans_s = trans3d(hom3(0, 0, self.sensor.f)) T_att = self.attitude.rotation() T_trans_w = trans3d(self.position) return T_trans_w * T_att * T_trans_s * T_2d3d * T_px_to_sc def project(self, r, P): """Calculate (unhom.) 3D point on plane P that corresponds to pixel coordinate given in hom. 2D coords by r.""" # Contruct a line through pixel position in world and camera in world r_w = self.pix_to_world() * r v = ZERO + self.position - r_w L = line(v, r_w) # Get location of project on surface of plane return unhom(intersect(L, P)) #=========== # Set up example camera and ground plane # Camera sensor is 640 x 480 pixel sensor that is 48mm x 36mm with focal length # of 28mm and is located at (1000, 1000, 100) with a pitch of -15 degrees. # #test data for image 20121023_f13_0044.jpg # local XYZ #74.81761600 -55.15724800 303.97706400 #HPR #306.977 -3.119 1.668 #need to know LiDAR mean range for the flight - let's say it is -30m # relative to the ellipsoid... so we add that to aircraft Z. xpix = 8176 ypix = 6132 sensor_x = 0.048 sensor_y = 0.036 focal_len = 0.028 # Set up corners of the image in pixel coordinates botleft = hom2(0, 6132) topleft = hom2(0, 0) botright = hom2(8176, 6132) topright =hom2(8176, 0) raw_coords = np.hstack([topleft, topright, botright, botleft]) print("Pixel Coordinates:\n{}".format(raw_coords)) # Ground plane is z=0 ground = plane(hom3(0,0,1), hom3(0,0,0)) im_dir = '../SIPEX2_f9_test/' trajectory_file = '../SIPEX2_f9_test/20121003_f9_survey_testims_utm.txt' imlist = '../SIPEX2_f9_test/imnames.txt' lidar_z = -2.5 # this will be replaced by an estimate for each camera centre... cameracentres = np.genfromtxt(trajectory_file) #apply any boresight misalignment information... # from the 2012 camberidge calibration flight. #can be determined empirically if you have time! h_adj = -1.93 p_adj = 1.8292 r_adj = 1.2262 cameracentres[:,6] = cameracentres[:,6] + h_adj cameracentres[:,5] = cameracentres[:,5] + p_adj cameracentres[:,4] = cameracentres[:,4] + r_adj with open(imlist) as f: image_list = f.read().splitlines() i = 0 #now to time-dependent things... for image in image_list: flight_x = cameracentres[i,1] flight_y = cameracentres[i,2] flight_z = cameracentres[i,3] flight_h = cameracentres[i,6] flight_p = cameracentres[i,5] flight_r = cameracentres[i,4] range_to_ground = flight_z - lidar_z; print("camera E:\n{}".format(flight_x)) print("camera N:\n{}".format(flight_y)) print("camera U:\n{}".format(range_to_ground)) print("camera H:\n{}".format(flight_h)) print("camera P:\n{}".format(flight_p)) print("camera R:\n{}".format(flight_r)) camera = Camera( hom3(flight_x, flight_y, range_to_ground), Attitude(flight_h - 180, flight_p, flight_r), Sensor((xpix, ypix), (sensor_x, sensor_y), focal_len)) proj_coords = np.hstack([ camera.project(topleft, ground),
<reponame>harsh306/rl-project<filename>src/coinrun/trainers/batched_minecraft_mix.py import os import logging import glob import re import math import time import csv import multiprocessing from queue import Empty from collections import defaultdict import pickle import numpy as np import random logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class BatchedTrainer(object): def __init__(self, create_environment, create_policy, args): self.create_environment = create_environment self.create_policy = create_policy self.args = args random.seed(args.random_seed) self.task_ids = [] for _ in range(100): n = random.randint(1, 1000) self.task_ids.append(n) def runner(self, env_id, shared_buffer, fifo, num_timesteps, logdir, id): proc_name = multiprocessing.current_process().name logger.info("Runner %s started" % proc_name) # local environment for runner # env = self.create_environment(env_id, id, os.path.join(logdir, 'gym'), **vars(self.args)) env = self.create_environment(1, id, self.task_ids) # copy of policy policy = self.create_policy(env.observation_space, env.action_space, batch_size=1, stochastic=True, args=self.args) # record episode lengths and rewards for statistics episode_rewards = [] episode_lengths = [] episode_reward = 0 episode_length = 0 observation = env.reset() observation = np.squeeze(observation, axis=0) for i in range(math.ceil(float(num_timesteps) / self.args.num_local_steps)): # copy weights from main network at the beginning of iteration # the main network's weights are only read, never modified # but we create our own model instance, because Keras is not thread-safe policy.set_weights(pickle.loads(shared_buffer.raw)) observations = [] preds = [] rewards = [] terminals = [] infos = defaultdict(list) for t in range(self.args.num_local_steps): if self.args.display: env.render() # predict action probabilities (and state value) gym_action, pred = policy.predict([observation]) # strip batch dimension pred = [p[0] for p in pred] # step environment and log data observations.append(observation) preds.append(pred) observation, reward, terminal, info = env.step(gym_action[0]) observation = np.squeeze(observation, axis=0) reward = reward[0] terminal = terminal[0] rewards.append(reward) terminals.append(terminal) # record environment diagnostics from info for key, val in info.items(): try: val = float(val) infos[key].append(val) except (TypeError, ValueError): pass episode_reward += reward episode_length += 1 # reset if terminal state if terminal: episode_rewards.append(episode_reward) episode_lengths.append(episode_length) episode_reward = 0 episode_length = 0 observation = env.reset() observation = np.squeeze(observation, axis=0) # predict value for the next observation # needed for calculating n-step returns _, pred = policy.predict([observation]) # strip batch dimension pred = [p[0] for p in pred] preds.append(pred) # send observations, actions, rewards and returns # block if fifo is full fifo.put(( observations, preds, rewards, terminals, episode_rewards, episode_lengths, {key: np.mean(val) for key, val in infos.items()} )) episode_rewards = [] episode_lengths = [] env.close() logger.info("Runner %s finished" % proc_name) def trainer(self, policy, fifos, shared_buffer, start_timestep, num_timesteps, logdir): proc_name = multiprocessing.current_process().name logger.info("Trainer %s started" % proc_name) # must import tensorflow here, otherwise sometimes it conflicts with multiprocessing from common.tensorboard_utils import create_summary_writer, add_summary writer = create_summary_writer(logdir) timestep = start_timestep total_episodes = 0 total_timesteps = 0 total_updates = 0 total_rewards = [] episode_rewards = [] episode_lengths = [] task_rewards = [[] for _ in range(len(self.args.load_mission))] stats_start = time.time() stats_timesteps = 0 stats_updates = 0 while total_timesteps < num_timesteps: batch_observations = [] batch_preds = [] batch_rewards = [] batch_terminals = [] batch_timesteps = 0 mean_infos = defaultdict(list) queue_sizes = [] # loop over fifos from all runners for q, fifo in enumerate(fifos): try: # Queue.qsize() is not implemented on Mac, ignore as it is used only for diagnostics try: queue_sizes.append(fifo.qsize()) except NotImplementedError: pass # wait for a new trajectory and statistics observations, preds, rewards, terminals, episode_reward, episode_length, mean_info = \ fifo.get(timeout=self.args.queue_timeout) # add to batch batch_observations.append(observations) batch_preds.append(preds) batch_rewards.append(rewards) batch_terminals.append(terminals) # log statistics total_rewards += episode_reward episode_rewards += episode_reward episode_lengths += episode_length batch_timesteps += len(observations) task_rewards[q % len(task_rewards)] += episode_reward for key, val in mean_info.items(): mean_infos[key].append(val) except Empty: # just ignore empty fifos, batch will be smaller pass # if any of the runners produced trajectories if len(batch_observations) > 0: timestep += batch_timesteps # reorder dimensions for preds batch_preds = [list(zip(*p)) for p in batch_preds] batch_preds = list(zip(*batch_preds)) # train model policy.train(batch_observations, batch_preds, batch_rewards, batch_terminals, timestep, writer) # share model parameters shared_buffer.raw = pickle.dumps(policy.get_weights(), pickle.HIGHEST_PROTOCOL) total_timesteps += batch_timesteps total_updates += self.args.repeat_updates stats_timesteps += batch_timesteps stats_updates += self.args.repeat_updates for key, val in mean_infos.items(): add_summary(writer, "diagnostics/"+key, np.mean(val), timestep) if timestep % self.args.stats_interval == 0: total_episodes += len(episode_rewards) stats_time = time.time() - stats_start add_summary(writer, "game_stats/episodes", len(episode_rewards), timestep) add_summary(writer, "game_stats/episode_reward_mean", np.mean(episode_rewards), timestep) #add_summary(writer, "game_stats/episode_reward_stddev", np.std(episode_rewards), timestep) add_summary(writer, "game_stats/episode_length_mean", np.mean(episode_lengths), timestep) #add_summary(writer, "game_stats/episode_length_stddev", np.std(episode_lengths), timestep) add_summary(writer, "game_stats/total_episodes", total_episodes, timestep) add_summary(writer, "game_stats/total_timesteps", total_timesteps, timestep) add_summary(writer, "game_stats/total_updates", total_updates, timestep) add_summary(writer, "performance/updates_per_second", stats_updates / stats_time, timestep) add_summary(writer, "performance/timesteps_per_second", stats_timesteps / stats_time, timestep) add_summary(writer, "performance/estimated_runner_fps", stats_timesteps / self.args.num_runners / stats_time, timestep) add_summary(writer, "performance/mean_queue_length", np.mean(queue_sizes), timestep) for i, rewards in enumerate(task_rewards): add_summary(writer, "curriculum_rewards/task%d_reward_mean" % i, np.mean(rewards), timestep) add_summary(writer, "curriculum_episodes/task%d_episodes" % i, len(rewards), timestep) logger.info("Step %d/%d: episodes %d, mean episode reward %.2f, mean episode length %.2f, timesteps/sec %.2f." % (timestep, num_timesteps, len(episode_rewards), np.mean(episode_rewards), np.mean(episode_lengths), stats_timesteps / stats_time)) episode_rewards = [] episode_lengths = [] task_rewards = [[] for _ in range(len(self.args.load_mission))] stats_start = time.time() stats_timesteps = 0 stats_updates = 0 if timestep % self.args.save_interval == 0: policy.save_weights(os.path.join(logdir, "weights_%d.hdf5" % timestep)) #else: #logger.warn("Empty batch, runners are falling behind!") # save final weights policy.save_weights(os.path.join(logdir, "weights_%d.hdf5" % timestep)) if self.args.csv_file: # save command-line parameters and most important performance metrics to file data = vars(self.args) data['episode_reward_mean'] = np.mean(total_rewards) data['total_episodes'] = total_episodes data['total_timesteps'] = total_timesteps data['total_updates'] = total_updates header = sorted(data.keys()) # write the CSV file one directory above the experiment directory csv_file = os.path.join(os.path.dirname(logdir), self.args.csv_file) file_exists = os.path.isfile(csv_file) with open(csv_file, 'a') as file: writer = csv.DictWriter(file, delimiter=',', fieldnames=header) if not file_exists: writer.writeheader() writer.writerow(data) # collect child processes while len(multiprocessing.active_children()) > 0: for fifo in fifos: # empty fifos just in case runners are waiting after them try: fifo.get(timeout=1) except Empty: pass logger.info("Trainer %s finished" % proc_name) def run(self, env_id, num_timesteps, logdir): # use spawn method for starting subprocesses ctx = multiprocessing.get_context('spawn') # create dummy environment to be able to create model env = self.create_environment(1, 0, self.task_ids) logger.info("Observation space: " + str(env.observation_space)) logger.info("Action space: " + str(env.action_space)) # use fixed batch size ONLY when queue timeout is None, i.e. blocks indefinitely until full batch is achieved # needed for stateful RNNs batch_size = self.args.num_runners if self.args.queue_timeout is None else None # create main model policy = self.create_policy(env.observation_space, env.action_space, batch_size, True, self.args) policy.summary() env.close() # check for commandline argument or previous weights file start_timestep = 0 weights_file = None if self.args.load_weights: weights_file = self.args.load_weights else: files = glob.glob(os.path.join(logdir, "weights_*.hdf5")) if files: weights_file = max(files, key=lambda f: int(re.search(r'_(\d+).hdf5', f).group(1))) # set start timestep from file name when continuing previous session start_timestep = int(re.search(r'_(\d+).hdf5', weights_file).group(1)) logger.info("Setting start timestep to %d" % start_timestep) # load saved weights if weights_file: logger.info("Loading weights: " + weights_file) policy.load_weights(weights_file) # create shared buffer for sharing weights blob = pickle.dumps(policy.get_weights(), pickle.HIGHEST_PROTOCOL) shared_buffer = ctx.Array('c', len(blob)) shared_buffer.raw = blob # number of timesteps each runner has to make runner_timesteps = math.ceil((num_timesteps - start_timestep) / self.args.num_runners) # force runner processes to use cpu, child processes inherit environment variables os.environ["CUDA_VISIBLE_DEVICES"] = "" # force child processes to use one thread only os.environ["OMP_NUM_THREADS"] = "1" # create fifos and threads for all runners fifos = [] for i in range(self.args.num_runners): fifo = ctx.Queue(self.args.queue_length) fifos.append(fifo) process = ctx.Process(target=self.runner, args=(env_id, shared_buffer, fifo, runner_timesteps, logdir, i)) process.start() # start trainer in main thread self.trainer(policy, fifos, shared_buffer, start_timestep, num_timesteps, logdir) logger.info("All done") def eval(self, env_id, num_timesteps, logdir): env = self.create_environment(100, 0, self.task_ids) logger.info("Observation space: " + str(env.observation_space)) logger.info("Action space: " + str(env.action_space)) # create main model batch_size = 1 policy = self.create_policy(env.observation_space, env.action_space, batch_size, self.args.stochastic, self.args) policy.summary() weights_file = None if self.args.load_weights: weights_file = self.args.load_weights else: files = glob.glob(os.path.join(logdir, "weights_*.hdf5")) if files: weights_file = max(files, key=lambda f: int(re.search(r'_(\d+).hdf5', f).group(1))) # load saved weights if weights_file: logger.info("Loading weights: " + weights_file) policy.load_weights(weights_file) # record episode lengths and rewards for statistics episode_rewards = [] episode_lengths = [] episode_reward = 0 episode_length = 0 observation = env.reset() for i in range(num_timesteps): if self.args.display: env.render() # predict action probabilities (and state value) gym_action, _ = policy.predict([observation]) # step environment and log data observation, reward, terminal, info = env.step(gym_action[0]) observation = np.squeeze(observation, axis=0) episode_reward += reward episode_length += 1 # reset if terminal state if terminal: episode_rewards.append(episode_reward) episode_lengths.append(episode_length) episode_reward = 0 episode_length = 0 observation = env.reset() observation = np.squeeze(observation, axis=0) logger.info("Episodes %d,
import torch import numpy as np import random import argparse from utils import plot_utils, eval_utils from collections import defaultdict import matplotlib.pyplot as plt import matplotlib.patheffects as pe from sklearn.neighbors import KernelDensity from scipy.stats import gaussian_kde import pandas as pd hyperparams = { ### Training ## Batch Sizes 'batch_size': 16, ## Learning Rate 'learning_rate': 0.002, 'min_learning_rate': 0.00001, 'learning_decay_rate': 0.9999, ## Optimizer # 'optimizer': tf.train.AdamOptimizer, 'optimizer_kwargs': {}, 'grad_clip': 1.0, ### Prediction 'minimum_history_length': 8, # 3.2 seconds 'prediction_horizon': 12, # 4.8 seconds (at least as far as the loss function is concerned) ### Variational Objective ## Objective Formulation 'alpha': 1, 'k': 3, # number of samples from z during training 'k_eval': 50, # number of samples from z during evaluation 'use_iwae': False, # only matters if alpha = 1 'kl_exact': True, # relevant only if alpha = 1 ## KL Annealing/Bounding 'kl_min': 0.07, 'kl_weight': 1.0, 'kl_weight_start': 0.0001, 'kl_decay_rate': 0.99995, 'kl_crossover': 8000, 'kl_sigmoid_divisor': 6, ### Network Parameters ## RNNs/Summarization 'rnn_kwargs': {"dropout_keep_prob": 0.75}, 'MLP_dropout_keep_prob': 0.9, 'rnn_io_dropout_keep_prob': 1.0, 'enc_rnn_dim_multiple_inputs': 8, 'enc_rnn_dim_edge': 8, 'enc_rnn_dim_edge_influence': 8, 'enc_rnn_dim_history': 32, 'enc_rnn_dim_future': 32, 'dec_rnn_dim': 128, 'dec_GMM_proj_MLP_dims': None, 'sample_model_during_dec': True, 'dec_sample_model_prob_start': 0.0, 'dec_sample_model_prob_final': 0.0, 'dec_sample_model_prob_crossover': 20000, 'dec_sample_model_prob_divisor': 6, ## q_z_xy (encoder) 'q_z_xy_MLP_dims': None, ## p_z_x (encoder) 'p_z_x_MLP_dims': 16, ## p_y_xz (decoder) 'fuzz_factor': 0.05, 'GMM_components': 16, 'log_sigma_min': -10, 'log_sigma_max': 10, 'log_p_yt_xz_max': 50, ### Discrete Latent Variable 'N': 2, 'K': 5, ## Relaxed One-Hot Temperature Annealing 'tau_init': 2.0, 'tau_final': 0.001, 'tau_decay_rate': 0.9999, ## Logit Clipping 'use_z_logit_clipping': False, 'z_logit_clip_start': 0.05, 'z_logit_clip_final': 3.0, 'z_logit_clip_crossover': 8000, 'z_logit_clip_divisor': 6 } parser = argparse.ArgumentParser() parser.add_argument('--sgan_models_path', type=str, default='../ref_impls/SocialGAN-PyTorch/models/sgan-models') parser.add_argument('--sgan_dset_type', default='test', type=str) parser.add_argument("--dynamic_edges", help="whether to use dynamic edges or not, options are 'no' and 'yes'", type=str, default='yes') parser.add_argument("--edge_radius", help="the radius (in meters) within which two nodes will be connected by an edge", type=float, default=1.5) parser.add_argument("--edge_state_combine_method", help="the method to use for combining edges of the same type", type=str, default=None) parser.add_argument("--edge_influence_combine_method", help="the method to use for combining edge influences", type=str, default=None) parser.add_argument('--edge_addition_filter', nargs='+', help="what scaling to use for edges as they're created", type=float, default=[0.25, 0.5, 0.75, 1.0]) # We automatically pad left with 0.0 parser.add_argument('--edge_removal_filter', nargs='+', help="what scaling to use for edges as they're removed", type=float, default=[1.0, 0.0]) # We automatically pad right with 0.0 parser.add_argument('--incl_robot_node', help="whether to include a robot node in the graph or simply model all agents", action='store_true') parser.add_argument('--num_samples', help='how many times to sample from the model', type=int, default=2000) parser.add_argument('--num_runs', help='how many scenes to predict per model evaluation', type=int, default=100) parser.add_argument('--device', help='what device to perform training on', type=str, default='cpu') parser.add_argument("--eval_device", help="what device to use during evaluation", type=str, default='cpu') parser.add_argument('--seed', help='manual seed to use, default is 123', type=int, default=123) args = parser.parse_args() # 44.72 km/h = 12.42 m/s i.e. that's the max value that a velocity coordinate can be. max_speed = 12.422222 if args.seed is not None: random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(args.seed) method_names = ['sgan', 'our_full', 'our_most_likely'] def pretty_dataset_name(dataset_name): if dataset_name == 'eth': return 'ETH - Univ' elif dataset_name == 'hotel': return 'ETH - Hotel' elif dataset_name == 'univ': return 'UCY - Univ' elif dataset_name == 'zara1': return 'UCY - Zara 1' elif dataset_name == 'zara2': return 'UCY - Zara 2' else: return dataset_name def plot_run_trajs(data_precondition, dataset_name, our_preds_most_likely_list, our_preds_list, sgan_preds_list, sgan_gt_list, eval_inputs, eval_data_dict, data_ids, t_predicts, random_scene_idxs, num_runs): eval_dt = eval_data_dict['dt'] for run in range(num_runs): plt.close('all') fig, ax = plt.subplots(figsize=(5, 5)) ax.set_xlabel(r'$x$ (m)') ax.set_ylabel(r'$y$ (m)') sgan_preds = sgan_preds_list[run] our_most_likely_preds = our_preds_most_likely_list[run] our_full_preds = our_preds_list[run] random_scene_idx = random_scene_idxs[run] data_id = data_ids[random_scene_idx] t_predict = t_predicts[random_scene_idx] - 1 print(run, data_id, t_predict) sgan_plotting_tensors = list() for key, value in sgan_preds.items(): sgan_plotting_tensor = torch.cat([value, torch.full((value.shape[0], 1, 2), np.nan)], dim=1) sgan_plotting_tensors.append(sgan_plotting_tensor) if len(sgan_plotting_tensors) == 0: print('len(sgan_plotting_tensors) == 0 for', run, data_id, t_predict, data_precondition, dataset_name) continue sgan_plotting_tensor = torch.cat(sgan_plotting_tensors, dim=0).view(-1, 2).cpu().numpy() ax.plot(sgan_plotting_tensor[:, 0], sgan_plotting_tensor[:, 1], color='#EC8F31', label='Social GAN', alpha=0.5, linewidth=0.7) # Saving some memory del sgan_plotting_tensor del sgan_plotting_tensors labels_to_use = ['Our Method (Full)', r'Our Method ($z_{best}$)'] colors_to_use = ['blue', '#1FC287'] for idx, preds_dict in enumerate([our_full_preds, our_most_likely_preds]): our_plotting_tensors = list() futures_list = list() previous_list = list() for key, value in preds_dict.items(): curr_state_val = eval_inputs[key][data_id, t_predict] pred_trajs = torch.from_numpy(plot_utils.integrate_trajectory(value.cpu().numpy(), [0, 1], curr_state_val.cpu().numpy(), [0, 1], eval_dt, output_limit=max_speed, velocity_in=True).astype(np.float32)) our_plotting_tensor = torch.cat([pred_trajs[:, 0], torch.full((pred_trajs.shape[0], 1, 2), np.nan)], dim=1) our_plotting_tensors.append(our_plotting_tensor) if idx == 1: run_future = eval_inputs[key][data_id, t_predict+1 : t_predict+1+12, :2] run_previous = eval_inputs[key][data_id, t_predict+1-8 : t_predict+1, :2] futures_list.append(run_future) previous_list.append(run_previous) if len(our_plotting_tensors) == 0: print('len(our_plotting_tensors) == 0 for', run, data_id, t_predict, data_precondition, dataset_name) break our_plotting_tensor = torch.cat(our_plotting_tensors, dim=0).view(-1, 2).cpu().numpy() ax.plot(our_plotting_tensor[:, 0], our_plotting_tensor[:, 1], color=colors_to_use[idx], label=labels_to_use[idx], alpha=0.5, linewidth=0.7) if idx == 1: futures_tensor = torch.stack(futures_list, dim=0) futures_tensor = torch.cat([futures_tensor, torch.full((futures_tensor.shape[0], 1, 2), np.nan)], dim=1) futures_tensor = futures_tensor.view(-1, 2).cpu().numpy() futures_tensor[futures_tensor == 0] = np.nan ax.plot(futures_tensor[:, 0], futures_tensor[:, 1], color='white', label='Ground Truth', linestyle='--', path_effects=[pe.Stroke(linewidth=3, foreground='k'), pe.Normal()]) previous_tensor = torch.stack(previous_list, dim=0) previous_tensor = torch.cat([previous_tensor, torch.full((previous_tensor.shape[0], 1, 2), np.nan)], dim=1) previous_tensor = previous_tensor.view(-1, 2).cpu().numpy() previous_tensor[previous_tensor == 0] = np.nan ax.plot(previous_tensor[:, 0], previous_tensor[:, 1], color='k', label='History', linestyle='--') curr_tensor = torch.stack(previous_list, dim=0)[:, -1] ax.scatter(curr_tensor[:, 0], curr_tensor[:, 1], s=25, c='grey', linewidths=1, edgecolor='k', zorder=10) else: # If the loop completed without any breaks, we can go ahead # and plot the results. ax.legend(loc='best') plt.savefig('../sgan-dataset/plots/simultaneous_plots/checking_%s_%s_pred_fig_run%d.pdf' % (data_precondition, dataset_name, run), dpi=300, bbox_inches='tight') def get_kde_log_likelihoods(data_precondition, dataset_name, our_preds_most_likely_list, our_preds_list, sgan_preds_list, sgan_gt_list, eval_inputs, eval_data_dict, data_ids, t_predicts, random_scene_idxs, num_runs): eval_dt = eval_data_dict['dt'] all_methods_preds_dict = defaultdict(list) gt_dicts = list() for run in range(num_runs): sgan_preds = sgan_preds_list[run] our_most_likely_preds = our_preds_most_likely_list[run] our_full_preds = our_preds_list[run] random_scene_idx = random_scene_idxs[run] data_id = data_ids[random_scene_idx] t_predict = t_predicts[random_scene_idx] - 1 print(run, data_id, t_predict) sgan_preds = {key: value.cpu().numpy() for key, value in sgan_preds.items()} all_methods_preds_dict['sgan'].append(sgan_preds) methods_list = ['our_full', 'our_most_likely'] curr_gt = dict() for idx, preds_dict in enumerate([our_full_preds, our_most_likely_preds]): curr_preds = dict() for key, value in preds_dict.items(): curr_state_val = eval_inputs[key][data_id, t_predict] pred_trajs = plot_utils.integrate_trajectory(value.cpu().numpy(), [0, 1], curr_state_val.cpu().numpy(), [0, 1], eval_dt, output_limit=max_speed, velocity_in=True).astype(np.float32) curr_preds[key] = pred_trajs[:, 0] if idx == 1: curr_gt[key] = eval_inputs[key][[data_id], t_predict+1 : t_predict+1+12, :2].cpu().numpy() all_methods_preds_dict[methods_list[idx]].append(curr_preds) gt_dicts.append(curr_gt) detailed_ll_dict = {'data_precondition': list(), 'dataset': list(), 'method': list(), 'run': list(), 'timestep': list(), 'node': list(), 'log-likelihood': list()} sgan_lls = list() our_full_lls = list() our_most_likely_lls = list() log_pdf_lower_bound = -20 for run in range(num_runs): sgan_preds = all_methods_preds_dict['sgan'][run] our_full_preds = all_methods_preds_dict['our_full'][run] our_most_likely_preds = all_methods_preds_dict['our_most_likely'][run] gt_dict = gt_dicts[run] for node in sgan_preds.keys(): first_nz = plot_utils.first_nonzero(np.sum(gt_dict[node], axis=2)[0, ::-1], axis=0) if first_nz < 0: continue num_timesteps = gt_dict[node].shape[1] - first_nz sgan_ll = 0.0 our_full_ll = 0.0 our_most_likely_ll = 0.0 for timestep in range(num_timesteps): curr_gt = gt_dict[node][:, timestep] sgan_scipy_kde = gaussian_kde(sgan_preds[node][:, timestep].T) our_full_scipy_kde = gaussian_kde(our_full_preds[node][:, timestep].T) our_most_likely_scipy_kde = gaussian_kde(our_most_likely_preds[node][:, timestep].T) # We need [0] because it's a (1,)-shaped numpy array. sgan_log_pdf = np.clip(sgan_scipy_kde.logpdf(curr_gt.T), a_min=log_pdf_lower_bound, a_max=None)[0] our_full_pdf = np.clip(our_full_scipy_kde.logpdf(curr_gt.T), a_min=log_pdf_lower_bound, a_max=None)[0] our_most_likely_pdf = np.clip(our_most_likely_scipy_kde.logpdf(curr_gt.T), a_min=log_pdf_lower_bound, a_max=None)[0] for idx, result in enumerate([sgan_log_pdf, our_full_pdf, our_most_likely_pdf]): detailed_ll_dict['data_precondition'].append(data_precondition) detailed_ll_dict['dataset'].append(dataset_name) detailed_ll_dict['method'].append(method_names[idx]) detailed_ll_dict['run'].append(run) detailed_ll_dict['timestep'].append(timestep) detailed_ll_dict['node'].append(str(node)) detailed_ll_dict['log-likelihood'].append(result) sgan_ll += sgan_log_pdf/num_timesteps our_full_ll += our_full_pdf/num_timesteps our_most_likely_ll += our_most_likely_pdf/num_timesteps sgan_lls.append(sgan_ll) our_full_lls.append(our_full_ll) our_most_likely_lls.append(our_most_likely_ll) return sgan_lls, our_full_lls, our_most_likely_lls, detailed_ll_dict def main(): for data_precondition in ['curr', 'prev', 'all']: sgan_eval_mse_batch_errors = dict() sgan_eval_fse_batch_errors = dict() our_eval_mse_batch_errors = dict() our_eval_fse_batch_errors = dict() for dataset_name in ['eth', 'hotel', 'univ', 'zara1', 'zara2']: (our_preds_most_likely_list, our_preds_list, sgan_preds_list, sgan_gt_list, eval_inputs, eval_data_dict, data_ids, t_predicts, random_scene_idxs, num_runs) = eval_utils.extract_our_and_sgan_preds(dataset_name, hyperparams, args, data_precondition=data_precondition) # Computing log-likelihoods from each run. sgan_lls, our_full_lls, our_most_likely_lls, detailed_ll_dict = get_kde_log_likelihoods( data_precondition, dataset_name, our_preds_most_likely_list, our_preds_list, sgan_preds_list, sgan_gt_list, eval_inputs, eval_data_dict, data_ids, t_predicts, random_scene_idxs, num_runs) print('SGAN LLs, Our Method (Full) LLs, Our Method (Most Likely) LLs') print(np.mean(sgan_lls), np.mean(our_full_lls), np.mean(our_most_likely_lls)) print('Calculated all KDE LLs for', data_precondition, dataset_name) print('Saving current log-likelihoods to csv.') pd.DataFrame.from_dict(detailed_ll_dict).to_csv('../sgan-dataset/plots/data/%s_%s_lls.csv' % (data_precondition, dataset_name), index=False) # Plotting the trajectories from each run. plot_run_trajs(data_precondition, dataset_name, our_preds_most_likely_list, our_preds_list, sgan_preds_list, sgan_gt_list, eval_inputs, eval_data_dict, data_ids, t_predicts, random_scene_idxs, num_runs) print('Plotted all run trajectories from', data_precondition, dataset_name) # SGAN Errors batch_error_dict, detailed_error_dict = eval_utils.compute_sgan_errors( sgan_preds_list, sgan_gt_list, data_precondition, dataset_name, num_runs) print('Saving current SGAN errors to csv.') pd.DataFrame.from_dict(detailed_error_dict).to_csv('../sgan-dataset/plots/data/%s_%s_sgan_errors.csv' % (data_precondition, dataset_name), index=False) sgan_eval_mse_batch_errors[pretty_dataset_name(dataset_name)] = torch.cat(batch_error_dict['mse'], dim=0) sgan_eval_fse_batch_errors[pretty_dataset_name(dataset_name)] = torch.cat(batch_error_dict['fse'], dim=0) # Our Most Likely Errors error_info_dict = {'output_limit': max_speed} batch_error_dict, detailed_error_dict = eval_utils.compute_preds_dict_error( our_preds_most_likely_list, eval_data_dict, data_precondition, dataset_name, 'our_most_likely', num_runs, random_scene_idxs, data_ids, t_predicts, hyperparams['prediction_horizon'], error_info_dict) print('Saving current Our Method (Most Likely) errors to csv.') pd.DataFrame.from_dict(detailed_error_dict).to_csv('../sgan-dataset/plots/data/%s_%s_our_most_likely_errors.csv' % (data_precondition, dataset_name), index=False) our_eval_mse_batch_errors[pretty_dataset_name(dataset_name)] = torch.cat(batch_error_dict['mse'], dim=0) our_eval_fse_batch_errors[pretty_dataset_name(dataset_name)] = torch.cat(batch_error_dict['fse'], dim=0) # Our Full Errors error_info_dict = {'output_limit': max_speed} batch_error_dict, detailed_error_dict = eval_utils.compute_preds_dict_error( our_preds_list, eval_data_dict, data_precondition, dataset_name, 'our_full', num_runs, random_scene_idxs, data_ids, t_predicts, hyperparams['prediction_horizon'], error_info_dict) print('Saving current Our Method (Full) errors to csv.') pd.DataFrame.from_dict(detailed_error_dict).to_csv('../sgan-dataset/plots/data/%s_%s_our_full_errors.csv' % (data_precondition, dataset_name), index=False)
== CONTAINER_FORMAT_HYBRID_VM: clients = self._get_hybrid_service_clients_by_node(provider_node) try: is_docker_service_up = self._clients_wait_hybrid_service_up(clients) except Exception, e: LOG.error('docker is not start, exception: %s' % traceback.format_exc(e)) raise e if is_docker_service_up: try: self._clients_reboot_app(clients, network_info=network_info, block_device_info=block_device_info) except Exception, e: error_info = 'Start container failed, exception: %s' % traceback.format_exc(e) LOG.error(error_info) raise exception.NovaException(error_info) else: try: self.compute_adapter.reboot_node(provider_node) except Exception as e: raise e @RetryDecorator(max_retry_count= 50,inc_sleep_time=5,max_sleep_time=60, exceptions=(errors.APIError,errors.NotFound, errors.ConnectionError, errors.InternalError)) def _wait_hybrid_service_up(self, client): return client.get_version() @RetryDecorator(max_retry_count=20,inc_sleep_time=5,max_sleep_time=60, exceptions=(errors.APIError,errors.NotFound, errors.ConnectionError, errors.InternalError, Exception)) def _hypervm_inject_file(self, client, file_data): LOG.info('start to inject file.') inject_reslut = client.inject_file(CONF.provider_opts.dst_path, file_data=file_data) LOG.info('end to inject file....') return inject_reslut @RetryDecorator(max_retry_count= 100,inc_sleep_time=5,max_sleep_time=120, exceptions=(errors.APIError,errors.NotFound, errors.ConnectionError, errors.InternalError, Exception)) def _start_container(self, client, network_info, block_device_info): return client.start_container(network_info=network_info, block_device_info=block_device_info) @RetryDecorator(max_retry_count= MAX_RETRY_COUNT,inc_sleep_time=5,max_sleep_time=60, exceptions=(errors.APIError,errors.NotFound, errors.ConnectionError, errors.InternalError, Exception)) def _hype_create_container(self, clients, name): LOG.info('start to create container') created_container = None tmp_except = Exception('client is None') for client in clients: try: created_container = client.create_container(name) break except Exception, e: tmp_except = e LOG.error('exception when create container, exception: %s' % traceback.format_exc(e)) time.sleep(1) continue if not created_container: raise tmp_except LOG.info('end to create container, created_container: %s' % created_container) return created_container @RetryDecorator(max_retry_count=MAX_RETRY_COUNT, inc_sleep_time=5, max_sleep_time=60, exceptions=( errors.APIError, errors.NotFound, errors.ConnectionError, errors.InternalError, Exception)) def _hyper_create_container_task(self, clients, image_name, image_uuid, injected_files, admin_password, network_info, block_device_info): LOG.info('start to submit task for creating container.') LOG.debug('admin_password: %s' % admin_password) LOG.debug('injected_files: %s' % injected_files) created_task = None tmp_exception = Exception('empty for creating container') for client in clients: try: created_task = client.create_container(image_name, image_uuid, inject_files=injected_files, admin_password=<PASSWORD>, network_info=network_info, block_device_info=block_device_info) except Exception, e: tmp_exception = e LOG.error('exception when create container, exception: %s' % traceback.format_exc(e)) continue if not created_task: raise tmp_exception LOG.info('end to submit task for creating container, task: %s' % created_task) return created_task @RetryDecorator(max_retry_count=50, inc_sleep_time=5, max_sleep_time=60, exceptions=(exception_ex.RetryException)) def _wait_for_task_finish(self, clients, task): task_finish = False if task['code'] == wormhole_constants.TASK_SUCCESS: return True current_task = self._hyper_query_task(clients, task) task_code = current_task['code'] if wormhole_constants.TASK_DOING == task_code: LOG.debug('task is DOING, status: %s' % task_code) raise exception_ex.RetryException(error_info='task status is: %s' % task_code) elif wormhole_constants.TASK_ERROR == task_code: LOG.debug('task is ERROR, status: %s' % task_code) raise Exception('task error, task status is: %s' % task_code) elif wormhole_constants.TASK_SUCCESS == task_code: LOG.debug('task is SUCCESS, status: %s' % task_code) task_finish = True else: raise Exception('UNKNOW ERROR, task status: %s' % task_code) LOG.debug('task: %s is finished' % task ) return task_finish @RetryDecorator(max_retry_count=MAX_RETRY_COUNT, inc_sleep_time=5, max_sleep_time=60, exceptions=( errors.APIError, errors.NotFound, errors.ConnectionError, errors.InternalError, Exception)) def _hyper_query_task(self, clients, task): LOG.debug('star to query task.') current_task = None tmp_exception = 'empty for query task' for client in clients: try: current_task = client.query_task(task) break except Exception, e: tmp_exception = e LOG.error('exception when query task. exception: %s' % traceback.format_exc(e)) continue if not current_task: raise tmp_exception return current_task @RetryDecorator(max_retry_count= MAX_RETRY_COUNT,inc_sleep_time=5,max_sleep_time=60, exceptions=(errors.APIError,errors.NotFound, errors.ConnectionError, errors.InternalError, Exception)) def _hype_start_container(self, clients, network_info, block_device_info): LOG.info('Start to start container') started_container = None tmp_except = None for client in clients: try: started_container = client.start_container(network_info=network_info, block_device_info=block_device_info) break except Exception, e: tmp_except = e continue if not started_container: raise tmp_except LOG.info('end to start container, started_container: %s' % started_container) return started_container @RetryDecorator(max_retry_count=20, inc_sleep_time=5, max_sleep_time=60, exceptions=(errors.APIError, errors.NotFound, errors.ConnectionError, errors.InternalError, Exception)) def _hype_inject_file_to_container(self, clients, inject_file): """ :param clients: :param inject_file: (path, file_contents) :return: """ LOG.debug('start to inject file to container, inject_file: %s' % inject_file) inject_result = None tmp_except = None for client in clients: try: inject_result = client.inject_files(inject_file) break except Exception, e: tmp_except = e continue if not inject_result: raise tmp_except LOG.info('end to inject file to container, inject_file: %s' % inject_file) return inject_result @RetryDecorator(max_retry_count= 20,inc_sleep_time=5,max_sleep_time=60, exceptions=(errors.APIError,errors.NotFound, errors.ConnectionError, errors.InternalError, Exception)) def _hype_inject_file(self, clients, file_data): inject_result = None tmp_except = None for client in clients: try: inject_result = client.inject_file(CONF.provider_opts.dst_path, file_data=file_data) break except Exception, e: tmp_except = e continue if not inject_result: raise tmp_except return inject_result def _get_node_private_ips(self, provider_node): """ :param provider_node: type Node, :return: type list, return list of private ips of Node """ LOG.debug('start to get node private ips for node:%s' % provider_node.name) private_ips = [] interfaces = self.compute_adapter.ex_list_network_interfaces(node=provider_node) for interface in interfaces: if len(interface.extra.get('private_ips')) > 0: for private_ip_dic in interface.extra.get('private_ips'): private_ip = private_ip_dic.get('private_ip') if private_ip: private_ips.append(private_ip) else: continue else: continue LOG.debug('end to get node private ips, private_ips: %s' % private_ips) return private_ips def _get_hybrid_service_clients_by_instance(self, instance): LOG.debug('start to get hybrid service clients.') provider_node = self._get_provider_node(instance) if not provider_node: error_info = 'get instance %s error at provider cloud' % instance.uuid LOG.error(error_info) raise Exception(error_info) clients = self._get_hybrid_service_clients_by_node(provider_node) LOG.debug('end to get hybrid service clients') return clients def _get_hybrid_service_clients_by_node(self, provider_node): port = CONF.provider_opts.hybrid_service_port private_ips = self._get_node_private_ips(provider_node) LOG.debug('port: %s' % port) LOG.debug('private ips: %s' % private_ips) clients = self._get_hybrid_service_client(private_ips, port) return clients def _get_hybrid_service_client(self, ips, port): clients = [] for ip in ips: clients.append(Client(ip, port)) return clients @RetryDecorator(max_retry_count=50, inc_sleep_time=5,max_sleep_time=60, exceptions=(errors.APIError, errors.NotFound, errors.ConnectionError, errors.InternalError)) def _clients_wait_hybrid_service_up(self, clients): is_docker_up = False tmp_except = Exception('Can not get version of docker server ') for client in clients: try: docker_version = client.get_version() LOG.debug('docker version: %s, docker is up.' % docker_version) is_docker_up = True break except Exception, e: tmp_except = e continue if not is_docker_up: raise tmp_except return is_docker_up @RetryDecorator(max_retry_count=50,inc_sleep_time=5,max_sleep_time=60, exceptions=(errors.APIError,errors.NotFound, errors.ConnectionError, errors.InternalError)) def _clients_reboot_app(self, clients, network_info, block_device_info): is_rebooted = False tmp_except = Exception('Reboot app failed.') for client in clients: try: client.restart_container(network_info=network_info, block_device_info=block_device_info) LOG.debug('Reboot app success.') is_rebooted = True break except Exception, e: tmp_except = e continue if not is_rebooted: raise tmp_except return is_rebooted @RetryDecorator(max_retry_count=50,inc_sleep_time=5,max_sleep_time=60, exceptions=(errors.APIError,errors.NotFound, errors.ConnectionError, errors.InternalError)) def _clients_stop_container(self, clients): is_stop = False tmp_except = Exception('Reboot app failed.') for client in clients: try: client.stop_container() LOG.debug('Reboot app success.') is_stop = True break except Exception, e: tmp_except = e continue if not is_stop: raise tmp_except return is_stop @staticmethod def _binding_host(context, network_info, host_id): neutron = neutronv2.get_client(context, admin=True) port_req_body = {'port': {'binding:host_id': host_id}} for vif in network_info: neutron.update_port(vif.get('id'), port_req_body) @staticmethod def _binding_host_vif(vif, host_id): context = RequestContext('user_id', 'project_id') neutron = neutronv2.get_client(context, admin=True) port_req_body = {'port': {'binding:host_id': host_id}} neutron.update_port(vif.get('id'), port_req_body) @RetryDecorator(max_retry_count=50,inc_sleep_time=5,max_sleep_time=60, exceptions=(errors.APIError,errors.NotFound, errors.ConnectionError, errors.InternalError)) def _clients_attach_volume_for_docker_app(self, clients, volume_id, device, mount_device): attached = False tmp_except = Exception('attach volume for app failed.') for client in clients: try: client.attach_volume(volume_id, device, mount_device) LOG.debug('attach volume for app success.') attached = True break except Exception, e: tmp_except = e continue if not attached: raise tmp_except return attached @RetryDecorator(max_retry_count=50,inc_sleep_time=5,max_sleep_time=60, exceptions=(errors.APIError,errors.NotFound, errors.ConnectionError, errors.InternalError)) def _clients_create_image_task(self, clients, image): image_name = image['name'] LOG.debug('image name : %s' % image_name) image_id = image['id'] LOG.debug('image id: %s' % image_id) create_image_task = None tmp_exception = Exception('tmp exception in create image task') for client in clients: try: create_image_task = client.create_image(image_name, image_id) LOG.debug('create image task: %s' % create_image_task) break except Exception, e: tmp_exception = e continue if not create_image_task: raise tmp_exception return create_image_task @RetryDecorator(max_retry_count=50, inc_sleep_time=5, max_sleep_time=60, exceptions=(errors.APIError, errors.NotFound, errors.ConnectionError, errors.InternalError)) def _clients_get_image_info(self, clients, image): image_name = image['name'] image_id = image['id'] image_info = None tmp_exception = Exception('tmp exception in get image_info') for client in clients: try: image_info = client.image_info(image_name, image_id) LOG.debug('get image_info: %s' % image_info) break except Exception, e: tmp_exception = e continue if not image_info: raise tmp_exception return image_info @RetryDecorator(max_retry_count=50,inc_sleep_time=5,max_sleep_time=60, exceptions=(errors.APIError,errors.NotFound, errors.ConnectionError, errors.InternalError)) def _clients_list_volume_devices_for_docker_app(self, clients): volume_devices = None tmp_except = Exception('list volumes devices failed.') for client in clients: try: volume_devices = client.list_volume() LOG.debug('list volume devices success, volume list: %s' % volume_devices) break except Exception, e: tmp_except = e continue if not volume_devices: raise tmp_except return volume_devices @RetryDecorator(max_retry_count=50,inc_sleep_time=5,max_sleep_time=60, exceptions=(errors.APIError,errors.NotFound, errors.ConnectionError, errors.InternalError)) def _clients_detach_volume_for_docker_app(self, clients, volume_id): detached = False tmp_except = Exception('detach volume for app failed.') for client in clients: try: client.detach_volume(volume_id) LOG.debug('detach volume for app success.') detached = True break except Exception, e: tmp_except = e continue if not detached: raise tmp_except return detached @RetryDecorator(max_retry_count=50,inc_sleep_time=5,max_sleep_time=60, exceptions=(errors.APIError,errors.NotFound, errors.ConnectionError, errors.InternalError)) def _clients_detach_interface(self, clients, vif): detached = False tmp_except = Exception('detach interface for app failed.') for client in clients: try: client.detach_interface(vif) LOG.debug('detach interface for app success.') detached = True break except Exception, e: tmp_except = e continue if not detached: raise tmp_except return detached @RetryDecorator(max_retry_count=50,inc_sleep_time=5,max_sleep_time=60, exceptions=(errors.APIError,errors.NotFound, errors.ConnectionError, errors.InternalError)) def _clients_attach_interface(self, clients, vif): attached = False tmp_except = Exception('attach interface for app failed.') for client in clients: try: client.attach_interface(vif) LOG.debug('attach interface for app success.') attached = True break except Exception, e: tmp_except = e continue if not attached: raise tmp_except return attached @RetryDecorator(max_retry_count=50,inc_sleep_time=5,max_sleep_time=60, exceptions=(errors.APIError,errors.NotFound, errors.ConnectionError, errors.InternalError)) def _clients_pause_container(self, clients): paused = False tmp_except = Exception('pause container failed.') for client in clients: try: client.pause_container() LOG.debug('pause container success.') paused
from datetime import datetime, timedelta from os import PathLike from pathlib import Path from typing import Collection import fiona import fiona.crs import numpy import rasterio from rasterio.enums import Resampling import scipy.interpolate import xarray import PyOFS from PyOFS import CRS_EPSG, LEAFLET_NODATA_VALUE, TIFF_CREATION_OPTIONS, get_logger LOGGER = get_logger('PyOFS.HFR') DATA_VARIABLES = {'ssu': 'u', 'ssv': 'v', 'dopx': 'dopx', 'dopy': 'dopy'} OUTPUT_CRS = fiona.crs.from_epsg(CRS_EPSG) NRT_DELAY = timedelta(hours=1) # either UCSD (University of California San Diego) or NDBC (National Data Buoy Center); NDBC has larger extent but only for the past 4 days SOURCE_URLS = { 'NDBC': 'https://dods.ndbc.noaa.gov/thredds/dodsC', 'UCSD': 'http://hfrnet-tds.ucsd.edu/thredds/dodsC/HFR/USWC', } class HFRadarRange: """ High Frequency (HF) Radar NetCDF observation of surface current velocities. """ grid_transform = None def __init__( self, start_time: datetime = None, end_time: datetime = None, resolution: int = 6 ): """ Creates new observation object from source. :param start_time: beginning of time interval :param end_time: end of time interval :param resolution: desired observation resolution in kilometers :raises NoDataError: if observation does not exist. """ if start_time is None: start_time = datetime.now() self.start_time = start_time if end_time is None: end_time = self.start_time + timedelta(days=1) if end_time > datetime.utcnow(): # HFR near real time delay is 1 hour behind UTC self.end_time = datetime.utcnow() - NRT_DELAY else: self.end_time = end_time self.resolution = resolution # NDBC only keeps observations within the past 4 days for source, source_url in SOURCE_URLS.items(): # get URL if source == 'NDBC': url = f'{source_url}/hfradar_uswc_{self.resolution}km' elif source == 'UCSD': url = f'{source_url}/{self.resolution}km/hourly/RTV/HFRADAR_US_West_Coast_{self.resolution}km_Resolution_Hourly_RTV_best.ncd' else: url = source_url try: self.dataset = xarray.open_dataset(url) self.url = url break except OSError as error: LOGGER.warning(f'{error.__class__.__name__}: {error}') else: raise PyOFS.NoDataError( f'No HFR observations found between {self.start_time} and {self.end_time}' ) raw_times = self.dataset['time'] self.dataset['time'] = xarray.DataArray( numpy.array(raw_times.values, dtype='datetime64[h]'), coords=raw_times.coords, dims=raw_times.dims, attrs=raw_times.attrs, ) self.dataset = self.dataset.sel(time=slice(self.start_time, self.end_time)) LOGGER.info( f'Collecting HFR velocity between {str(self.dataset["time"].min().values)[:19]} and {str(self.dataset["time"].max().values)[:19]}...' ) if HFRadarRange.grid_transform is None: lon = self.dataset['lon'].values lat = self.dataset['lat'].values # define image properties west = numpy.min(lon) north = numpy.max(lat) self.mean_x_size = numpy.mean(numpy.diff(lon)) self.mean_y_size = numpy.mean(numpy.diff(lat)) # get rasterio geotransform of HFR observation (flipped latitude) self.grid_transform = rasterio.transform.from_origin( west, north, self.mean_x_size, self.mean_y_size ) def data(self, variable: str, time: datetime, dop_threshold: float = None) -> numpy.array: """ Get data for the specified variable at a single time. :param variable: variable name :param time: time to retrieve :param dop_threshold: threshold for Dilution of Precision (DOP) above which data should be discarded :return: array of data. """ output_data = self.dataset[DATA_VARIABLES[variable]].sel(time) if dop_threshold is not None: output_data[~self.dop_mask(dop_threshold)] = numpy.nan return output_data.values def data_average( self, variable: str, start_time: datetime = None, end_time: datetime = None, dop_threshold: float = None, include_incomplete: bool = False, ) -> numpy.array: """ Get data for the specified variable at a single time. :param variable: variable name :param start_time: start of time interval :param end_time: end of time interval :param dop_threshold: threshold for Dilution of Precision (DOP) above which data should be discarded :param include_incomplete: whether to keep incomplete time series :return: array of data """ if start_time is None: start_time = self.start_time if end_time is None: end_time = self.end_time data_array = self.dataset[DATA_VARIABLES[variable]].sel( time=slice(start_time, end_time) ) if dop_threshold is not None: data_array.values[~self.dop_mask(dop_threshold)] = numpy.nan output_data = numpy.nanmean(data_array, axis=0) if not include_incomplete: output_data[numpy.isnan(data_array).any(axis=0)] = numpy.nan return output_data def bounds(self) -> tuple: """ Get coordinate bounds of observation. :return: tuple of bounds (west, north, east, south) """ return ( self.dataset.geospatial_lon_min, self.dataset.geospatial_lat_max, self.dataset.geospatial_lon_max, self.dataset.geospatial_lat_min, ) def cell_size(self) -> tuple: """ Get cell sizes of observation. :return: tuple of cell sizes (x, y) """ return abs(self.mean_x_size), abs(self.mean_y_size) def write_sites(self, output_filename: PathLike): """ Writes HFR radar facility locations to specified file and layer. :param output_filename: path to output file """ if not isinstance(output_filename, Path): output_filename = Path(output_filename) output_filename, layer_name = PyOFS.split_layer_filename(output_filename) layer_records = [] for site_index in range(self.dataset['nSites']): site_code = ( self.dataset['site_code'][site_index].tobytes().decode().strip('\x00').strip() ) site_network_code = ( self.dataset['site_netCode'][site_index] .tobytes() .decode() .strip('\x00') .strip() ) lon = float(self.dataset['site_lon'][site_index]) lat = float(self.dataset['site_lat'][site_index]) record = { 'id': site_index + 1, 'geometry': {'type': 'Point', 'coordinates': (lon, lat)}, 'properties': { 'code': site_code, 'net_code': site_network_code, 'lon': float(lon), 'lat': float(lat), }, } layer_records.append(record) schema = { 'geometry': 'Point', 'properties': {'code': 'str', 'net_code': 'str', 'lon': 'float', 'lat': 'float'}, } with fiona.open( output_filename, 'w', 'GPKG', layer=layer_name, schema=schema, crs=OUTPUT_CRS.to_dict(), ) as layer: layer.writerecords(layer_records) def write_vectors( self, output_filename: PathLike, variables: Collection[str] = None, start_time: datetime = None, end_time: datetime = None, dop_threshold: float = 0.5, ): """ Write HFR data to a layer of the provided output file for every hour in the given time interval. :param output_filename: path to output file :param variables: variable names to use :param start_time: beginning of time interval :param end_time: end of time interval :param dop_threshold: threshold for Dilution of Precision (DOP) above which data should be discarded """ if not isinstance(output_filename, Path): output_filename = Path(output_filename) output_filename = PyOFS.split_layer_filename(output_filename)[0] if variables is None: variables = DATA_VARIABLES if start_time is None: start_time = self.start_time if end_time is None: end_time = self.end_time time_interval_selection = self.dataset.sel(time=slice(start_time, end_time)) if dop_threshold is not None: dop_mask = ( (self.dataset['dopx'].sel(time=slice(start_time, end_time)) <= dop_threshold) & (self.dataset['dopy'].sel(time=slice(start_time, end_time)) <= dop_threshold) ).values time_interval_selection[~dop_mask] = numpy.nan # create dict to store features layers = {} # create layer using OGR, then add features using QGIS for hfr_time in time_interval_selection['time']: hfr_time = datetime.utcfromtimestamp( (hfr_time.values - numpy.datetime64('1970-01-01T00:00:00Z')) / numpy.timedelta64(1, 's') ) layer_name = f'{hfr_time:%Y%m%dT%H%M%S}' hfr_data = time_interval_selection.sel(time=hfr_time) # create features layer_records = [] feature_index = 1 for col in range(len(self.dataset['lon'])): for row in range(len(self.dataset['lat'])): data = [ float(hfr_data[variable_name][row, col].values) for variable, variable_name in variables.items() ] # stop if record has masked values if not (numpy.isnan(data)).all(): lon = self.dataset['lon'][col] lat = self.dataset['lat'][row] record = { 'id': feature_index, 'geometry': {'type': 'Point', 'coordinates': (lon, lat)}, 'properties': {'lon': float(lon), 'lat': float(lat)}, } record['properties'].update(dict(zip(list(variables.keys()), data))) layer_records.append(record) feature_index += 1 layers[layer_name] = layer_records # write queued features to their respective layers schema = { 'geometry': 'Point', 'properties': { 'u': 'float', 'v': 'float', 'lat': 'float', 'lon': 'float', 'dop_lat': 'float', 'dop_lon': 'float', }, } for layer_name, layer_records in layers.items(): with fiona.open( output_filename, 'w', 'GPKG', layer=layer_name, schema=schema, crs=OUTPUT_CRS.to_dict(), ) as layer: layer.writerecords(layer_records) def write_vector( self, output_filename: PathLike, variables: Collection[str] = None, start_time: datetime = None, end_time: datetime = None, dop_threshold: float = 0.5, ): """ Write average of HFR data for all hours in the given time interval to a single layer of the provided output file. :param output_filename: path to output file :param variables: variable names to use :param start_time: beginning of time interval :param end_time: end of time interval :param dop_threshold: threshold for Dilution of Precision (DOP) above which data should be discarded """ if not isinstance(output_filename, Path): output_filename = Path(output_filename) output_filename, layer_name = PyOFS.split_layer_filename(output_filename) if layer_name is None: layer_name = 'ssuv' if variables is None: variables = DATA_VARIABLES variable_means = { variable: self.data_average(variable, start_time, end_time, dop_threshold) for variable in variables } # define layer schema schema = {'geometry': 'Point', 'properties': {'lon': 'float', 'lat': 'float'}} schema['properties'].update({variable: 'float' for variable in variables}) # create features layer_records = [] feature_index = 1 for col in range(len(self.dataset['lon'])): for row in range(len(self.dataset['lat'])): data = [float(variable_means[variable][row, col]) for variable in variables] # stop if record has masked values if not (numpy.isnan(data)).all(): lon = self.dataset['lon'][col] lat = self.dataset['lat'][row] record = { 'id': feature_index, 'geometry': {'type': 'Point', 'coordinates': (lon, lat)}, 'properties': {'lon': float(lon), 'lat': float(lat)}, } record['properties'].update(dict(zip(variables, data))) layer_records.append(record) feature_index += 1 # write queued features to layer LOGGER.info(f'Writing {output_filename}') with fiona.open( output_filename, 'w', 'GPKG', layer=layer_name, schema=schema, crs=OUTPUT_CRS.to_dict(), ) as layer: layer.writerecords(layer_records) def write_rasters( self, output_dir: PathLike, filename_prefix: str = 'hfr', filename_suffix: str = '', variables: Collection[str] = None, start_time: datetime = None, end_time: datetime = None, fill_value: float = LEAFLET_NODATA_VALUE, driver: str = 'GTiff', dop_threshold: float = None, ): """ Write average of HFR data for all hours in the given time interval to rasters. :param output_dir: path to output directory :param filename_prefix: prefix for output filenames :param filename_suffix: suffix for output filenames :param variables: variable names to use :param start_time: beginning of time interval :param end_time: end of time interval :param fill_value: desired fill value of output :param driver: string of valid GDAL driver
<gh_stars>10-100 import os import csv import imageio from PIL import Image import numpy as np from scipy import stats import torch import torch.nn.functional as F from torchvision.utils import save_image from myGym.vae.vis_helpers import (read_loss_from_file, add_labels, make_grid_img, FPS_GIF, concatenate_pad) import cv2 TRAIN_FILE = "train_losses.log" DECIMAL_POINTS = 3 GIF_FILE = "training.gif" PLOT_NAMES = dict(generate_samples="samples.png", data_samples="data_samples.png", reconstruct="reconstruct.png", traversals="traversals.png", text_traversals='txt_traversals_{}.csv', reconstruct_traverse="reconstruct_traverse.png", gif_traversals_prior="prior_traversals.gif", gif_traversals_post="posterior_traversals.gif",) def textoutput2idxs(input_tensor): if len(input_tensor.shape) < 3: recon_text = np.zeros((2), dtype=int) for row in range(recon_text.shape[0]): recon_text[row] = int(input_tensor[row][:].max(0)[1]) else: recon_text = np.zeros((input_tensor.shape[0], input_tensor.shape[1]), dtype=int) for row in range(recon_text.shape[0]): for col in range(recon_text.shape[1]): recon_text[row][col] = int(input_tensor[row][col][:].max(0)[1]) return recon_text class Visualizer(): def __init__(self, model, model_dir, save_images=True, loss_of_interest=None, display_loss_per_dim=False, max_traversal=20, # corresponds to ~2 for standard normal upsample_factor=1, vocab=None): """ Visualizer is used to generate images of samples, reconstructions, latent traversals and so on of the trained model. Parameters ---------- model : disvae.vae.VAE dataset : str Name of the dataset. model_dir : str The directory that the model is saved to and where the images will be stored. save_images : bool, optional Whether to save images or return a tensor. loss_of_interest : str, optional The loss type (as saved in the log file) to order the latent dimensions by and display. display_loss_per_dim : bool, optional if the loss should be included as text next to the corresponding latent dimension images. max_traversal: float, optional The maximum displacement induced by a latent traversal. Symmetrical traversals are assumed. If `m>=0.5` then uses absolute value traversal, if `m<0.5` uses a percentage of the distribution (quantile). E.g. for the prior the distribution is a standard normal so `m=0.45` c orresponds to an absolute value of `1.645` because `2m=90%%` of a standard normal is between `-1.645` and `1.645`. Note in the case of the posterior, the distribution is not standard normal anymore. upsample_factor : floar, optional Scale factor to upsample the size of the tensor """ self.model = model self.device = next(self.model.parameters()).device self.latent_dim = self.model.n_latents self.max_traversal = max_traversal self.save_images = save_images self.model_dir = model_dir self.upsample_factor = upsample_factor self.vocab = vocab if loss_of_interest is not None: self.losses = read_loss_from_file(os.path.join(self.model_dir, TRAIN_FILE), loss_of_interest) else: self.losses = None def _get_traversal_range(self, mean=0, std=1): """Return the corresponding traversal range in absolute terms.""" max_traversal = self.max_traversal if max_traversal < 0.5: max_traversal = (1 - 2 * max_traversal) / 2 # from 0.45 to 0.05 max_traversal = stats.norm.ppf(max_traversal, loc=mean, scale=std) # from 0.05 to -1.645 # symmetrical traversals return (-1 * max_traversal, max_traversal) def traverse_line(self, idx, n_samples, data=None): """Return a (size, latent_size) latent sample, corresponding to a traversal of a latent variable indicated by idx. Parameters ---------- idx : int Index of continuous dimension to traverse. If the continuous latent vector is 10 dimensional and idx = 7, then the 7th dimension will be traversed while all others are fixed. n_samples : int Number of samples to generate. data : torch.Tensor or None, optional Data to use for computing the posterior. Shape (N, C, H, W). If `None` then use the mean of the prior (all zeros) for all other dimensions. """ if data is None: # mean of prior for other dimensions samples = torch.zeros(n_samples, self.latent_dim) traversals = torch.linspace(*self._get_traversal_range(), steps=n_samples) else: if data.size(0) > 1: raise ValueError("Every value should be sampled from the same posterior, but {} datapoints given.".format(data.size(0))) with torch.no_grad(): post_mean, post_logvar = self.model.infer(image=data.to(self.device)) samples = self.model.reparametrize(post_mean, post_logvar) samples = samples.cpu().repeat(n_samples, 1) post_mean_idx = post_mean.cpu()[0, idx] post_std_idx = torch.exp(post_logvar / 2).cpu()[0, idx] # travers from the gaussian of the posterior in case quantile traversals = torch.linspace(*self._get_traversal_range(mean=post_mean_idx, std=post_std_idx), steps=n_samples) for i in range(n_samples): samples[i, idx] = traversals[i] return samples def _save_or_return(self, to_plot, size, filename, is_force_return=False): """Create plot and save or return it.""" text_plot = None if isinstance(to_plot, list): ## this is the image text_plot = np.zeros(to_plot[0].size()) txt_recon_np = to_plot[1].numpy() txt_recon_np = np.argmax(txt_recon_np, axis=1).tolist() for i, item in enumerate(txt_recon_np): img = text_plot[i].squeeze() # cv2.putText(img, LABEL_IX_TO_STRING[item], (0, 8), cv2.FONT_HERSHEY_PLAIN, .7, (255, 255, 255), # lineType=cv2.LINE_AA) text_plot[i] = np.expand_dims(img, axis=0) text_plot = torch.tensor(text_plot) to_plot = to_plot[0] to_plot = F.interpolate(to_plot, scale_factor=self.upsample_factor) if size[0] * size[1] != to_plot.shape[0]: raise ValueError("Wrong size {} for datashape {}".format(size, to_plot.shape)) # `nrow` is number of images PER row => number of col kwargs = dict(nrow=size[1], pad_value=(1 - 0)) if self.save_images and not is_force_return: filename = os.path.join(self.model_dir, filename) i = make_grid_img(to_plot, **kwargs) cv2.imwrite(filename, i*255) if text_plot is not None: text_plot = F.interpolate(text_plot, scale_factor=self.upsample_factor) text_plot = text_plot.type('torch.FloatTensor') joined = torch.cat((to_plot, text_plot), 0) save_image(text_plot, os.path.join(self.model_dir, 'text_traversal.png'), **kwargs) kwargs = dict(nrow=size[0]*size[1], pad_value=(1 - 0)) save_image(joined, os.path.join(self.model_dir, 'joint_traversal.png'), **kwargs) print("Samples saved to {}".format(filename)) else: img = make_grid_img(to_plot, **kwargs) return img def _decode_latents(self, latent_samples, image=True): """Decodes latent samples into images. Parameters ---------- latent_samples : torch.autograd.Variable Samples from latent distribution. Shape (N, L) where L is dimension of latent distribution. """ latent_samples = latent_samples.to(self.device) decoded_image = None if len(latent_samples.shape) > 2: latent_samples = latent_samples.view(-1, self.latent_dim) decoded_image = self.model.image_decoder(latent_samples).cpu() else: if image is True: decoded_image = self.model.image_decoder(latent_samples).cpu() return decoded_image def generate_samples(self, size=(8, 8)): """Plot generated samples from the prior and decoding. Parameters ---------- size : tuple of ints, optional Size of the final grid. """ prior_samples = torch.randn(size[0] * size[1], self.latent_dim) generated = self._decode_latents(prior_samples) if isinstance(generated, list): prepared = [] for x in generated: prepared.append(generated[x].data) generated = prepared else: generated = generated.data return self._save_or_return(generated, size, PLOT_NAMES["generate_samples"]) def data_samples(self, data, size=(8, 8)): """Plot samples from the dataset Parameters ---------- data : torch.Tensor Data to be reconstructed. Shape (N, C, H, W) size : tuple of ints, optional Size of the final grid. """ data = data[:size[0] * size[1], ...] return self._save_or_return(data, size, PLOT_NAMES["data_samples"]) def reconstruct(self, data, size=(8, 8), is_original=True, is_force_return=False): """Generate reconstructions of data through the model. Parameters ---------- data : torch.Tensor Data to be reconstructed. Shape (N, C, H, W) size : tuple of ints, optional Size of grid on which reconstructions will be plotted. The number of rows should be even when `is_original`, so that upper half contains true data and bottom half contains reconstructions.contains is_original : bool, optional Whether to exclude the original plots. is_force_return : bool, optional Force returning instead of saving the image. """ if is_original: if size[0] % 2 != 0: raise ValueError("Should be even number of rows when showing originals not {}".format(size[0])) n_samples = size[0] // 2 * size[1] else: n_samples = size[0] * size[1] with torch.no_grad(): originals = data.to(self.device)[:n_samples, ...] recs, _, _ = self.model(originals) originals = originals.cpu() recs = recs.view(-1, *self.model.img_size).cpu() to_plot = torch.cat([originals, recs]) if is_original else recs return self._save_or_return(to_plot, size, PLOT_NAMES["reconstruct"], is_force_return=is_force_return) def reconstruct_nofile(self, data, size=(8, 8), is_original=True, is_force_return=False): """Generate reconstructions of data through the model. Parameters ---------- data : torch.Tensor Data to be reconstructed. Shape (N, C, H, W) size : tuple of ints, optional Size of grid on which reconstructions will be plotted. The number of rows should be even when `is_original`, so that upper half contains true data and bottom half contains reconstructions.contains is_original : bool, optional Whether to exclude the original plots. is_force_return : bool, optional Force returning instead of saving the image. """ if is_original: if size[0] % 2 != 0: raise ValueError("Should be even number of rows when showing originals not {}".format(size[0])) n_samples = size[0] // 2 * size[1] else: n_samples = size[0] * size[1] with torch.no_grad(): originals = data.to(self.device)[:n_samples, ...] recs, _, _ = self.model(originals) originals = originals.cpu() recs = recs.view(-1, *self.model.img_size).cpu() to_plot = torch.cat([originals, recs]) if is_original else recs return to_plot def traversals(self, data=None, is_reorder_latents=False, n_per_latent=8, n_latents=None, is_force_return=False, sample_number="single"): """Plot traverse through all latent dimensions (prior or posterior) one by one and plots a grid of images where each row corresponds to a latent traversal of one latent dimension. Parameters ---------- data : bool, optional Data to use for computing the latent posterior. If `None` traverses the prior. n_per_latent : int, optional The number of points to include in the traversal of a latent dimension. I.e. number of columns. n_latents : int, optional The number of latent dimensions to display. I.e. number of rows. If `None` uses all latents. is_reorder_latents : bool, optional If the
<filename>affine_model_with_default.py<gh_stars>0 import numpy as np import itertools from scipy.integrate import quad, IntegrationWarning """ risk-free: delta + S(a_m X_m) + S(c_i Y_i) spread: spread + S(b_m X_m) + S(d_i Y_i) """ def beta_m(alpha_m, sigma_m, a_m, b_m): """ Implements Eq. from Nawalka, Beliaeva, Soto (pg. 460) """ if b_m: changing = np.array(a_m) + np.array(b_m) else: changing = np.array(a_m) return np.sqrt(alpha_m ** 2 + 2 * changing * sigma_m ** 2) def C_i(tau, **params): """ Implements Eq. 9.126 from Nawalka, Beliaeva, Soto (pg. 460) Need params: k """ numerator = 1 - np.exp(- params['k'] * tau) return numerator / params['k'] def B_m(tau, **params): """ Implements Eq. 9.125 from Nawalka, Beliaeva, Soto (pg. 460) Needs params: alpha, sigma """ # Get beta if params['risk_free']: beta = beta_m(params['alpha'], params['sigma'], params['a_m'], 0) else: beta = beta_m(params['alpha'], params['sigma'], params['a_m'], params['b_m']) # Terms exp_term = np.exp(beta * tau) - 1 denom = (beta + params['alpha']) * exp_term + 2 * beta return 2 * exp_term / denom def first_part_A(tau, **params): """ Implements first part of Eq. 9.124 from Nawalka, Beliaeva, Soto (pg. 460) Needs params: alpha, beta, theta, sigma """ # Get beta if params['risk_free']: beta = beta_m(params['alpha'], params['sigma'], params['a_m'], 0) else: beta = beta_m(params['alpha'], params['sigma'], params['a_m'], params['b_m']) # Terms log_term_nom = 2 * beta * np.exp((beta + params['alpha']) * tau / 2) log_term_denom = (beta + params['alpha']) * (np.exp(beta * tau) - 1) + 2 * beta coef = 2 * params['alpha'] * params['theta'] / params['sigma'] ** 2 return np.sum(coef * np.log(log_term_nom / log_term_denom)) def last_part_A(tau, **params): """ Implements last part of Eq. 9.124 from Nawalka, Beliaeva, Soto (pg. 460) Needs params: k, nu, rho """ # Get C C = C_i(tau, **params) l = params['N'] - params['M'] if params['risk_free']: changing = np.array(params['c_i']) else: changing = np.array(params['c_i']) + np.array(params['d_i']) # Summation part_sum = 0 for i, j in itertools.product(range(l), range(l)): if l == 1: rho = 1 else: rho = params['rho'][i][j] new_term = changing[i] * changing[j] coef = new_term * params['nu'][i] * params['nu'][j] / (params['k'][i] * params['k'][j]) * rho term = (1 - np.exp(- (params['k'][i] + params['k'][j]) * tau)) / (params['k'][i] + params['k'][j]) part_sum += coef * (tau - C[i] - C[j] + term) return part_sum / 2 def A_fun(tau, **params): gaussian, non_gaussian = 0, 0 if params['M'] > 0: non_gaussian = first_part_A(tau, **params) if params['N'] - params['M'] > 0: gaussian = last_part_A(tau, **params) return gaussian + non_gaussian def H_simple(t, T, **params): """ Implements Eq. 9.123 from Nawalka, Beliaeva, Soto (pg. 460) """ if params['risk_free']: delta = params['delta'] else: delta = params['delta'] + params['spread'] return delta * (T - t) def bond_pricer_simple(t, T, **params): """ Implements Eq. 9.31 from Nawalka, Beliaeva, Soto (pg. 426) """ tau = T - t A = A_fun(tau, **params) B_term, C_term = 0, 0 if params['M'] > 0: if params['risk_free']: new_term = np.array(params['a_m']) else: new_term = np.array(params['a_m']) + np.array(params['b_m']) B_term = np.sum(new_term * B_m(tau, **params) * params['X_0']) if params['N'] - params['M'] > 0: if params['risk_free']: new_term = np.array(params['c_i']) else: new_term = np.array(params['c_i']) + np.array(params['d_i']) C_term = np.sum(new_term * C_i(tau, **params) * params['Y_0']) H = H_simple(t, T, **params) return np.exp(A - B_term - C_term - H) def beta1m(**params): """ Implements Eq. 9.162 from Nawalka, Beliaeva, Soto (pg. 472) """ inside = params['alpha']**2 + 2 * (np.array(params['a_m']) + np.array(params['b_m'])) * params['sigma']**2 return np.sqrt(inside) def beta2m(beta1, **params): """ Implements Eq. 9.162 from Nawalka, Beliaeva, Soto (pg. 472) """ return (beta1 - params['alpha']) / 2 def beta3m(beta1, **params): """ Implements Eq. 9.162 from Nawalka, Beliaeva, Soto (pg. 472) """ return (- beta1 - params['alpha']) / 2 def beta4m(phi, beta1, **params): """ Implements Eq. 9.162 from Nawalka, Beliaeva, Soto (pg. 472) """ last_term = phi * np.array(params['b_m']) * params['sigma']**2 numerator = - params['alpha'] - beta1 + last_term denominator = - params['alpha'] + beta1 + last_term return numerator / denominator def q_i(phi, **params): """ Implements Eq. 9.161 from Nawalka, Beliaeva, Soto (pg. 472) """ fraction = np.array(params['d_i']) / (np.array(params['c_i']) + np.array(params['d_i'])) return 1 + phi * params['k'] * fraction def C_i_def(tau, phi, **params): """ Implements Eq. 9.160 from Nawalka, Beliaeva, Soto (pg. 472) """ q = q_i(phi, **params) return (1 - q * np.exp(- params['k'] * tau)) / params['k'] def B_m_def(tau, phi, **params): """ Implements Eq. 9.159 from Nawalka, Beliaeva, Soto (pg. 471) """ beta1 = beta1m(**params) beta2 = beta2m(beta1, **params) beta3 = beta3m(beta1, **params) beta4 = beta4m(phi, beta1, **params) exp_term = np.exp(beta1 * tau) denominator = beta2 * beta4 * exp_term - beta3 numerator = beta4 * exp_term - 1 term = np.array(params['a_m']) + np.array(params['b_m']) return 2 / (term * params['sigma']**2) * denominator / numerator def A_first_sum_def(tau, phi, **params): """ Implements Eq. 9.158 from Nawalka, Beliaeva, Soto (pg. 471) """ summa = 0 l = params['N'] - params['M'] for i, j in itertools.product(range(l), range(l)): if l == 1: rho = 1 else: rho = params['rho'][i][j] cplusd = np.array(params['c_i']) + np.array(params['d_i']) q = q_i(phi, **params) C = C_i_def(tau, phi, **params) factor = cplusd[i] * cplusd[j] * params['nu'][i] * params['nu'][j] * rho / params['k'][i] / params['k'][j] k_sum = params['k'][i] + params['k'][j] fraction = (1 - np.exp(- k_sum * tau) / k_sum) term = tau - q[i] * C[i] - q[j] * C[j] + q[i] * q[j] * fraction summa += factor * term return summa / 2 def A_second_sum_def(tau, phi, **params): """ Implements Eq. 9.158 from Nawalka, Beliaeva, Soto (pg. 471) """ beta1 = beta1m(**params) beta3 = beta3m(beta1, **params) beta4 = beta4m(phi, beta1, **params) fraction = params['alpha'] * params['theta'] / params['sigma']**2 ln_denominator = 1 - beta4 * np.exp(beta1 * tau) ln_numerator = 1 - beta4 return 2 * sum(fraction * (beta3 * tau + np.log(ln_denominator / ln_numerator))) def A_sum_def(tau, phi, **params): """ Implements Eq. 9.157 from Nawalka, Beliaeva, Soto (pg. 471) """ A_first, A_last = 0, 0 if params['M'] > 0: A_last = A_second_sum_def(tau, phi, **params) if params['N'] - params['M'] > 0: A_first = A_first_sum_def(tau, phi, **params) return phi * params['spread'] + A_first - A_last def H_def(t, T, **params): return (T - t) * (params['delta'] + params['spread']) def eta(t, T, phi, **params): tau = T - t if params['M'] > 0: factor = np.array(params['a_m']) + np.array(params['b_m']) B_term = sum(factor * B_m_def(tau, phi, **params) * params['X_0']) else: B_term = 0 if params['N'] - params['M'] > 0: factor = np.array(params['c_i']) + np.array(params['d_i']) C_term = sum(factor * C_i_def(tau, phi, **params) * params['Y_0']) else: C_term = 0 A_term = A_sum_def(tau, phi, **params) H = H_def(t, T, **params) return np.exp(A_term - B_term - C_term - H) def G_function(t, T, h, **params): return (eta(t, T, h, **params) - eta(t, T, 0, **params)) / h def in_default(t, T, **params): tau = T - t h = 10**-5 def integrand(x): return G_function(t, t + x, h, **params) try: with_recovery = quad(integrand, 0, tau, full_output=1) except IntegrationWarning: with_recovery = [0, 0, 0] else: with_recovery = [0, 0, 0] if 'LGD' in params: return with_recovery[0] * (1 - params['LGD']) else: return with_recovery[0] def defaultable_bond_pricer_simple_with_recovery(t, T, **params): """ Implements Eq. 9.149 from Nawalka, Beliaeva, Soto (pg. 470) """ tau = T - t without_recovery = bond_pricer_simple(t, T, **params) if 'risk_free' in params: if params['risk_free']: return without_recovery if 'LGD' in params: if params['LGD'] is None: return without_recovery elif params['LGD'] == 1: return without_recovery with_recovery = in_default(t, T, **params) return without_recovery + with_recovery def CDS_premium_coupon(t, T, cds_spread, **params): return cds_spread * bond_pricer_simple(t, T, **params) def CDS_protection_leg(t, T, **params): return in_default(t, T, **params) def CDS_continous_price(t, T, cds_spread, **params): tau = T - t protection_leg = CDS_protection_leg(t, T, **params) def integrand(x): return bond_pricer_simple(t, t + x, **params) integration = quad(integrand, 0, tau) premium_leg = integration[0] * cds_spread return premium_leg - protection_leg """ def_test_01 = dict(M=0, N=1, delta=0.02, c_i=[1], k=np.array([1]), nu=np.array([0.02]), Y_0=0.03, risk_free=True) test_12 = dict(M=1, N=2, delta=0.02, alpha=np.array([2]), theta=np.array([0.04]), sigma=np.array([0.025]), X_0=0.06, k=np.array([1]), nu=np.array([0.02]), Y_0=0.03, risk_free=True) def_test_12 = dict(M=1, N=2, delta=0.02, spread=0.01, a_m=[1], b_m=[1], alpha=np.array([2]), theta=np.array([0.04]), sigma=np.array([0.025]), X_0=0.06, c_i=[1], d_i=[1], k=np.array([1]), nu=np.array([0.02]), Y_0=0.03, risk_free=False, LGD=0.4) bond_pricer_simple(0, 1, **def_test_12) G_function(0, 1, 10**-6, **def_test_12) from affine_model import bond_pricer_simple as test_function test_function(0, 1, **test_12) def_test_13 = dict(M=1, N=3, delta=0.02, spread=0.01, a_m=[0], b_m=[1], alpha=np.array([2]), theta=np.array([0.04]), sigma=np.array([0.025]), X_0=0.06, c_i=[1, 1], d_i=[1, 0], k=np.array([1, 1.5]), nu=np.array([0.02, 0.015]), Y_0=[0.03, 0], rho=[[1, -0.5], [-0.5,
from math import sqrt from numpy import (array, unravel_index, nditer, linalg, random, subtract, power, exp, pi, zeros, arange, outer, meshgrid, dot, logical_and) from collections import defaultdict from warnings import warn # for unit tests from numpy.testing import assert_almost_equal, assert_array_almost_equal from numpy.testing import assert_array_equal import unittest """ Minimalistic implementation of the Self Organizing Maps (SOM). """ def fast_norm(x): """Returns norm-2 of a 1-D numpy array. * faster than linalg.norm in case of 1-D arrays (numpy 1.9.2rc1). """ return sqrt(dot(x, x.T)) class MiniSom(object): def __init__(self, x, y, input_len, sigma=1.0, learning_rate=0.5, decay_function=None, neighborhood_function='gaussian', random_seed=None): """Initializes a Self Organizing Maps. Parameters ---------- decision_tree : decision tree The decision tree to be exported. x : int x dimension of the SOM y : int y dimension of the SOM input_len : int Number of the elements of the vectors in input. sigma : float, optional (default=1.0) Spread of the neighborhood function, needs to be adequate to the dimensions of the map. (at the iteration t we have sigma(t) = sigma / (1 + t/T) where T is #num_iteration/2) learning_rate, initial learning rate (at the iteration t we have learning_rate(t) = learning_rate / (1 + t/T) where T is #num_iteration/2) decay_function : function (default=None) Function that reduces learning_rate and sigma at each iteration default function: lambda x, current_iteration, max_iter : x/(1+current_iteration/max_iter) neighborhood_function : function, optional (default='gaussian') Function that weights the neighborhood of a position in the map possible values: 'gaussian', 'mexican_hat', 'bubble' random_seed : int, optiona (default=None) Random seed to use. """ if sigma >= x/2.0 or sigma >= y/2.0: warn('Warning: sigma is too high for the dimension of the map.') if random_seed: self._random_generator = random.RandomState(random_seed) else: self._random_generator = random.RandomState(random_seed) if decay_function: self._decay_function = decay_function else: self._decay_function = lambda x, t, max_iter: x/(1+t/max_iter) self._learning_rate = learning_rate self._sigma = sigma # random initialization self._weights = self._random_generator.rand(x, y, input_len)*2-1 for i in range(x): for j in range(y): # normalization norm = fast_norm(self._weights[i, j]) self._weights[i, j] = self._weights[i, j] / norm self._activation_map = zeros((x, y)) self._neigx = arange(x) self._neigy = arange(y) # used to evaluate the neighborhood function neig_functions = {'gaussian': self._gaussian, 'mexican_hat': self._mexican_hat, 'bubble': self._bubble} if neighborhood_function not in neig_functions: msg = '%s not supported. Functions available: %s' raise ValueError(msg % (neighborhood_function, ', '.join(neig_functions.keys()))) if neighborhood_function == 'bubble' and sigma % 2 != 1: warn('sigma should be an odd value when bubble \ is used as neighborhood function') self.neighborhood = neig_functions[neighborhood_function] def get_weights(self): """Returns the weights of the neural network""" return self._weights def _activate(self, x): """Updates matrix activation_map, in this matrix the element i,j is the response of the neuron i,j to x""" s = subtract(x, self._weights) # x - w it = nditer(self._activation_map, flags=['multi_index']) while not it.finished: # || x - w || self._activation_map[it.multi_index] = fast_norm(s[it.multi_index]) it.iternext() def activate(self, x): """Returns the activation map to x""" self._activate(x) return self._activation_map def _gaussian(self, c, sigma): """Returns a Gaussian centered in c""" d = 2*pi*sigma*sigma ax = exp(-power(self._neigx-c[0], 2)/d) ay = exp(-power(self._neigy-c[1], 2)/d) return outer(ax, ay) # the external product gives a matrix def _mexican_hat(self, c, sigma): """Mexican hat centered in c""" xx, yy = meshgrid(self._neigx, self._neigy) p = power(xx-c[0], 2) + power(yy-c[1], 2) d = 2*pi*sigma*sigma return exp(-p/d)*(1-2/d*p) def _bubble(self, c, sigma): """Constant function centered in c with spread sigma. sigma should be an odd value, """ ax = logical_and(self._neigx > c[0]-sigma/2., self._neigx < c[0]+sigma/2.) ay = logical_and(self._neigy > c[1]-sigma/2., self._neigy < c[1]+sigma/2.) return outer(ax, ay)*1. def winner(self, x): """Computes the coordinates of the winning neuron for the sample x""" self._activate(x) return unravel_index(self._activation_map.argmin(), self._activation_map.shape) def update(self, x, win, t): """Updates the weights of the neurons. Parameters ---------- x : np.array Current pattern to learn win : tuple Position of the winning neuron for x (array or tuple). t : int Iteration index """ eta = self._decay_function(self._learning_rate, t, self.T) # sigma and learning rate decrease with the same rule sig = self._decay_function(self._sigma, t, self.T) # improves the performances g = self.neighborhood(win, sig)*eta it = nditer(g, flags=['multi_index']) while not it.finished: # eta * neighborhood_function * (x-w) x_w = (x - self._weights[it.multi_index]) self._weights[it.multi_index] += g[it.multi_index] * x_w # normalization norm = fast_norm(self._weights[it.multi_index]) self._weights[it.multi_index] = self._weights[it.multi_index]/norm it.iternext() def quantization(self, data): """Assigns a code book (weights vector of the winning neuron) to each sample in data.""" q = zeros(data.shape) for i, x in enumerate(data): q[i] = self._weights[self.winner(x)] return q def random_weights_init(self, data): """Initializes the weights of the SOM picking random samples from data""" it = nditer(self._activation_map, flags=['multi_index']) while not it.finished: rand_i = self._random_generator.randint(len(data)) self._weights[it.multi_index] = data[rand_i] norm = fast_norm(self._weights[it.multi_index]) self._weights[it.multi_index] = self._weights[it.multi_index]/norm it.iternext() def train_random(self, data, num_iteration): """Trains the SOM picking samples at random from data""" self._init_T(num_iteration) for iteration in range(num_iteration): # pick a random sample rand_i = self._random_generator.randint(len(data)) self.update(data[rand_i], self.winner(data[rand_i]), iteration) def train_batch(self, data, num_iteration): """Trains using all the vectors in data sequentially""" self._init_T(len(data)*num_iteration) iteration = 0 while iteration < num_iteration: idx = iteration % (len(data)-1) self.update(data[idx], self.winner(data[idx]), iteration) iteration += 1 def _init_T(self, num_iteration): """Initializes the parameter T needed to adjust the learning rate""" # keeps the learning rate nearly constant # for the last half of the iterations self.T = num_iteration/2 def distance_map(self): """Returns the distance map of the weights. Each cell is the normalised sum of the distances between a neuron and its neighbours.""" um = zeros((self._weights.shape[0], self._weights.shape[1])) it = nditer(um, flags=['multi_index']) while not it.finished: for ii in range(it.multi_index[0]-1, it.multi_index[0]+2): for jj in range(it.multi_index[1]-1, it.multi_index[1]+2): if (ii >= 0 and ii < self._weights.shape[0] and jj >= 0 and jj < self._weights.shape[1]): w_1 = self._weights[ii, jj, :] w_2 = self._weights[it.multi_index] um[it.multi_index] += fast_norm(w_1-w_2) it.iternext() um = um/um.max() return um def activation_response(self, data): """ Returns a matrix where the element i,j is the number of times that the neuron i,j have been winner. """ a = zeros((self._weights.shape[0], self._weights.shape[1])) for x in data: a[self.winner(x)] += 1 return a def quantization_error(self, data): """Returns the quantization error computed as the average distance between each input sample and its best matching unit.""" error = 0 for x in data: error += fast_norm(x-self._weights[self.winner(x)]) return error/len(data) def win_map(self, data): """Returns a dictionary wm where wm[(i,j)] is a list with all the patterns that have been mapped in the position i,j.""" winmap = defaultdict(list) for x in data: winmap[self.winner(x)].append(x) return winmap class TestMinisom(unittest.TestCase): def setup_method(self, method): self.som = MiniSom(5, 5, 1) for i in range(5): for j in range(5): # checking weights normalization assert_almost_equal(1.0, linalg.norm(self.som._weights[i, j])) self.som._weights = zeros((5, 5)) # fake weights self.som._weights[2, 3] = 5.0 self.som._weights[1, 1] = 2.0 def test_decay_function(self): assert self.som._decay_function(1., 2., 3.) == 1./(1.+2./3.) def test_fast_norm(self): assert fast_norm(array([1, 3])) == sqrt(1+9) def test_unavailable_neigh_function(self): with self.assertRaises(ValueError): MiniSom(5, 5, 1, neighborhood_function='boooom') def test_gaussian(self): bell = self.som._gaussian((2, 2), 1) assert bell.max() == 1.0 assert bell.argmax() == 12 # unravel(12) = (2,2) def test_mexican_hat(self): bell = self.som._mexican_hat((2, 2), 1) assert bell.max() == 1.0 assert bell.argmax() == 12 # unravel(12) = (2,2) def test_bubble(self): bubble = self.som._bubble((2, 2), 1) assert bubble[2,2] == 1 assert sum(sum(bubble)) == 1 def test_win_map(self): winners = self.som.win_map([5.0, 2.0]) assert winners[(2, 3)][0] == 5.0 assert winners[(1, 1)][0] == 2.0 def test_activation_reponse(self): response = self.som.activation_response([5.0, 2.0]) assert response[2, 3] == 1 assert response[1, 1] == 1 def test_activate(self): assert self.som.activate(5.0).argmin() == 13.0 # unravel(13) = (2,3) def test_quantization_error(self): self.som.quantization_error([5, 2]) == 0.0 self.som.quantization_error([4, 1]) == 0.5 def test_quantization(self): q = self.som.quantization(array([4, 2])) assert q[0] == 5.0 assert q[1] == 2.0 def test_random_seed(self): som1 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1) som2 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1) # same initialization assert_array_almost_equal(som1._weights, som2._weights) data = random.rand(100, 2) som1 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1) som1.train_random(data, 10) som2 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1) som2.train_random(data, 10) # same state after training assert_array_almost_equal(som1._weights, som2._weights) def test_train_batch(self): som = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1) data = array([[4, 2], [3, 1]]) q1 = som.quantization_error(data) som.train_batch(data, 10) assert q1 > som.quantization_error(data) def test_train_random(self): som = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1) data = array([[4, 2], [3, 1]]) q1 =
ID: 22062 m = p7.match(line) if m: ser_dict['session_id'] = int(m.groupdict()['session_num']) continue # IKEv2 SA: local 1.1.1.1/4500 remote 172.16.58.3/38452 Active m = p8.match(line) if m: count = 0 ike_version = m.groupdict()['version'] ikev2_dict = ser_dict.setdefault(ike_version, {}) ikev2_dict['local_ip'] = m.groupdict()['localip'] ikev2_dict['local_port'] = int(m.groupdict()['localport']) ikev2_dict['remote_ip'] = m.groupdict()['remoteip'] ikev2_dict['remote_port'] = int(m.groupdict()['remoteport']) continue # Capabilities:DN connid:323 lifetime:10:43:07 m = p9.match(line) if m: ikev2_dict['capabilities'] = m.groupdict()['caps'] ikev2_dict['connid'] = int(m.groupdict()['conn']) ikev2_dict['lifetime'] = m.groupdict()['life'] continue # IPSEC FLOW: permit ip 0.0.0.0/0.0.0.0 host 172.16.31.10 m = p10.match(line) if m: count += 1 ipsec_dict = ser_dict.setdefault('ipsec_flow', {}).setdefault(count, {}) ipsec_dict['flow'] = m.groupdict()['TS'] continue # Active SAs: 2, origin: crypto map m = p11.match(line) if m: ipsec_dict['active_sa'] = int(m.groupdict()['sa_count']) ipsec_dict['origin'] = m.groupdict()['origin_type'] continue # Inbound: #pkts dec'ed 47668 drop 0 life (KB/Sec) 4607746/1687 m = p12.match(line) if m: inbound_dict = ipsec_dict.setdefault('inbound', {}) inbound_dict['decrypted'] = int(m.groupdict()['decrypt_count']) inbound_dict['dropped'] = int(m.groupdict()['in_drop']) inbound_dict['life_in_kb'] = int(m.groupdict()['in_life_kb']) inbound_dict['life_in_sec'] = int(m.groupdict()['in_life_sec']) continue # Outbound: #pkts enc'ed 47672 drop 0 life (KB/Sec) 4607812/1874 m = p13.match(line) if m: outbound_dict = ipsec_dict.setdefault('outbound', {}) outbound_dict['encrypted'] = int(m.groupdict()['encrypt_count']) outbound_dict['dropped'] = int(m.groupdict()['out_drop']) outbound_dict['life_in_kb'] = int(m.groupdict()['out_life_kb']) outbound_dict['life_in_sec'] = int(m.groupdict()['out_life_sec']) continue return ret_dict class ShowCryptoSessionRemote(ShowCryptoSessionRemoteSuper,ShowCryptoSessionRemoteSchema): '''Parser for: * 'show crypto session remote {remote_ip}' ''' cli_command = ['show crypto session remote {remote_ip}'] def cli(self, remote_ip='', output=None): if output is None: out = self.device.execute(self.cli_command[0].format(remote_ip=remote_ip)) else: out = output return super().cli(output=out) class ShowCryptoSessionRemoteDetail(ShowCryptoSessionRemoteSuper,ShowCryptoSessionRemoteSchema): '''Parser for: * 'show crypto session remote {remote_ip} detail' ''' cli_command = ['show crypto session remote {remote_ip} detail'] def cli(self, remote_ip='', output=None): if output is None: out = self.device.execute(self.cli_command[0].format(remote_ip=remote_ip)) else: out = output return super().cli(output=out) # ============================== # Schema for # 'show crypto ikev2 stats' # ============================== class ShowCryptoIkev2StatsExtSchema(MetaParser): """ Schema for * 'show crypto ikev2 stats ext-service' """ schema = { 'ikev2_stats': { 'aaa_operation':{ 'receive_pskey': { 'passed': int, 'failed': int }, 'eap_auth': { 'passed': int, 'failed': int }, 'start_acc': { 'passed': int, 'failed': int }, 'stop_acc': { 'passed': int, 'failed': int }, 'authorization': { 'passed': int, 'failed': int } }, 'ipsec_operation': { 'ipsec_policy_verify': { 'passed': int, 'failed': int }, 'sa_creation': { 'passed': int, 'failed': int }, 'sa_deletion':{ 'passed': int, 'failed': int } }, 'crypto_engine_operation': { 'dh_key_generated': { 'passed': int, 'failed': int }, 'secret_generated': { 'passed': int, 'failed': int }, 'signature_sign': { 'passed': int, 'failed': int }, 'signature_verify': { 'passed': int, 'failed': int } }, 'pki_operation': { 'verify_cert': { 'passed': int, 'failed': int }, 'cert_using_http': { 'passed': int, 'failed': int }, 'peer_cert_using_http': { 'passed': int, 'failed': int }, 'get_issuers': { 'passed': int, 'failed': int }, 'get_cert_from_issuers': { 'passed': int, 'failed': int }, 'get_dn_from_cert': { 'passed': int, 'failed': int } }, 'gkm_operation': { 'get_policy': { 'passed': int, 'failed': int }, 'set_policy': { 'passed': int, 'failed': int } }, 'ppk_sks_operation': { 'ppk_get_cap': { 'passed': int, 'failed': int }, 'ppk_get_key': { 'passed': int, 'failed': int } }, 'ike_preroute': { 'idb_verification': { 'passed': int, 'failed': int } }, }, } # ========================================================= # Parser for 'show crypto ikev2 stats ext-service' # ========================================================= class ShowCryptoIkev2StatsExt(ShowCryptoIkev2StatsExtSchema): """ Parser for * 'show crypto ikev2 stats ext-service' """ # Defines a function to run the cli_command cli_command = 'show crypto ikev2 stats ext-service' def cli(self, output=None): if output is None: output = self.device.execute(self.cli_command) # RECEIVING PSKEY 0 0 p1 = re.compile(r'^RECEIVING PSKEY\s+(?P<rec_ps_pass>\d+)\s+(?P<rec_ps_fail>\d+)$') # AUTHENTICATION USING EAP 23986 0 p2 = re.compile(r'^AUTHENTICATION\s+USING\s+EAP\s+(?P<eap_auth_pass>\d+)\s+(?P<eap_auth_fail>\d+)$') # START ACCOUNTING 3990 0 p3 = re.compile(r'^START\s+ACCOUNTING\s+(?P<start_acc_pass>\d+)\s+(?P<start_acc_fail>\d+)$') # STOP ACCOUNTING 3186 0 p4 = re.compile(r'^STOP ACCOUNTING\s+(?P<stop_acc_pass>\d+)\s+(?P<stop_acc_fail>\d+)$') # AUTHORIZATION 0 0 p5 = re.compile(r'^AUTHORIZATION\s+(?P<auth_pass>\d+)\s+(?P<auth_fail>\d+)$') # IPSEC POLICY VERIFICATION 8895 0 p6 = re.compile(r'^IPSEC POLICY VERIFICATION\s+(?P<policy_ver_pass>\d+)\s+(?P<policy_ver_fail>\d+)$') # SA CREATION 8895 0 p7 = re.compile(r'^SA CREATION\s+(?P<sa_creation_pass>\d+)\s+(?P<sa_creation_fail>\d+)$') # SA DELETION 16182 0 p8 = re.compile(r'^SA DELETION\s+(?P<sa_del_pass>\d+)\s+(?P<sa_del_fail>\d+)$') # DH PUBKEY GENERATED 11432 0 p9 = re.compile(r'^DH\s+PUBKEY\s+GENERATED\s+(?P<pubkey_gen_pass>\d+)\s+(?P<pubkey_gen_fail>\d+)$') # DH SHARED SECKEY GENERATED 11432 0 p10 = re.compile(r'^DH\s+SHARED\s+SECKEY\s+GENERATED\s+(?P<secret_gen_pass>\d+)\s+(?P<secret_gen_fail>\d+)$') # SIGNATURE SIGN 4000 0 p11 = re.compile(r'^SIGNATURE\s+SIGN\s+(?P<sign_pass>\d+)\s+(?P<sign_fail>\d+)$') # SIGNATURE VERIFY 0 0 p12 = re.compile(r'^SIGNATURE VERIFY\s+(?P<sign_ver_pass>\d+)\s+(?P<sign_ver_fail>\d+)$') # VERIFY CERTIFICATE 0 0 p13 = re.compile(r'^VERIFY CERTIFICATE\s+(?P<ver_cert_pass>\d+)\s+(?P<ver_cert_fail>\d+)$') # FETCHING CERTIFICATE USING HTTP 0 0 p14 = re.compile(r'^FETCHING\s+CERTIFICATE\s+USING\s+HTTP\s+(?P<cert_http_pass>\d+)\s+(?P<cert_http_fail>\d+)$') # FETCHING PEER CERTIFICATE USING HTTP 0 0 p15 = re.compile(r'^FETCHING\s+PEER\s+CERTIFICATE\s+USING\s+HTTP\s+(?P<peer_cert_http_pass>\d+)\s+(?P<peer_cert_http_fail>\d+)$') # GET ISSUERS 13054 0 p16 = re.compile(r'^GET\s+ISSUERS\s+(?P<get_issuers_pass>\d+)\s+(?P<get_issuers_fail>\d+)$') # GET CERTIFICATES FROM ISSUERS 6518 0 p17 = re.compile(r'^GET\s+CERTIFICATES\s+FROM\s+ISSUERS\s+(?P<get_cert_pass>\d+)\s+(?P<get_cert_fail>\d+)$') # GET DN FROM CERT 0 0 p18 = re.compile(r'^GET\s+DN\s+FROM\s+CERT\s+(?P<get_dn_pass>\d+)\s+(?P<get_dn_fail>\d+)$') # GET_POLICY 0 0 p19 = re.compile(r'^GET_POLICY\s+(?P<get_policy_pass>\d+)\s+(?P<get_policy_fail>\d+)$') # SET_POLICY 0 0 p20 = re.compile(r'^SET_POLICY\s+(?P<set_policy_pass>\d+)\s+(?P<set_policy_fail>\d+)$') # PPK GET CAP 0 0 p21 = re.compile(r'^PPK\s+GET\s+CAP\s+(?P<ppk_get_cap_pass>\d+)\s+(?P<ppk_get_cap_fail>\d+)$') # PPK GET KEY 0 0 p22 = re.compile(r'^PPK\s+GET\s+KEY\s+(?P<ppk_get_key_pass>\d+)\s+(?P<ppk_get_key_fail>\d+)$') # IKE PREROUTE IDB VERIFICATION 0 0 p23 = re.compile(r'^IKE\s+PREROUTE\s+IDB\s+VERIFICATION\s+(?P<idb_ver_pass>\d+)\s+(?P<idb_ver_fail>\d+)$') # initial return dictionary ret_dict = {} for line in output.splitlines(): line = line.strip() # RECEIVING PSKEY 0 0 m = p1.match(line) if m: ser_dict = ret_dict.setdefault('ikev2_stats', {}) aaa_dict = ser_dict.setdefault('aaa_operation', {}) aaa_dict.update ( { 'receive_pskey' : { 'passed': int(m.groupdict()['rec_ps_pass']), 'failed': int(m.groupdict()['rec_ps_fail']) } }) continue # AUTHENTICATION USING EAP 23986 0 m = p2.match(line) if m: aaa_dict.update ( { 'eap_auth' : { 'passed': int(m.groupdict()['eap_auth_pass']), 'failed': int(m.groupdict()['eap_auth_fail']) } }) continue # START ACCOUNTING 3990 0 m = p3.match(line) if m: aaa_dict.update ( { 'start_acc' : { 'passed': int(m.groupdict()['start_acc_pass']), 'failed': int(m.groupdict()['start_acc_fail']) } }) continue # STOP ACCOUNTING 3186 0 m = p4.match(line) if m: aaa_dict.update ( { 'stop_acc' : { 'passed': int(m.groupdict()['stop_acc_pass']), 'failed': int(m.groupdict()['stop_acc_fail']) } }) continue # AUTHORIZATION 0 0 m = p5.match(line) if m: aaa_dict.update ( { 'authorization' : { 'passed': int(m.groupdict()['auth_pass']), 'failed': int(m.groupdict()['auth_fail']) } }) continue # IPSEC POLICY VERIFICATION 8895 0 m = p6.match(line) if m: ipsec_dict = ser_dict.setdefault('ipsec_operation', {}) ipsec_dict.update ( { 'ipsec_policy_verify' : { 'passed': int(m.groupdict()['policy_ver_pass']), 'failed': int(m.groupdict()['policy_ver_fail']) } }) continue # SA CREATION 8895 0 m = p7.match(line) if m: ipsec_dict.update ( { 'sa_creation' : { 'passed': int(m.groupdict()['sa_creation_pass']), 'failed': int(m.groupdict()['sa_creation_fail']) } }) continue # SA DELETION 16182 0 m = p8.match(line) if m: ipsec_dict.update ( { 'sa_deletion' : { 'passed': int(m.groupdict()['sa_del_pass']), 'failed': int(m.groupdict()['sa_del_fail']) } }) continue # DH PUBKEY GENERATED 11432 0 m = p9.match(line) if m: crypto_dict = ser_dict.setdefault('crypto_engine_operation', {}) crypto_dict.update ( { 'dh_key_generated' : { 'passed': int(m.groupdict()['pubkey_gen_pass']), 'failed': int(m.groupdict()['pubkey_gen_fail']) } }) continue # DH SHARED SECKEY GENERATED 11432 0 m = p10.match(line) if m: crypto_dict.update ( { 'secret_generated' : { 'passed': int(m.groupdict()['secret_gen_pass']), 'failed': int(m.groupdict()['secret_gen_fail']) } }) continue # SIGNATURE SIGN 4000 0 m = p11.match(line) if m: crypto_dict.update ( { 'signature_sign' : { 'passed': int(m.groupdict()['sign_pass']), 'failed': int(m.groupdict()['sign_fail']) } }) continue # SIGNATURE VERIFY 0 0 m = p12.match(line) if m: crypto_dict.update ( { 'signature_verify' : { 'passed': int(m.groupdict()['sign_ver_pass']), 'failed': int(m.groupdict()['sign_ver_fail']) } }) continue # VERIFY CERTIFICATE 0 0 m = p13.match(line) if m: pki_dict = ser_dict.setdefault('pki_operation', {}) pki_dict.update ( { 'verify_cert' : { 'passed': int(m.groupdict()['ver_cert_pass']), 'failed': int(m.groupdict()['ver_cert_fail']) } }) continue # FETCHING CERTIFICATE USING HTTP 0 0 m = p14.match(line) if m: pki_dict.update ( { 'cert_using_http' : { 'passed': int(m.groupdict()['cert_http_pass']), 'failed': int(m.groupdict()['cert_http_fail']) } }) continue # FETCHING PEER CERTIFICATE USING HTTP 0 0 m = p15.match(line) if m: pki_dict.update ( { 'peer_cert_using_http' : { 'passed': int(m.groupdict()['peer_cert_http_pass']), 'failed': int(m.groupdict()['peer_cert_http_fail']) } }) continue # GET ISSUERS 13054 0 m = p16.match(line) if m: pki_dict.update ( { 'get_issuers' : { 'passed': int(m.groupdict()['get_issuers_pass']), 'failed': int(m.groupdict()['get_issuers_fail']) } }) continue # GET CERTIFICATES FROM ISSUERS 6518 0 m = p17.match(line) if m: pki_dict.update ( { 'get_cert_from_issuers' : { 'passed': int(m.groupdict()['get_cert_pass']), 'failed': int(m.groupdict()['get_cert_fail']) } }) continue # GET DN FROM CERT 0 0 m = p18.match(line) if m: pki_dict.update ( { 'get_dn_from_cert' : { 'passed': int(m.groupdict()['get_dn_pass']), 'failed': int(m.groupdict()['get_dn_fail']) } }) continue # GET_POLICY 0 0 m = p19.match(line) if m: gkm_dict = ser_dict.setdefault('gkm_operation', {}) gkm_dict.update ( { 'get_policy' : { 'passed': int(m.groupdict()['get_policy_pass']), 'failed': int(m.groupdict()['get_policy_fail']) } }) continue # SET_POLICY 0 0 m = p20.match(line) if m: gkm_dict.update ( { 'set_policy' : { 'passed': int(m.groupdict()['set_policy_pass']), 'failed': int(m.groupdict()['set_policy_fail']) } }) continue # PPK GET CAP 0 0 m = p21.match(line) if m: ppk_dict = ser_dict.setdefault('ppk_sks_operation', {}) ppk_dict.update ( { 'ppk_get_cap' : { 'passed': int(m.groupdict()['ppk_get_cap_pass']), 'failed': int(m.groupdict()['ppk_get_cap_fail']) } }) continue # PPK GET KEY 0 0 m =
3]]) assert quantity.boundary_values.shape[0] == len(self.mesh4.boundary) def test_set_values(self): quantity = Quantity(self.mesh4) # get referece to data arrays centroid_values = quantity.centroid_values vertex_values = quantity.vertex_values quantity.set_values([[1, 2, 3], [5, 5, 5], [0, 0, 9], [-6, 3, 3]], location='vertices') assert num.allclose(quantity.vertex_values, [[1, 2, 3], [5, 5, 5], [0, 0, 9], [-6, 3, 3]]) assert id(vertex_values) == id(quantity.vertex_values) assert num.allclose(quantity.centroid_values, [ 2., 5., 3., 0.]) # Centroid assert num.allclose(quantity.edge_values, [[2.5, 2.0, 1.5], [5., 5., 5.], [4.5, 4.5, 0.], [3.0, -1.5, -1.5]]) # Test default quantity.set_values([[1, 2, 3], [5, 5, 5], [0, 0, 9], [-6, 3, 3]]) assert num.allclose(quantity.vertex_values, [[1, 2, 3], [5, 5, 5], [0, 0, 9], [-6, 3, 3]]) assert num.allclose(quantity.centroid_values, [ 2., 5., 3., 0.]) # Centroid assert num.allclose(quantity.edge_values, [[2.5, 2.0, 1.5], [5., 5., 5.], [4.5, 4.5, 0.], [3.0, -1.5, -1.5]]) # Test centroids quantity.set_values([1, 2, 3, 4], location='centroids') assert num.allclose(quantity.centroid_values, [ 1., 2., 3., 4.]) # Centroid # Test exceptions try: quantity.set_values([[1, 2, 3], [5, 5, 5], [0, 0, 9], [-6, 3, 3]], location='bas kamel tuba') except: pass try: quantity.set_values([[1, 2, 3], [0, 0, 9]]) except ValueError: pass except: raise Exception('should have raised ValueeError') def test_set_values_const(self): quantity = Quantity(self.mesh4) quantity.set_values(1.0, location='vertices') assert num.allclose(quantity.vertex_values, [[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]]) assert num.allclose(quantity.centroid_values, [1, 1, 1, 1]) # Centroid assert num.allclose(quantity.edge_values, [[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]]) quantity.set_values(2.0, location='centroids') assert num.allclose(quantity.centroid_values, [2, 2, 2, 2]) def test_set_values_func(self): quantity = Quantity(self.mesh4) def f(x, y): return x+y quantity.set_values(f, location='vertices') #print "quantity.vertex_values",quantity.vertex_values assert num.allclose(quantity.vertex_values, [[2, 0, 2], [2, 2, 4], [4, 2, 4], [4, 2, 4]]) assert num.allclose(quantity.centroid_values, [4.0/3, 8.0/3, 10.0/3, 10.0/3]) assert num.allclose(quantity.edge_values, [[1, 2, 1], [3, 3, 2], [3, 4, 3], [3, 4, 3]]) quantity.set_values(f, location='centroids') assert num.allclose(quantity.centroid_values, [4.0/3, 8.0/3, 10.0/3, 10.0/3]) def test_integral(self): quantity = Quantity(self.mesh4) # Try constants first const = 5 quantity.set_values(const, location='vertices') #print 'Q', quantity.get_integral() assert num.allclose(quantity.get_integral(), self.mesh4.get_area() * const) # Try with a linear function def f(x, y): return x+y quantity.set_values(f, location='vertices') ref_integral = (4.0/3 + 8.0/3 + 10.0/3 + 10.0/3) * 2 assert num.allclose(quantity.get_integral(), ref_integral) def test_integral_with_region(self): quantity = Quantity(self.mesh4) # Try constants first const = 5 quantity.set_values(const, location='vertices') #print 'Q', quantity.get_integral() assert num.allclose(quantity.get_integral(), self.mesh4.get_area() * const) # Try with a linear function def f(x, y): return x+y quantity.set_values(f, location='vertices') from anuga import Region reg1 = Region(self.mesh4, indices=[2]) ref_integral = (10.0/3) * 2 assert num.allclose(quantity.get_integral(region=reg1), ref_integral) reg2 = Region(self.mesh4, indices=[2, 3]) ref_integral = (10.0/3 + 10.0/3) * 2 assert num.allclose(quantity.get_integral(region=reg2), ref_integral) id = [2, 3] ref_integral = (10.0/3 + 10.0/3) * 2 assert num.allclose(quantity.get_integral(indices=id), ref_integral) def test_set_vertex_values(self): quantity = Quantity(self.mesh4) quantity.set_vertex_values([0, 1, 2, 3, 4, 5]) assert num.allclose(quantity.vertex_values, [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]) assert num.allclose(quantity.centroid_values, [1., 7./3, 11./3, 8./3]) # Centroid assert num.allclose(quantity.edge_values, [[1., 1.5, 0.5], [3., 2.5, 1.5], [3.5, 4.5, 3.], [2.5, 3.5, 2]]) def test_set_vertex_values_subset(self): quantity = Quantity(self.mesh4) quantity.set_vertex_values([0, 1, 2, 3, 4, 5]) quantity.set_vertex_values([0, 20, 30, 50], indices=[0, 2, 3, 5]) assert num.allclose(quantity.vertex_values, [[1, 0, 20], [1, 20, 4], [4, 20, 50], [30, 1, 4]]) def test_set_vertex_values_using_general_interface(self): quantity = Quantity(self.mesh4) quantity.set_values([0, 1, 2, 3, 4, 5]) assert num.allclose(quantity.vertex_values, [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]) #Centroid assert num.allclose(quantity.centroid_values, [1., 7./3, 11./3, 8./3]) assert num.allclose(quantity.edge_values, [[1., 1.5, 0.5], [3., 2.5, 1.5], [3.5, 4.5, 3.], [2.5, 3.5, 2]]) def test_set_vertex_values_using_general_interface_with_subset(self): """test_set_vertex_values_using_general_interface_with_subset(self): Test that indices and polygon works (for constants values) """ quantity = Quantity(self.mesh4) quantity.set_values([0, 2, 3, 5], indices=[0, 2, 3, 5]) assert num.allclose(quantity.vertex_values, [[0, 0, 2], [0, 2, 0], [0, 2, 5], [3, 0, 0]]) # Constant quantity.set_values(0.0) quantity.set_values(3.14, indices=[0, 2], location='vertices') # Indices refer to triangle numbers assert num.allclose(quantity.vertex_values, [[3.14, 3.14, 3.14], [0, 0, 0], [3.14, 3.14, 3.14], [0, 0, 0]]) # Now try with polygon (pick points where y>2) polygon = [[0, 2.1], [4, 2.1], [4, 7], [0, 7]] quantity.set_values(0.0) quantity.set_values(3.14, polygon=polygon) assert num.allclose(quantity.vertex_values, [[0, 0, 0], [0, 0, 0], [0, 0, 0], [3.14, 3.14, 3.14]]) # Another polygon (pick triangle 1 and 2 (rightmost triangles) # using centroids polygon = [[2.1, 0.0], [3.5, 0.1], [2, 2.2], [0.2, 2]] quantity.set_values(0.0) quantity.set_values(3.14, location='centroids', polygon=polygon) assert num.allclose(quantity.vertex_values, [[0, 0, 0], [3.14, 3.14, 3.14], [3.14, 3.14, 3.14], [0, 0, 0]]) # Same polygon now use vertices (default) polygon = [[2.1, 0.0], [3.5, 0.1], [2, 2.2], [0.2, 2]] quantity.set_values(0.0) #print 'Here 2' quantity.set_values(3.14, polygon=polygon) assert num.allclose(quantity.vertex_values, [[0, 0, 0], [3.14, 3.14, 3.14], [3.14, 3.14, 3.14], [0, 0, 0]]) # Test input checking try: quantity.set_values(3.14, polygon=polygon, indices=[0, 2]) except: pass else: msg = 'Should have caught this' raise Exception(msg) def test_set_vertex_values_using_general_interface_subset_and_geo(self): """test_set_vertex_values_using_general_interface_with_subset(self): Test that indices and polygon works using georeferencing """ quantity = Quantity(self.mesh4) G = Geo_reference(56, 10, 100) quantity.domain.set_georeference(G) # Constant quantity.set_values(0.0) quantity.set_values(3.14, indices=[0, 2], location='vertices') # Indices refer to triangle numbers here - not vertices (why?) assert num.allclose(quantity.vertex_values, [[3.14, 3.14, 3.14], [0, 0, 0], [3.14, 3.14, 3.14], [0, 0, 0]]) # Now try with polygon (pick points where y>2) polygon = num.array([[0, 2.1], [4, 2.1], [4, 7], [0, 7]]) polygon += [G.xllcorner, G.yllcorner] quantity.set_values(0.0) quantity.set_values(3.14, polygon=polygon, location='centroids') assert num.allclose(quantity.vertex_values, [[0, 0, 0], [0, 0, 0], [0, 0, 0], [3.14, 3.14, 3.14]]) # Another polygon (pick triangle 1 and 2 (rightmost triangles) polygon = num.array([[2.1, 0.0], [3.5, 0.1], [2, 2.2], [0.2, 2]]) polygon += [G.xllcorner, G.yllcorner] quantity.set_values(0.0) quantity.set_values(3.14, polygon=polygon) msg = ('quantity.vertex_values=\n%s\nshould be close to\n' '[[0,0,0],\n' ' [3.14,3.14,3.14],\n' ' [3.14,3.14,3.14],\n' ' [0,0,0]]' % str(quantity.vertex_values)) assert num.allclose(quantity.vertex_values, [[0, 0, 0], [3.14, 3.14, 3.14], [3.14, 3.14, 3.14], [0, 0, 0]]), msg def test_set_values_using_fit(self): quantity = Quantity(self.mesh4) #Get (enough) datapoints data_points = [[0.66666667, 0.66666667], [1.33333333, 1.33333333], [2.66666667, 0.66666667], [0.66666667, 2.66666667], [0.0, 1.0], [0.0, 3.0], [1.0, 0.0], [1.0, 1.0], [1.0, 2.0], [1.0, 3.0], [2.0, 1.0], [3.0, 0.0], [3.0, 1.0]] z = linear_function(data_points) #Use built-in fit_interpolate.fit quantity.set_values(Geospatial_data(data_points, z), alpha=0) #quantity.set_values(points = data_points, values = z, alpha = 0) answer = linear_function(quantity.domain.get_vertex_coordinates()) #print quantity.vertex_values, answer assert num.allclose(quantity.vertex_values.flat, answer) #Now try by setting the same values directly vertex_attributes = fit_to_mesh(data_points, quantity.domain.get_nodes(), quantity.domain.get_triangles(), point_attributes=z, alpha=0, verbose=False) #print vertex_attributes quantity.set_values(vertex_attributes) assert num.allclose(quantity.vertex_values.flat, answer) def test_test_set_values_using_fit_w_geo(self): #Mesh vertex_coordinates = [[0.76, 0.76], [0.76, 5.76], [5.76, 0.76]] triangles = [[0, 2, 1]] mesh_georef = Geo_reference(56, -0.76, -0.76) mesh1 = Generic_Domain(vertex_coordinates, triangles, geo_reference=mesh_georef) mesh1.check_integrity() #Quantity quantity = Quantity(mesh1) #Data data_points = [[201.0, 401.0], [201.0, 403.0], [203.0, 401.0]] z = [2, 4, 4] data_georef = Geo_reference(56, -200, -400) #Reference ref = fit_to_mesh(data_points, vertex_coordinates, triangles, point_attributes=z, data_origin=data_georef.get_origin(), mesh_origin=mesh_georef.get_origin(), alpha=0) assert num.allclose(ref, [0, 5, 5]) #Test set_values quantity.set_values(Geospatial_data( data_points, z, data_georef), alpha=0) #quantity.set_values(points = data_points, # values = z, # data_georef = data_georef, # alpha = 0) #quantity.set_values(points = data_points, # values = z, # data_georef = data_georef, # alpha = 0) assert num.allclose(quantity.vertex_values.flat, ref) #Test set_values using geospatial data object quantity.vertex_values[:] = 0.0 geo = Geospatial_data(data_points, z, data_georef) quantity.set_values(geospatial_data=geo, alpha=0) assert num.allclose(quantity.vertex_values.flat, ref) def test_set_values_from_file1(self): quantity = Quantity(self.mesh4) #Get (enough) datapoints data_points = [[0.66666667, 0.66666667], [1.33333333, 1.33333333], [2.66666667, 0.66666667], [0.66666667, 2.66666667], [0.0, 1.0], [0.0, 3.0], [1.0, 0.0], [1.0, 1.0], [1.0, 2.0], [1.0, 3.0], [2.0, 1.0], [3.0, 0.0], [3.0, 1.0]] data_geo_spatial = Geospatial_data(data_points, geo_reference=Geo_reference(56, 0, 0)) data_points_absolute = data_geo_spatial.get_data_points(absolute=True) attributes = linear_function(data_points_absolute) att = 'spam_and_eggs' #Create .txt file ptsfile = tempfile.mktemp(".txt") file = open(ptsfile, "w") file.write(" x,y," + att + " \n") for data_point, attribute in zip(data_points_absolute, attributes): row = str(data_point[0]) + ',' + str(data_point[1]) \ + ',' + str(attribute) file.write(row + "\n") file.close() #Check that values can be set from file quantity.set_values(filename=ptsfile, attribute_name=att, alpha=0) answer = linear_function(quantity.domain.get_vertex_coordinates()) #print quantity.vertex_values.flat #print answer assert num.allclose(quantity.vertex_values.flat, answer) #Check that values can be set from file using default attribute quantity.set_values(filename=ptsfile, alpha=0) assert num.allclose(quantity.vertex_values.flat, answer) #Cleanup import os os.remove(ptsfile) def Xtest_set_values_from_file_using_polygon(self): """test_set_values_from_file_using_polygon(self): Test that polygon restriction works for general points data """ quantity = Quantity(self.mesh4) #Get (enough) datapoints data_points = [[0.66666667, 0.66666667], [1.33333333, 1.33333333], [2.66666667, 0.66666667], [0.66666667, 2.66666667], [0.0, 1.0], [0.0, 3.0], [1.0, 0.0], [1.0, 1.0], [1.0, 2.0], [1.0, 3.0], [2.0, 1.0], [3.0, 0.0], [3.0,
""" PyAltmetric This is a python wrapper for the Altmetric API. For more information on the Altmetric API visit http://api.altmetric.com/. Some pieces of this library were inspired by or derived from the altmetric api wrapper altmetric.py which is licensed under the MIT open source license. If you display Altmetric data please attribute Altmetric somewhere on your page. """ import requests import datetime import warnings import json class AltmetricException(Exception): """Base class for any pyaltmetric error.""" pass class JSONParseException(AltmetricException): """ Failed to turn HTTP Response into JSON. Site is probably in the wrong format. """ pass class AltmetricHTTPException(AltmetricException): """A query argument or setting was formatted incorrectly.""" def __init__(self, status_code): response_codes = { 403:"You are not authorized for this call.", 420:"Rate Limit Reached", 502:"API is down.", } super(AltmetricHTTPException, self).__init__( response_codes.get(status_code, status_code) ) class IncorrectInput(AltmetricException): """Informing the user that their query is incorrect.""" def __init__(self, msg): super(IncorrectInput, self).__init__(msg) class Altmetric(object): def __init__(self, api_key = None, api_version = 'v1'): """Cache API key and version.""" self._api_version = api_version if self._api_version != 'v1': warnings.warn("This wrapper has only been tested with API v1." "If you try another version it will probably break.") self._api_url = "http://api.altmetric.com/%s/" % self.api_version self._api_key = {} if api_key: self._api_key = {'key': api_key} #Make articles def article_from_doi(self, doi): """Create an Article object using DOI.""" raw_json = self._get_altmetrics('doi', doi) return self._create_article(raw_json) def article_from_pmid(self, pmid): """Create an Article object using PMID.""" raw_json = self._get_altmetrics('pmid', pmid) return self._create_article(raw_json) def article_from_altmetric(self, altmetric_id): """Create an Article object using Altmetric ID.""" warnings.warn("Altmetric ID's are subject to change.") raw_json = self._get_altmetrics('id', altmetric_id) return self._create_article(raw_json) def article_from_ads(self, ads_bibcode): """Create an Article object using ADS Bibcode.""" raw_json = self._get_altmetrics('ads', ads_bibcode) return self._create_article(raw_json) def article_from_arxiv(self, arxiv_id): """Create an Article object using arXiv ID.""" raw_json = self._get_altmetrics('arxiv', arxiv_id) return self._create_article(raw_json) def articles_from_timeframe(self, timeframe, page = 1, num_results = 100, doi_prefix = None, nlmid = None, subjects = None, cited_in = None): """ Return articles with mentions within a certain timeframe keyword arguments can further limit the search. :param timeframe: Argument for past x days/months/years. In format: 1d, 1m, 1y... :param page: Integer. Which page of results you are on. :param num_results: 1-100. Number of results per page. :param doi_prefix: Limits results to those with this doi prefix. :param nlmid: List of journal NLM IDs. :param subjects: List of slugified journal subjects, accepts NLM subject ontology term(s). :param cited_in: Options of facebook, blogs, linkedin, video, pinterest, gplus,twitter, reddit, news, f1000, rh, qna, forum, peerreview. """ timeframe = self._check_timeframe(timeframe) while(1): raw_json = self._get_altmetrics('citations', timeframe, page = page, num_results = num_results, doi_prefix = doi_prefix, nlmid = nlmid, subjects = subjects, cited_in = cited_in) page += 1 if not raw_json: break for result in raw_json.get('results', []): yield self._create_article(result) def _get_altmetrics(self, method, *args, **kwargs): """ Request information from Altmetric. Return a dictionary. """ request_url = self.api_url + method + "/" + "/".join([a for a in args]) params = kwargs or {} params.update(self.api_key) response = requests.get(request_url, params = params) if response.status_code == 200: try: return response.json() except ValueError as e: raise JSONParseException(e.message) elif response.status_code in (404, 400): return {} else: raise AltmetricHTTPException(response.status_code) def _create_article(self, json): """Return an article object.""" try: return Article(json) except AttributeError: return None def _check_timeframe(self, timeframe): if len(timeframe) > 2: if timeframe == 'all time': timeframe = 'at' else: timeframe = timeframe[0]+timeframe[2] if timeframe not in [ 'at','1d','2d','3d','4d','5d','6d','1w','1m','3m','6m','1y']: raise IncorrectInput("Invalid timeframe entered.") return timeframe @property def api_version(self): return self._api_version @property def api_url(self): return self._api_url @property def api_key(self): return self._api_key class Article(): def __init__(self, raw_dict): """ Create an article object. Get raw dictionary from Altmetrics JSON. Parse dictionary into attributes. """ if raw_dict: self._raw = raw_dict self._parse_raw() else: raise AttributeError @classmethod def from_json_file(cls, filename): """Return article from filename or path.""" try: with open(filename) as fi: raw = json.load(fi) obj = Article(raw) return obj except ValueError as e: raise JSONParseException(e.message) @classmethod def from_json(cls, file_): """Return an article from file.""" try: raw = json.load(file_) obj = Article(raw) return obj except ValueError as e: raise JSONParseException(e.message) def _parse_raw(self): """Extract all attributes from raw dictionary.""" #Article Info self._title = self._raw.get('title') self._abstract = self._raw.get('abstract') self._abstract_source = self._raw.get('abstract_source') self._journal = self._raw.get('journal') self._subjects = self._raw.get('subjects', []) self._added_on = self._convert_to_datetime(self._raw.get('added_on')) self._published_on = self._convert_to_datetime( self._raw.get('published_on')) self._url = self._raw.get('url') self._is_open_access = self._raw.get('is_oa') self._scopus_subjects = self._raw.get('scopus_subjects', []) self._publisher_subjects = self._parse_publisher_subjects\ (self._raw.get('publisher_subjects',[])) self._taglines = self._raw.get('tq', []) #Various ID's self._doi = self._raw.get('doi') self._nlmid = self._raw.get('nlmid') self._pmid = self._raw.get('pmid') self._altmetric_id = str(self._raw.get('altmetric_id', "")) self._arxiv_id = self._raw.get('arxiv_id') self._ads_id = self._raw.get('ads_id') self._issns = self._raw.get('issns', []) #Altmetrics self._score = self._raw.get('score') self._score_history = self._parse_score_history( self._raw.get('history', {})) self._score_context = self._parse_score_context( self._raw.get('context', {})) self._last_updated = self._convert_to_datetime( self._raw.get('last_updated')) self._schema = self._raw.get('schema')#schema for what? self._cited_by_facebook_walls_count = self._raw.get( 'cited_by_fbwalls_count') self._cited_by_redits_count = self._raw.get('cited_by_rdts_count') self._cited_by_tweeters_count = self._raw.get( 'cited_by_tweeters_count') self._cited_by_google_plus_count = self._raw.get( 'cited_by_gplus_count') self._cited_by_msm_count = self._raw.get('cited_by_msm_count') self._cited_by_delicious_count = self._raw.get('cited_by_delicious_count') self._cited_by_qs_count = self._raw.get('cited_by_qs_count') self._cited_by_posts_count = self._raw.get('cited_by_posts_count') self._cited_by_accounts_count = ( self._raw.get('cited_by_accounts_count') or self._raw.get('by_accounts_count') ) self._cited_by_forums_count = self._raw.get('cited_by_forums_count') self._cited_by_peer_review_sites_count = self._raw.get( 'cited_by_peer_review_sites_count') self._cited_by_feeds_count = self._raw.get('cited_by_feeds_count') self._cited_by_videos_count = self._raw.get('cited_by_videos_count') self._cohorts = self._raw.get('cohorts', {}) self._readers_count = self._raw.get('readers_count') self._readers = self._raw.get('readers', {}) self._altmetric_details_url = self._raw.get('details_url',) self._altmetric_images = self._raw.get('images', {}) def _parse_score_history(self, history): """Make the score_history dictionary a little more readable.""" new_dictionary = {} if history: change = {'d':'day','m':'month','w':'week','y':'year'} for item in history: if item == 'at': date = "all time" else: if item[0] == '1': date = "past " + change[item[1]] else: date = "past " + item[0]+ " " + change[item[1]]+"s" new_dictionary[date] = history[item] return new_dictionary def _convert_to_datetime(self, unix_time): """Convert UNIX timestamp to a datetime object.""" if isinstance(unix_time, int): return datetime.datetime.fromtimestamp(unix_time) def _parse_publisher_subjects(self, subjects): """ Turns the publisher_subjects list of dictionaries into a list of subjects. """ new_subjects = [] if subjects: for item in subjects: new_subjects.append(item['name']) return new_subjects def _parse_score_context(self, context): """ Change the names of the dictionaries in context to make more sense. """ new_context = {} if context: new_context['all'] = context.get( 'all', {}) new_context['journal age'] = context.get( 'similar_age_journal_3m', {}) new_context['context age'] = context.get( 'similar_age_3m', {}) new_context['journal'] = context.get('journal', {}) return new_context def __repr__(self): return self.title[:12].encode('UTF-8') def __str__(self): string = u"" for item in self._raw: string += unicode(item) + u": " + unicode(self._raw[item]) + u'\n' return unicode(string).encode('UTF-8') #Basic info @property def raw_dictionary(self): return self._raw @property def title(self): return self._title @property def abstract(self): return self._abstract @property def abstract_source(self): return self._abstract_source @property def journal(self): return self._journal @property def subjects(self): """Return a list of realted subjects""" return self._subjects @property def scopus_subjects(self): """Return a list of Scopus subjects""" return self._scopus_subjects @property def publisher_subjects(self): """Return a list of related subjects.""" return self._publisher_subjects @property def added_on(self): return self._added_on @property def published_on(self): return self._published_on @property def url(self): return self._url @property def is_open_access(self): return self._is_open_access @property def taglines(self): """Return a list of related phrases""" return self._taglines #Various ID's @property def doi(self): return self._doi @property def nlmid(self): return self._nlmid @property def pmid(self): return self._pmid @property def altmetric_id(self): return self._altmetric_id @property def arxiv_id(self): return self._arxiv_id @property def ads_id(self): return self._ads_id @property def issns(self): """A list of issns.""" return self._issns #Altmetrics @property def score(self): return self._score @property def score_history(self): """ Return dictionry of Altmetric scores for time periods such as 'past day', 'past 3 days', 'past month', 'past year', and 'all time' looking only at that time period. """ return self._score_history @property def last_updated(self): """Return when the Altmetrics were last updated.""" return self._last_updated @property def score_context(self): """ Return a dictionary that allows you to compare an article's popularity to articles of a 'similar age'(published within 6 weeks on either side), articles in journals of a 'similar age', and other articles in the same 'journal'. """ return self._score_context #Cited by #Returns count of unique authors for posts cited on various medias. @property def cited_by_facebook_walls_count(self): """ Return number of posts made on public facebook walls mentioning chosen article. """ return self._cited_by_facebook_walls_count @property def cited_by_redits_count(self): return self._cited_by_redits_count @property def cited_by_tweeters_count(self): return self._cited_by_tweeters_count @property def cited_by_google_plus_count(self): return self._cited_by_google_plus_count @property def cited_by_msm_count(self): """Return number
str(i + 1) hostname = self._input("Hostname%s" % dns_message, default, datatype="hostname") if dns_domain is not None and not hostname.endswith(dns_domain): hostname += "." + dns_domain component["hostname"] = hostname return hostname def _setup_ip_addresses(self, deployment, i, hostname, is_vsc): component = deployment[i] mgmt_ip = self._setup_mgmt_address(component, hostname) self._setup_mgmt_prefix(component) self._setup_mgmt_gateway(component, mgmt_ip) if is_vsc: default = self._get_value(component, "ctrl_ip") ctrl_ip = self._input("Control IP address for data", default, datatype="ipaddr") component["ctrl_ip"] = ctrl_ip default = "24" if "ctrl_ip_prefix" in component: default = str(component["ctrl_ip_prefix"]) ctrl_ip_prefix = self._input("Control IP address prefix length", default, datatype="int") component["ctrl_ip_prefix"] = ctrl_ip_prefix default = self._get_value(component, "system_ip") system_ip = self._input("System IP address for routing", default, datatype="ipaddr") component["system_ip"] = system_ip self._setup_target_server(component) def _setup_mgmt_address(self, component, hostname): default = self._resolve_hostname(hostname) if (default is None and "mgmt_ip" in component and component["mgmt_ip"] != ""): default = component["mgmt_ip"] mgmt_ip = self._input("Management IP address", default, datatype="ipaddr") component["mgmt_ip"] = mgmt_ip return mgmt_ip def _setup_mgmt_prefix(self, component): default = "24" if "mgmt_ip_prefix" in component: default = str(component["mgmt_ip_prefix"]) mgmt_ip_prefix = self._input("Management IP address prefix length", default, datatype="int") component["mgmt_ip_prefix"] = mgmt_ip_prefix return mgmt_ip_prefix def _setup_mgmt_gateway(self, component, mgmt_ip): if "mgmt_gateway" in self.state: default = self.state["mgmt_gateway"] elif "mgmt_gateway" in component and component["mgmt_gateway"] != "": default = component["mgmt_gateway"] else: octets = mgmt_ip.split(".") octets.pop() octets.append("1") default = ".".join(octets) mgmt_gateway = self._input("Management IP gateway", default, datatype="ipaddr") component["mgmt_gateway"] = mgmt_gateway self.state["mgmt_gateway"] = mgmt_gateway return mgmt_gateway def _setup_target_server(self, component): if "target_server" in self.state: default = self.state["target_server"] elif "target_server" in component and component["target_server"] != "": default = component["target_server"] else: default = None target_server = self._input("Target server (hypervisor) IP", default, datatype="hostname") component["target_server"] = target_server self.state["target_server"] = target_server self._append_target_server(target_server) return target_server def _append_target_server(self, target_server): if "all_target_servers" not in self.state: self.state["all_target_servers"] = list() if target_server not in self.state["all_target_servers"]: self.state["all_target_servers"].append(target_server) def _resolve_hostname(self, hostname): try: rc, output_lines = self._run_shell( "getent hosts %s" % hostname) if rc == 0: self._unrecord_problem("dns_resolve") self._print("") return output_lines[0].split(" ")[0] else: self._record_problem( "dns_resolve", "Could not resolve hostnames with DNS") self._print( u"\nCould not resolve %s to an IP address, this is " u"required for MetroAE to operate. Is the hostname " u"defined in DNS?" % hostname) except Exception as e: self._record_problem( "dns_resolve", "Error while resolving hostnames with DNS") self._print("\nAn error occurred while resolving hostname: " + str(e)) self._print("Please contact: " + METROAE_CONTACT) return None def _setup_vmname(self, deployment, i, hostname, with_upgrade): component = deployment[i] dns_domain = None if "dns_domain" in self.state: dns_domain = self.state["dns_domain"] if "vmname" in component: default = component["vmname"] elif dns_domain is not None and hostname.endswith(dns_domain): default = hostname[0:-len(dns_domain) - 1] else: default = hostname vmname = self._input("VM name", default) component["vmname"] = vmname if with_upgrade: default = "new-" + vmname upgrade_vmname = self._input("Upgrade VM name", default) component["upgrade_vmname"] = upgrade_vmname def _setup_vnsutils(self, component, i): dns_domain = None dns_message = "" if "dns_domain" in self.state: dns_domain = self.state["dns_domain"] dns_message = " (we'll add .%s)" % dns_domain default = None if "data_fqdn" in component and component["data_fqdn"] != "": default = component["data_fqdn"] else: default = "vnsutil%d.data" % (i + 1) hostname = self._input("Data network FQDN%s" % dns_message, default, datatype="hostname") if dns_domain is not None and not hostname.endswith(dns_domain): hostname += "." + dns_domain component["data_fqdn"] = hostname default = self._resolve_hostname(hostname) if (default is None and "data_ip" in component and component["data_ip"] != ""): default = component["data_ip"] data_ip = self._input("Data network IP address", default, datatype="ipaddr") component["data_ip"] = data_ip default = self._get_value(component, "data_netmask") if default is None: default = "255.255.255.0" address = self._input("Data network subnet mask", default, datatype="ipaddr") component["data_netmask"] = address choice = self._input("Will you use DHCP on the VNSUtil?", 0, ["(Y)es", "(n)o"]) if choice == 1: if "data_subnet" in component: del component["data_subnet"] if "nsgv_gateway" in component: del component["nsgv_gateway"] return default = self._get_value(component, "data_subnet") if default is None: octets = data_ip.split(".") octets.pop() octets.append("0") default = ".".join(octets) data_subnet = self._input("Data IP subnet for DHCP", default, datatype="ipaddr") component["data_subnet"] = data_subnet self.state["data_subnet"] = data_subnet default = self._get_value(component, "nsgv_gateway") if default is None: octets = data_ip.split(".") octets.pop() octets.append("1") default = ".".join(octets) nsgv_gateway = self._input("Data IP gateway given by DHCP", default, datatype="ipaddr") component["nsgv_gateway"] = nsgv_gateway self.state["nsgv_gateway"] = nsgv_gateway def _setup_nsgv_component(self, component): default = 1 if "bootstrap_method" in component: if component["bootstrap_method"] == "none": default = 0 elif component["bootstrap_method"] == "zfb_metro": default = 1 elif component["bootstrap_method"] == "zfb_external": default = 2 elif component["bootstrap_method"] == "activation_link": default = 3 choice = self._input("Bootstrap method", default, [ "(n)one - Do not bootstrap", "(M)etro - MetroAE will perform the bootstrap", "(e)xternal - Use an external ISO file to bootstrap", "(a)ctivation - Use an activation link for bootstrap"]) if choice == 0: component["bootstrap_method"] = "none" elif choice == 1: component["bootstrap_method"] = "zfb_metro" self.state["metro_bootstrap"] = True self._bootstrap_component_metro(component) elif choice == 2: component["bootstrap_method"] = "zfb_external" self._bootstrap_component_external(component) elif choice == 3: component["bootstrap_method"] = "activation_link" def _bootstrap_component_metro(self, component): default = self._get_value(component, "nsg_name") if default is None: default = self._get_value(component, "vmname") name = self._input("NSGv name on VSD", default) component["nsg_name"] = name default = self._get_value(component, "nsgv_ip") address = self._input("IP address for NSGv", default, datatype="ipaddr") component["nsgv_ip"] = address component["match_type"] = "ip_address" component["match_value"] = address default = self._get_value(component, "nsgv_mac") mac = self._input("MAC address for NSGv", default) component["nsgv_mac"] = mac default = self._get_value(component, "network_port_name") network_port = self._input("Name for network port", default) component["network_port_name"] = network_port default = self._get_value(component, "access_port_name") access_port = self._input("Name for access port", default) component["access_port_name"] = access_port default = self._get_value(component, "access_port_vlan_range") vlan_range = self._input("VLAN range for access port " "(format: <start>-<end>)", default) component["access_port_vlan_range"] = vlan_range default = self._get_value(component, "access_port_vlan_number") vlan = self._input("Vlan number for access port", default, datatype="int") component["access_port_vlan_number"] = vlan def _bootstrap_component_external(self, component): default = None default_path = component.get("iso_path") default_file = component.get("iso_file") if default_path is not None and default_file is not None: default = os.path.join(default_path, default_file) path_file = "" while "/" not in path_file: path_file = self._input("Full path to ISO file", default) path, file = os.path.split(path_file) component["iso_path"] = path component["iso_file"] = file def _setup_bootstrap(self, deployment, data): default = self._get_value(deployment, "nsgv_organization") org = self._input("Enterprise for NSGvs", default) deployment["nsgv_organization"] = org default = self._get_value(deployment, "proxy_user_first_name") first_name = self._input("First name for proxy user", default) deployment["proxy_user_first_name"] = first_name default = self._get_value(deployment, "proxy_user_last_name") last_name = self._input("Last name for proxy user", default) deployment["proxy_user_last_name"] = last_name default = self._get_value(deployment, "proxy_user_email") email = self._input("Email address for proxy user", default) deployment["proxy_user_email"] = email default = self._get_value(deployment, "nsg_infra_profile_name") profile_name = self._input("Name of NSG infrastructure profile", default) deployment["nsg_infra_profile_name"] = profile_name default = self._get_value(deployment, "nsg_template_name") template_name = self._input("Name of NSG template", default) deployment["nsg_template_name"] = template_name default = self._get_value(deployment, "proxy_dns_name") dns_name = self._input("DNS name of proxy (on data network)", default) deployment["proxy_dns_name"] = dns_name default = self._get_value(deployment, "vsc_infra_profile_name") profile_name = self._input("Name of VSC infrastructure profile", default) deployment["vsc_infra_profile_name"] = profile_name default = self._get_value(deployment, "first_controller_address") address = self._input("IP address of primary VSC controller" " (on data network)", default, datatype="ipaddr") deployment["first_controller_address"] = address choice = self._input("Do you have a secondary VSC controller?", 0, ["(Y)es", "(n)o"]) if choice == 1: if "second_controller_address" in deployment: del deployment["second_controller_address"] return default = self._get_value(deployment, "second_controller_address") address = self._input("IP address of secondary VSC controller" " (on data network)", default, datatype="ipaddr") deployment["second_controller_address"] = address def _setup_ssh(self, username, hostname): self._print("Adding SSH keys for %s@%s, may ask for password" % ( username, hostname)) try: options = "" if self.in_container: options = "-i /source/id_rsa.pub -o StrictHostKeyChecking=no " else: self._setup_ssh_key() rc, output_lines = self._run_shell( "ssh-copy-id %s%s@%s" % (options, username, hostname)) if rc == 0: self._unrecord_problem("ssh_keys") self._print("\nSuccessfully setup SSH on host %s" % hostname) return True else: self._record_problem( "ssh_keys", "Could not setup password-less SSH") self._print("\n".join(output_lines)) self._print( u"\nCould not add SSH keys for %s@%s, this is required" u" for MetroAE to operate." % (username, hostname)) except Exception as e: self._record_problem( "ssh_keys", "Error while setting up password-less SSH") self._print("\nAn error occurred while setting up SSH: " + str(e)) self._print("Please contact: " + METROAE_CONTACT) return False def _setup_ssh_key(self): rc, output_lines = self._run_shell("stat ~/.ssh/id_rsa.pub") if rc != 0: self._print("\nCould not find your SSH public key " "~/.ssh/id_rsa.pub\n") choice = self._input("Do you wish to generate a new SSH keypair?", 0, ["(Y)es", "(n)o"]) if choice == 0: rc, output_lines = self._run_shell('ssh-keygen -P "" ' '-f ~/.ssh/id_rsa') if rc == 0: self._print("\nSuccessfully generated an SSH keypair") return True else: self._record_problem( "ssh_keys", "Could not generate SSH
'_') s = s.replace('\xc0', '_') s = s.replace('\xd9', '_') s = s.replace('\xda', '_') s = s.replace('\xf8', '_') return s ######################################################################## # handlers. ######################################################################## def _handler_command_run_test_200(self, *args, **kwargs): """ run test PT200 """ next_state = None kwargs['timeout'] = 30 kwargs['expected_prompt'] = TeledynePrompt.COMMAND result = self._do_cmd_resp(TeledyneInstrumentCmds.RUN_TEST_200, *args, **kwargs) return (next_state, result) def _handler_command_get_instrument_transform_matrix(self, *args, **kwargs): """ save setup to ram. """ next_state = None kwargs['timeout'] = 30 kwargs['expected_prompt'] = TeledynePrompt.COMMAND result = self._do_cmd_resp(TeledyneInstrumentCmds.GET_INSTRUMENT_TRANSFORM_MATRIX, *args, **kwargs) return (next_state, result) def _handler_command_save_setup_to_ram(self, *args, **kwargs): """ save setup to ram. """ next_state = None kwargs['timeout'] = 30 kwargs['expected_prompt'] = TeledynePrompt.COMMAND result = self._do_cmd_resp(TeledyneInstrumentCmds.SAVE_SETUP_TO_RAM, *args, **kwargs) return (next_state, result) def _handler_command_clear_error_status_word(self, *args, **kwargs): """ clear the error status word """ next_state = None kwargs['timeout'] = 30 kwargs['expected_prompt'] = TeledynePrompt.COMMAND result = self._do_cmd_resp(TeledyneInstrumentCmds.CLEAR_ERROR_STATUS_WORD, *args, **kwargs) return (next_state, result) def _handler_command_acquire_error_status_word(self, *args, **kwargs): """ read the error status word """ next_state = None kwargs['timeout'] = 30 kwargs['expected_prompt'] = TeledynePrompt.COMMAND result = self._do_cmd_resp(TeledyneInstrumentCmds.DISPLAY_ERROR_STATUS_WORD, *args, **kwargs) return (next_state, result) def _handler_command_display_fault_log(self, *args, **kwargs): """ display the error log. """ next_state = None kwargs['timeout'] = 30 kwargs['expected_prompt'] = TeledynePrompt.COMMAND result = self._do_cmd_resp(TeledyneInstrumentCmds.GET_FAULT_LOG, *args, **kwargs) return (next_state, result) def _handler_command_clear_fault_log(self, *args, **kwargs): """ clear the error log. """ next_state = None kwargs['timeout'] = 30 kwargs['expected_prompt'] = TeledynePrompt.COMMAND result = self._do_cmd_resp(TeledyneInstrumentCmds.CLEAR_FAULT_LOG, *args, **kwargs) return (next_state, result) def _handler_command_enter(self, *args, **kwargs): """ Enter command state. @throws InstrumentTimeoutException if the device cannot be woken. @throws InstrumentProtocolException if the update commands and not recognized. """ # Command device to initialize parameters and send a config change event. self._protocol_fsm.on_event(TeledyneProtocolEvent.INIT_PARAMS) # Tell driver superclass to send a state change event. # Superclass will query the state. self._driver_event(DriverAsyncEvent.STATE_CHANGE) log.trace("in _handler_command_enter()") #self._update_params() # Tell driver superclass to send a state change event. # Superclass will query the state. self._driver_event(DriverAsyncEvent.STATE_CHANGE) def _handler_command_exit(self, *args, **kwargs): """ Exit command state. """ pass def _handler_unknown_enter(self, *args, **kwargs): """ Enter unknown state. """ # Tell driver superclass to send a state change event. # Superclass will query the state. self._driver_event(DriverAsyncEvent.STATE_CHANGE) def _handler_unknown_exit(self, *args, **kwargs): """ Exit unknown state. """ pass ###################################################### # # ###################################################### def _handler_unknown_discover(self, *args, **kwargs): """ Discover current state; can be COMMAND or AUTOSAMPLE. @retval (next_state, result), (SBE37ProtocolState.COMMAND or SBE37State.AUTOSAMPLE, None) if successful. @throws InstrumentTimeoutException if the device cannot be woken. @throws InstrumentStateException if the device response does not correspond to an expected state. """ (protocol_state, agent_state) = self._discover() if(protocol_state == TeledyneProtocolState.COMMAND): agent_state = ResourceAgentState.IDLE return (protocol_state, agent_state) ###################################################### # # ###################################################### def _handler_command_init_params(self, *args, **kwargs): """ initialize parameters """ next_state = None result = None self._init_params() return (next_state, result) def _handler_autosample_enter(self, *args, **kwargs): """ Enter autosample state. """ self._protocol_fsm.on_event(TeledyneProtocolEvent.INIT_PARAMS) # Tell driver superclass to send a state change event. # Superclass will query the state. self._driver_event(DriverAsyncEvent.STATE_CHANGE) def _handler_autosample_exit(self, *args, **kwargs): """ Exit autosample state. """ log.trace("IN _handler_autosample_exit") pass def _handler_autosample_init_params(self, *args, **kwargs): """ initialize parameters. For this instrument we need to put the instrument into command mode, apply the changes then put it back. """ log.debug("in _handler_autosample_init_params") next_state = None result = None error = None try: log.debug("stopping logging without checking") self._stop_logging() self._init_params() # Catch all error so we can put ourself back into # streaming. Then rethrow the error except Exception as e: error = e finally: # Switch back to streaming log.debug("starting logging") self._start_logging() #self._do_cmd_no_resp(TeledyneInstrumentCmds.START_LOGGING) if (error): log.error("Error in apply_startup_params: %s", error) raise error return (next_state, result) def _handler_command_start_autosample(self, *args, **kwargs): """ Switch into autosample mode. @retval (next_state, result) tuple, (ProtocolState.AUTOSAMPLE, None) if successful. @throws InstrumentTimeoutException if device cannot be woken for command. @throws InstrumentProtocolException if command could not be built or misunderstood. """ result = None kwargs['expected_prompt'] = TeledynePrompt.COMMAND kwargs['timeout'] = 30 log.info("SYNCING TIME WITH SENSOR.") resp = self._do_cmd_resp(TeledyneInstrumentCmds.SET, TeledyneParameter.TIME, get_timestamp_delayed("%Y/%m/%d, %H:%M:%S"), **kwargs) # Save setup to nvram and switch to autosample if successful. resp = self._do_cmd_resp(TeledyneInstrumentCmds.SAVE_SETUP_TO_RAM, *args, **kwargs) # Issue start command and switch to autosample if successful. self._start_logging() next_state = TeledyneProtocolState.AUTOSAMPLE next_agent_state = ResourceAgentState.STREAMING return (next_state, (next_agent_state, result)) def _handler_autosample_stop_autosample(self, *args, **kwargs): """ Stop autosample and switch back to command mode. @retval (next_state, result) tuple, (ProtocolState.COMMAND, None) if successful. @throws InstrumentTimeoutException if device cannot be woken for command. @throws InstrumentProtocolException if command misunderstood or incorrect prompt received. """ next_state = None result = None # Wake up the device, continuing until autosample prompt seen. timeout = kwargs.get('timeout', TIMEOUT) #if (self._is_logging(timeout)): self._stop_logging(timeout) next_state = TeledyneProtocolState.COMMAND next_agent_state = ResourceAgentState.COMMAND return (next_state, (next_agent_state, result)) def _handler_command_get(self, *args, **kwargs): """ Get device parameters from the parameter dict. @param args[0] list of parameters to retrieve, or DriverParameter.ALL. @throws InstrumentParameterException if missing or invalid parameter. """ log.trace("in _handler_command_get") next_state = None result = None error = None # Grab a baseline time for calculating expiration time. It is assumed # that all data if valid if acquired after this time. expire_time = self._param_dict.get_current_timestamp() log.trace("expire_time = " + str(expire_time)) # build a list of parameters we need to get param_list = self._get_param_list(*args, **kwargs) try: # Take a first pass at getting parameters. If they are # expired an exception will be raised. result = self._get_param_result(param_list, expire_time) except InstrumentParameterExpirationException as e: # In the second pass we need to update parameters, it is assumed # that _update_params does everything required to refresh all # parameters or at least those that would expire. log.trace("in _handler_command_get Parameter expired, refreshing, %s", e) if self._is_logging(): log.trace("I am logging") try: # Switch to command mode, self._stop_logging() self._update_params() # Take a second pass at getting values, this time is should # have all fresh values. log.trace("Fetching parameters for the second time") result = self._get_param_result(param_list, expire_time) # Catch all error so we can put ourself back into # streaming. Then rethrow the error except Exception as e: error = e finally: # Switch back to streaming self._start_logging() if(error): raise error else: log.trace("I am not logging") self._update_params() # Take a second pass at getting values, this time is should # have all fresh values. log.trace("Fetching parameters for the second time") result = self._get_param_result(param_list, expire_time) return (next_state, result) def _handler_autosample_get_calibration(self, *args, **kwargs): """ execute a get calibration from autosample mode. For this command we have to move the instrument into command mode, get calibration, then switch back. If an exception is thrown we will try to get ourselves back into streaming and then raise that exception. @retval (next_state, result) tuple, (ProtocolState.AUTOSAMPLE, None) if successful. @throws InstrumentTimeoutException if device cannot be woken for command. @throws InstrumentProtocolException if command could not be built or misunderstood. """ next_state = None next_agent_state = None result = None error = None try: # Switch to command mode, self._stop_logging(*args, **kwargs) kwargs['timeout'] = 120 output = self._do_cmd_resp(TeledyneInstrumentCmds.OUTPUT_CALIBRATION_DATA, *args, **kwargs) # Catch all error so we can put ourself back into # streaming. Then rethrow the error except Exception as e: error = e finally: # Switch back to streaming self._start_logging() if(error): raise error result = self._sanitize(base64.b64decode(output)) return (next_state, (next_agent_state, result)) #return (next_state, (next_agent_state, {'result': result})) def _handler_autosample_get_configuration(self, *args, **kwargs): """ execute a get configuration from autosample mode. For this command we have to move the instrument into command mode, get configuration, then switch back. If an exception is thrown we will try to get ourselves back into streaming and then raise that exception. @retval (next_state, result) tuple, (ProtocolState.AUTOSAMPLE, None) if successful. @throws InstrumentTimeoutException if device cannot be woken for command. @throws InstrumentProtocolException if command could not be built or misunderstood. """ next_state = None next_agent_state = None result = None error = None try: # Switch to command mode, self._stop_logging(*args, **kwargs) # Sync the clock timeout = kwargs.get('timeout', TIMEOUT) output = self._do_cmd_resp(TeledyneInstrumentCmds.GET_SYSTEM_CONFIGURATION, *args, **kwargs) # Catch all error so we can put ourself back into # streaming. Then rethrow the error except Exception as e: error = e finally: # Switch back to streaming self._start_logging() if(error): raise error result = self._sanitize(base64.b64decode(output))
of all images, replace ``10%`` of all pixels with either the value ``0`` or the value ``255`` (same as in the previous example). For the other ``50%`` of all images, replace *channelwise* ``10%`` of all pixels with either the value ``0`` or the value ``255``. So, it will be very rare for each pixel to have all channels replaced by ``255`` or ``0``. >>> import imgaug.augmenters as iaa >>> import imgaug.parameters as iap >>> aug = ReplaceElementwise(0.1, iap.Normal(128, 0.4*128), per_channel=0.5) Replace ``10%`` of all pixels by gaussian noise centered around ``128``. Both the replacement mask and the gaussian noise are sampled channelwise for ``50%`` of all images. >>> import imgaug.augmenters as iaa >>> import imgaug.parameters as iap >>> aug = ReplaceElementwise( >>> iap.FromLowerResolution(iap.Binomial(0.1), size_px=8), >>> iap.Normal(128, 0.4*128), >>> per_channel=0.5) Replace ``10%`` of all pixels by gaussian noise centered around ``128``. Sample the replacement mask at a lower resolution (``8x8`` pixels) and upscale it to the image size, resulting in coarse areas being replaced by gaussian noise. """ def __init__(self, mask, replacement, per_channel=False, name=None, deterministic=False, random_state=None): super(ReplaceElementwise, self).__init__( name=name, deterministic=deterministic, random_state=random_state) self.mask = iap.handle_probability_param( mask, "mask", tuple_to_uniform=True, list_to_choice=True) self.replacement = iap.handle_continuous_param(replacement, "replacement") self.per_channel = iap.handle_probability_param(per_channel, "per_channel") def _augment_batch(self, batch, random_state, parents, hooks): if batch.images is None: return batch images = batch.images nb_images = len(images) rss = random_state.duplicate(1+2*nb_images) per_channel_samples = self.per_channel.draw_samples( (nb_images,), random_state=rss[0]) gen = enumerate(zip(images, per_channel_samples, rss[1::2], rss[2::2])) for i, (image, per_channel_i, rs_mask, rs_replacement) in gen: height, width, nb_channels = image.shape sampling_shape = (height, width, nb_channels if per_channel_i > 0.5 else 1) mask_samples = self.mask.draw_samples(sampling_shape, random_state=rs_mask) # TODO add separate per_channels for mask and replacement # TODO add test that replacement with per_channel=False is not # sampled per channel if per_channel_i <= 0.5: nb_channels = image.shape[-1] replacement_samples = self.replacement.draw_samples( (int(np.sum(mask_samples[:, :, 0])),), random_state=rs_replacement) # important here to use repeat instead of tile. repeat # converts e.g. [0, 1, 2] to [0, 0, 1, 1, 2, 2], while tile # leads to [0, 1, 2, 0, 1, 2]. The assignment below iterates # over each channel and pixel simultaneously, *not* first # over all pixels of channel 0, then all pixels in # channel 1, ... replacement_samples = np.repeat(replacement_samples, nb_channels) else: replacement_samples = self.replacement.draw_samples( (int(np.sum(mask_samples)),), random_state=rs_replacement) batch.images[i] = replace_elementwise_(image, mask_samples, replacement_samples) return batch def get_parameters(self): return [self.mask, self.replacement, self.per_channel] class SaltAndPepper(ReplaceElementwise): """ Replace pixels in images with salt/pepper noise (white/black-ish colors). dtype support:: See ``imgaug.augmenters.arithmetic.ReplaceElementwise``. Parameters ---------- p : float or tuple of float or list of float or imgaug.parameters.StochasticParameter, optional Probability of replacing a pixel to salt/pepper noise. * If a float, then that value will always be used as the probability. * If a tuple ``(a, b)``, then a probability will be sampled uniformly per image from the interval ``[a, b]``. * If a list, then a random value will be sampled from that list per image. * If a ``StochasticParameter``, then a image-sized mask will be sampled from that parameter per image. Any value ``>0.5`` in that mask will be replaced with salt and pepper noise. per_channel : bool or float or imgaug.parameters.StochasticParameter, optional Whether to use (imagewise) the same sample(s) for all channels (``False``) or to sample value(s) for each channel (``True``). Setting this to ``True`` will therefore lead to different transformations per image *and* channel, otherwise only per image. If this value is a float ``p``, then for ``p`` percent of all images `per_channel` will be treated as ``True``. If it is a ``StochasticParameter`` it is expected to produce samples with values between ``0.0`` and ``1.0``, where values ``>0.5`` will lead to per-channel behaviour (i.e. same as ``True``). name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.bit_generator.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> import imgaug.augmenters as iaa >>> aug = iaa.SaltAndPepper(0.05) Replace ``5%`` of all pixels with salt and pepper noise. >>> import imgaug.augmenters as iaa >>> aug = iaa.SaltAndPepper(0.05, per_channel=True) Replace *channelwise* ``5%`` of all pixels with salt and pepper noise. """ def __init__(self, p=0, per_channel=False, name=None, deterministic=False, random_state=None): super(SaltAndPepper, self).__init__( mask=p, replacement=iap.Beta(0.5, 0.5) * 255, per_channel=per_channel, name=name, deterministic=deterministic, random_state=random_state ) class ImpulseNoise(SaltAndPepper): """ Add impulse noise to images. This is identical to ``SaltAndPepper``, except that `per_channel` is always set to ``True``. dtype support:: See ``imgaug.augmenters.arithmetic.SaltAndPepper``. Parameters ---------- p : float or tuple of float or list of float or imgaug.parameters.StochasticParameter, optional Probability of replacing a pixel to impulse noise. * If a float, then that value will always be used as the probability. * If a tuple ``(a, b)``, then a probability will be sampled uniformly per image from the interval ``[a, b]``. * If a list, then a random value will be sampled from that list per image. * If a ``StochasticParameter``, then a image-sized mask will be sampled from that parameter per image. Any value ``>0.5`` in that mask will be replaced with impulse noise noise. name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.bit_generator.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> import imgaug.augmenters as iaa >>> aug = iaa.ImpulseNoise(0.1) Replace ``10%`` of all pixels with impulse noise. """ def __init__(self, p=0, name=None, deterministic=False, random_state=None): super(ImpulseNoise, self).__init__( p=p, per_channel=True, name=name, deterministic=deterministic, random_state=random_state) class CoarseSaltAndPepper(ReplaceElementwise): """ Replace rectangular areas in images with white/black-ish pixel noise. This adds salt and pepper noise (noisy white-ish and black-ish pixels) to rectangular areas within the image. Note that this means that within these rectangular areas the color varies instead of each rectangle having only one color. See also the similar ``CoarseDropout``. TODO replace dtype support with uint8 only, because replacement is geared towards that value range dtype support:: See ``imgaug.augmenters.arithmetic.ReplaceElementwise``. Parameters ---------- p : float or tuple of float or list of float or imgaug.parameters.StochasticParameter, optional Probability of changing a pixel to salt/pepper noise. * If a float, then that value will always be used as the probability. * If a tuple ``(a, b)``, then a probability will be sampled uniformly per image from the interval ``[a, b]``. * If a list, then a random value will be sampled from that list per image. * If a ``StochasticParameter``, then a lower-resolution mask will be sampled from that parameter per image. Any value ``>0.5`` in that mask will denote a spatial location that is to be replaced by salt and pepper noise. size_px : int or tuple of int or imgaug.parameters.StochasticParameter, optional The size of the lower resolution image from which to sample the replacement mask in absolute pixel dimensions. Note that this means that *lower* values of this parameter lead to *larger* areas being replaced (as any pixel in the lower resolution image will correspond to a larger area at the original resolution). * If ``None`` then `size_percent` must be set. * If an integer, then that size will always be used for both height and width. E.g. a value of ``3`` would lead to a ``3x3`` mask, which is then upsampled to ``HxW``, where ``H`` is the image size and ``W`` the image width. * If a tuple ``(a, b)``, then two values ``M``, ``N`` will be sampled from the discrete interval ``[a..b]``. The mask will then be generated at size ``MxN`` and upsampled to ``HxW``. * If a ``StochasticParameter``, then this parameter will be used to determine the sizes. It is expected to be discrete. size_percent : float or tuple of float or imgaug.parameters.StochasticParameter, optional The size of the lower resolution image from which to sample the replacement mask *in percent* of the input image. Note that this means that *lower* values of this parameter lead to *larger* areas being replaced (as any pixel in the lower resolution image will
int :param RulePaths: 需要鉴权的url路径列表。 :type RulePaths: list of str """ self.KeyAlpha = None self.KeyBeta = None self.KeyGamma = None self.SignParam = None self.TimeParam = None self.ExpireTime = None self.TimeFormat = None self.FailCode = None self.ExpireCode = None self.RulePaths = None def _deserialize(self, params): self.KeyAlpha = params.get("KeyAlpha") self.KeyBeta = params.get("KeyBeta") self.KeyGamma = params.get("KeyGamma") self.SignParam = params.get("SignParam") self.TimeParam = params.get("TimeParam") self.ExpireTime = params.get("ExpireTime") self.TimeFormat = params.get("TimeFormat") self.FailCode = params.get("FailCode") self.ExpireCode = params.get("ExpireCode") self.RulePaths = params.get("RulePaths") class AdvancedAuthenticationTypeC(AbstractModel): """时间戳防盗链高级版模式C配置。 """ def __init__(self): """ :param AccessKey: 访问密钥。 :type AccessKey: str :param SecretKey: 鉴权密钥。 :type SecretKey: str """ self.AccessKey = None self.SecretKey = None def _deserialize(self, params): self.AccessKey = params.get("AccessKey") self.SecretKey = params.get("SecretKey") class AdvancedAuthenticationTypeD(AbstractModel): """时间戳防盗链高级版模式D配置。 """ def __init__(self): """ :param SecretKey: 用于计算签名的密钥,只允许字母和数字,长度6-32字节。 :type SecretKey: str :param BackupSecretKey: 备份密钥,当使用SecretKey鉴权失败时会使用该密钥重新鉴权。 :type BackupSecretKey: str :param SignParam: uri串中签名的字段名,字母,数字或下划线构成,同时必须以字母开头。 :type SignParam: str :param TimeParam: uri串中时间的字段名,字母,数字或下划线构成,同时必须以字母开头。 :type TimeParam: str :param ExpireTime: 过期时间,单位秒。 :type ExpireTime: int :param TimeFormat: 时间格式,dec,hex分别表示十进制,十六进制。 :type TimeFormat: str """ self.SecretKey = None self.BackupSecretKey = None self.SignParam = None self.TimeParam = None self.ExpireTime = None self.TimeFormat = None def _deserialize(self, params): self.SecretKey = params.get("SecretKey") self.BackupSecretKey = params.get("BackupSecretKey") self.SignParam = params.get("SignParam") self.TimeParam = params.get("TimeParam") self.ExpireTime = params.get("ExpireTime") self.TimeFormat = params.get("TimeFormat") class AdvancedAuthenticationTypeE(AbstractModel): """时间戳防盗链高级版模式E配置。 """ def __init__(self): """ :param SecretKey: 用于计算签名的密钥,只允许字母和数字,长度6-32字节。 注意:此字段可能返回 null,表示取不到有效值。 :type SecretKey: str :param SignParam: uri串中签名的字段名,字母,数字或下划线构成,同时必须以字母开头。 注意:此字段可能返回 null,表示取不到有效值。 :type SignParam: str :param AclSignParam: uri串中Acl签名的字段名,字母,数字或下划线构成,同时必须以字母开头。 注意:此字段可能返回 null,表示取不到有效值。 :type AclSignParam: str :param StartTimeParam: uri串中开始时间字段名,字母,数字或下划线构成,同时必须以字母开头。 注意:此字段可能返回 null,表示取不到有效值。 :type StartTimeParam: str :param ExpireTimeParam: uri串中过期时间字段名,字母,数字或下划线构成,同时必须以字母开头。 注意:此字段可能返回 null,表示取不到有效值。 :type ExpireTimeParam: str :param TimeFormat: 时间格式,dec 注意:此字段可能返回 null,表示取不到有效值。 :type TimeFormat: str """ self.SecretKey = None self.SignParam = None self.AclSignParam = None self.StartTimeParam = None self.ExpireTimeParam = None self.TimeFormat = None def _deserialize(self, params): self.SecretKey = params.get("SecretKey") self.SignParam = params.get("SignParam") self.AclSignParam = params.get("AclSignParam") self.StartTimeParam = params.get("StartTimeParam") self.ExpireTimeParam = params.get("ExpireTimeParam") self.TimeFormat = params.get("TimeFormat") class AdvancedAuthenticationTypeF(AbstractModel): """时间戳防盗链高级鉴权模式TypeF配置 """ def __init__(self): """ :param SignParam: uri串中签名的字段名,字母,数字或下划线构成,同时必须以字母开头。 注意:此字段可能返回 null,表示取不到有效值。 :type SignParam: str :param TimeParam: uri串中时间的字段名,字母,数字或下划线构成,同时必须以字母开头。 注意:此字段可能返回 null,表示取不到有效值。 :type TimeParam: str :param TransactionParam: uri串中Transaction字段名,字母,数字或下划线构成,同时必须以字母开头。 注意:此字段可能返回 null,表示取不到有效值。 :type TransactionParam: str :param SecretKey: 用于计算签名的主密钥,只允许字母和数字,长度6-32字节。 注意:此字段可能返回 null,表示取不到有效值。 :type SecretKey: str :param BackupSecretKey: 用于计算签名的备选密钥,主密钥校验失败后再次尝试备选密钥,只允许字母和数字,长度6-32字节。 注意:此字段可能返回 null,表示取不到有效值。 :type BackupSecretKey: str """ self.SignParam = None self.TimeParam = None self.TransactionParam = None self.SecretKey = None self.BackupSecretKey = None def _deserialize(self, params): self.SignParam = params.get("SignParam") self.TimeParam = params.get("TimeParam") self.TransactionParam = params.get("TransactionParam") self.SecretKey = params.get("SecretKey") self.BackupSecretKey = params.get("BackupSecretKey") class AdvancedCache(AbstractModel): """缓存过期配置高级版(功能灰度中,尚未全量) 注意:该版本不支持设置首页缓存规则 """ def __init__(self): """ :param CacheRules: 缓存过期规则 注意:此字段可能返回 null,表示取不到有效值。 :type CacheRules: list of AdvanceCacheRule :param IgnoreCacheControl: 强制缓存配置 on:开启 off:关闭 开启时,源站返回 no-cache、no-store 头部时,仍按照缓存过期规则进行节点缓存 默认为关闭状态 注意:此字段可能返回 null,表示取不到有效值。 :type IgnoreCacheControl: str :param IgnoreSetCookie: 忽略源站的 Set-Cookie 头部 on:开启 off:关闭 默认为关闭状态 注意:此字段可能返回 null,表示取不到有效值。 :type IgnoreSetCookie: str """ self.CacheRules = None self.IgnoreCacheControl = None self.IgnoreSetCookie = None def _deserialize(self, params): if params.get("CacheRules") is not None: self.CacheRules = [] for item in params.get("CacheRules"): obj = AdvanceCacheRule() obj._deserialize(item) self.CacheRules.append(obj) self.IgnoreCacheControl = params.get("IgnoreCacheControl") self.IgnoreSetCookie = params.get("IgnoreSetCookie") class Authentication(AbstractModel): """时间戳防盗链配置 """ def __init__(self): """ :param Switch: 防盗链配置开关 on:开启 off:关闭 开启时必须且只配置一种模式,其余模式需要设置为 null :type Switch: str :param TypeA: 时间戳防盗链模式 A 配置 注意:此字段可能返回 null,表示取不到有效值。 :type TypeA: :class:`tencentcloud.cdn.v20180606.models.AuthenticationTypeA` :param TypeB: 时间戳防盗链模式 B 配置(模式 B 后台升级中,暂时不支持配置) 注意:此字段可能返回 null,表示取不到有效值。 :type TypeB: :class:`tencentcloud.cdn.v20180606.models.AuthenticationTypeB` :param TypeC: 时间戳防盗链模式 C 配置 注意:此字段可能返回 null,表示取不到有效值。 :type TypeC: :class:`tencentcloud.cdn.v20180606.models.AuthenticationTypeC` :param TypeD: 时间戳防盗链模式 D 配置 注意:此字段可能返回 null,表示取不到有效值。 :type TypeD: :class:`tencentcloud.cdn.v20180606.models.AuthenticationTypeD` """ self.Switch = None self.TypeA = None self.TypeB = None self.TypeC = None self.TypeD = None def _deserialize(self, params): self.Switch = params.get("Switch") if params.get("TypeA") is not None: self.TypeA = AuthenticationTypeA() self.TypeA._deserialize(params.get("TypeA")) if params.get("TypeB") is not None: self.TypeB = AuthenticationTypeB() self.TypeB._deserialize(params.get("TypeB")) if params.get("TypeC") is not None: self.TypeC = AuthenticationTypeC() self.TypeC._deserialize(params.get("TypeC")) if params.get("TypeD") is not None: self.TypeD = AuthenticationTypeD() self.TypeD._deserialize(params.get("TypeD")) class AuthenticationTypeA(AbstractModel): """时间戳防盗链模式 A 配置 时间戳防盗链模式 A 的访问 URL 格式为:http://DomainName/Filename?sign=timestamp-rand-uid-md5hash 其中 timestamp 为十进制 UNIX 时间戳; rand 为随机字符串,0 ~ 100 位大小写字母与数字组成; uid 为 0; md5hash:MD5(文件路径-timestamp-rand-uid-自定义密钥) """ def __init__(self): """ :param SecretKey: 计算签名的密钥 仅允许大小写字母与数字,长度 6~32 位 注意:此字段可能返回 null,表示取不到有效值。 :type SecretKey: str :param SignParam: 签名参数名设置 仅允许大小写字母、数字或下划线,长度 1~100 位,不能以数字开头 :type SignParam: str :param ExpireTime: 签名过期时间设置 单位为秒,最大可设置为 31536000 :type ExpireTime: int :param FileExtensions: 鉴权/不做鉴权的文件扩展名列表设置 如果包含字符 * 则表示所有文件 :type FileExtensions: list of str :param FilterType: whitelist:白名单,表示对除了 FileExtensions 列表之外的所有类型进行鉴权 blacklist:黑名单,表示仅对 FileExtensions 中的类型进行鉴权 :type FilterType: str """ self.SecretKey = None self.SignParam = None self.ExpireTime = None self.FileExtensions = None self.FilterType = None def _deserialize(self, params): self.SecretKey = params.get("SecretKey") self.SignParam = params.get("SignParam") self.ExpireTime = params.get("ExpireTime") self.FileExtensions = params.get("FileExtensions") self.FilterType = params.get("FilterType") class AuthenticationTypeB(AbstractModel): """时间戳防盗链模式 B 配置(B 模式正在进行平台升级,暂不支持配置) """ def __init__(self): """ :param SecretKey: 计算签名的密钥 仅允许大小写字母与数字,长度 6~32 位 注意:此字段可能返回 null,表示取不到有效值。 :type SecretKey: str :param ExpireTime: 签名过期时间设置 单位为秒,最大可设置为 31536000 :type ExpireTime: int :param FileExtensions: 鉴权/不做鉴权的文件扩展名列表设置 如果包含字符 * 则表示所有文件 :type FileExtensions: list of str :param FilterType: whitelist:白名单,表示对除了 FileExtensions 列表之外的所有类型进行鉴权 blacklist:黑名单,表示仅对 FileExtensions 中的类型进行鉴权 :type FilterType: str """ self.SecretKey = None self.ExpireTime = None self.FileExtensions = None self.FilterType = None def _deserialize(self, params): self.SecretKey = params.get("SecretKey") self.ExpireTime = params.get("ExpireTime") self.FileExtensions = params.get("FileExtensions") self.FilterType = params.get("FilterType") class AuthenticationTypeC(AbstractModel): """时间戳防盗链模式 C 配置 时间戳防盗链模式 C 的访问 URL 格式为:http://DomainName/md5hash/timestamp/FileName 其中 timestamp 为十六进制 UNIX 时间戳; md5hash:MD5(自定义密钥 + 文件路径 + timestamp) """ def __init__(self): """ :param SecretKey: 计算签名的密钥 仅允许大小写字母与数字,长度 6~32 位 注意:此字段可能返回 null,表示取不到有效值。 :type SecretKey: str :param ExpireTime: 签名过期时间设置 单位为秒,最大可设置为 31536000 :type ExpireTime: int :param FileExtensions: 鉴权/不做鉴权的文件扩展名列表设置 如果包含字符 * 则表示所有文件 :type FileExtensions: list of str :param FilterType: whitelist:白名单,表示对除了 FileExtensions 列表之外的所有类型进行鉴权 blacklist:黑名单,表示仅对 FileExtensions 中的类型进行鉴权 :type FilterType: str :param TimeFormat: 时间戳进制设置 dec:十进制 hex:十六进制 注意:此字段可能返回 null,表示取不到有效值。 :type TimeFormat: str """ self.SecretKey = None self.ExpireTime = None self.FileExtensions = None self.FilterType = None self.TimeFormat = None def _deserialize(self, params): self.SecretKey = params.get("SecretKey") self.ExpireTime = params.get("ExpireTime") self.FileExtensions = params.get("FileExtensions") self.FilterType = params.get("FilterType") self.TimeFormat = params.get("TimeFormat") class AuthenticationTypeD(AbstractModel): """时间戳防盗链模式 D 配置 时间戳防盗链模式 D 的访问 URL 格式为:http://DomainName/FileName?sign=md5hash&t=timestamp 其中 timestamp 为十进制或十六进制 UNIX 时间戳; md5hash:MD5(自定义密钥 + 文件路径 + timestamp) """ def __init__(self): """ :param SecretKey: 计算签名的密钥 仅允许大小写字母与数字,长度 6~32 位 注意:此字段可能返回 null,表示取不到有效值。 :type SecretKey: str :param ExpireTime: 签名过期时间设置 单位为秒,最大可设置为 31536000 :type ExpireTime: int :param FileExtensions: 鉴权/不做鉴权的文件扩展名列表设置 如果包含字符 * 则表示所有文件 :type FileExtensions: list of str :param FilterType: whitelist:白名单,表示对除了 FileExtensions 列表之外的所有类型进行鉴权 blacklist:黑名单,表示仅对 FileExtensions 中的类型进行鉴权 :type FilterType: str :param SignParam: 签名参数名设置 仅允许大小写字母、数字或下划线,长度 1~100 位,不能以数字开头 :type SignParam: str :param TimeParam: 时间戳参数名设置 仅允许大小写字母、数字或下划线,长度 1~100 位,不能以数字开头 :type TimeParam: str :param TimeFormat: 时间戳进制设置 dec:十进制 hex:十六进制 :type TimeFormat: str """ self.SecretKey = None self.ExpireTime = None self.FileExtensions = None self.FilterType = None self.SignParam = None self.TimeParam = None self.TimeFormat = None def _deserialize(self, params): self.SecretKey = params.get("SecretKey") self.ExpireTime = params.get("ExpireTime") self.FileExtensions = params.get("FileExtensions") self.FilterType = params.get("FilterType") self.SignParam = params.get("SignParam") self.TimeParam = params.get("TimeParam") self.TimeFormat = params.get("TimeFormat") class AwsPrivateAccess(AbstractModel): """s3源站回源鉴权。 """ def __init__(self): """ :param Switch: 开关,on/off。 :type Switch: str :param AccessKey: 访问ID。 注意:此字段可能返回 null,表示取不到有效值。 :type AccessKey: str :param SecretKey: 密钥。 注意:此字段可能返回 null,表示取不到有效值。 :type SecretKey: str """ self.Switch = None self.AccessKey = None self.SecretKey = None def _deserialize(self, params): self.Switch = params.get("Switch") self.AccessKey = params.get("AccessKey") self.SecretKey = params.get("SecretKey") class BandwidthAlert(AbstractModel): """带宽封顶配置,默认为关闭状态 """ def __init__(self): """ :param Switch: 带宽封顶配置开关 on:开启 off:关闭 :type Switch: str :param BpsThreshold: 带宽封顶阈值,单位为bps 注意:此字段可能返回 null,表示取不到有效值。 :type BpsThreshold: int :param CounterMeasure: 达到阈值后的操作 RESOLVE_DNS_TO_ORIGIN:直接回源,仅自有源站域名支持 RETURN_404:全部请求返回 404 注意:此字段可能返回 null,表示取不到有效值。 :type CounterMeasure: str :param LastTriggerTime: 上次触发带宽封顶阈值的时间 注意:此字段可能返回 null,表示取不到有效值。 :type LastTriggerTime: str """ self.Switch = None self.BpsThreshold = None self.CounterMeasure = None self.LastTriggerTime = None def _deserialize(self, params): self.Switch = params.get("Switch") self.BpsThreshold = params.get("BpsThreshold") self.CounterMeasure = params.get("CounterMeasure") self.LastTriggerTime = params.get("LastTriggerTime") class BotCookie(AbstractModel): """Bot cookie策略 """ def __init__(self): """ :param Switch: on|off :type Switch: str :param RuleType: 规则类型,当前只有all :type RuleType: str :param RuleValue: 规则值,['*'] :type RuleValue: list of str :param Action: 执行动作,monitor|intercept|redirect|captcha :type Action: str :param RedirectUrl: 重定向时设置的重定向页面 注意:此字段可能返回 null,表示取不到有效值。 :type RedirectUrl: str :param UpdateTime: 更新时间 注意:此字段可能返回 null,表示取不到有效值。 :type UpdateTime: str """ self.Switch = None self.RuleType = None self.RuleValue = None self.Action = None self.RedirectUrl = None self.UpdateTime = None def _deserialize(self, params): self.Switch = params.get("Switch") self.RuleType = params.get("RuleType") self.RuleValue = params.get("RuleValue") self.Action = params.get("Action") self.RedirectUrl = params.get("RedirectUrl") self.UpdateTime = params.get("UpdateTime") class BotJavaScript(AbstractModel): """Bot js策略 """ def __init__(self): """ :param Switch: on|off :type Switch: str :param RuleType: 规则类型,当前只有file :type RuleType: str :param RuleValue: 规则值,['html', 'htm'] :type RuleValue: list of str :param Action: 执行动作,monitor|intercept|redirect|captcha :type Action: str :param RedirectUrl: 重定向时设置的重定向页面 注意:此字段可能返回 null,表示取不到有效值。 :type RedirectUrl: str :param UpdateTime: 更新时间 注意:此字段可能返回 null,表示取不到有效值。 :type UpdateTime: str """ self.Switch = None self.RuleType = None self.RuleValue = None self.Action = None self.RedirectUrl = None self.UpdateTime = None def _deserialize(self, params): self.Switch = params.get("Switch") self.RuleType = params.get("RuleType") self.RuleValue = params.get("RuleValue") self.Action = params.get("Action") self.RedirectUrl = params.get("RedirectUrl") self.UpdateTime = params.get("UpdateTime") class BriefDomain(AbstractModel): """域名基础配置信息,含 CNAME、状态、业务类型、加速区域、创建时间、更新时间、源站配置等。 """ def __init__(self): """ :param ResourceId: 域名 ID :type ResourceId: str :param AppId: 腾讯云账号 ID :type AppId: int :param Domain: 加速域名 :type Domain: str :param Cname: 域名对应的 CNAME 地址 :type Cname: str :param Status: 加速服务状态 rejected:域名审核未通过,域名备案过期/被注销导致 processing:部署中 online:已启动 offline:已关闭 :type Status: str :param ProjectId: 项目 ID,可前往腾讯云项目管理页面查看 :type ProjectId: int :param ServiceType: 域名业务类型 web:静态加速 download:下载加速 media:流媒体点播加速 :type ServiceType: str :param CreateTime: 域名创建时间 :type CreateTime:
import os import glob import scipy import paddle import random import numpy as np import json import paddle.vision.transforms.functional as F from paddle.io import DataLoader,Dataset from paddle.vision import transforms from PIL import Image # from scipy.misc import imread import skimage from skimage.feature import canny from skimage.color import rgb2gray, gray2rgb from .utils import create_mask, mask_generation_with_BB, imread, random_size from scipy import ndimage Image.MAX_IMAGE_PIXELS = 1000000000 class Dataset(paddle.io.Dataset): def __init__(self, config, afile, augment=True, training=True): """ Args: gt_list: groundtruth list """ super(Dataset, self).__init__() self.augment = augment self.training = training self.data = self.load_data(afile, config.WORD_BB_PERCENT_THRESHOLD) self._mask_pad = config.MASK_PAD self._mask_safe_pad = config.MASK_SAFE_PAD self._mask_pad_update_step = config.MASK_PAD_UPDATE_STEP self.input_size = config.INPUT_SIZE self.sigma = config.SIGMA self.mask = config.MASK self.mask_threshold = config.MASK_THRESHOLD self.nms = config.NMS self._count = 0 self.backup_item = None # in test mode, there's a one-to-one relationship between mask and image # masks are loaded non random if config.MODE == 2: self.mask = 7 def __len__(self): return len(self.data) def __getitem__(self, index): item = self.load_item(index) ''' try: item = self.load_item(index) #item = self.load_item_SCUT(index) #item = self.load_item_raindrop(index) self.backup_item = item except (KeyboardInterrupt, SystemExit): raise except Exception as e: #print(e.__traceback__) """Handling errors introduced by random mask generation step introduced in dataloader.""" print('loading error: item ' + str(index)) # item = self.__getitem__(index+1) if self.backup_item is not None: item = self.backup_item else: item = self.__getitem__(index + 1) ''' return item def load_name(self, index): name = self.data[index]['dir'] return os.path.basename(name) def load_item(self, index): self._count += 1 size = self.input_size # load image img = imread(self.data[index]['dir']) if os.path.exists(self.data[index]['gt_dir']): img_gt = imread(self.data[index]['gt_dir']) else: img_gt = imread(self.data[index]['gt_dir'].split(".")[0] + '.png') #print(img.shape,img_gt.shape) # gray to rgb if len(img.shape) < 3: img = gray2rgb(img) if len(img_gt.shape) < 3: img_gt = gray2rgb(img_gt) # load mask masks_pad, masks_gt = self.load_mask(img, index) #print(mask_pad.shape,mask_gt.shape) # resize/crop if needed if size != 0: img = self.resize(img.astype(np.uint8), size, size) img_gt = self.resize(img_gt.astype(np.uint8), size, size) masks_pad = self.resize(masks_pad.astype(np.uint8), size, size) masks_gt = self.resize(masks_gt.astype(np.uint8), size, size) if np.mean(masks_pad) == 0 or np.mean(masks_gt) ==0: raise if img.shape != img_gt.shape: img_gt = self.resize(img_gt.astype(np.uint8), img.shape[0], img.shape[1]) # print(masks_pad.shape, img_gt.shape, img.shape) # augment data: horizontal flip if self.augment and np.random.binomial(1, 0.5) > 0: img = img[:, ::-1, ...] img_gt = img_gt[:, ::-1, ...] masks_pad = masks_pad[:, ::-1, ...] masks_gt = masks_gt[:, ::-1, ...] #print(img.shape) img=self.normalize(img) img_gt=self.normalize(img_gt) masks_pad=self.normalize(masks_pad) masks_gt=self.normalize(masks_gt) # !!! Has to change the type, UINT8 subtraction is different masks_refine_gt = np.greater(np.mean(np.abs(img.astype(np.float32) - img_gt.astype(np.float32)), axis=-1), self.mask_threshold).astype(np.uint8) masks_refine_gt = np.multiply(masks_refine_gt, masks_gt) img_gt = np.multiply(np.expand_dims((1-masks_gt), -1), img) + np.multiply(np.expand_dims(masks_gt, -1), img_gt) #print(img_gt.shape) #print(img.shape,img_gt.shape,masks_pad.shape,masks_gt.shape,masks_refine_gt.shape) return self.to_tensor(img), self.to_tensor(img_gt), \ self.to_tensor((masks_pad).astype(np.float32)), self.to_tensor((masks_gt).astype(np.float32)), \ self.to_tensor((masks_refine_gt).astype(np.float32)) # def load_item_raindrop(self, index): # self._count += 1 # size = self.input_size # # # load image # img = imread(self.data[index]['dir']) # if os.path.exists(self.data[index]['gt_dir']): # img_gt = imread(self.data[index]['gt_dir']) # else: # img_gt = imread(self.data[index]['gt_dir'].split(".")[0] + '.png', mode='RGB') # # # random crop # left, rigth = random_size(img.shape[0], 0.8) # top, bottom = random_size(img.shape[1], 0.8) # img = img[left:rigth, top: bottom, :] # img_gt = img_gt[left:rigth, top: bottom, :] # # # # # gray to rgb # if len(img.shape) < 3: # img = gray2rgb(img) # # if len(img_gt.shape) < 3: # img_gt = gray2rgb(img_gt) # # # resize/crop if needed # if size != 0: # img = self.resize(img.astype(np.uint8), size, size) # img_gt = self.resize(img_gt.astype(np.uint8), size, size) # # # load mask # masks_pad, masks_gt = self.load_mask(img, index) # masks_pad = masks_pad / 255 # masks_gt = masks_gt / 255 # # if np.mean(masks_pad) == 0 or np.mean(masks_gt) ==0: # raise # # if img.shape != img_gt.shape: # img_gt = self.resize(img_gt.astype(np.uint8), img.shape[0], img.shape[1]) # # print(masks_pad.shape, img_gt.shape, img.shape) # # # augment data: horizontal flip # if self.augment and np.random.binomial(1, 0.5) > 0: # img = img[:, ::-1, ...] # img_gt = img_gt[:, ::-1, ...] # masks_pad = masks_pad[:, ::-1, ...] # masks_gt = masks_gt[:, ::-1, ...] # # # augment data: vertical flip # if self.augment and np.random.binomial(1, 0.5) > 0: # img = img[::-1, ...] # img_gt = img_gt[::-1, ...] # masks_pad = masks_pad[::-1, ...] # masks_gt = masks_gt[::-1, ...] # # # # !!! Has to change the type, UINT8 subtraction is different # # diff = np.mean(np.abs(img_gt.astype(np.float32) - img.astype(np.float32)), axis=-1) # # mask_threshold = np.mean(diff) # # masks_refine_gt = np.greater(diff, mask_threshold).astype(np.uint8) # # # # # Remove small white regions # # open_img = ndimage.binary_opening(masks_refine_gt) # # # Remove small black hole # # masks_refine_gt = ndimage.binary_closing(open_img) # # # masks_refine_gt = np.multiply(masks_refine_gt, masks_gt) # # img_gt = np.multiply(np.expand_dims((1-masks_gt), -1), img) + np.multiply(np.expand_dims(masks_gt, -1), img_gt) # # img_gt = img_gt.astype(np.uint8) # # masks_refine_gt = masks_gt # # return self.to_tensor(img), self.to_tensor(img_gt), \ # self.to_tensor(masks_pad.astype(np.float64)), self.to_tensor(masks_gt.astype(np.float64)), \ # self.to_tensor(masks_refine_gt.astype(np.float64)) def load_item_raindrop(self, index): self._count += 1 size = self.input_size #print(self.data) # load image img = imread(self.data[index]['dir']) if os.path.exists(self.data[index]['gt_dir']): img_gt = imread(self.data[index]['gt_dir']) else: img_gt = imread(self.data[index]['gt_dir'].split(".")[0] + '.png', mode='RGB') # gray to rgb if len(img.shape) < 3: img = gray2rgb(img) if len(img_gt.shape) < 3: img_gt = gray2rgb(img_gt) # resize/crop if needed if size != 0: img = self.resize(img.astype(np.uint8), size, size) img_gt = self.resize(img_gt.astype(np.uint8), size, size) # load mask masks_pad, masks_gt = self.load_mask(img, index) masks_pad = masks_pad / 255 masks_gt = masks_gt / 255 if np.mean(masks_pad) == 0 or np.mean(masks_gt) ==0: raise if img.shape != img_gt.shape: img_gt = self.resize(img_gt.astype(np.uint8), img.shape[0], img.shape[1]) #print(masks_pad.shape, img_gt.shape, img.shape) masks_refine_gt = masks_gt return self.to_tensor(img), self.to_tensor(img_gt), \ self.to_tensor(masks_pad.astype(np.float64)), self.to_tensor(masks_gt.astype(np.float64)), \ self.to_tensor(masks_refine_gt.astype(np.float64)) def load_item_SCUT(self, index): self._count += 1 size = self.input_size # load image img = imread(self.data[index]['dir']) if os.path.exists(self.data[index]['gt_dir']): img_gt = imread(self.data[index]['gt_dir']) else: img_gt = imread(self.data[index]['gt_dir'].split(".")[0] + '.png', mode='RGB') # gray to rgb if len(img.shape) < 3: img = gray2rgb(img) if len(img_gt.shape) < 3: img_gt = gray2rgb(img_gt) # load mask imgh, imgw = img.shape[0:2] masks_pad = np.ones([imgh, imgw]) # resize/crop if needed if size != 0: img = self.resize(img.astype(np.uint8), size, size) img_gt = self.resize(img_gt.astype(np.uint8), size, size) masks_pad = self.resize(masks_pad.astype(np.uint8), size, size) if img.shape != img_gt.shape: img_gt = self.resize(img_gt.astype(np.uint8), img.shape[0], img.shape[1]) # print(masks_pad.shape, img_gt.shape, img.shape) # augment data: horizontal flip if self.augment and np.random.binomial(1, 0.5) > 0: img = img[:, ::-1, ...] img_gt = img_gt[:, ::-1, ...] masks_pad = masks_pad[:, ::-1, ...] # !!! Has to change the type, UINT8 subtraction is different masks_refine_gt = np.greater(np.mean(np.abs(img.astype(np.float32) - img_gt.astype(np.float32)), axis=-1), self.mask_threshold).astype(np.uint8) masks_gt = masks_refine_gt return self.to_tensor(img), self.to_tensor(img_gt), \ self.to_tensor(masks_pad.astype(np.float64)), self.to_tensor(masks_gt.astype(np.float64)), \ self.to_tensor(masks_refine_gt.astype(np.float64)) def load_mask(self, img, index): imgh, imgw = img.shape[0:2] mask_type = self.mask #print(mask_type) # external + random block if mask_type == 4: mask_type = 1 if np.random.binomial(1, 0.5) == 1 else 3 # external + random block + half elif mask_type == 5: mask_type = np.random.randint(1, 4) # random block if mask_type == 1: mask = create_mask(imgw, imgh, imgw // 2, imgh // 2) return mask,mask if mask_type == 8: # print(imgw, imgh) # x = random.randint(imgw//4, imgw) # y = random.randint(imgh//4, imgh) # mask = create_mask(imgw, imgh, x, y) # if np.random.binomial(1, 0.1) > 0: # mask = np.ones_like(mask) mask = np.ones([imgw, imgh]) mask = (mask * 255).astype(np.uint8) return mask,mask # half if mask_type == 2: # randomly choose right or left return create_mask(imgw, imgh, imgw // 2, imgh, 0 if random.random() < 0.5 else imgw // 2, 0) # external if mask_type == 3: mask_index = random.randint(0, len(self.mask_data) - 1) mask = imread(self.mask_data[mask_index]) mask = self.resize(mask, imgh, imgw) mask = (mask > 0).astype(np.uint8) * 255 # threshold due to interpolation return mask # test mode: load mask non random if mask_type == 6: mask = imread(self.mask_data[index]) mask = self.resize(mask, imgh, imgw, centerCrop=False) mask = rgb2gray(mask) mask = (mask > 0).astype(np.uint8) * 255 return mask if mask_type == 7: bbox = np.array(self.data[index]['word_bb']) max_pad = np.max([imgh, imgw]) if self._mask_pad == -1: # coefficient = 1 # pad = coefficient*self._count//self._mask_pad_update_step # if pad > np.max(self.input_size+coefficient): # pad = np.random.randint(0, np.max(self.input_size), 1)[0] # elif pad == 0: # pad = 0 # else: # pad = np.random.randint(0, pad) if np.random.binomial(1, 0.1) > 0: pad = max_pad else: pad = np.random.randint(self._mask_safe_pad, np.ceil(max_pad/2)) elif self._mask_pad == -2: # pad = np.random.randint(2, self._mask_pad, 1)[0] if self.data[index]['word_percent'] < 5: pad = 20 elif self.data[index]['word_percent'] < 10: pad
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os from oslo_utils import uuidutils import requests import requests.auth import six from tempest.lib import exceptions from aodhclient.tests.functional import base class AodhClientTest(base.ClientTestBase): def test_help(self): self.aodh("help", params="alarm create") self.aodh("help", params="alarm delete") self.aodh("help", params="alarm list") self.aodh("help", params="alarm show") self.aodh("help", params="alarm update") def test_alarm_id_or_name_scenario(self): def _test(name): params = "create --type event --name %s" % name result = self.aodh('alarm', params=params) alarm_id = self.details_multiple(result)[0]['alarm_id'] params = 'show %s' % name result = self.aodh('alarm', params=params) self.assertEqual(alarm_id, self.details_multiple(result)[0]['alarm_id']) params = 'show %s' % alarm_id result = self.aodh('alarm', params=params) self.assertEqual(alarm_id, self.details_multiple(result)[0]['alarm_id']) params = "update --state ok %s" % name result = self.aodh('alarm', params=params) self.assertEqual("ok", self.details_multiple(result)[0]['state']) params = "update --state alarm %s" % alarm_id result = self.aodh('alarm', params=params) self.assertEqual("alarm", self.details_multiple(result)[0]['state']) params = "update --name another-name %s" % name result = self.aodh('alarm', params=params) self.assertEqual("another-name", self.details_multiple(result)[0]['name']) params = "update --name %s %s" % (name, alarm_id) result = self.aodh('alarm', params=params) self.assertEqual(name, self.details_multiple(result)[0]['name']) # Check update with no change is allowed params = "update --name %s %s" % (name, name) result = self.aodh('alarm', params=params) self.assertEqual(name, self.details_multiple(result)[0]['name']) params = "update --state ok" result = self.aodh('alarm', params=params, fail_ok=True, merge_stderr=True) self.assertFirstLineStartsWith( result.splitlines(), 'You need to specify one of alarm ID and alarm name(--name) ' 'to update an alarm.') params = "delete %s" % name result = self.aodh('alarm', params=params) self.assertEqual("", result) params = "create --type event --name %s" % name result = self.aodh('alarm', params=params) alarm_id = self.details_multiple(result)[0]['alarm_id'] params = "delete %s" % alarm_id result = self.aodh('alarm', params=params) self.assertEqual("", result) _test(uuidutils.generate_uuid()) _test('normal-alarm-name') def test_event_scenario(self): PROJECT_ID = uuidutils.generate_uuid() # CREATE result = self.aodh(u'alarm', params=(u"create --type event --name ev_alarm1 " "--project-id %s" % PROJECT_ID)) alarm = self.details_multiple(result)[0] ALARM_ID = alarm['alarm_id'] self.assertEqual('ev_alarm1', alarm['name']) self.assertEqual('*', alarm['event_type']) # UPDATE IGNORE INVALID result = self.aodh( 'alarm', params=("update %s --severity critical --threshold 10" % ALARM_ID)) alarm_updated = self.details_multiple(result)[0] self.assertEqual(ALARM_ID, alarm_updated["alarm_id"]) self.assertEqual('critical', alarm_updated['severity']) # UPDATE IGNORE INVALID result = self.aodh( 'alarm', params=("update %s --event-type dummy" % ALARM_ID)) alarm_updated = self.details_multiple(result)[0] self.assertEqual(ALARM_ID, alarm_updated["alarm_id"]) self.assertEqual('dummy', alarm_updated['event_type']) # GET result = self.aodh( 'alarm', params="show %s" % ALARM_ID) alarm_show = self.details_multiple(result)[0] self.assertEqual(ALARM_ID, alarm_show["alarm_id"]) self.assertEqual(PROJECT_ID, alarm_show["project_id"]) self.assertEqual('ev_alarm1', alarm_show['name']) self.assertEqual('dummy', alarm_show['event_type']) # GET BY NAME result = self.aodh( 'alarm', params="show --name ev_alarm1") alarm_show = self.details_multiple(result)[0] self.assertEqual(ALARM_ID, alarm_show["alarm_id"]) self.assertEqual(PROJECT_ID, alarm_show["project_id"]) self.assertEqual('ev_alarm1', alarm_show['name']) self.assertEqual('dummy', alarm_show['event_type']) # GET BY NAME AND ID ERROR self.assertRaises(exceptions.CommandFailed, self.aodh, u'alarm', params=(u"show %s --name ev_alarm1" % ALARM_ID)) # LIST result = self.aodh('alarm', params="list") self.assertIn(ALARM_ID, [r['alarm_id'] for r in self.parser.listing(result)]) output_colums = ['alarm_id', 'type', 'name', 'state', 'severity', 'enabled'] for alarm_list in self.parser.listing(result): self.assertEqual(sorted(output_colums), sorted(alarm_list.keys())) if alarm_list["alarm_id"] == ALARM_ID: self.assertEqual('ev_alarm1', alarm_list['name']) # LIST WITH QUERY result = self.aodh('alarm', params=("list --query project_id=%s" % PROJECT_ID)) alarm_list = self.parser.listing(result)[0] self.assertEqual(ALARM_ID, alarm_list["alarm_id"]) self.assertEqual('ev_alarm1', alarm_list['name']) # DELETE result = self.aodh('alarm', params="delete %s" % ALARM_ID) self.assertEqual("", result) # GET FAIL result = self.aodh('alarm', params="show %s" % ALARM_ID, fail_ok=True, merge_stderr=True) expected = "Alarm %s not found (HTTP 404)" % ALARM_ID self.assertFirstLineStartsWith(result.splitlines(), expected) # DELETE FAIL result = self.aodh('alarm', params="delete %s" % ALARM_ID, fail_ok=True, merge_stderr=True) self.assertFirstLineStartsWith(result.splitlines(), expected) # LIST DOES NOT HAVE ALARM result = self.aodh('alarm', params="list") self.assertNotIn(ALARM_ID, [r['alarm_id'] for r in self.parser.listing(result)]) def test_threshold_scenario(self): PROJECT_ID = uuidutils.generate_uuid() # CREATE result = self.aodh(u'alarm', params=(u"create --type threshold --name alarm_th " "-m meter_name --threshold 5 " "--project-id %s" % PROJECT_ID)) alarm = self.details_multiple(result)[0] ALARM_ID = alarm['alarm_id'] self.assertEqual('alarm_th', alarm['name']) self.assertEqual('meter_name', alarm['meter_name']) self.assertEqual('5.0', alarm['threshold']) # CREATE WITH --TIME-CONSTRAINT result = self.aodh( u'alarm', params=(u"create --type threshold --name alarm_tc " "-m meter_name --threshold 5 " "--time-constraint " "name=cons1;start='0 11 * * *';duration=300 " "--time-constraint " "name=cons2;start='0 23 * * *';duration=600 " "--project-id %s" % PROJECT_ID)) alarm = self.details_multiple(result)[0] self.assertEqual('alarm_tc', alarm['name']) self.assertEqual('meter_name', alarm['meter_name']) self.assertEqual('5.0', alarm['threshold']) self.assertIsNotNone(alarm['time_constraints']) # CREATE FAIL MISSING PARAM self.assertRaises(exceptions.CommandFailed, self.aodh, u'alarm', params=(u"create --type threshold --name alarm_th " "--project-id %s" % PROJECT_ID)) # UPDATE result = self.aodh( 'alarm', params=("update %s --severity critical --threshold 10" % ALARM_ID)) alarm_updated = self.details_multiple(result)[0] self.assertEqual(ALARM_ID, alarm_updated["alarm_id"]) self.assertEqual('critical', alarm_updated['severity']) self.assertEqual('10.0', alarm_updated["threshold"]) # GET result = self.aodh( 'alarm', params="show %s" % ALARM_ID) alarm_show = self.details_multiple(result)[0] self.assertEqual(ALARM_ID, alarm_show["alarm_id"]) self.assertEqual(PROJECT_ID, alarm_show["project_id"]) self.assertEqual('alarm_th', alarm_show['name']) self.assertEqual('meter_name', alarm_show['meter_name']) self.assertEqual('10.0', alarm_show['threshold']) # GET BY NAME result = self.aodh( 'alarm', params="show --name alarm_th") alarm_show = self.details_multiple(result)[0] self.assertEqual(ALARM_ID, alarm_show["alarm_id"]) self.assertEqual(PROJECT_ID, alarm_show["project_id"]) self.assertEqual('alarm_th', alarm_show['name']) self.assertEqual('meter_name', alarm_show['meter_name']) self.assertEqual('10.0', alarm_show['threshold']) # GET BY NAME AND ID ERROR self.assertRaises(exceptions.CommandFailed, self.aodh, u'alarm', params=(u"show %s --name alarm_th" % ALARM_ID)) # LIST result = self.aodh('alarm', params="list") self.assertIn(ALARM_ID, [r['alarm_id'] for r in self.parser.listing(result)]) output_colums = ['alarm_id', 'type', 'name', 'state', 'severity', 'enabled'] for alarm_list in self.parser.listing(result): self.assertEqual(sorted(output_colums), sorted(alarm_list.keys())) if alarm_list["alarm_id"] == ALARM_ID: self.assertEqual('alarm_th', alarm_list['name']) # LIST WITH PAGINATION # list with limit result = self.aodh('alarm', params="list --limit 1") alarm_list = self.parser.listing(result) self.assertEqual(1, len(alarm_list)) # list with sort with key=name dir=asc result = self.aodh('alarm', params="list --sort name:asc") names = [r['name'] for r in self.parser.listing(result)] sorted_name = sorted(names) self.assertEqual(sorted_name, names) # list with sort with key=name dir=asc and key=alarm_id dir=asc result = self.aodh(u'alarm', params=(u"create --type threshold --name alarm_th " "-m meter_name --threshold 5 " "--project-id %s" % PROJECT_ID)) created_alarm_id = self.details_multiple(result)[0]['alarm_id'] result = self.aodh('alarm', params="list --sort name:asc --sort alarm_id:asc") alarm_list = self.parser.listing(result) ids_with_same_name = [] names = [] for alarm in alarm_list: names.append(['alarm_name']) if alarm['name'] == 'alarm_th': ids_with_same_name.append(alarm['alarm_id']) sorted_ids = sorted(ids_with_same_name) sorted_names = sorted(names) self.assertEqual(sorted_names, names) self.assertEqual(sorted_ids, ids_with_same_name) # list with sort with key=name dir=desc and with the marker equal to # the alarm_id of the alarm_th we created for this test. result = self.aodh('alarm', params="list --sort name:desc " "--marker %s" % created_alarm_id) self.assertIn('alarm_tc', [r['name'] for r in self.parser.listing(result)]) self.aodh('alarm', params="delete %s" % created_alarm_id) # LIST WITH QUERY result = self.aodh('alarm', params=("list --query project_id=%s" % PROJECT_ID)) alarm_list = self.parser.listing(result)[0] self.assertEqual(ALARM_ID, alarm_list["alarm_id"]) self.assertEqual('alarm_th', alarm_list['name']) # DELETE result = self.aodh('alarm', params="delete %s" % ALARM_ID) self.assertEqual("", result) # GET FAIL result = self.aodh('alarm', params="show %s" % ALARM_ID, fail_ok=True, merge_stderr=True) expected = "Alarm %s not found (HTTP 404)" % ALARM_ID self.assertFirstLineStartsWith(result.splitlines(), expected) # DELETE FAIL result = self.aodh('alarm', params="delete %s" % ALARM_ID, fail_ok=True, merge_stderr=True) self.assertFirstLineStartsWith(result.splitlines(), expected) # LIST DOES NOT HAVE ALARM result = self.aodh('alarm', params="list") self.assertNotIn(ALARM_ID, [r['alarm_id'] for r in self.parser.listing(result)]) def test_composite_scenario(self): project_id = uuidutils.generate_uuid() # CREATE result = self.aodh(u'alarm', params=(u'create --type composite --name calarm1 ' ' --composite-rule \'{"or":[{"threshold"' ': 0.8,"meter_name": "cpu_util",' '"type": "threshold"},{"and": [' '{"threshold": 200, "meter_name": ' '"disk.iops", "type": "threshold"},' '{"threshold": 1000,"meter_name":' '"network.incoming.packets.rate",' '"type": "threshold"}]}]}\' ' '--project-id %s' % project_id)) alarm = self.details_multiple(result)[0] alarm_id = alarm['alarm_id'] self.assertEqual('calarm1', alarm['name']) self.assertEqual('composite', alarm['type']) self.assertIn('composite_rule', alarm) # CREATE FAIL MISSING PARAM self.assertRaises(exceptions.CommandFailed, self.aodh, u'alarm', params=(u"create --type composite --name calarm1 " "--project-id %s" % project_id)) # UPDATE result = self.aodh( 'alarm', params=("update %s --severity critical" % alarm_id)) alarm_updated = self.details_multiple(result)[0] self.assertEqual(alarm_id, alarm_updated["alarm_id"]) self.assertEqual('critical', alarm_updated['severity']) # GET result = self.aodh( 'alarm', params="show %s" % alarm_id) alarm_show = self.details_multiple(result)[0] self.assertEqual(alarm_id, alarm_show["alarm_id"]) self.assertEqual(project_id, alarm_show["project_id"]) self.assertEqual('calarm1', alarm_show['name']) # GET BY NAME result = self.aodh( 'alarm', params="show --name calarm1") alarm_show = self.details_multiple(result)[0] self.assertEqual(alarm_id, alarm_show["alarm_id"]) self.assertEqual(project_id, alarm_show["project_id"]) self.assertEqual('calarm1', alarm_show['name']) # GET BY NAME AND ID ERROR self.assertRaises(exceptions.CommandFailed, self.aodh, u'alarm', params=(u"show %s --name calarm1" % alarm_id)) # LIST result = self.aodh('alarm', params="list") self.assertIn(alarm_id, [r['alarm_id'] for r in self.parser.listing(result)]) output_colums = ['alarm_id', 'type', 'name', 'state', 'severity', 'enabled'] for alarm_list in self.parser.listing(result): self.assertEqual(sorted(output_colums), sorted(alarm_list.keys())) if alarm_list["alarm_id"] == alarm_id: self.assertEqual('calarm1', alarm_list['name']) # LIST WITH QUERY result = self.aodh('alarm', params=("list --query project_id=%s" % project_id)) alarm_list = self.parser.listing(result)[0] self.assertEqual(alarm_id, alarm_list["alarm_id"]) self.assertEqual('calarm1', alarm_list['name']) # DELETE result = self.aodh('alarm', params="delete %s" % alarm_id) self.assertEqual("", result) # GET FAIL result = self.aodh('alarm', params="show %s" % alarm_id, fail_ok=True, merge_stderr=True) expected = "Alarm %s not found (HTTP 404)" % alarm_id self.assertFirstLineStartsWith(result.splitlines(), expected) # DELETE FAIL result = self.aodh('alarm', params="delete %s" % alarm_id, fail_ok=True, merge_stderr=True) self.assertFirstLineStartsWith(result.splitlines(), expected) # LIST DOES NOT HAVE ALARM result = self.aodh('alarm', params="list") self.assertNotIn(alarm_id, [r['alarm_id'] for r in self.parser.listing(result)])
<filename>qiskit/visualization/text.py # -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ A module for drawing circuits in ascii art or some other text representation """ from shutil import get_terminal_size import sys from numpy import ndarray from qiskit.circuit import ControlledGate from .tools.pi_check import pi_check from .exceptions import VisualizationError class DrawElement(): """ An element is an instruction or an operation that need to be drawn.""" def __init__(self, label=None): self._width = None self.label = self.mid_content = label self.top_format = self.mid_format = self.bot_format = "%s" self.top_connect = self.bot_connect = " " self.top_pad = self._mid_padding = self.bot_pad = " " self.mid_bck = self.top_bck = self.bot_bck = " " self.bot_connector = {} self.top_connector = {} self.right_fill = self.left_fill = self.layer_width = 0 self.wire_label = "" @property def top(self): """ Constructs the top line of the element""" ret = self.top_format % self.top_connect.center( self.width, self.top_pad) if self.right_fill: ret = ret.ljust(self.right_fill, self.top_pad) if self.left_fill: ret = ret.rjust(self.left_fill, self.top_pad) ret = ret.center(self.layer_width, self.top_bck) return ret @property def mid(self): """ Constructs the middle line of the element""" ret = self.mid_format % self.mid_content.center( self.width, self._mid_padding) if self.right_fill: ret = ret.ljust(self.right_fill, self._mid_padding) if self.left_fill: ret = ret.rjust(self.left_fill, self._mid_padding) ret = ret.center(self.layer_width, self.mid_bck) return ret @property def bot(self): """ Constructs the bottom line of the element""" ret = self.bot_format % self.bot_connect.center( self.width, self.bot_pad) if self.right_fill: ret = ret.ljust(self.right_fill, self.bot_pad) if self.left_fill: ret = ret.rjust(self.left_fill, self.bot_pad) ret = ret.center(self.layer_width, self.bot_bck) return ret @property def length(self): """ Returns the length of the element, including the box around.""" return max(len(self.top), len(self.mid), len(self.bot)) @property def width(self): """ Returns the width of the label, including padding""" if self._width: return self._width return len(self.mid_content) @width.setter def width(self, value): self._width = value def connect(self, wire_char, where, label=None): """Connects boxes and elements using wire_char and setting proper connectors. Args: wire_char (char): For example '║' or '│'. where (list["top", "bot"]): Where the connector should be set. label (string): Some connectors have a label (see cu1, for example). """ if 'top' in where and self.top_connector: self.top_connect = self.top_connector[wire_char] if 'bot' in where and self.bot_connector: self.bot_connect = self.bot_connector[wire_char] if label: self.top_format = self.top_format[:-1] + (label if label else "") class BoxOnClWire(DrawElement): """Draws a box on the classical wire. :: top: ┌───┐ ┌───┐ mid: ╡ A ╞ ══╡ A ╞══ bot: └───┘ └───┘ """ def __init__(self, label="", top_connect='─', bot_connect='─'): super().__init__(label) self.top_format = "┌─%s─┐" self.mid_format = "╡ %s ╞" self.bot_format = "└─%s─┘" self.top_pad = self.bot_pad = '─' self.mid_bck = '═' self.top_connect = top_connect self.bot_connect = bot_connect self.mid_content = label class BoxOnQuWire(DrawElement): """Draws a box on the quantum wire. :: top: ┌───┐ ┌───┐ mid: ┤ A ├ ──┤ A ├── bot: └───┘ └───┘ """ def __init__(self, label="", top_connect='─', conditional=False): super().__init__(label) self.top_format = "┌─%s─┐" self.mid_format = "┤ %s ├" self.bot_format = "└─%s─┘" self.top_pad = self.bot_pad = self.mid_bck = '─' self.top_connect = top_connect self.bot_connect = '┬' if conditional else '─' self.mid_content = label self.top_connector = {"│": '┴'} self.bot_connector = {"│": '┬'} class MeasureTo(DrawElement): """The element on the classic wire to which the measure is performed. :: top: ║ ║ mid: ═╩═ ═══╩═══ bot: """ def __init__(self): super().__init__() self.top_connect = " ║ " self.mid_content = "═╩═" self.bot_connect = " " self.mid_bck = "═" class MeasureFrom(BoxOnQuWire): """The element on the quantum wire in which the measure is performed. :: top: ┌─┐ ┌─┐ mid: ┤M├ ───┤M├─── bot: └╥┘ └╥┘ """ def __init__(self): super().__init__() self.top_format = self.mid_format = self.bot_format = "%s" self.top_connect = "┌─┐" self.mid_content = "┤M├" self.bot_connect = "└╥┘" self.top_pad = self.bot_pad = " " self._mid_padding = '─' class MultiBox(DrawElement): """Elements that is draw on over multiple wires.""" def center_label(self, input_length, order): """In multi-bit elements, the label is centered vertically. Args: input_length (int): Rhe amount of wires affected. order (int): Which middle element is this one? """ if input_length == order == 0: self.top_connect = self.label return location_in_the_box = '*'.center(input_length * 2 - 1).index('*') + 1 top_limit = order * 2 + 2 bot_limit = top_limit + 2 if top_limit <= location_in_the_box < bot_limit: if location_in_the_box == top_limit: self.top_connect = self.label elif location_in_the_box == top_limit + 1: self.mid_content = self.label else: self.bot_connect = self.label @property def width(self): """ Returns the width of the label, including padding""" if self._width: return self._width return len(self.label) class BoxOnQuWireTop(MultiBox, BoxOnQuWire): """ Draws the top part of a box that affects more than one quantum wire""" def __init__(self, label="", top_connect=None, wire_label=''): super().__init__(label) self.wire_label = wire_label self.bot_connect = self.bot_pad = " " self.mid_content = "" # The label will be put by some other part of the box. self.left_fill = len(self.wire_label) self.top_format = "┌{}─%s─┐".format(self.top_pad * self.left_fill) self.mid_format = "┤{} %s ├".format(self.wire_label) self.bot_format = "│{} %s │".format(self.bot_pad * self.left_fill) self.top_connect = top_connect if top_connect else '─' class BoxOnWireMid(MultiBox): """ A generic middle box""" def __init__(self, label, input_length, order, wire_label=''): super().__init__(label, input_length, order) self.top_pad = self.bot_pad = self.top_connect = self.bot_connect = " " self.wire_label = wire_label self.left_fill = len(self.wire_label) self.top_format = "│{} %s │".format(self.top_pad * self.left_fill) self.bot_format = "│{} %s │".format(self.bot_pad * self.left_fill) self.top_connect = self.bot_connect = self.mid_content = '' self.center_label(input_length, order) class BoxOnQuWireMid(BoxOnWireMid, BoxOnQuWire): """ Draws the middle part of a box that affects more than one quantum wire""" def __init__(self, label, input_length, order, wire_label=''): super().__init__(label, input_length, order, wire_label=wire_label) self.mid_format = "┤{} %s ├".format(self.wire_label) class BoxOnQuWireBot(MultiBox, BoxOnQuWire): """ Draws the bottom part of a box that affects more than one quantum wire""" def __init__(self, label, input_length, bot_connect='─', wire_label='', conditional=False): super().__init__(label) self.wire_label = wire_label self.top_pad = " " self.left_fill = len(self.wire_label) self.top_format = "│{} %s │".format(self.top_pad * self.left_fill) self.mid_format = "┤{} %s ├".format(self.wire_label) self.bot_format = "└{}%s──┘".format(self.bot_pad * self.left_fill) self.bot_connect = '┬' if conditional else bot_connect self.mid_content = self.top_connect = "" if input_length <= 2: self.top_connect = label class BoxOnClWireTop(MultiBox, BoxOnClWire): """ Draws the top part of a conditional box that affects more than one classical wire""" def __init__(self, label="", top_connect=None, wire_label=''): super().__init__(label) self.wire_label = wire_label self.mid_content = "" # The label will be put by some other part of the box. self.bot_format = "│ %s │" self.top_connect = top_connect if top_connect else '─' self.bot_connect = self.bot_pad = " " class BoxOnClWireMid(BoxOnWireMid, BoxOnClWire): """ Draws the middle part of a conditional box that affects more than one classical wire""" def __init__(self, label, input_length, order, wire_label=''): super().__init__(label, input_length, order, wire_label=wire_label) self.mid_format = "╡{} %s ╞".format(self.wire_label) class BoxOnClWireBot(MultiBox, BoxOnClWire): """ Draws the bottom part of a conditional box that affects more than one classical wire""" def __init__(self, label, input_length, bot_connect='─', wire_label='', **_): super().__init__(label) self.wire_label = wire_label self.left_fill = len(self.wire_label) self.top_pad = ' ' self.bot_pad = '─' self.top_format = "│{} %s │".format(self.top_pad * self.left_fill) self.mid_format = "╡{} %s ╞".format(self.wire_label) self.bot_format = "└{}%s──┘".format(self.bot_pad * self.left_fill) self.bot_connect = bot_connect self.mid_content = self.top_connect = "" if input_length <= 2: self.top_connect = label class DirectOnQuWire(DrawElement): """ Element to the wire (without the box). """ def __init__(self, label=""): super().__init__(label) self.top_format = ' %s ' self.mid_format = '─%s─' self.bot_format = ' %s ' self._mid_padding = self.mid_bck = '─' self.top_connector = {"│": '│'} self.bot_connector = {"│": '│'} class Barrier(DirectOnQuWire): """Draws a barrier. :: top: ░ ░ mid: ─░─ ───░─── bot: ░ ░ """ def __init__(self, label=""): super().__init__("░") self.top_connect = "░" self.bot_connect = "░" self.top_connector = {} self.bot_connector = {} class Ex(DirectOnQuWire): """Draws an X (usually with a connector). E.g. the top part of a swap gate. :: top: mid: ─X─ ───X─── bot: │ │ """ def __init__(self, bot_connect=" ", top_connect=" ", conditional=False): super().__init__("X") self.bot_connect = "│" if conditional else bot_connect self.top_connect = top_connect class Reset(DirectOnQuWire): """ Draws a reset gate""" def __init__(self, conditional=False): super().__init__("|0>") if conditional: self.bot_connect = "│" class Bullet(DirectOnQuWire): """ Draws a bullet (usually with a connector). E.g. the top part of a CX gate. :: top: mid: ─■─ ───■───
= t if hasattr(self, '_set'): self._set() def _unset_member_vnf_index(self): self.__member_vnf_index = YANGDynClass(base=six.text_type, is_leaf=True, yang_name="member-vnf-index", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='string', is_config=True) def _get_vimAccountId(self): """ Getter method for vimAccountId, mapped from YANG variable /nst/netslice_subnet/instantiation_parameters/vnf/vimAccountId (string) """ return self.__vimAccountId def _set_vimAccountId(self, v, load=False): """ Setter method for vimAccountId, mapped from YANG variable /nst/netslice_subnet/instantiation_parameters/vnf/vimAccountId (string) If this variable is read-only (config: false) in the source YANG file, then _set_vimAccountId is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_vimAccountId() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=six.text_type, is_leaf=True, yang_name="vimAccountId", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='string', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """vimAccountId must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=six.text_type, is_leaf=True, yang_name="vimAccountId", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='string', is_config=True)""", }) self.__vimAccountId = t if hasattr(self, '_set'): self._set() def _unset_vimAccountId(self): self.__vimAccountId = YANGDynClass(base=six.text_type, is_leaf=True, yang_name="vimAccountId", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='string', is_config=True) def _get_vdu(self): """ Getter method for vdu, mapped from YANG variable /nst/netslice_subnet/instantiation_parameters/vnf/vdu (list) """ return self.__vdu def _set_vdu(self, v, load=False): """ Setter method for vdu, mapped from YANG variable /nst/netslice_subnet/instantiation_parameters/vnf/vdu (list) If this variable is read-only (config: false) in the source YANG file, then _set_vdu is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_vdu() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGListType("id",yc_vdu_nst__nst_netslice_subnet_instantiation_parameters_vnf_vdu, yang_name="vdu", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='id', extensions=None), is_container='list', yang_name="vdu", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='list', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """vdu must be of a type compatible with list""", 'defined-type': "list", 'generated-type': """YANGDynClass(base=YANGListType("id",yc_vdu_nst__nst_netslice_subnet_instantiation_parameters_vnf_vdu, yang_name="vdu", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='id', extensions=None), is_container='list', yang_name="vdu", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='list', is_config=True)""", }) self.__vdu = t if hasattr(self, '_set'): self._set() def _unset_vdu(self): self.__vdu = YANGDynClass(base=YANGListType("id",yc_vdu_nst__nst_netslice_subnet_instantiation_parameters_vnf_vdu, yang_name="vdu", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='id', extensions=None), is_container='list', yang_name="vdu", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='list', is_config=True) def _get_internal_vld(self): """ Getter method for internal_vld, mapped from YANG variable /nst/netslice_subnet/instantiation_parameters/vnf/internal_vld (list) """ return self.__internal_vld def _set_internal_vld(self, v, load=False): """ Setter method for internal_vld, mapped from YANG variable /nst/netslice_subnet/instantiation_parameters/vnf/internal_vld (list) If this variable is read-only (config: false) in the source YANG file, then _set_internal_vld is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_internal_vld() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGListType("name",yc_internal_vld_nst__nst_netslice_subnet_instantiation_parameters_vnf_internal_vld, yang_name="internal-vld", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='name', extensions=None), is_container='list', yang_name="internal-vld", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='list', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """internal_vld must be of a type compatible with list""", 'defined-type': "list", 'generated-type': """YANGDynClass(base=YANGListType("name",yc_internal_vld_nst__nst_netslice_subnet_instantiation_parameters_vnf_internal_vld, yang_name="internal-vld", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='name', extensions=None), is_container='list', yang_name="internal-vld", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='list', is_config=True)""", }) self.__internal_vld = t if hasattr(self, '_set'): self._set() def _unset_internal_vld(self): self.__internal_vld = YANGDynClass(base=YANGListType("name",yc_internal_vld_nst__nst_netslice_subnet_instantiation_parameters_vnf_internal_vld, yang_name="internal-vld", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='name', extensions=None), is_container='list', yang_name="internal-vld", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='list', is_config=True) member_vnf_index = __builtin__.property(_get_member_vnf_index, _set_member_vnf_index) vimAccountId = __builtin__.property(_get_vimAccountId, _set_vimAccountId) vdu = __builtin__.property(_get_vdu, _set_vdu) internal_vld = __builtin__.property(_get_internal_vld, _set_internal_vld) _pyangbind_elements = OrderedDict([('member_vnf_index', member_vnf_index), ('vimAccountId', vimAccountId), ('vdu', vdu), ('internal_vld', internal_vld), ]) class yc_dns_server_nst__nst_netslice_subnet_instantiation_parameters_vld_ip_profile_dns_server(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module nst - based on the path /nst/netslice-subnet/instantiation-parameters/vld/ip-profile/dns-server. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_path_helper', '_extmethods', '__address',) _yang_name = 'dns-server' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__address = YANGDynClass(base=[RestrictedClassType(base_type=six.text_type, restriction_dict={u'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}),RestrictedClassType(base_type=six.text_type, restriction_dict={u'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?'}),], is_leaf=True, yang_name="address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='inet:ip-address', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'nst', u'netslice-subnet', u'instantiation-parameters', u'vld', u'ip-profile', u'dns-server'] def _get_address(self): """ Getter method for address, mapped from YANG variable /nst/netslice_subnet/instantiation_parameters/vld/ip_profile/dns_server/address (inet:ip-address) """ return self.__address def _set_address(self, v, load=False): """ Setter method for address, mapped from YANG variable /nst/netslice_subnet/instantiation_parameters/vld/ip_profile/dns_server/address (inet:ip-address) If this variable is read-only (config: false) in the source YANG file, then _set_address is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_address() directly. """ parent = getattr(self, "_parent", None) if parent is not None and load is False: raise AttributeError("Cannot set keys directly when" + " within an instantiated list") if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=[RestrictedClassType(base_type=six.text_type, restriction_dict={u'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}),RestrictedClassType(base_type=six.text_type, restriction_dict={u'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?'}),], is_leaf=True, yang_name="address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='inet:ip-address', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """address must be of a type compatible with inet:ip-address""", 'defined-type': "inet:ip-address", 'generated-type': """YANGDynClass(base=[RestrictedClassType(base_type=six.text_type, restriction_dict={u'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}),RestrictedClassType(base_type=six.text_type, restriction_dict={u'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?'}),], is_leaf=True, yang_name="address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='inet:ip-address', is_config=True)""", }) self.__address = t if hasattr(self, '_set'): self._set() def _unset_address(self): self.__address = YANGDynClass(base=[RestrictedClassType(base_type=six.text_type, restriction_dict={u'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}),RestrictedClassType(base_type=six.text_type, restriction_dict={u'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?'}),], is_leaf=True, yang_name="address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='inet:ip-address', is_config=True) address = __builtin__.property(_get_address, _set_address) _pyangbind_elements = OrderedDict([('address', address), ]) class yc_dhcp_params_nst__nst_netslice_subnet_instantiation_parameters_vld_ip_profile_dhcp_params(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module nst - based on the path /nst/netslice-subnet/instantiation-parameters/vld/ip-profile/dhcp-params. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_path_helper', '_extmethods', '__enabled','__count','__start_address',) _yang_name = 'dhcp-params' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__count = YANGDynClass(base=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), is_leaf=True, yang_name="count", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='uint8', is_config=True) self.__start_address = YANGDynClass(base=[RestrictedClassType(base_type=six.text_type, restriction_dict={u'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}),RestrictedClassType(base_type=six.text_type, restriction_dict={u'pattern': u'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?'}),], is_leaf=True, yang_name="start-address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='inet:ip-address', is_config=True) self.__enabled = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='boolean', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'nst', u'netslice-subnet', u'instantiation-parameters', u'vld', u'ip-profile', u'dhcp-params'] def _get_enabled(self): """ Getter method for enabled, mapped from YANG variable /nst/netslice_subnet/instantiation_parameters/vld/ip_profile/dhcp_params/enabled (boolean) """ return self.__enabled def _set_enabled(self, v, load=False): """ Setter method for enabled, mapped from YANG variable /nst/netslice_subnet/instantiation_parameters/vld/ip_profile/dhcp_params/enabled (boolean) If this variable is read-only (config: false) in the source YANG file, then _set_enabled is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_enabled() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='boolean', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """enabled must be of a type compatible with boolean""", 'defined-type': "boolean", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='boolean', is_config=True)""", }) self.__enabled = t if hasattr(self, '_set'): self._set() def _unset_enabled(self): self.__enabled = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:etsi:osm:yang:nst', defining_module='nst', yang_type='boolean', is_config=True) def _get_count(self): """ Getter method for count, mapped from YANG variable /nst/netslice_subnet/instantiation_parameters/vld/ip_profile/dhcp_params/count (uint8) """ return self.__count def _set_count(self, v, load=False): """ Setter method for count, mapped from YANG variable /nst/netslice_subnet/instantiation_parameters/vld/ip_profile/dhcp_params/count (uint8) If this variable is read-only (config: false) in the source YANG file, then _set_count is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_count() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t =
Linearize non-linear problem """ H = zeros((param_size, param_size)) g = zeros(param_size) # Form Hessian and R.H.S of Gauss newton for _, factor in self.factors.items(): factor_params = [params[pid].param for pid in factor.param_ids] r, jacobians = factor.eval(factor_params) # Form Hessian nb_params = len(factor_params) for i in range(nb_params): param_i = params[factor.param_ids[i]] if param_i.fix: continue idx_i = param_idxs[factor.param_ids[i]] size_i = param_i.min_dims J_i = jacobians[i] for j in range(i, nb_params): param_j = params[factor.param_ids[j]] if param_j.fix: continue idx_j = param_idxs[factor.param_ids[j]] size_j = param_j.min_dims J_j = jacobians[j] rs = idx_i re = idx_i + size_i cs = idx_j ce = idx_j + size_j if i == j: # Diagonal H[rs:re, cs:ce] += J_i.T @ J_j else: # Off-Diagonal H[rs:re, cs:ce] += J_i.T @ J_j H[cs:ce, rs:re] += H[rs:re, cs:ce].T # Form R.H.S. Gauss Newton g rs = idx_i re = idx_i + size_i g[rs:re] += (-J_i.T @ r) return (H, g) def _evaluate(self, params): """ Evaluate """ (param_idxs, param_size) = self._form_param_indices() (H, g) = self._linearize(params, param_idxs, param_size) return ((H, g), param_idxs) def _calculate_residuals(self, params): """ Calculate Residuals """ residuals = [] for _, factor in self.factors.items(): factor_params = [params[pid].param for pid in factor.param_ids] r = factor.eval(factor_params, only_residuals=True) residuals.append(r) return np.array(residuals).flatten() def _calculate_cost(self, params): """ Calculate Cost """ r = self._calculate_residuals(params) return 0.5 * (r.T @ r) @staticmethod def _update(params_k, param_idxs, dx): """ Update """ params_kp1 = copy.deepcopy(params_k) for param_id, param in params_kp1.items(): # Check if param even exists if param_id not in param_idxs: continue # Update parameter start = param_idxs[param_id] end = start + param.min_dims param_dx = dx[start:end] update_state_variable(param, param_dx) return params_kp1 @staticmethod def _solve_for_dx(lambda_k, H, g): """ Solve for dx """ # Damp Hessian H = H + lambda_k * eye(H.shape[0]) # H = H + lambda_k * np.diag(H.diagonal()) # # Pseudo inverse # dx = pinv(H) @ g # # Linear solver # dx = np.linalg.solve(H, g) # # Cholesky decomposition c, low = scipy.linalg.cho_factor(H) dx = scipy.linalg.cho_solve((c, low), g) # SVD # dx = solve_svd(H, g) # # Sparse cholesky decomposition # sH = scipy.sparse.csc_matrix(H) # dx = scipy.sparse.linalg.spsolve(sH, g) return dx def solve(self, verbose=False): """ Solve """ lambda_k = self.solver_lambda params_k = copy.deepcopy(self.params) cost_k = self._calculate_cost(params_k) # First evaluation if verbose: print(f"nb_factors: {len(self.factors)}") print(f"nb_params: {len(self.params)}") self._print_to_console(0, lambda_k, cost_k, cost_k) # Iterate for i in range(1, self.solver_max_iter): # Update and calculate cost ((H, g), param_idxs) = self._evaluate(params_k) dx = self._solve_for_dx(lambda_k, H, g) params_kp1 = self._update(params_k, param_idxs, dx) cost_kp1 = self._calculate_cost(params_kp1) # Verbose if verbose: self._print_to_console(i, lambda_k, cost_kp1, cost_k) # Accept or reject update if cost_kp1 < cost_k: # Accept update cost_k = cost_kp1 params_k = params_kp1 lambda_k /= 10.0 else: # Reject update params_k = params_k lambda_k *= 10.0 # Finish - set the original params the optimized values # Note: The reason we don't just do `self.params = params_k` is because # that would destroy the references to outside `FactorGraph()`. for param_id, param in params_k.items(): self.params[param_id].param = param.param # FEATURE TRACKING ############################################################# def draw_matches(img_i, img_j, kps_i, kps_j, **kwargs): """ Draw keypoint matches between images `img_i` and `img_j` with keypoints `kps_i` and `kps_j` """ assert len(kps_i) == len(kps_j) nb_kps = len(kps_i) viz = cv2.hconcat([img_i, img_j]) viz = cv2.cvtColor(viz, cv2.COLOR_GRAY2RG) color = (0, 255, 0) radius = 3 thickness = kwargs.get('thickness', cv2.FILLED) linetype = kwargs.get('linetype', cv2.LINE_AA) for n in range(nb_kps): pt_i = None pt_j = None if hasattr(kps_i[n], 'pt'): pt_i = (int(kps_i[n].pt[0]), int(kps_i[n].pt[1])) pt_j = (int(kps_j[n].pt[0] + img_i.shape[1]), int(kps_j[n].pt[1])) else: pt_i = (int(kps_i[n][0]), int(kps_i[n][1])) pt_j = (int(kps_j[n][0] + img_i.shape[1]), int(kps_j[n][1])) cv2.circle(viz, pt_i, radius, color, thickness, lineType=linetype) cv2.circle(viz, pt_j, radius, color, thickness, lineType=linetype) cv2.line(viz, pt_i, pt_j, color, 1, linetype) return viz def draw_keypoints(img, kps, inliers=None, **kwargs): """ Draw points `kps` on image `img`. The `inliers` boolean list is optional and is expected to be the same size as `kps` denoting whether the point should be drawn or not. """ inliers = [1 for i in range(len(kps))] if inliers is None else inliers radius = kwargs.get('radius', 2) color = kwargs.get('color', (0, 255, 0)) thickness = kwargs.get('thickness', cv2.FILLED) linetype = kwargs.get('linetype', cv2.LINE_AA) viz = img if len(img.shape) == 2: viz = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) for n, kp in enumerate(kps): if inliers[n]: p = None if hasattr(kp, 'pt'): p = (int(kp.pt[0]), int(kp.pt[1])) else: p = (int(kp[0]), int(kp[1])) cv2.circle(viz, p, radius, color, thickness, lineType=linetype) return viz def sort_keypoints(kps): """ Sort a list of cv2.KeyPoint based on their response """ responses = [kp.response for kp in kps] indices = range(len(responses)) indices = sorted(indices, key=lambda i: responses[i], reverse=True) return [kps[i] for i in indices] def spread_keypoints(img, kps, min_dist, **kwargs): """ Given a set of keypoints `kps` make sure they are atleast `min_dist` pixels away from each other, if they are not remove them. """ # Pre-check if not kps: return kps # Setup debug = kwargs.get('debug', False) prev_kps = kwargs.get('prev_kps', []) min_dist = int(min_dist) img_h, img_w = img.shape A = np.zeros(img.shape) # Allowable areas are marked 0 else not allowed # Loop through previous keypoints for kp in prev_kps: # Convert from keypoint to tuple p = (int(kp.pt[0]), int(kp.pt[1])) # Fill the area of the matrix where the next keypoint cannot be around rs = int(max(p[1] - min_dist, 0.0)) re = int(min(p[1] + min_dist + 1, img_h)) cs = int(max(p[0] - min_dist, 0.0)) ce = int(min(p[0] + min_dist + 1, img_w)) A[rs:re, cs:ce] = np.ones((re - rs, ce - cs)) # Loop through keypoints kps_results = [] for kp in sort_keypoints(kps): # Convert from keypoint to tuple p = (int(kp.pt[0]), int(kp.pt[1])) # Check if point is ok to be added to results if A[p[1], p[0]] > 0.0: continue # Fill the area of the matrix where the next keypoint cannot be around rs = int(max(p[1] - min_dist, 0.0)) re = int(min(p[1] + min_dist + 1, img_h)) cs = int(max(p[0] - min_dist, 0.0)) ce = int(min(p[0] + min_dist + 1, img_w)) A[rs:re, cs:ce] = np.ones((re - rs, ce - cs)) A[p[1], p[0]] = 2 # Add to results kps_results.append(kp) # Debug if debug: img = draw_keypoints(img, kps_results, radius=3) plt.figure() ax = plt.subplot(121) ax.imshow(A) ax.set_xlabel('pixel') ax.set_ylabel('pixel') ax.xaxis.tick_top() ax.xaxis.set_label_position('top') ax = plt.subplot(122) ax.imshow(img) ax.set_xlabel('pixel') ax.set_ylabel('pixel') ax.xaxis.tick_top() ax.xaxis.set_label_position('top') plt.show() return kps_results class FeatureGrid: """ FeatureGrid The idea is to take all the feature positions and put them into grid cells across the full image space. This is so that one could keep track of how many feautures are being tracked in each individual grid cell and act accordingly. o-----> x | --------------------- | | 0 | 1 | 2 | 3 | V --------------------- y | 4 | 5 | 6 | 7 | --------------------- | 8 | 9 | 10 | 11 | --------------------- | 12 | 13 | 14 | 15 | --------------------- grid_x = ceil((max(1, pixel_x) / img_w) * grid_cols) - 1.0 grid_y = ceil((max(1, pixel_y) / img_h) * grid_rows) - 1.0 cell_id = int(grid_x + (grid_y * grid_cols)) """ def __init__(self, grid_rows, grid_cols, image_shape, keypoints): assert len(image_shape) == 2 self.grid_rows = grid_rows self.grid_cols = grid_cols self.image_shape = image_shape self.keypoints = keypoints self.cell = [0 for i in range(self.grid_rows * self.grid_cols)] for kp in keypoints: if hasattr(kp, 'pt'): # cv2.KeyPoint assert (kp.pt[0] >= 0 and kp.pt[0] <= image_shape[1]) assert (kp.pt[1] >= 0 and kp.pt[1] <= image_shape[0]) self.cell[self.cell_index(kp.pt)] += 1 else: # Tuple assert (kp[0] >= 0 and kp[0] <= image_shape[1]) assert (kp[1] >= 0 and kp[1] <= image_shape[0]) self.cell[self.cell_index(kp)] += 1 def cell_index(self, pt): """ Return cell index based on point `pt` """ pixel_x, pixel_y = pt img_h, img_w = self.image_shape grid_x = math.ceil((max(1, pixel_x) / img_w) * self.grid_cols) - 1.0 grid_y = math.ceil((max(1, pixel_y) / img_h) * self.grid_rows) - 1.0 cell_id = int(grid_x + (grid_y * self.grid_cols)) return cell_id def count(self, cell_idx): """ Return cell count """ return self.cell[cell_idx] def grid_detect(detector, image, **kwargs): """ Detect features uniformly using a grid system. """ optflow_mode = kwargs.get('optflow_mode', False) max_keypoints = kwargs.get('max_keypoints', 240) grid_rows = kwargs.get('grid_rows', 3) grid_cols = kwargs.get('grid_cols', 4) prev_kps =
dropcol_importances(rf, X_train, y_train) """ if X_valid is None: X_valid = X_train if y_valid is None: y_valid = y_train model_ = clone(model) model_.random_state = 999 model_.fit(X_train, y_train) if callable(metric): baseline = metric(model_, X_valid, y_valid, sample_weights) else: baseline = model_.score(X_valid, y_valid, sample_weights) imp = [] for col in X_train.columns: model_ = clone(model) model_.random_state = 999 model_.fit(X_train.drop(col,axis=1), y_train) if callable(metric): s = metric(model_, X_valid.drop(col,axis=1), y_valid, sample_weights) else: s = model_.score(X_valid.drop(col,axis=1), y_valid, sample_weights) drop_in_score = baseline - s imp.append(drop_in_score) imp = np.array(imp) I = pd.DataFrame(data={'Feature':X_train.columns, 'Importance':imp}) I = I.set_index('Feature') I = I.sort_values('Importance', ascending=False) return I def oob_dropcol_importances(rf, X_train, y_train): """ Compute drop-column feature importances for scikit-learn. Given a RandomForestClassifier or RandomForestRegressor in rf and training X and y data, return a data frame with columns Feature and Importance sorted in reverse order by importance. A clone of rf is trained once to get the baseline score and then again, once per feature to compute the drop in out of bag (OOB) score. return: A data frame with Feature, Importance columns SAMPLE CODE rf = RandomForestRegressor(n_estimators=100, n_jobs=-1, oob_score=True) X_train, y_train = ..., ... rf.fit(X_train, y_train) imp = oob_dropcol_importances(rf, X_train, y_train) """ rf_ = clone(rf) rf_.random_state = 999 rf_.oob_score = True rf_.fit(X_train, y_train) baseline = rf_.oob_score_ imp = [] for col in X_train.columns: rf_ = clone(rf) rf_.random_state = 999 rf_.oob_score = True rf_.fit(X_train.drop(col, axis=1), y_train) drop_in_score = baseline - rf_.oob_score_ imp.append(drop_in_score) imp = np.array(imp) I = pd.DataFrame(data={'Feature':X_train.columns, 'Importance':imp}) I = I.set_index('Feature') I = I.sort_values('Importance', ascending=False) return I def importances_raw(rf, X_train, y_train, n_samples=5000): if isinstance(rf, RandomForestClassifier): return permutation_importances_raw(rf, X_train, y_train, oob_classifier_accuracy, n_samples) elif isinstance(rf, RandomForestRegressor): return permutation_importances_raw(rf, X_train, y_train, oob_regression_r2_score, n_samples) return None def permutation_importances_raw(rf, X_train, y_train, metric, n_samples=5000): """ Return array of importances from pre-fit rf; metric is function that measures accuracy or R^2 or similar. This function works for regressors and classifiers. """ X_sample, y_sample, _ = sample(X_train, y_train, n_samples) if not hasattr(rf, 'estimators_'): rf.fit(X_sample, y_sample) baseline = metric(rf, X_sample, y_sample) X_train = X_sample.copy(deep=False) # shallow copy y_train = y_sample imp = [] for col in X_train.columns: save = X_train[col].copy() X_train[col] = np.random.permutation(X_train[col]) m = metric(rf, X_train, y_train) X_train[col] = save drop_in_metric = baseline - m imp.append(drop_in_metric) return np.array(imp) def _get_unsampled_indices(tree, n_samples): """ An interface to get unsampled indices regardless of sklearn version. """ if LooseVersion(sklearn.__version__) >= LooseVersion("0.22"): # Version 0.22 or newer uses 3 arguments. from sklearn.ensemble.forest import _get_n_samples_bootstrap n_samples_bootstrap = _get_n_samples_bootstrap(n_samples, n_samples) return _generate_unsampled_indices(tree.random_state, n_samples, n_samples_bootstrap) else: # Version 0.21 or older uses only two arguments. return _generate_unsampled_indices(tree.random_state, n_samples) def oob_classifier_accuracy(rf, X_train, y_train): """ Compute out-of-bag (OOB) accuracy for a scikit-learn random forest classifier. We learned the guts of scikit's RF from the BSD licensed code: https://github.com/scikit-learn/scikit-learn/blob/a24c8b46/sklearn/ensemble/forest.py#L425 """ X = X_train.values y = y_train.values n_samples = len(X) n_classes = len(np.unique(y)) predictions = np.zeros((n_samples, n_classes)) for tree in rf.estimators_: unsampled_indices = _get_unsampled_indices(tree, n_samples) tree_preds = tree.predict_proba(X[unsampled_indices, :]) predictions[unsampled_indices] += tree_preds predicted_class_indexes = np.argmax(predictions, axis=1) predicted_classes = [rf.classes_[i] for i in predicted_class_indexes] oob_score = np.mean(y == predicted_classes) return oob_score def oob_regression_r2_score(rf, X_train, y_train): """ Compute out-of-bag (OOB) R^2 for a scikit-learn random forest regressor. We learned the guts of scikit's RF from the BSD licensed code: https://github.com/scikit-learn/scikit-learn/blob/a24c8b46/sklearn/ensemble/forest.py#L702 """ X = X_train.values if isinstance(X_train, pd.DataFrame) else X_train y = y_train.values if isinstance(y_train, pd.Series) else y_train n_samples = len(X) predictions = np.zeros(n_samples) n_predictions = np.zeros(n_samples) for tree in rf.estimators_: unsampled_indices = _get_unsampled_indices(tree, n_samples) tree_preds = tree.predict(X[unsampled_indices, :]) predictions[unsampled_indices] += tree_preds n_predictions[unsampled_indices] += 1 if (n_predictions == 0).any(): warnings.warn("Too few trees; some variables do not have OOB scores.") n_predictions[n_predictions == 0] = 1 predictions /= n_predictions oob_score = r2_score(y, predictions) return oob_score def stemplot_importances(df_importances, yrot=0, label_fontsize=10, width=4, minheight=1.5, vscale=1.0, imp_range=(-.002, .15), color='#375FA5', bgcolor=None, # seaborn uses '#F1F8FE' xtick_precision=2, title=None): GREY = '#444443' I = df_importances unit = 1 imp = I.Importance.values mindrop = np.min(imp) maxdrop = np.max(imp) imp_padding = 0.002 imp_range = (min(imp_range[0], mindrop - imp_padding), max(imp_range[1], maxdrop)) barcounts = np.array([f.count('\n')+1 for f in I.index]) N = np.sum(barcounts) ymax = N * unit # print(f"barcounts {barcounts}, N={N}, ymax={ymax}") height = max(minheight, ymax * .27 * vscale) plt.close() fig = plt.figure(figsize=(width,height)) ax = plt.gca() ax.set_xlim(*imp_range) ax.set_ylim(0,ymax) ax.spines['top'].set_linewidth(.3) ax.spines['right'].set_linewidth(.3) ax.spines['left'].set_linewidth(.3) ax.spines['bottom'].set_linewidth(.3) if bgcolor: ax.set_facecolor(bgcolor) yloc = [] y = barcounts[0]*unit / 2 yloc.append(y) for i in range(1,len(barcounts)): wprev = barcounts[i-1] w = barcounts[i] y += (wprev + w)/2 * unit yloc.append(y) yloc = np.array(yloc) ax.xaxis.set_major_formatter(FormatStrFormatter(f'%.{xtick_precision}f')) ax.set_xticks([maxdrop, imp_range[1]]) ax.tick_params(labelsize=label_fontsize, labelcolor=GREY) ax.invert_yaxis() # labels read top-to-bottom if title: ax.set_title(title, fontsize=label_fontsize+1, fontname="Arial", color=GREY) plt.hlines(y=yloc, xmin=imp_range[0], xmax=imp, lw=barcounts*1.2, color=color) for i in range(len(I.index)): plt.plot(imp[i], yloc[i], "o", color=color, markersize=barcounts[i]+2) ax.set_yticks(yloc) ax.set_yticklabels(I.index, fontdict={'verticalalignment': 'center'}) plt.tick_params( pad=0, axis='y', which='both', left=False) # rotate y-ticks if yrot is not None: plt.yticks(rotation=yrot) plt.tight_layout() return PimpViz() def plot_importances(df_importances, yrot=0, label_fontsize=10, width=4, minheight=1.5, vscale=1, imp_range=(-.002, .15), color='#D9E6F5', bgcolor=None, # seaborn uses '#F1F8FE' xtick_precision=2, title=None, ax=None): """ Given an array or data frame of importances, plot a horizontal bar chart showing the importance values. :param df_importances: A data frame with Feature, Importance columns :type df_importances: pd.DataFrame :param width: Figure width in default units (inches I think). Height determined by number of features. :type width: int :param minheight: Minimum plot height in default matplotlib units (inches?) :type minheight: float :param vscale: Scale vertical plot (default .25) to make it taller :type vscale: float :param label_fontsize: Font size for feature names and importance values :type label_fontsize: int :param yrot: Degrees to rotate feature (Y axis) labels :type yrot: int :param label_fontsize: The font size for the column names and x ticks :type label_fontsize: int :param scalefig: Scale width and height of image (widthscale,heightscale) :type scalefig: 2-tuple of floats :param xtick_precision: How many digits after decimal for importance values. :type xtick_precision: int :param xtick_precision: Title of plot; set to None to avoid. :type xtick_precision: string :param ax: Matplotlib "axis" to plot into :return: None SAMPLE CODE rf = RandomForestRegressor(n_estimators=100, n_jobs=-1, oob_score=True) X_train, y_train = ..., ... rf.fit(X_train, y_train) imp = importances(rf, X_test, y_test) viz = plot_importances(imp) viz.save('file.svg') viz.save('file.pdf') viz.view() # or just viz in notebook """ I = df_importances unit = 1 ypadding = .1 imp = I.Importance.values mindrop = np.min(imp) maxdrop = np.max(imp) imp_padding = 0.002 imp_range = (min(imp_range[0], mindrop - imp_padding), max(imp_range[1], maxdrop + imp_padding)) barcounts = np.array([f.count('\n')+1 for f in I.index]) N = np.sum(barcounts) ymax = N * unit + len(I.index) * ypadding + ypadding # print(f"barcounts {barcounts}, N={N}, ymax={ymax}") height = max(minheight, ymax * .2 * vscale) if ax is None: plt.close() fig, ax = plt.subplots(1,1,figsize=(width,height)) ax.set_xlim(*imp_range) ax.set_ylim(0,ymax) ax.spines['top'].set_linewidth(.3) ax.spines['right'].set_linewidth(.3) ax.spines['left'].set_linewidth(.3) ax.spines['bottom'].set_linewidth(.3) if bgcolor: ax.set_facecolor(bgcolor) yloc = [] y = barcounts[0]*unit / 2 + ypadding yloc.append(y) for i in range(1,len(barcounts)): wprev = barcounts[i-1] w = barcounts[i] y += (wprev + w)/2 * unit + ypadding yloc.append(y) yloc = np.array(yloc) ax.xaxis.set_major_formatter(FormatStrFormatter(f'%.{xtick_precision}f')) # too close to show both max and right edge? if maxdrop/imp_range[1] > 0.9 or maxdrop < 0.02: ax.set_xticks([0, imp_range[1]]) else: ax.set_xticks([0, maxdrop, imp_range[1]]) ax.tick_params(labelsize=label_fontsize, labelcolor=GREY) ax.invert_yaxis() # labels read top-to-bottom if title: ax.set_title(title, fontsize=label_fontsize+1, fontname="Arial", color=GREY) barcontainer = ax.barh(y=yloc, width=imp, height=barcounts*unit, tick_label=I.index, color=color, align='center') # Alter appearance of each bar for rect in barcontainer.patches: rect.set_linewidth(.5) rect.set_edgecolor(GREY) # rotate y-ticks if yrot is not None: ax.tick_params(labelrotation=yrot) return PimpViz() def oob_dependences(rf, X_train, n_samples=5000): """ Given a random forest model, rf, and training observation independent variables in X_train (a dataframe), compute the OOB R^2 score using each var as a dependent variable. We retrain rf for each var. Only numeric columns are considered. By default, sample up to 5000 observations to compute feature dependencies. :return: Return a DataFrame with Feature/Dependence values for each variable. Feature is the dataframe index. """ numcols = [col for col in X_train if is_numeric_dtype(X_train[col])] X_train = sample_rows(X_train, n_samples) df_dep = pd.DataFrame(columns=['Feature','Dependence']) df_dep = df_dep.set_index('Feature') for col in numcols: X, y = X_train.drop(col, axis=1), X_train[col] rf.fit(X, y) df_dep.loc[col] = rf.oob_score_ df_dep = df_dep.sort_values('Dependence', ascending=False) return df_dep def feature_dependence_matrix(X_train, rfmodel=RandomForestRegressor(n_estimators=50, oob_score=True), zero=0.001, sort_by_dependence=False, n_samples=5000): """ Given training observation independent variables in X_train (a dataframe), compute the feature importance using each var
'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaPrimalWeaponsLevel2': { 'build_time': 190, 'built_from': ['DehakaHatchery'], 'display_name': 'Primal Attacks Level 2', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaPrimalWeaponsLevel3': { 'build_time': 220, 'built_from': ['DehakaHatchery'], 'display_name': 'Primal Attacks Level 3', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaPrimalArmorLevel1': { 'build_time': 160, 'built_from': ['DehakaHatchery'], 'display_name': 'Primal Carapace Level 1', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaPrimalArmorLevel2': { 'build_time': 190, 'built_from': ['DehakaHatchery'], 'display_name': 'Primal Carapace Level 2', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaPrimalArmorLevel3': { 'build_time': 220, 'built_from': ['DehakaHatchery'], 'display_name': 'Primal Carapace Level 3', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaRavasaurVSArmor': { 'build_time': 60, 'built_from': ['DehakaGlevigStructure'], 'display_name': 'Dissolving Acid', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaRavasaurRange': { 'build_time': 60, 'built_from': ['DehakaGlevigStructure'], 'display_name': 'Enlarged Parotid Glands', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaRoachMoveSpeed': { 'build_time': 60, 'built_from': ['DehakaGlevigStructure'], 'display_name': 'Glial Reconstitution', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaGlevigRoachFireBreath': { 'build_time': 120, 'built_from': ['DehakaGlevigStructure'], 'display_name': 'Concentrated Fire', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaHydraliskSpeed': { 'build_time': 60, 'built_from': ['DehakaGlevigStructure'], 'display_name': 'Muscular Augments', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaImpalerTenderize': { 'build_time': 60, 'built_from': ['DehakaGlevigStructure'], 'display_name': 'Tenderize', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaUltraliskCrashingCharge': { 'build_time': 60, 'built_from': ['DehakaDakrunStructure'], 'display_name': 'Brutal Charge', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaUltraliskRegen': { 'build_time': 60, 'built_from': ['DehakaDakrunStructure'], 'display_name': 'Healing Adaptation', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaUltraliskBash': { 'build_time': 60, 'built_from': ['DehakaDakrunStructure'], 'display_name': 'Impaling Strike', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaTyrannozorFanOfKnives': { 'build_time': 60, 'built_from': ['DehakaDakrunStructure'], 'display_name': 'Barrage of Spikes', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaTyrannozorArmorAura': { 'build_time': 60, 'built_from': ['DehakaDakrunStructure'], 'display_name': 'Tyrant\'s Protection', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaMutaliskAirDoubleDamage': { 'build_time': 60, 'built_from': ['DehakaMurvarStructure'], 'display_name': 'Slicing Glave', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaMutaliskDamageReduction': { 'build_time': 60, 'built_from': ['DehakaMurvarStructure'], 'display_name': 'Shifting Carapace', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaMutaliskRespawnOnDeath': { 'build_time': 90, 'built_from': ['DehakaMurvarStructure'], 'display_name': 'Primal Reconstitution', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaGuardianExplosiveBomb': { 'build_time': 60, 'built_from': ['DehakaMurvarStructure'], 'display_name': 'Explosive Spores', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaGuardianFury': { 'build_time': 60, 'built_from': ['DehakaMurvarStructure'], 'display_name': 'Primordial Fury', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, 'DehakaMurvarCreeperAir': { 'build_time': 90, 'built_from': ['DehakaMurvarStructure'], 'display_name': 'Aerial Burst Sacs', 'race': 'Zerg', 'type': 'Upgrade', 'is_morph': False, }, }, 'Horner': { # Units 'HHSCV': { 'build_time': 17, 'built_from': ['CommandCenter'], 'display_name': 'SCV', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, 'HHReaper': { 'build_time': 14, 'built_from': ['HHMercStarportNoArmy'], 'display_name': 'Reaper', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, 'HHWidowMine': { 'build_time': 21, 'built_from': ['HHMercStarportNoArmy'], 'display_name': '<NAME>', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, 'HHHellion': { 'build_time': 14, 'built_from': ['HHMercStarportNoArmy'], 'display_name': 'Hellion', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, 'HHHellionTank': { 'build_time': 14, 'built_from': ['HHMercStarportNoArmy'], 'display_name': 'Hellbat', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, # Calldowns 'HHWraith_SpawnerUnit': { 'build_time': 0, 'built_from': [], 'display_name': '<NAME>', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, 'HHViking_SpawnerUnit': { 'build_time': 0, 'built_from': [], 'display_name': '<NAME>', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, 'HHRaven_SpawnerUnit': { 'build_time': 0, 'built_from': [], 'display_name': '<NAME>', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, 'HHBattlecruiser_SpawnerUnit': { 'build_time': 0, 'built_from': [], 'display_name': 'Sovereign Battlecruiser', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, # Buildings 'HHMercStarportCargo': { 'build_time': 60, 'built_from': [], 'display_name': '<NAME>', 'race': 'Terran', 'type': 'Unit', # not really sure what this counts as 'is_morph': False, }, 'HHCommandCenter': { 'build_time': 0, 'built_from': [], 'display_name': 'Command Center', 'race': 'Terran', 'type': 'Building', 'is_morph': False, }, 'HHMercStarportNoArmy': { 'build_time': 0, 'built_from': [], 'display_name': '<NAME>', 'race': 'Terran', 'type': 'Building', 'is_morph': False, }, 'HHMercCompound': { 'build_time': 0, 'built_from': [], 'display_name': 'Engineering Bay', 'race': 'Terran', 'type': 'Building', 'is_morph': False, }, 'HHBomberPlatform': { 'build_time': 0, 'built_from': [], 'display_name': 'Strike Fighter Platform', 'race': 'Terran', 'type': 'Building', 'is_morph': False, }, 'HHStarport': { 'build_time': 0, 'built_from': [], 'display_name': 'Dominion Starport', 'race': 'Terran', 'type': 'Building', 'is_morph': False, }, # Upgrades 'HHReaperG4ClusterBombs': { 'build_time': 60, 'built_from': ['HHMercCompound'], 'display_name': 'LE9 Cluster Charges', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHReaperFlight': { 'build_time': 90, 'built_from': ['HHMercCompound'], 'display_name': 'Jetpack Overdrive', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHWidowMineDeathBlossom': { 'build_time': 60, 'built_from': ['HHMercCompound'], 'display_name': 'Executioner Missiles', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHHellionStimDeath': { 'build_time': 60, 'built_from': ['HHMercCompound'], 'display_name': 'Aerosol Stim Emitters', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHHellionStimDeath': { 'build_time': 60, 'built_from': ['HHMercCompound'], 'display_name': 'Aerosol Stim Emitters', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHWidowMineBurrowedRange': { 'build_time': 60, 'built_from': ['EngineeringBay'], 'display_name': 'Black Market Launchers', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHHellionRocket': { 'build_time': 90, 'built_from': ['EngineeringBay'], 'display_name': 'Tar Bombs', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHHellionAttackDoT': { 'build_time': 90, 'built_from': ['EngineeringBay'], 'display_name': 'Immolation Fluid', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHHellionFearDeath': { 'build_time': 60, 'built_from': ['EngineeringBay'], 'display_name': 'Wildfire Explosives', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHWraithPermaCloak': { 'build_time': 90, 'built_from': ['StarportTechLab'], 'display_name': 'Unregistered Cloak System', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHWraithFury': { 'build_time': 90, 'built_from': ['StarportTechLab'], 'display_name': 'Trigger Override', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHVikingRockets': { 'build_time': 90, 'built_from': ['StarportTechLab'], 'display_name': '<NAME>', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHVikingPiercingAttacks': { 'build_time': 90, 'built_from': ['StarportTechLab'], 'display_name': '<NAME>', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'FleetwideJump': { 'build_time': 90, 'built_from': ['StarportTechLab'], 'display_name': 'Tactical Jump', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHMultiLock': { 'build_time': 90, 'built_from': ['StarportTechLab'], 'display_name': 'Multi-Threaded Sensors', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHVehicleAndShipWeaponsLevel1': { 'build_time': 160, 'built_from': ['Armory'], 'display_name': 'Horner Weapons Level 1', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHVehicleAndShipWeaponsLevel2': { 'build_time': 190, 'built_from': ['Armory'], 'display_name': 'Horner Weapons Level 2', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHVehicleAndShipWeaponsLevel3': { 'build_time': 220, 'built_from': ['Armory'], 'display_name': 'Horner Weapons Level 3', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHVehicleAndShipArmorsLevel1': { 'build_time': 160, 'built_from': ['Armory'], 'display_name': 'Horner Armor Level 1', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHVehicleAndShipArmorsLevel2': { 'build_time': 190, 'built_from': ['Armory'], 'display_name': 'Horner Armor Level 2', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHVehicleAndShipArmorsLevel3': { 'build_time': 220, 'built_from': ['Armory'], 'display_name': 'Horner Armor Level 3', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHBattlecruiserYamatoAttacks': { 'build_time': 90, 'built_from': ['FusionCore'], 'display_name': 'Overcharged Reactor', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, 'HHBomberNapalm': { 'build_time': 90, 'built_from': ['FusionCore'], 'display_name': 'Napalm Payload', 'race': 'Terran', 'type': 'Upgrade', 'is_morph': False, }, }, 'Tychus': { # Tychus Units 'TychusSCV': { 'build_time': 17, 'built_from': ['CommandCenter'], 'display_name': 'SCV', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, 'TychusCoop': { 'build_time': 0, 'built_from': [], 'display_name': 'Tychus', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, 'TychusReaper': { 'build_time': 0, 'built_from': [], 'display_name': '<NAME>', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, 'TychusWarhound': { 'build_time': 0, 'built_from': [], 'display_name': '<NAME>', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, 'TychusFirebat': { 'build_time': 0, 'built_from': [], 'display_name': '<NAME>', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, 'TychusHERC': { 'build_time': 0, 'built_from': [], 'display_name': '<NAME>', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, 'TychusMarauder': { 'build_time': 0, 'built_from': [], 'display_name': '<NAME>', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, 'TychusGhost': { 'build_time': 0, 'built_from': [], 'display_name': 'Vega', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, 'TychusSpectre': { 'build_time': 0, 'built_from': [], 'display_name': 'Nux', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, 'TychusMedic': { 'build_time': 0, 'built_from': [], 'display_name': '<NAME>', 'race': 'Terran', 'type': 'Unit', 'is_morph': False, }, # Tychus Buildings # Joeyray's Bar missing 'TychusEngineeringBay': { 'build_time': 0, 'built_from': [], 'display_name': 'Engineering Bay', 'race': 'Terran', 'type': 'Building', 'is_morph': False, }, 'TychusMercCompound': { 'build_time': 0, 'built_from': [], 'display_name': '<NAME>', 'race': 'Terran', 'type': 'Building', 'is_morph': False, }, 'TychusSCVAutoTurret': { 'build_time': 0, 'built_from': [], 'display_name': 'Auto-Turret', 'race': 'Terran', 'type': 'Building', 'is_morph': False, }, 'TychusArmory': { 'build_time': 0, 'built_from': [], 'display_name': 'Muscle Armory', 'race': 'Terran', 'type': 'Building', 'is_morph': False, }, 'TychusCommandCenter': { 'build_time': 0, 'built_from': [], 'display_name': 'Command Center', 'race': 'Terran', 'type': 'Building', 'is_morph': False, }, 'TychusGhostAcademy': { 'build_time': 0, 'built_from': [], 'display_name': 'Fixers Safehouse', 'race': 'Terran', 'type': 'Building', 'is_morph': False, }, 'TychusMedivacPlatform': { 'build_time': 0, 'built_from': [], 'display_name': 'Medivac Platform', 'race': 'Terran', 'type': 'Building', 'is_morph': False, }, # Tychus Upgrades 'TychusOutlawWeaponsLevel1':
'{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: TopicRuleErrorActionS3.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: TopicRuleErrorActionS3.__key_warning(key) return super().get(key, default) def __init__(__self__, *, bucket_name: str, key: str, role_arn: str): """ :param str bucket_name: The Amazon S3 bucket name. :param str key: The object key. :param str role_arn: The IAM role ARN that allows access to the CloudWatch alarm. """ pulumi.set(__self__, "bucket_name", bucket_name) pulumi.set(__self__, "key", key) pulumi.set(__self__, "role_arn", role_arn) @property @pulumi.getter(name="bucketName") def bucket_name(self) -> str: """ The Amazon S3 bucket name. """ return pulumi.get(self, "bucket_name") @property @pulumi.getter def key(self) -> str: """ The object key. """ return pulumi.get(self, "key") @property @pulumi.getter(name="roleArn") def role_arn(self) -> str: """ The IAM role ARN that allows access to the CloudWatch alarm. """ return pulumi.get(self, "role_arn") @pulumi.output_type class TopicRuleErrorActionSns(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "roleArn": suggest = "role_arn" elif key == "targetArn": suggest = "target_arn" elif key == "messageFormat": suggest = "message_format" if suggest: pulumi.log.warn(f"Key '{key}' not found in TopicRuleErrorActionSns. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: TopicRuleErrorActionSns.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: TopicRuleErrorActionSns.__key_warning(key) return super().get(key, default) def __init__(__self__, *, role_arn: str, target_arn: str, message_format: Optional[str] = None): """ :param str role_arn: The ARN of the IAM role that grants access. :param str target_arn: The ARN of the SNS topic. :param str message_format: The message format of the message to publish. Accepted values are "JSON" and "RAW". """ pulumi.set(__self__, "role_arn", role_arn) pulumi.set(__self__, "target_arn", target_arn) if message_format is not None: pulumi.set(__self__, "message_format", message_format) @property @pulumi.getter(name="roleArn") def role_arn(self) -> str: """ The ARN of the IAM role that grants access. """ return pulumi.get(self, "role_arn") @property @pulumi.getter(name="targetArn") def target_arn(self) -> str: """ The ARN of the SNS topic. """ return pulumi.get(self, "target_arn") @property @pulumi.getter(name="messageFormat") def message_format(self) -> Optional[str]: """ The message format of the message to publish. Accepted values are "JSON" and "RAW". """ return pulumi.get(self, "message_format") @pulumi.output_type class TopicRuleErrorActionSqs(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "queueUrl": suggest = "queue_url" elif key == "roleArn": suggest = "role_arn" elif key == "useBase64": suggest = "use_base64" if suggest: pulumi.log.warn(f"Key '{key}' not found in TopicRuleErrorActionSqs. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: TopicRuleErrorActionSqs.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: TopicRuleErrorActionSqs.__key_warning(key) return super().get(key, default) def __init__(__self__, *, queue_url: str, role_arn: str, use_base64: bool): """ :param str queue_url: The URL of the Amazon SQS queue. :param str role_arn: The ARN of the IAM role that grants access. :param bool use_base64: Specifies whether to use Base64 encoding. """ pulumi.set(__self__, "queue_url", queue_url) pulumi.set(__self__, "role_arn", role_arn) pulumi.set(__self__, "use_base64", use_base64) @property @pulumi.getter(name="queueUrl") def queue_url(self) -> str: """ The URL of the Amazon SQS queue. """ return pulumi.get(self, "queue_url") @property @pulumi.getter(name="roleArn") def role_arn(self) -> str: """ The ARN of the IAM role that grants access. """ return pulumi.get(self, "role_arn") @property @pulumi.getter(name="useBase64") def use_base64(self) -> bool: """ Specifies whether to use Base64 encoding. """ return pulumi.get(self, "use_base64") @pulumi.output_type class TopicRuleErrorActionStepFunctions(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "roleArn": suggest = "role_arn" elif key == "stateMachineName": suggest = "state_machine_name" elif key == "executionNamePrefix": suggest = "execution_name_prefix" if suggest: pulumi.log.warn(f"Key '{key}' not found in TopicRuleErrorActionStepFunctions. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: TopicRuleErrorActionStepFunctions.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: TopicRuleErrorActionStepFunctions.__key_warning(key) return super().get(key, default) def __init__(__self__, *, role_arn: str, state_machine_name: str, execution_name_prefix: Optional[str] = None): """ :param str role_arn: The ARN of the IAM role that grants access to start execution of the state machine. :param str state_machine_name: The name of the Step Functions state machine whose execution will be started. :param str execution_name_prefix: The prefix used to generate, along with a UUID, the unique state machine execution name. """ pulumi.set(__self__, "role_arn", role_arn) pulumi.set(__self__, "state_machine_name", state_machine_name) if execution_name_prefix is not None: pulumi.set(__self__, "execution_name_prefix", execution_name_prefix) @property @pulumi.getter(name="roleArn") def role_arn(self) -> str: """ The ARN of the IAM role that grants access to start execution of the state machine. """ return pulumi.get(self, "role_arn") @property @pulumi.getter(name="stateMachineName") def state_machine_name(self) -> str: """ The name of the Step Functions state machine whose execution will be started. """ return pulumi.get(self, "state_machine_name") @property @pulumi.getter(name="executionNamePrefix") def execution_name_prefix(self) -> Optional[str]: """ The prefix used to generate, along with a UUID, the unique state machine execution name. """ return pulumi.get(self, "execution_name_prefix") @pulumi.output_type class TopicRuleFirehose(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "deliveryStreamName": suggest = "delivery_stream_name" elif key == "roleArn": suggest = "role_arn" if suggest: pulumi.log.warn(f"Key '{key}' not found in TopicRuleFirehose. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: TopicRuleFirehose.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: TopicRuleFirehose.__key_warning(key) return super().get(key, default) def __init__(__self__, *, delivery_stream_name: str, role_arn: str, separator: Optional[str] = None): """ :param str delivery_stream_name: The delivery stream name. :param str role_arn: The IAM role ARN that grants access to the Amazon Kinesis Firehose stream. :param str separator: A character separator that is used to separate records written to the Firehose stream. Valid values are: '\n' (newline), '\t' (tab), '\r\n' (Windows newline), ',' (comma). """ pulumi.set(__self__, "delivery_stream_name", delivery_stream_name) pulumi.set(__self__, "role_arn", role_arn) if separator is not None: pulumi.set(__self__, "separator", separator) @property @pulumi.getter(name="deliveryStreamName") def delivery_stream_name(self) -> str: """ The delivery stream name. """ return pulumi.get(self, "delivery_stream_name") @property @pulumi.getter(name="roleArn") def role_arn(self) -> str: """ The IAM role ARN that grants access to the Amazon Kinesis Firehose stream. """ return pulumi.get(self, "role_arn") @property @pulumi.getter def separator(self) -> Optional[str]: """ A character separator that is used to separate records written to the Firehose stream. Valid values are: '\n' (newline), '\t' (tab), '\r\n' (Windows newline), ',' (comma). """ return pulumi.get(self, "separator") @pulumi.output_type class TopicRuleIotAnalytic(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "channelName": suggest = "channel_name" elif key == "roleArn": suggest = "role_arn" if suggest: pulumi.log.warn(f"Key '{key}' not found in TopicRuleIotAnalytic. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: TopicRuleIotAnalytic.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: TopicRuleIotAnalytic.__key_warning(key) return super().get(key, default) def __init__(__self__, *, channel_name: str, role_arn: str): """ :param str channel_name: Name of AWS IOT Analytics channel. :param str role_arn: The ARN of the IAM role that grants access. """ pulumi.set(__self__, "channel_name", channel_name) pulumi.set(__self__, "role_arn", role_arn) @property @pulumi.getter(name="channelName") def channel_name(self) -> str: """ Name of AWS IOT Analytics channel. """ return pulumi.get(self, "channel_name") @property @pulumi.getter(name="roleArn") def role_arn(self) -> str: """ The ARN of the IAM role that grants access. """ return pulumi.get(self, "role_arn") @pulumi.output_type class TopicRuleIotEvent(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "inputName": suggest = "input_name" elif key == "roleArn": suggest = "role_arn" elif key == "messageId": suggest = "message_id" if suggest: pulumi.log.warn(f"Key '{key}' not found in TopicRuleIotEvent. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: TopicRuleIotEvent.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: TopicRuleIotEvent.__key_warning(key) return super().get(key, default) def __init__(__self__, *, input_name: str, role_arn: str, message_id: Optional[str] = None): """ :param str input_name: The name of the AWS IoT Events input. :param str role_arn: The ARN of the IAM role that grants access. :param str message_id: Use this to ensure that only one input (message) with a given messageId is processed by an AWS IoT Events detector. """ pulumi.set(__self__, "input_name", input_name) pulumi.set(__self__, "role_arn", role_arn) if message_id is not None: pulumi.set(__self__, "message_id", message_id) @property @pulumi.getter(name="inputName") def input_name(self) -> str: """ The name of the AWS IoT Events input. """ return pulumi.get(self, "input_name") @property @pulumi.getter(name="roleArn") def role_arn(self) -> str: """ The ARN of the IAM role that grants access. """ return pulumi.get(self, "role_arn") @property @pulumi.getter(name="messageId") def message_id(self) -> Optional[str]: """ Use this to ensure that only one input (message) with a given messageId is processed by an AWS IoT Events detector. """
from sqlalchemy import create_engine, Column, Integer, BigInteger, String, Boolean, MetaData, ForeignKey from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy.types import DateTime, Date, Interval from sqlalchemy.pool import NullPool from .conf import settings from logging import Logger print("loaded dbobjects module") class DB: #print "loaded DB Class" database_string = 'postgresql+psycopg2://' + settings.DB_USER + ':' + settings.DB_PASSWD + '@' + settings.DB_HOST + ':' + str(settings.DB_PORT) + '/' + settings.DB_DATABASE pg_db_engine = create_engine(database_string, poolclass=NullPool, echo=settings.DEBUG_ALCHEMY) mymetadata = MetaData(bind=pg_db_engine) Base = declarative_base(metadata=mymetadata) def __init__(self): #postgresql[+driver]://<user>:<pass>@<host>/<dbname> #, server_side_cursors=True) self.Session = sessionmaker() # Was #self.Session = sessionmaker(bind=self.pg_db_engine) # JCS loglevel = 'DEBUG' self.log = Logger(settings.LOGGING_INI, loglevel) class MapBase(): def __init__(self, field_dict): if settings.DEBUG: print("Base Class created: %s" % self.__class__.__name__) #def __init__(self, field_dict): if settings.DEBUG: print(field_dict) for x, y in field_dict.iteritems(): self.__setattr__(x,y) def __repr__(self): field_dict = vars(self) out = '' if len(field_dict) > 0: for x, y in field_dict.iteritems(): if x[0] != "_": out = out + "%s = %s, " % (x,y) return "<%s(%s)>" % (self.__class__.__name__, out) else: return '' class SiteServiceParticipation(DB.Base, MapBase): __tablename__ = 'site_service_participation' id = Column(Integer, primary_key=True) export_index_id = Column(Integer, ForeignKey('export.id')) site_service_index_id = Column(Integer, ForeignKey('site_service.id')) household_index_id = Column(Integer, ForeignKey('household.id')) site_service_participation_idid_num = Column(String(32)) site_service_participation_idid_num_date_collected = Column(DateTime(timezone=False)) site_service_participation_idid_str = Column(String(32)) site_service_participation_idid_str_date_collected = Column(DateTime(timezone=False)) site_service_idid_num = Column(String(32)) # JCS #site_service_idid_num_date_collected = Column(DateTime(timezone=False)) # JCS destination = Column(String(32)) destination_date_collected = Column(DateTime(timezone=False)) destination_other = Column(String(32)) destination_other_date_collected = Column(DateTime(timezone=False)) destination_tenure = Column(String(32)) destination_tenure_date_collected = Column(DateTime(timezone=False)) disabling_condition = Column(String(32)) disabling_condition_date_collected = Column(DateTime(timezone=False)) participation_dates_start_date = Column(DateTime(timezone=False)) participation_dates_start_date_date_collected = Column(DateTime(timezone=False)) participation_dates_end_date = Column(DateTime(timezone=False)) participation_dates_end_date_date_collected = Column(DateTime(timezone=False)) veteran_status = Column(String(32)) veteran_status_date_collected = Column(DateTime(timezone=False)) #adding a reported column. Hopefully this will append the column to the table def. reported = Column(Boolean) site_service_participation_id_delete = Column(String(32)) site_service_participation_id_delete_occurred_date = Column(DateTime(timezone=False)) site_service_participation_id_delete_effective_date = Column(DateTime(timezone=False)) fk_participation_to_need = relationship('Need', backref='fk_need_to_participation') fk_participation_to_serviceevent = relationship('ServiceEvent') fk_participation_to_personhistorical = relationship('PersonHistorical') fk_participation_to_person = Column(Integer, ForeignKey('person.id')) useexisting = True class Need(DB.Base, MapBase): __tablename__ = 'need' id = Column(Integer, primary_key=True) site_service_index_id = Column(Integer, ForeignKey('site_service.id')) # JCS site_service_participation_index_id = Column(Integer, ForeignKey('site_service_participation.id')) # JCS export_index_id = Column(Integer, ForeignKey('export.id')) need_idid_num = Column(String(32)) need_idid_num_date_collected = Column(DateTime(timezone=False)) need_idid_str = Column(String(32)) need_idid_str_date_collected = Column(DateTime(timezone=False)) site_service_idid_num = Column(String(32)) site_service_idid_num_date_collected = Column(DateTime(timezone=False)) site_service_idid_str = Column(String(32)) site_service_idid_str_date_collected = Column(DateTime(timezone=False)) service_event_idid_num = Column(String(32)) service_event_idid_num_date_collected = Column(DateTime(timezone=False)) service_event_idid_str = Column(String(32)) service_event_idid_str_date_collected = Column(DateTime(timezone=False)) need_status = Column(String(32)) need_status_date_collected = Column(DateTime(timezone=False)) taxonomy = Column(String(32)) reported = Column(Boolean) ## HUD 3.0 person_index_id = Column(Integer, ForeignKey('person.id')) need_id_delete = Column(String(32)) need_id_delete_occurred_date = Column(DateTime(timezone=False)) need_id_delete_delete_effective_date = Column(DateTime(timezone=False)) need_effective_period_start_date = Column(DateTime(timezone=False)) need_effective_period_end_date = Column(DateTime(timezone=False)) need_recorded_date = Column(DateTime(timezone=False)) useexisting = True class Races(DB.Base, MapBase): __tablename__ = 'races' id = Column(Integer, primary_key=True) person_index_id = Column(Integer, ForeignKey('person.id')) export_index_id = Column(Integer, ForeignKey('export.id')) race_unhashed = Column(Integer) race_hashed = Column(String(32)) race_date_collected = Column(DateTime(timezone=False)) reported = Column(Boolean) ## HUD 3.0 race_data_collection_stage = Column(String(32)) race_date_effective = Column(DateTime(timezone=False)) useexisting = True class OtherNames(DB.Base, MapBase): __tablename__ = 'other_names' id = Column(Integer, primary_key=True) person_index_id = Column(Integer, ForeignKey('person.id')) export_index_id = Column(Integer, ForeignKey('export.id')) other_first_name_unhashed = Column(String(50)) other_first_name_hashed = Column(String(50)) other_first_name_date_collected = Column(DateTime(timezone=False)) other_first_name_date_effective = Column(DateTime(timezone=False)) other_first_name_data_collection_stage = Column(String(32)) other_middle_name_unhashed = Column(String(50)) other_middle_name_hashed = Column(String(50)) other_middle_name_date_collected = Column(DateTime(timezone=False)) other_middle_name_date_effective = Column(DateTime(timezone=False)) other_middle_name_data_collection_stage = Column(String(32)) other_last_name_unhashed = Column(String(50)) other_last_name_hashed = Column(String(50)) other_last_name_date_collected = Column(DateTime(timezone=False)) other_last_name_date_effective = Column(DateTime(timezone=False)) other_last_name_data_collection_stage = Column(String(32)) other_suffix_unhashed = Column(String(50)) other_suffix_hashed = Column(String(50)) other_suffix_date_collected = Column(DateTime(timezone=False)) other_suffix_date_effective = Column(DateTime(timezone=False)) other_suffix_data_collection_stage = Column(String(32)) useexisting = True class HUDHomelessEpisodes(DB.Base, MapBase): __tablename__ = 'hud_homeless_episodes' id = Column(Integer, primary_key=True) person_historical_index_id = Column(Integer, ForeignKey('person_historical.id')) export_index_id = Column(Integer, ForeignKey('export.id')) start_date = Column(String(32)) start_date_date_collected = Column(DateTime(timezone=False)) end_date = Column(String(32)) end_date_date_collected = Column(DateTime(timezone=False)) useexisting = True class Veteran(DB.Base, MapBase): __tablename__ = 'veteran' id = Column(Integer, primary_key=True) person_historical_index_id = Column(Integer, ForeignKey('person_historical.id')) export_index_id = Column(Integer, ForeignKey('export.id')) service_era = Column(Integer) service_era_date_collected = Column(DateTime(timezone=False)) military_service_duration = Column(Integer) military_service_duration_date_collected = Column(DateTime(timezone=False)) served_in_war_zone = Column(Integer) served_in_war_zone_date_collected = Column(DateTime(timezone=False)) war_zone = Column(Integer) war_zone_date_collected = Column(DateTime(timezone=False)) war_zone_other = Column(String(50)) war_zone_other_date_collected = Column(DateTime(timezone=False)) months_in_war_zone = Column(Integer) months_in_war_zone_date_collected = Column(DateTime(timezone=False)) received_fire = Column(Integer) received_fire_date_collected = Column(DateTime(timezone=False)) military_branch = Column(Integer) military_branch_date_collected = Column(DateTime(timezone=False)) military_branch_other = Column(String(50)) military_branch_other_date_collected = Column(DateTime(timezone=False)) discharge_status = Column(Integer) discharge_status_date_collected = Column(DateTime(timezone=False)) discharge_status_other = Column(String(50)) discharge_status_other_date_collected = Column(DateTime(timezone=False)) reported = Column(Boolean) useexisting = True class DrugHistory(DB.Base, MapBase): __tablename__ = 'drug_history' id = Column(Integer, primary_key=True) person_historical_index_id = Column(Integer, ForeignKey('person_historical.id')) export_index_id = Column(Integer, ForeignKey('export.id')) drug_history_id = Column(String(32)) drug_history_id_date_collected = Column(DateTime(timezone=False)) drug_code = Column(Integer) drug_code_date_collected = Column(DateTime(timezone=False)) drug_use_frequency = Column(Integer) drug_use_frequency_date_collected = Column(DateTime(timezone=False)) reported = Column(Boolean) useexisting = True class EmergencyContact(DB.Base, MapBase): __tablename__ = 'emergency_contact' id = Column(Integer, primary_key=True) person_historical_index_id = Column(Integer, ForeignKey('person_historical.id')) export_index_id = Column(Integer, ForeignKey('export.id')) emergency_contact_id = Column(String(32)) emergency_contact_id_date_collected = Column(DateTime(timezone=False)) emergency_contact_name = Column(String(32)) emergency_contact_name_date_collected = Column(DateTime(timezone=False)) emergency_contact_phone_number_0 = Column(String(32)) emergency_contact_phone_number_date_collected_0 = Column(DateTime(timezone=False)) emergency_contact_phone_number_type_0 = Column(String(32)) emergency_contact_phone_number_1 = Column(String(32)) emergency_contact_phone_number_date_collected_1 = Column(DateTime(timezone=False)) emergency_contact_phone_number_type_1 = Column(String(32)) emergency_contact_address_date_collected = Column(DateTime(timezone=False)) emergency_contact_address_start_date = Column(DateTime(timezone=False)) emergency_contact_address_start_date_date_collected = Column(DateTime(timezone=False)) emergency_contact_address_end_date = Column(DateTime(timezone=False)) emergency_contact_address_end_date_date_collected = Column(DateTime(timezone=False)) emergency_contact_address_line1 = Column(String(32)) emergency_contact_address_line1_date_collected = Column(DateTime(timezone=False)) emergency_contact_address_line2 = Column(String(32)) emergency_contact_address_line2_date_collected = Column(DateTime(timezone=False)) emergency_contact_address_city = Column(String(32)) emergency_contact_address_city_date_collected = Column(DateTime(timezone=False)) emergency_contact_address_state = Column(String(32)) emergency_contact_address_state_date_collected = Column(DateTime(timezone=False)) emergency_contact_relation_to_client = Column(String(32)) emergency_contact_relation_to_client_date_collected = Column(DateTime(timezone=False)) reported = Column(Boolean) useexisting = True class PersonAddress(DB.Base, MapBase): __tablename__ = 'person_address' id = Column(Integer, primary_key=True) person_historical_index_id = Column(Integer, ForeignKey('person_historical.id')) export_index_id = Column(Integer, ForeignKey('export.id')) address_period_start_date = Column(DateTime(timezone=False)) address_period_start_date_date_collected = Column(DateTime(timezone=False)) address_period_end_date = Column(DateTime(timezone=False)) address_period_end_date_date_collected = Column(DateTime(timezone=False)) pre_address_line = Column(String(100)) pre_address_line_date_collected = Column(DateTime(timezone=False)) pre_address_line_date_effective = Column(DateTime(timezone=False)) pre_address_line_data_collection_stage = Column(String(32)) line1 = Column(String(100)) line1_date_collected = Column(DateTime(timezone=False)) line1_date_effective = Column(DateTime(timezone=False)) line1_data_collection_stage = Column(String(32)) line2 = Column(String(100)) line2_date_collected = Column(DateTime(timezone=False)) line2_date_effective = Column(DateTime(timezone=False)) line2_data_collection_stage = Column(String(32)) city = Column(String(100)) city_date_collected = Column(DateTime(timezone=False)) city_date_effective = Column(DateTime(timezone=False)) city_data_collection_stage = Column(String(32)) county = Column(String(32)) county_date_collected = Column(DateTime(timezone=False)) county_date_effective = Column(DateTime(timezone=False)) county_data_collection_stage = Column(String(32)) state = Column(String(32)) state_date_collected = Column(DateTime(timezone=False)) state_date_effective = Column(DateTime(timezone=False)) state_data_collection_stage = Column(String(32)) zipcode = Column(String(10)) zipcode_date_collected = Column(DateTime(timezone=False)) zipcode_date_effective = Column(DateTime(timezone=False)) zipcode_data_collection_stage = Column(String(32)) country = Column(String(32)) country_date_collected = Column(DateTime(timezone=False)) country_date_effective = Column(DateTime(timezone=False)) country_data_collection_stage = Column(String(32)) is_last_permanent_zip = Column(Integer) is_last_permanent_zip_date_collected = Column(DateTime(timezone=False)) is_last_permanent_zip_date_effective = Column(DateTime(timezone=False)) is_last_permanent_zip_data_collection_stage = Column(String(32)) zip_quality_code = Column(Integer) zip_quality_code_date_collected = Column(DateTime(timezone=False)) zip_quality_code_date_effective = Column(DateTime(timezone=False)) zip_quality_code_data_collection_stage = Column(String(32)) reported = Column(Boolean) ## HUD 3.0 person_address_delete = Column(String(32)) person_address_delete_occurred_date = Column(DateTime(timezone=False)) person_address_delete_effective_date = Column(DateTime(timezone=False)) useexisting = True class PersonHistorical(DB.Base, MapBase): __tablename__ = 'person_historical' id = Column(Integer, primary_key=True) call_index_id = Column(Integer, ForeignKey('call.id')) export_index_id = Column(Integer, ForeignKey('export.id')) person_index_id = Column(Integer, ForeignKey('person.id')) site_service_index_id = Column(Integer, ForeignKey('site_service.id')) # JCS site_service_participation_index_id = Column(Integer, ForeignKey('site_service_participation.id')) # JCS person_historical_id_id_num = Column(String(32)) person_historical_id_id_str = Column(String(32)) person_historical_id_delete_effective_date = Column(DateTime(timezone=False)) person_historical_id_delete = Column(Integer) person_historical_id_delete_occurred_date = Column(DateTime(timezone=False)) barrier_code = Column(String(32)) barrier_code_date_collected = Column(DateTime(timezone=False)) barrier_other = Column(String(32)) barrier_other_date_collected = Column(DateTime(timezone=False)) child_currently_enrolled_in_school = Column(String(32)) child_currently_enrolled_in_school_date_collected = Column(DateTime(timezone=False)) currently_employed = Column(String(32)) currently_employed_date_collected = Column(DateTime(timezone=False)) currently_in_school = Column(String(32)) currently_in_school_date_collected = Column(DateTime(timezone=False)) degree_code = Column(String(32)) degree_code_date_collected = Column(DateTime(timezone=False)) degree_other = Column(String(32)) degree_other_date_collected = Column(DateTime(timezone=False)) developmental_disability = Column(String(32)) developmental_disability_date_collected = Column(DateTime(timezone=False)) domestic_violence = Column(String(32)) domestic_violence_date_collected = Column(DateTime(timezone=False)) domestic_violence_how_long = Column(String(32)) domestic_violence_how_long_date_collected = Column(DateTime(timezone=False)) due_date = Column(String(32)) due_date_date_collected = Column(DateTime(timezone=False)) employment_tenure = Column(String(32)) employment_tenure_date_collected = Column(DateTime(timezone=False)) health_status = Column(String(32)) health_status_date_collected = Column(DateTime(timezone=False)) highest_school_level = Column(String(32)) highest_school_level_date_collected = Column(DateTime(timezone=False)) hivaids_status = Column(String(32)) hivaids_status_date_collected = Column(DateTime(timezone=False)) hours_worked_last_week = Column(String(32)) hours_worked_last_week_date_collected = Column(DateTime(timezone=False)) hud_chronic_homeless = Column(String(32)) hud_chronic_homeless_date_collected = Column(DateTime(timezone=False)) hud_homeless = Column(String(32)) hud_homeless_date_collected = Column(DateTime(timezone=False)) site_service_id = Column(Integer) ###HUDHomelessEpisodes (subtable) ###IncomeAndSources (subtable) length_of_stay_at_prior_residence = Column(String(32)) length_of_stay_at_prior_residence_date_collected = Column(DateTime(timezone=False)) looking_for_work = Column(String(32)) looking_for_work_date_collected = Column(DateTime(timezone=False)) mental_health_indefinite = Column(String(32)) mental_health_indefinite_date_collected = Column(DateTime(timezone=False)) mental_health_problem = Column(String(32)) mental_health_problem_date_collected = Column(DateTime(timezone=False)) non_cash_source_code = Column(String(32)) non_cash_source_code_date_collected = Column(DateTime(timezone=False)) non_cash_source_other = Column(String(32)) non_cash_source_other_date_collected = Column(DateTime(timezone=False)) ###PersonAddress (subtable) person_email = Column(String(32)) person_email_date_collected = Column(DateTime(timezone=False)) person_phone_number = Column(String(32)) person_phone_number_date_collected = Column(DateTime(timezone=False)) physical_disability = Column(String(32)) physical_disability_date_collected = Column(DateTime(timezone=False)) pregnancy_status = Column(String(32)) pregnancy_status_date_collected = Column(DateTime(timezone=False)) prior_residence = Column(String(32)) prior_residence_date_collected = Column(DateTime(timezone=False)) prior_residence_other = Column(String(32)) prior_residence_other_date_collected = Column(DateTime(timezone=False)) reason_for_leaving = Column(String(32)) reason_for_leaving_date_collected = Column(DateTime(timezone=False)) reason_for_leaving_other = Column(String(32)) reason_for_leaving_other_date_collected = Column(DateTime(timezone=False)) school_last_enrolled_date = Column(String(32)) school_last_enrolled_date_date_collected = Column(DateTime(timezone=False)) school_name = Column(String(32)) school_name_date_collected = Column(DateTime(timezone=False)) school_type = Column(String(32)) school_type_date_collected = Column(DateTime(timezone=False)) subsidy_other = Column(String(32)) subsidy_other_date_collected = Column(DateTime(timezone=False)) subsidy_type = Column(String(32)) subsidy_type_date_collected = Column(DateTime(timezone=False)) substance_abuse_indefinite = Column(String(32)) substance_abuse_indefinite_date_collected = Column(DateTime(timezone=False)) substance_abuse_problem = Column(String(32)) substance_abuse_problem_date_collected = Column(DateTime(timezone=False)) total_income = Column(String(32)) total_income_date_collected = Column(DateTime(timezone=False)) ###Veteran (subtable) vocational_training = Column(String(32)) vocational_training_date_collected = Column(DateTime(timezone=False)) annual_personal_income = Column(Integer) annual_personal_income_date_collected = Column(DateTime(timezone=False)) employment_status = Column(Integer) employment_status_date_collected = Column(DateTime(timezone=False)) family_size = Column(Integer) family_size_date_collected = Column(DateTime(timezone=False)) hearing_impaired = Column(Integer)
#!/usr/bin/env python # -*- coding: utf-8 -*- """Provide constants and composite types for binding with ctypes. """ from __future__ import absolute_import import ctypes import ctypes.util import os from .utils import coerce_char_p, python_2_unicode_compatible, read_ejdb_config JDBIDKEYNAME = '_id' # enum { /** Database open modes */ # JBOREADER = 1u << 0, /**< Open as a reader. */ # JBOWRITER = 1u << 1, /**< Open as a writer. */ # JBOCREAT = 1u << 2, /**< Create if db file not exists. */ # JBOTRUNC = 1u << 3, /**< Truncate db on open. */ # JBONOLCK = 1u << 4, /**< Open without locking. */ # JBOLCKNB = 1u << 5, /**< Lock without blocking. */ # JBOTSYNC = 1u << 6 /**< Synchronize every transaction. */ # }; JBOREADER = 1 << 0 JBOWRITER = 1 << 1 JBOCREAT = 1 << 2 JBOTRUNC = 1 << 3 JBONOLCK = 1 << 4 JBOLCKNB = 1 << 5 JBOTSYNC = 1 << 5 # enum { /** Index modes, index types. */ # JBIDXDROP = 1 << 0, /**< Drop index. */ # JBIDXDROPALL = 1 << 1, /**< Drop index for all types. */ # JBIDXOP = 1 << 2, /**< Optimize indexes. */ # JBIDXREBLD = 1 << 3, /**< Rebuild index. */ # JBIDXNUM = 1 << 4, /**< Number index. */ # JBIDXSTR = 1 << 5, /**< String index.*/ # JBIDXARR = 1 << 6, /**< Array token index. */ # JBIDXISTR = 1 << 7 /**< Case insensitive string index */ # }; JBIDXDROP = 1 << 0 JBIDXDROPALL = 1 << 1 JBIDXOP = 1 << 2 JBIDXREBLD = 1 << 3 JBIDXNUM = 1 << 4 JBIDXSTR = 1 << 5 JBIDXARR = 1 << 6 JBIDXISTR = 1 << 7 # enum { /*< Query search mode flags in ejdbqryexecute() */ # JBQRYCOUNT = 1, /*< Query only count(*) */ # JBQRYFINDONE = 1 << 1 /*< Fetch first record only */ # }; JBQRYCOUNT = 1 JBQRYFINDONE = 1 << 1 # #define BSON_OK 0 # #define BSON_ERROR -1 BSON_OK = 0 BSON_ERROR = -1 # typedef enum { # BSON_EOO = 0, # BSON_DOUBLE = 1, # BSON_STRING = 2, # BSON_OBJECT = 3, # BSON_ARRAY = 4, # BSON_BINDATA = 5, # BSON_UNDEFINED = 6, # BSON_OID = 7, # BSON_BOOL = 8, # BSON_DATE = 9, # BSON_NULL = 10, # BSON_REGEX = 11, # BSON_DBREF = 12, /**< Deprecated. */ # BSON_CODE = 13, # BSON_SYMBOL = 14, # BSON_CODEWSCOPE = 15, # BSON_INT = 16, # BSON_TIMESTAMP = 17, # BSON_LONG = 18 # } bson_type; BSON_EOO = 0 # End of object. BSON_DOUBLE = 1 BSON_STRING = 2 BSON_OBJECT = 3 BSON_ARRAY = 4 BSON_BINDATA = 5 BSON_UNDEFINED = 6 BSON_OID = 7 BSON_BOOL = 8 BSON_DATE = 9 BSON_NULL = 10 BSON_REGEX = 11 BSON_DBREF = 12 BSON_CODE = 13 BSON_SYMBOL = 14 BSON_CODEWSCOPE = 15 BSON_INT = 16 BSON_TIMESTAMP = 17 BSON_LONG = 18 # enum bson_binary_subtype_t { # BSON_BIN_BINARY = 0, # BSON_BIN_FUNC = 1, # BSON_BIN_BINARY_OLD = 2, # BSON_BIN_UUID = 3, # BSON_BIN_MD5 = 5, # BSON_BIN_USER = 128 # }; BSON_BIN_BINARY = 0 BSON_BIN_FUNC = 1 BSON_BIN_BINARY_OLD = 2 BSON_BIN_UUID = 3 BSON_BIN_MD5 = 5 BSON_BIN_USER = 128 # We treat these constructs as opaque pointers. BSONREF = ctypes.c_void_p BSONITERREF = ctypes.c_void_p EJDBREF = ctypes.c_void_p EJQREF = ctypes.c_void_p TCLISTREF = ctypes.c_void_p TCXSTRREF = ctypes.c_void_p EJQRESULT = TCLISTREF # struct EJCOLL { /**> EJDB Collection. */ # char *cname; /**> Collection name. */ # int cnamesz; /**> Collection name length. */ # TCTDB *tdb; /**> Collection TCTDB. */ # EJDB *jb; /**> Database handle. */ # void *mmtx; /*> Mutex for method */ # }; # TODO: This is private API. Find a way to retrieve cname without this. class EJCOLL(ctypes.Structure): _fields_ = [ ('cname', ctypes.c_char_p), ('cnamesz', ctypes.c_int), ('tdb', ctypes.c_void_p), ('jb', EJDBREF), ('mmtx', ctypes.c_void_p), ] EJCOLLREF = ctypes.POINTER(EJCOLL) # typedef struct { /**< EJDB collection tuning options. */ # bool large; # /**< Large collection. It can be larger than 2GB. Default false */ # bool compressed; # /**< Collection records will be compressed with DEFLATE compression. # Default: false */ # int64_t records; # /**< Expected records number in the collection. Default: 128K */ # int cachedrecords; # /**< Maximum number of records cached in memory. Default: 0 */ # } EJCOLLOPTS; class EJCOLLOPTS(ctypes.Structure): _fields_ = [ ('large', ctypes.c_bool), ('compressed', ctypes.c_bool), ('records', ctypes.c_int64), ('cachedrecords', ctypes.c_int), ] EJCOLLOPTSREF = ctypes.POINTER(EJCOLLOPTS) # #pragma pack(1) # typedef union { # char bytes[12]; # int ints[3]; # } bson_oid_t; # #pragma pack() @python_2_unicode_compatible class BSONOID(ctypes.Union): _pack_ = 1 _fields_ = [ ('bytes', ctypes.c_char * 12), ('ints', ctypes.c_int * 3), ] def __str__(self): buf = ctypes.create_string_buffer(25) bson.oid_to_string(ctypes.byref(self), buf) s = buf.value.decode('ascii') # ASCII is enough since OID is hex. return s @classmethod def from_string(cls, s): s = coerce_char_p(s) if not ejdb.isvalidoidstr(s): raise ValueError('OID should be a 24-character-long hex string.') oid = cls() bson.oid_from_string(ctypes.byref(oid), s) return oid BSONOIDREF = ctypes.POINTER(BSONOID) class Lib(object): pass # Will contain C functions after initialization. ejdb = Lib() bson = Lib() tc = Lib() initialized = False def init(ejdb_path=None): ejdb_path = ( ejdb_path or os.environ.get('CTYPES_EJDB_PATH') or read_ejdb_config() or ctypes.util.find_library('ejdb') ) if not ejdb_path: # pragma: no cover raise RuntimeError('EJDB binary not found') # Resolve lib path to package root. ejdb_path = os.path.join(get_package_root(), ejdb_path) # Access to the C library. _ = ctypes.cdll.LoadLibrary(ejdb_path) ejdb.version = _.ejdbversion ejdb.version.argtypes = [] ejdb.version.restype = ctypes.c_char_p # TODO: Expose `ejdbformatversion` as a tuple (int, int, int) when it's # available. ejdb.isvalidoidstr = _.ejdbisvalidoidstr ejdb.isvalidoidstr.argtypes = [ctypes.c_char_p] ejdb.isvalidoidstr.restype = ctypes.c_bool ejdb.ecode = _.ejdbecode ejdb.ecode.argtypes = [EJDBREF] ejdb.ecode.restype = ctypes.c_int ejdb.errmsg = _.ejdberrmsg ejdb.errmsg.argtypes = [ctypes.c_int] ejdb.errmsg.restype = ctypes.c_char_p ejdb.del_ = _.ejdbdel ejdb.del_.argtypes = [EJDBREF] ejdb.del_.restype = None ejdb.new = _.ejdbnew ejdb.new.argtypes = [] ejdb.new.restype = EJDBREF ejdb.close = _.ejdbclose ejdb.close.argtypes = [EJDBREF] ejdb.close.restype = ctypes.c_bool ejdb.open = _.ejdbopen ejdb.open.argtypes = [EJDBREF, ctypes.c_char_p, ctypes.c_int] ejdb.open.restype = ctypes.c_bool ejdb.isopen = _.ejdbisopen ejdb.isopen.argtypes = [EJDBREF] ejdb.isopen.restype = ctypes.c_bool # ejdb.getcoll = _.ejdbgetcoll ejdb.getcoll.argtypes = [EJDBREF, ctypes.c_char_p] ejdb.getcoll.restype = EJCOLLREF ejdb.getcolls = _.ejdbgetcolls ejdb.getcolls.argtypes = [EJDBREF] ejdb.getcolls.restype = ctypes.c_void_p ejdb.createcoll = _.ejdbcreatecoll ejdb.createcoll.argtypes = [EJDBREF, ctypes.c_char_p, EJCOLLOPTSREF] ejdb.createcoll.restype = EJCOLLREF ejdb.rmcoll = _.ejdbrmcoll ejdb.rmcoll.argtypes = [EJDBREF, ctypes.c_char_p, ctypes.c_bool] ejdb.rmcoll.restype = ctypes.c_bool ejdb.savebson2 = _.ejdbsavebson2 ejdb.savebson2.argtypes = [EJCOLLREF, BSONREF, BSONOIDREF, ctypes.c_bool] ejdb.savebson2.restype = ctypes.c_bool ejdb.rmbson = _.ejdbrmbson ejdb.rmbson.argtypes = [EJCOLLREF, BSONOIDREF] ejdb.rmbson.restype = ctypes.c_bool ejdb.loadbson = _.ejdbloadbson ejdb.loadbson.argtypes = [EJCOLLREF, BSONOIDREF] ejdb.loadbson.restype = BSONREF ejdb.setindex = _.ejdbsetindex ejdb.setindex.argtypes = [EJCOLLREF, ctypes.c_char_p, ctypes.c_int] ejdb.setindex.restype = ctypes.c_bool ejdb.meta = _.ejdbmeta ejdb.meta.argtypes = [EJDBREF] ejdb.meta.restype = BSONREF # ejdb.createquery = _.ejdbcreatequery ejdb.createquery.argtypes = [ EJDBREF, BSONREF, BSONREF, ctypes.c_int, BSONREF, ] ejdb.createquery.restype = EJQREF ejdb.querydel = _.ejdbquerydel ejdb.querydel.argtypes = [EJQREF] ejdb.querydel.restype = None ejdb.qryexecute = _.ejdbqryexecute ejdb.qryexecute.argtypes = [ EJCOLLREF, EJQREF, # The query. ctypes.POINTER(ctypes.c_uint32), # Will hold the output count. ctypes.c_int, # If set to `JBQRYCOUNT`, only performs counting. TCXSTRREF, # Optional debug logging output. ] ejdb.qryexecute.restype = EJQRESULT # ejdb.tranbegin = _.ejdbtranbegin ejdb.tranbegin.argtypes = [EJCOLLREF] ejdb.tranbegin.restype = ctypes.c_bool ejdb.trancommit = _.ejdbtrancommit ejdb.trancommit.argtypes = [EJCOLLREF] ejdb.trancommit.restype = ctypes.c_bool ejdb.tranabort = _.ejdbtranabort ejdb.tranabort.argtypes = [EJCOLLREF] ejdb.tranabort.restype = ctypes.c_bool ejdb.transtatus = _.ejdbtranstatus ejdb.transtatus.argtypes = [EJCOLLREF, ctypes.POINTER(ctypes.c_bool)] ejdb.transtatus.restype = ctypes.c_bool ejdb.syncdb = _.ejdbsyncdb ejdb.syncdb.argtypes = [EJDBREF] ejdb.syncdb.restype = ctypes.c_bool tc.listdel = _.tclistdel tc.listdel.argtypes = [TCLISTREF] tc.listdel.restype = None tc.listnum = _.tclistnum tc.listnum.argtypes = [TCLISTREF] tc.listnum.restype = ctypes.c_int # Return type in the original tcutil.h declaration is char *, but it really # is a data array, so we use c_void_p here to prevent Python casting it to # bytes. Consumer of this method should use ctypes.string_at or ctypes.cast # to get the content. tc.listval2 = _.tclistval2 tc.listval2.argtypes = [TCLISTREF, ctypes.c_int] tc.listval2.restype = ctypes.c_void_p bson.create = _.bson_create bson.create.argtypes = [] bson.create.restype = BSONREF bson.del_ = _.bson_del bson.del_.argtypes = [BSONREF] bson.del_.restype = None bson.init = _.bson_init bson.init.argtypes = [BSONREF] bson.init.restype = None bson.init_as_query = _.bson_init_as_query bson.init_as_query.argtypes = [BSONREF] bson.init_as_query.restype = None # Second arg type in the original bson.h declaration is char *, but it # really is a data pointer, so we use c_void_p here. bson.init_on_stack = _.bson_init_on_stack bson.init_on_stack.argtypes = [ BSONREF, ctypes.c_void_p, ctypes.c_int, ctypes.c_int, ] bson.init_on_stack.restype = None bson.finish = _.bson_finish bson.finish.argtypes = [BSONREF] bson.finish.restype = ctypes.c_int bson.append_oid = _.bson_append_oid bson.append_oid.argtypes = [BSONREF, ctypes.c_char_p, BSONOIDREF] bson.append_oid.restype = ctypes.c_int bson.append_int = _.bson_append_int bson.append_int.argtypes = [BSONREF, ctypes.c_char_p, ctypes.c_int] bson.append_int.restype = ctypes.c_int bson.append_long = _.bson_append_long bson.append_long.argtypes = [BSONREF, ctypes.c_char_p, ctypes.c_int64] bson.append_long.restype = ctypes.c_int bson.append_double = _.bson_append_double bson.append_double.argtypes = [BSONREF, ctypes.c_char_p, ctypes.c_double] bson.append_double.restype = ctypes.c_int bson.append_string_n = _.bson_append_string_n bson.append_string_n.argtypes = [ BSONREF, ctypes.c_char_p, ctypes.c_char_p, ctypes.c_int, ] bson.append_string_n.restype = ctypes.c_int # Type of the third argument in the original bson.h declaration is char, #
""" result = RectangleList() islands = list(self.islands(useexitstatus=True)) onepixel = self.onepixel gxdict = collections.defaultdict(dict) gydict = collections.defaultdict(dict) primaryregionsx = {} primaryregionsy = {} shape = {tuple(r.shape) for r in self.rectangles} if len(shape) > 1: raise ValueError("Some rectangles have different shapes") shape = shape.pop() for gc, island in enumerate(islands, start=1): rectangles = [self.rectangles[self.rectangledict[n]] for n in island] for i, (primaryregions, gdict) in enumerate(zip((primaryregionsx, primaryregionsy), (gxdict, gydict))): #find the gx and gy that correspond to cx and cy average = [] cs = sorted({r.cxvec[i] for r in rectangles}) for g, c in enumerate(cs, start=1): gdict[gc][c] = g theserectangles = [r for r in rectangles if r.cxvec[i] == c] average.append(np.mean(units.nominal_values([self.x(r)[i] for r in theserectangles]))) #find mx1, my1, mx2, my2 #the middle ones come from the average positions of the HPFs on either side primaryregions[gc] = [(x1+shape[i] + x2)/2 for x1, x2 in more_itertools.pairwise(average)] if len(primaryregions[gc]) >= 2: #the outer ones come from fitting a line to the middle ones m, b = units.np.polyfit( x=range(1, len(average)), y=primaryregions[gc], deg=1, ) primaryregions[gc].insert(0, m*0+b) primaryregions[gc].append(m*len(average)+b) else: #can't fit a line because there are only at most 2 rows/columns, so do an approximation allcs = sorted({r.cxvec[i] for r in self.rectangles}) mindiff = min(np.diff(allcs)) divideby = 1 while mindiff / divideby > shape[i]: divideby += 1 mindiff /= divideby if len(primaryregions[gc]) == 1: primaryregions[gc].insert(0, primaryregions[gc][0] - mindiff) primaryregions[gc].append(primaryregions[gc][1] + mindiff) else: #len(primaryregions[gc]) == 0 primaryregions[gc].append(average[0] + (shape[i] - mindiff) / 2) primaryregions[gc].append(average[0] + (shape[i] + mindiff) / 2) mx1 = {} mx2 = {} my1 = {} my2 = {} #set gx, gy, mx1, my1, mx2, my2 for the HPFs for i, island in enumerate(islands, start=1): for rid in island: r = self.rectangles[self.rectangledict[rid]] gx = gxdict[i][r.cx] gy = gydict[i][r.cy] mx1[rid] = primaryregionsx[i][gx-1] mx2[rid] = primaryregionsx[i][gx] my1[rid] = primaryregionsy[i][gy-1] my2[rid] = primaryregionsy[i][gy] #see if the primary regions of any HPFs in different islands overlap for (i1, island1), (i2, island2) in itertools.combinations(enumerate(islands, start=1), r=2): if len(island1) == 1 or len(island2) == 1: continue #orphans are excluded #first see if the islands overlap x11 = min(primaryregionsx[i1]) x21 = max(primaryregionsx[i1]) x12 = min(primaryregionsx[i2]) x22 = max(primaryregionsx[i2]) y11 = min(primaryregionsy[i1]) y21 = max(primaryregionsy[i1]) y12 = min(primaryregionsy[i2]) y22 = max(primaryregionsy[i2]) #if a box around the islands overlaps in both x and y if ( max(x21, x22) - min(x11, x12) + 1e-5*x11 < (x21 - x11) + (x22 - x12) and max(y21, y22) - min(y11, y12) + 1e-5*x11 < (y21 - y11) + (y22 - y12) ): self.__logger.info(f"Primary regions for islands {i1} and {i2} overlap in both x and y, seeing if any field primary regions overlap") xoverlapstoadjust = collections.defaultdict(list) yoverlapstoadjust = collections.defaultdict(list) cornerstoadjust = collections.defaultdict(list) for rid1, rid2 in itertools.product(island1, island2): xx11 = mx1[rid1] xx21 = mx2[rid1] xx12 = mx1[rid2] xx22 = mx2[rid2] yy11 = my1[rid1] yy21 = my2[rid1] yy12 = my1[rid2] yy22 = my2[rid2] if ( max(xx21, xx22) - min(xx11, xx12) + 1e-5*x11 < (xx21 - xx11) + (xx22 - xx12) and max(yy21, yy22) - min(yy11, yy12) + 1e-5*x11 < (yy21 - yy11) + (yy22 - yy12) ): self.__logger.warningglobal(f"Primary regions for fields {rid1} and {rid2} overlap, adjusting them") threshold = 100*onepixel xs = ys = None ridax = ridbx = riday = ridby = None if abs(xx21 - xx12) <= threshold: xs = xx12, xx21 ridax, ridbx = rid2, rid1 elif abs(xx11 - xx22) <= threshold: xs = xx11, xx22 ridax, ridbx = rid1, rid2 if abs(yy21 - yy12) <= threshold: ys = yy12, yy21 riday, ridby = rid2, rid1 elif abs(yy11 - yy22) <= threshold: ys = yy11, yy22 riday, ridby = rid1, rid2 if xs is ys is None: raise ValueError(f"Primary regions for fields {rid1} and {rid2} have too big of an overlap") if xs is not None and ys is not None: cornerstoadjust[xs, ys].append((ridax, ridbx, riday, ridby)) elif xs is not None: xoverlapstoadjust[xs].append((ridax, ridbx)) elif ys is not None: yoverlapstoadjust[ys].append((riday, ridby)) cornerxscounter = collections.Counter(xs for xs, ys in cornerstoadjust) corneryscounter = collections.Counter(ys for xs, ys in cornerstoadjust) xswith2corners = [xs for xs, count in cornerxscounter.items() if count >= 2] yswith2corners = [ys for ys, count in corneryscounter.items() if count >= 2] for (xs, ys), rids in cornerstoadjust.items(): if xs in xswith2corners: xoverlapstoadjust[xs] += [(ridax, ridbx) for ridax, ridbx, riday, ridby in rids] if ys in yswith2corners: yoverlapstoadjust[ys] += [(riday, ridby) for ridax, ridbx, riday, ridby in rids] for (xs, ys), rids in cornerstoadjust.items(): if xs in xoverlapstoadjust: xoverlapstoadjust[xs] += [(ridax, ridbx) for ridax, ridbx, riday, ridby in rids] if ys in yoverlapstoadjust: yoverlapstoadjust[ys] += [(riday, ridby) for ridax, ridbx, riday, ridby in rids] for ((oldmx1, oldmx2), (oldmy1, oldmy2)), rids in cornerstoadjust.items(): if xs in xoverlapstoadjust or ys in yoverlapstoadjust: pass elif oldmx1 - oldmx2 < oldmy1 - oldmy2: xoverlapstoadjust[oldmx1, oldmx2] += rids else: yoverlapstoadjust[oldmy1, oldmy2] += rids for (oldmx1, oldmx2), rids in xoverlapstoadjust.items(): for rid1, rid2 in rids: newmx = (oldmx1 + oldmx2)/2 assert (mx1[rid1] == oldmx1 or mx1[rid1] == newmx) and (mx2[rid2] == oldmx2 or mx2[rid2] == newmx), (mx1[rid1], oldmx1, mx2[rid2], oldmx2, newmx) mx1[rid1] = mx2[rid2] = newmx for (oldmy1, oldmy2), rids in yoverlapstoadjust.items(): for rid1, rid2 in rids: newmy = (oldmy1 + oldmy2)/2 assert (my1[rid1] == oldmy1 or my1[rid1] == newmy) and (my2[rid2] == oldmy2 or my2[rid2] == newmy), (my1[rid1], oldmy1, my2[rid2], oldmy2, newmy) my1[rid1] = my2[rid2] = newmy for rid1, rid2 in itertools.product(island1, island2): xx11 = mx1[rid1] xx21 = mx2[rid1] xx12 = mx1[rid2] xx22 = mx2[rid2] yy11 = my1[rid1] yy21 = my2[rid1] yy12 = my1[rid2] yy22 = my2[rid2] if ( max(xx21, xx22) - min(xx11, xx12) + 1e-5*x11 < (xx21 - xx11) + (xx22 - xx12) and max(yy21, yy22) - min(yy11, yy12) + 1e-5*x11 < (yy21 - yy11) + (yy22 - yy12) ): raise ValueError(f"Primary regions for fields {rid1} and {rid2} still overlap") #if there are any HPFs that are in the wrong quadrant (negative px or py), adjust the whole slide minpxvec = [np.inf * onepixel, np.inf * onepixel] for rectangle in self.rectangles: for gc, island in enumerate(islands, start=1): if rectangle.n in island: break else: assert False gx = gxdict[gc][rectangle.cx] gy = gydict[gc][rectangle.cy] pxvec = self.x(rectangle) - self.origin minpxvec = np.min([minpxvec, units.nominal_values(pxvec)], axis=0) result.append( Field( rectangle=rectangle, ixvec=floattoint(np.round((rectangle.xvec / onepixel).astype(float))) * onepixel, gc=0 if len(island) == 1 else gc, pxvec=pxvec, gxvec=(gx, gy), primaryregionx=np.array([mx1[rectangle.n], mx2[rectangle.n]]) - self.origin[0], primaryregiony=np.array([my1[rectangle.n], my2[rectangle.n]]) - self.origin[1], readingfromfile=False, ) ) minx, miny = np.floor(minpxvec/(100*onepixel))*100*onepixel if minx > 0: minx = 0 if miny > 0: miny = 0 if minx or miny: self.__logger.warningglobal(f"Some HPFs have (x, y) < (xposition, yposition), shifting the whole slide by {-minx, -miny}") for f in result: f.pxvec -= (minx, miny) f.primaryregionx -= minx f.primaryregiony -= miny return result @property def fields(self): return self.__fields() def writetable(self, *filenames, rtol=1e-3, atol=1e-5, check=False, **kwargs): """ Write the affine, fields, and fieldoverlaps csvs check: cross check that reading the csvs back gives the same result this is nontrivial because we lose part of the covariance matrix (cross talk between non-adjacent HPFs and between HPFs and the affine matrix) in this procedure rtol, atol: tolerance for the cross check """ affinefilename, fieldsfilename, fieldoverlapfilename = filenames fields = self.fields writetable(fieldsfilename, fields, rowclass=Field, **kwargs) affine = [] n = 0 for rowcoordinate, row in zip("xy", self.T): for columncoordinate, entry in zip("xy", row): n += 1 affine.append( AffineNominalEntry( n=n, matrixentry=entry, description="a"+rowcoordinate+columncoordinate ) ) for entry1, entry2 in itertools.combinations_with_replacement(affine[:], 2): n += 1 affine.append(AffineCovarianceEntry(n=n, entry1=entry1, entry2=entry2)) writetable(affinefilename, affine, rowclass=AffineEntry, **kwargs) writetable(fieldoverlapfilename, self.fieldoverlaps, **kwargs) if check: self.__logger.debug("reading back from the file") readback = ReadStitchResult(*filenames, rectangles=self.rectangles, overlaps=self.overlaps, origin=self.origin, logger=self.__logger) self.__logger.debug("done reading") x1 = self.x() T1 = self.T x2 = readback.x() T2 = readback.T self.__logger.debug("comparing nominals") units.np.testing.assert_allclose(units.nominal_values(x1), units.nominal_values(x2), atol=atol, rtol=rtol) units.np.testing.assert_allclose(units.nominal_values(T1), units.nominal_values(T2), atol=atol, rtol=rtol) self.__logger.debug("comparing individual errors") units.np.testing.assert_allclose(units.std_devs(x1), units.std_devs(x2), atol=atol, rtol=rtol) units.np.testing.assert_allclose(units.std_devs(T1), units.std_devs(T2), atol=atol, rtol=rtol) self.__logger.debug("comparing overlap errors") for o in self.overlaps: units.np.testing.assert_allclose(units.covariance_matrix(self.dx(o)), units.covariance_matrix(readback.dx(o)), atol=atol, rtol=rtol) self.__logger.debug("done") class StitchResultFullCovariance(StitchResultBase): """ Base class for a stitch result that has the full covariance matrix """ def __init__(self, *,
#! /usr/bin/env python3 import collections import datetime import pprint import re import urllib.parse import uuid import voluptuous as v import pymongo import bson s_old_story_base = v.Schema({ "_id": bson.objectid.ObjectId, "id": str, "url": v.Url(), "title": str, "scraped": v.Any(datetime.datetime, None), "metadata": dict, "created_at": datetime.datetime, "publication_date": v.Any(datetime.datetime, None), }, required=True) s_old_story = v.Any( s_old_story_base.extend({ "metadata": {}, "closedAt": v.Any(datetime.datetime, None), "closedMessage": None, "settings": dict, "tags": [], "type": "assets", "updated_at": datetime.datetime, "author": str, "description": str, "image": v.Url(), "modified_date": None, "section": str, }, required=True), s_old_story_base.extend({ "metadata": v.Schema({"source": "wpimport"}, required=True), }), ) s_old_user_import = v.Schema({ "_id": bson.objectid.ObjectId, "id": str, "username": str, "lowercaseUsername": str, "profiles": [v.Schema({ "provider": "disqus", "id": str, }, required=True)], "metadata": v.Schema({"source": "wpimport", v.Optional("trust"): dict}, required=True), "created_at": datetime.datetime, v.Optional("updated_at"): datetime.datetime, v.Optional("action_counts"): dict, # can skip importing this I think }, required=True) s_old_user_organic = v.Schema({ "_id": bson.objectid.ObjectId, "status": v.Schema({ "username": v.Schema({ "status": v.Any("SET", "UNSET", "APPROVED"), "history": [v.Schema({ "assigned_by": v.Any(None, str), "_id": bson.objectid.ObjectId, "status": v.Any("SET", "UNSET", "REJECTED", "CHANGED", "APPROVED"), "created_at": datetime.datetime, }, required=True)], }, required=True), "banned": v.Schema({ "status": bool, "history": [v.Schema({ "assigned_by": str, "message": str, "_id": bson.objectid.ObjectId, "status": bool, "created_at": datetime.datetime, }, required=True)], }, required=True), "suspension": v.Schema({ "until": None, "history": [], }, required=True), "alwaysPremod": v.Schema({ "status": bool, "history": [v.Schema({ "assigned_by": str, "_id": bson.objectid.ObjectId, "status": bool, "created_at": datetime.datetime, }, required=True)], }, required=True), }, required=True), "role": v.Any("ADMIN", "STAFF", "COMMENTER", "MODERATOR"), "ignoresUsers": [str], "username": str, "lowercaseUsername": str, v.Optional("password"): str, "profiles": [v.Any( v.Schema({ "id": str, "provider": v.Any("google", "facebook"), }, required=True), v.Schema({ "id": str, "provider": "local", v.Optional("metadata"): v.Schema({ "confirmed_at": datetime.datetime, "recaptcha_required": bool, }, required=False), }, required=True), )], "id": str, "tokens": [], "tags": [], "created_at": datetime.datetime, "updated_at": datetime.datetime, "__v": int, # version v.Optional("metadata"): v.Schema({ "avatar": v.Any(v.Url(), '', re.compile(r"data:").match), "lastAccountDownload": datetime.datetime, "notifications": { "settings": { "onReply": bool, "onFeatured": bool, "digestFrequency": v.Any("HOURLY", "DAILY", "NONE"), }, "digests": [dict], # only a couple of users have this set - I think it's for buffering notifs, so can ignore }, "trust": { "comment": {"karma": int}, "flag": {"karma": int}, }, "scheduledDeletionDate": datetime.datetime, # best to handle this at import time I think }, required=False), v.Optional("action_counts"): dict, # can skip importing this I think }, required=True) s_old_user = v.Any(s_old_user_organic, s_old_user_import) s_old_comment_base = v.Schema({ "_id": bson.objectid.ObjectId, "status": v.Any("ACCEPTED", "REJECTED", "NONE"), v.Optional("status_history"): [v.Schema({ "assigned_by": v.Any(None, str), "type": v.Any("ACCEPTED", "NONE", "REJECTED", "SYSTEM_WITHHELD"), "created_at": datetime.datetime, }, required=True)], "id": str, "author_id": str, "parent_id": v.Any(None, str), "created_at": datetime.datetime, "updated_at": datetime.datetime, "asset_id": str, "body": str, "reply_count": int, v.Optional("action_counts"): v.Schema({ "respect": int, "flag": int, "flag_comment_other": int, "flag_comment_offensive": int, "flag_spam_comment": int, "dontagree": int, "flag_trust": int, "flag_comment_spam": int, }, required=False), }, required=True) s_old_comment_import = s_old_comment_base.extend({ "metadata": v.Schema({ "richTextBody": str, "source": "wpimport", }, required=True), }, required=True) s_old_comment_organic = s_old_comment_base.extend({ "body_history": [v.Schema({ "_id": bson.objectid.ObjectId, "body": str, "created_at": datetime.datetime, }, required=True)], "tags": [v.Schema({ "assigned_by": str, "tag": { "permissions": { "public": True, "roles": [v.Any("ADMIN", "MODERATOR")], "self": bool, }, "models": ["COMMENTS"], "name": v.Any("STAFF", "OFF_TOPIC", "FEATURED"), "created_at": datetime.datetime, }, "created_at": datetime.datetime, }, required=True)], "metadata": v.Schema({ "richTextBody": str, v.Optional("akismet"): bool, }, required=True), "__v": int, }, required=True) s_old_comment_deleted = v.Schema({ "_id": bson.objectid.ObjectId, "id": str, "body": None, "body_history": [], "asset_id": str, "author_id": None, "status_history": [], "status": "ACCEPTED", "parent_id": v.Any(None, str), "reply_count": int, "action_counts": {}, "tags": [], "metadata": {}, "deleted_at": datetime.datetime, "created_at": datetime.datetime, "updated_at": datetime.datetime, }, required=True) s_old_comment = v.Any(s_old_comment_organic, s_old_comment_import, s_old_comment_deleted) s_old_action_ignore = v.Schema({ "action_type": v.Any("FLAG", "DONTAGREE"), }, extra=v.ALLOW_EXTRA) s_old_action_respect = v.Schema({ "_id": bson.objectid.ObjectId, "action_type": "RESPECT", "group_id": None, "item_id": str, "item_type": "COMMENTS", "user_id": str, "__v": int, "created_at": datetime.datetime, "id": str, "metadata": {}, "updated_at": datetime.datetime, }, required=True) s_old_action = v.Any(s_old_action_ignore, s_old_action_respect) c = pymongo.MongoClient() olddb = c.talk newdb = c.coral tenantID = newdb.tenants.find_one()["id"] site = newdb.sites.find_one() siteID = site["id"] site["commentCounts"]["action"]["REACTION"] = 0 for k in site["commentCounts"]["status"]: site["commentCounts"]["status"][k] = 0 site["commentCounts"]["moderationQueue"]["total"] = 0 for k in site["commentCounts"]["moderationQueue"]["queues"]: site["commentCounts"]["moderationQueue"]["queues"][k] = 0 print("translating stories...") stories = [] stories_by_id = {} stories_unicode = collections.defaultdict(list) stories_unicode_replace = {} stories_http = set() def normalise(url): replacedhttp = False if url.startswith("http://"): url = "https://" + url[7:] replacedhttp = True if not url.startswith("https://www.angrymetalguy.com"): print(url) assert False host, path = url[:29], url[29:] if "%" in path: return host + urllib.parse.quote(urllib.parse.unquote(path)), True, replacedhttp for i in path: if ord(i) > 127: return host + urllib.parse.quote(path), True, replacedhttp if replacedhttp: return url, True, True return url, False, False for story in olddb.assets.find(): # things that need filling in later: # commentCounts, lastCommentedAt url, normed, httpnormed = normalise(story["url"]) if normed or url in stories_http: stories_unicode[url].append(story["id"]) if httpnormed: # ugh this is horrible stories_http.add(url) for story_exist in stories: if url == story_exist["url"]: stories_unicode[url].append(story_exist["id"]) continue if story["scraped"] is None and story["metadata"].get("source", None) is None: #print("skipping probable unicode wonkiness", story["url"]) continue if story.get("title", "").startswith("Page Not Found"): # spot of data cleaning while we're here continue try: s_old_story(story) except v.MultipleInvalid as e: pprint.pp(story) for i in e.errors: print(i) raise except v.Invalid: pprint.pp(story) raise if story.get("settings", {}) != {}: print("non-empty settings on", story["url"]) pprint.pp(story["settings"]) s = { "tenantID": tenantID, "siteID": siteID, "url": story["url"], "commentCounts": { "action": { "REACTION": 0, }, "status": { "APPROVED": 0, "NONE": 0, "PREMOD": 0, "REJECTED": 0, "SYSTEM_WITHHELD": 0, }, "moderationQueue": { "total": 0, "queues": { "unmoderated": 0, "reported": 0, "pending": 0, }, }, }, "settings": {}, "createdAt": story["created_at"], "id": story["id"], "metadata": { "title": story["title"], "publishedAt": story["publication_date"], # author, description, image }, "scrapedAt": story["scraped"], #"updatedAt": , "lastCommentedAt": None, } if "source" in story["metadata"]: s["metadata"]["source"] = story["metadata"]["source"] for i in ["author", "description", "image"]: if i in story: s["metadata"][i] = story[i] stories.append(s) stories_by_id[s["id"]] = s print("\nfixing unicode stories...") rewritten = 0 redirected = 0 for url, ids in stories_unicode.items(): if len(ids) == 1: s = stories_by_id[ids[0]] if s["url"] != url: print("rewrote", s["url"], "to", url) s["url"] = url rewritten += 1 else: redirected += 1 found_correct = None for id in ids: if id not in stories_by_id: # wonky record that was skipped continue s = stories_by_id[id] if s["url"] == url: found_correct = id print("mapping wonky urls to", url) break else: print("no correct url for", url) found_correct = s["id"] s["url"] = url for id in ids: if id == found_correct: continue stories_unicode_replace[id] = found_correct if id in stories_by_id: del stories_by_id[id] stories = list(stories_by_id.values()) print("rewrote", rewritten, "to correct url normalisation") print("redirected", redirected, "to correct url normalisation") print("\ntranslating users...") users = [] users_by_id = {} deletedusers = set() for user in olddb.users.find(): # things that need filling in later: # commentCounts # things that might need filling in now but I have skipped: # the various history fields in status try: s_old_user(user) except v.MultipleInvalid as e: pprint.pp(user) for i in e.errors: print(i) raise except v.Invalid: pprint.pp(user) raise assert len(user["profiles"]) == 1 if user.get("metadata", {}).get("avatar", "").startswith("data"): print("data url for", user["username"]) u = { "tenantID": tenantID, "tokens": [], "ignoredUsers": [], "status": { "username": {"history": []}, "suspension": {"history": []}, "ban": {"active": False, "history": []}, "premod": {"active": False, "history": []}, "warning": {"active": False, "history": []}, }, "notifications": { "onReply": False, "onFeatured": False, "onModeration": False, "onStaffReplies": False, "digestFrequency": "NONE", }, "moderatorNotes": [], "digests": [], "createdAt": user["created_at"], "commentCounts": { "status": { "APPROVED": 0, "NONE": 0, "PREMOD": 0, "REJECTED": 0, "SYSTEM_WITHHELD": 0, }, }, # email "username": user["username"], "role": user.get("role", "COMMENTER"), "profiles": [], "id": user["id"], # emailVerified "metadata": {}, } if user.get("metadata", {}).get("source", "") == "wpimport": u["profiles"].append({"type": user["profiles"][0]["provider"], "id":user["profiles"][0]["id"]}) u["metadata"]["source"] = "wpimport" else: if user["status"]["banned"]["status"]: u["status"]["ban"]["active"] = True if user["status"]["alwaysPremod"]["status"]: u["status"]["premod"]["active"] = True if user["ignoresUsers"]: ignore = [] for iid in user["ignoresUsers"]: ignore.append({"id": iid, "createdAt": datetime.datetime.today()}) u["ignoredUsers"] = ignore prof = user["profiles"][0] p = {} if prof["provider"] == "local": p["type"] = "local" p["id"] = prof["id"] p["password"] = user["password"] p["passwordID"] = str(<KEY> u["email"] = prof["id"] u["emailVerified"] = "confirmed_at" in prof.get("metadata", {}) else: p["type"] = prof["provider"] p["id"] = prof["id"] u["profiles"].append(p) meta = user.get("metadata", {}) if "avatar" in meta: av = meta["avatar"] if av != "" and not av.startswith("data:"): u["avatar"] = meta["avatar"] if "notifications" in meta: if meta["notifications"]["settings"].get("onReply", False): u["notifications"]["onReply"] = True if meta["notifications"]["settings"].get("onFeatured", False): u["notifications"]["onFeatured"] = True dig = meta["notifications"]["settings"].get("digestFrequency", "NONE") u["notifications"]["digestFrequency"] = dig if "scheduledDeletionDate" in meta: deletedusers.add(user["id"]) continue users.append(u) users_by_id[u["id"]] = u print("\ntranslating comments...") comments = [] comments_by_id = {} for comment in olddb.comments.find(): # things that need filling in later: # childIDs, childCount, ancestorIDs try: s_old_comment(comment) except v.MultipleInvalid as e: pprint.pp(comment) for i in e.errors: print(i) raise except v.Invalid: pprint.pp(comment) raise if comment["asset_id"] in stories_unicode_replace: comment["asset_id"] = stories_unicode_replace[comment["asset_id"]] if comment["asset_id"] not in stories_by_id: # story skipped due to unicode issues, ignore comments continue c = { "id": comment["id"], "tenantID": tenantID, "childIDs": [], "childCount": 0,
<filename>pysrc/generator.py #!/usr/bin/env python # -*- python -*- #BEGIN_LEGAL # #Copyright (c) 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #END_LEGAL ############################################################################ ## this is the main generator and the decoder generator. ## the main data structures are: ## ## class all_generator_info_t(object): ## the catch-all for all state -- at least it tries to be. ## ## class generator_common_t(object): ## class generator_info_t(generator_common_t): ## each generator has a parser ## ## class parser_t(object): ## ## which contains: ## ## class partitionable_info_t(object): ## class instruction_info_t(partitionable_info_t): ## ## class nonterminal_info_t(object): ## class nonterminal_dict_t(object): ## class bits_list_t(object): ## ## contains a list of: ## ## class bit_info_t(object): ## class state_info_t(object): ## class prebinding_t(object): ## class opnds.operand_info_t(object): ## class graph_node(object): ## class code_gen_dec_args_t(object): ## class table_init_object_t(object): ## class bit_group_info_t(object): ## class reg_info_t(object): ## class width_info_t(object): ############################################################################ from __future__ import print_function import os import sys import copy import glob import re import optparse import collections def find_dir(d): directory = os.getcwd() last = '' while directory != last: target_directory = os.path.join(directory,d) if os.path.exists(target_directory): return target_directory last = directory directory = os.path.split(directory)[0] return None mbuild_install_path = os.path.join(os.path.dirname(sys.argv[0]), '..', 'mbuild') if not os.path.exists(mbuild_install_path): mbuild_install_path = find_dir('mbuild') sys.path= [mbuild_install_path] + sys.path try: import mbuild except: sys.stderr.write("\nERROR(generator.py): Could not find mbuild. " + "Should be a sibling of the xed directory.\n\n") sys.exit(1) xed2_src_path = os.path.join(os.path.dirname(sys.argv[0])) if not os.path.exists(xed2_src_path): xed2_src_path = find_dir('xed2') sys.path= [ xed2_src_path ] + sys.path sys.path= [ os.path.join(xed2_src_path,'pysrc') ] + sys.path from genutil import * import genutil import operand_storage import slash_expand import flag_gen from verbosity import * import opnds import opnd_types import cpuid_rdr import map_info_rdr send_stdout_message_to_file = False if send_stdout_message_to_file: fn = "out" set_msgs(open(fn,"w")) sys.stderr.write("Writing messages to file: [" + fn + "]\n") check_python_version(2,4) from codegen import * import metaenum import enum_txt_writer import chipmodel import ctables import ild import refine_regs import classifier ##################################################################### ## OPTIONS ##################################################################### def setup_arg_parser(): arg_parser = optparse.OptionParser() arg_parser.add_option('--debug', action='store_true', dest='debug', default=False, help='Start PDB debugger') arg_parser.add_option('--limit-enum-strings', action='store_true', dest='limit_enum_strings', default=False, help='Save space by limiting the enum strings') arg_parser.add_option('--gendir', action='store', dest='gendir', default='gen', help='Directory for generated files') arg_parser.add_option('--xeddir', action='store', dest='xeddir', default='', help='Directory for generated files') arg_parser.add_option('--input-regs', action='store', dest='input_regs', default='', help='Register input file') arg_parser.add_option('--input-widths', action='store', dest='input_widths', default='', help='Widths input file') arg_parser.add_option('--input-extra-widths', action='store', dest='input_extra_widths', default='', help='Extra widths input file') arg_parser.add_option('--input-element-types', action='store', dest='input_element_types', default='', help='File with mappings from type names to' + ' widths and base element types') arg_parser.add_option('--input-element-type-base', action='store', dest='input_element_type_base', default='', help='new chunk for element type enum') arg_parser.add_option('--input-pointer-names', action='store', dest='input_pointer_names', default='', help='Pointer names input file for disassembly') arg_parser.add_option('--input-fields', action='store', dest='input_fields', default='', help='Operand storage description input file') arg_parser.add_option('--input', action='store', dest='input', default='', help='Input file') arg_parser.add_option('--input-state', action='store', dest='input_state', default='xed-state-bits.txt', help='state input file') arg_parser.add_option('--inst', action='store', dest='inst_init_file', default='xed-init-inst-table.c', help='Instruction table init file') arg_parser.add_option('--sout', action='store', dest='structured_output_fn', default='xed-sout.txt', help='Emit structured output file') arg_parser.add_option('--patterns', action='store', dest='structured_input_fn', default='', help='Read structured input file') arg_parser.add_option('--chip-models', action='store', dest='chip_models_input_fn', default='', help='Chip models input file name') arg_parser.add_option('--ctables', action='store', dest='ctables_input_fn', default='', help='Conversion tables input file name') arg_parser.add_option('--isa', action='store', dest='isa_input_file', default='', help='Read structured input file containing' + ' the ISA INSTRUCTIONS() nonterminal') arg_parser.add_option('--spine', action='store', dest='spine', default='', help='Read the spine file containing the' + ' top-most decoder nonterminal') arg_parser.add_option('--print-graph', action='store_true', dest='print_graph', default=False, help='Print the graph for each nonterminal (big)') arg_parser.add_option('--verbosity', '--verbose', '-v', action='append', dest='verbosity', default=[], help='Level of verbosity, repeatable. ' + ' Values=1..7, enc,merge') arg_parser.add_option('--no-imm-suffix', action='store_false', dest='add_suffix_to_imm', default=True, help='Omit width suffixes from iforms') arg_parser.add_option('--cpuid', action='store', dest='cpuid_input_fn', default='', help='isa-set to cpuid map input file') arg_parser.add_option('--map-descriptions', action='store', dest='map_descriptions_input_fn', default='', help='map descriptions input file') arg_parser.add_option("--compress-operands", action="store_true", dest="compress_operands", default=False, help="use bit-fields to compress the "+ "operand storage.") arg_parser.add_option("--add-orphan-inst-to-future-chip", action="store_true", dest="add_orphan_inst_to_future_chip", default=False, help="Add orphan isa-sets to future chip definition.") return arg_parser ##################################################################### header_pattern = re.compile(r'[.][Hh]$') def is_header(fn): global header_pattern if header_pattern.search(fn): return True return False ############################################################################ # Compiled patterns used in this program ############################################################################ delete_iclass_pattern = re.compile('^DELETE') delete_iclass_full_pattern = \ re.compile(r'^DELETE[ ]*[:][ ]*(?P<iclass>[A-Za-z_0-9]+)') udelete_pattern = re.compile('^UDELETE') udelete_full_pattern = \ re.compile(r'^UDELETE[ ]*[:][ ]*(?P<uname>[A-Za-z_0-9]+)') operand_token_pattern = re.compile('OPERAND') underscore_pattern = re.compile(r'_') invert_pattern = re.compile(r'[!]') instructions_pattern = re.compile(r'INSTRUCTIONS') equals_pattern = re.compile(r'(?P<lhs>[^!]+)=(?P<rhs>.+)') not_equals_pattern = re.compile(r'(?P<lhs>[^!]+)!=(?P<rhs>.+)') quick_equals_pattern= re.compile(r'=') colon_pattern= re.compile(r'[:]') bits_and_letters_underscore_pattern = re.compile(r'^[10a-z_]+$') hex_pattern = re.compile(r'0[xX][0-9A-Fa-f]+') slash_macro_pattern = re.compile(r'([a-z][/][0-9]{1,2})') nonterminal_string = r'([A-Z][a-zA-Z0-9_]*)[(][)]' parens_to_end_of_line = re.compile(r'[(][)].*::.*$') # with double colon lookupfn_w_args_pattern = re.compile(r'[\[][a-z]+]') #nonterminal_start_pattern=re.compile(r'^' + nonterminal_string + r'\s*::') nonterminal_start_pattern=re.compile(r'::') nonterminal_pattern=re.compile(nonterminal_string) nonterminal_parens_pattern = re.compile(r'[(][^)]*[)]') binary_pattern = re.compile(r'^[01_]+$') # only 1's and 0's formal_binary_pattern = re.compile(r'^0b[01_]+$') # only 1's and 0's leading 0b one_zero_pattern = re.compile(r'^[01]') # just a leading 0 or 1 completely_numeric = re.compile(r'^[0-9]+$') # only numbers # things identified by the restriction_pattern are the operand deciders: restriction_pattern = re.compile(r'([A-Z0-9_]+)(!=|=)([bx0-9A-Z_]+)') all_caps_pattern = re.compile(r'^[A-Z_0-9]+$') not11_pattern = re.compile(r'NOT11[(]([a-z]{2})[)]') letter_basis_pattern = re.compile(r'[a-z]') all_zeros_pattern = re.compile(r'^[0]+$') type_ending_pattern = re.compile(r'_t$') uniq_pattern = re.compile(r'_uniq(.*)$') ntwidth_pattern = re.compile('NTWIDTH') paren_underscore_pattern = re.compile(r'[(][)][_]+') all_lower_case_pattern = re.compile(r'^[a-z]+$') pattern_binding_pattern = re.compile( r'(?P<name>[A-Za-z_0-9]+)[\[](?P<bits>[A-Za-z01_]+)]') uppercase_pattern = re.compile(r'[A-Z]') reg_operand_name_pattern = re.compile("^REG(?P<regno>[0-9]+)$") ############################################################################ def comment(s): return '/* {} */'.format(s) def all_the_same(lst): "return True if all the elements of the list are the same" first = lst[0] for x in lst: if x != first: return False return True def pad_to_multiple_of_8bits(x): ilen = len(x) frac = ilen & 7 if frac == 0: return x t = [] while frac < 8: t.append('0') frac = frac + 1 t.extend(x) return t ############################################################################ # $$ nonterminal_info_t class nonterminal_info_t(object): def __init__(self,name, type=None): self.name = name self.type = type self.start_node = None def set_start_node(self,n): self.start_node = n def is_lookup_function(self): if self.type != None: return True return False # $$ nonterminal_dict_t class nonterminal_dict_t(object): """dictionary holding nonterminal information for code generation""" def __init__(self): # dictionary of nonterminal_info_t's by short name. # nonterminal_info_t has {name, type, start_node} self.nonterminal_info = {} def keys(self): return list(self.nonterminal_info.keys()) def add_graph_node(self, nt_name, node_id): """set the node id in the graph node""" if nt_name not in self.nonterminal_info: self.add_to_dict(nt_name) n = self.nonterminal_info[nt_name] n.start_node = node_id def get_node(self,nt_name): if nt_name in self.nonterminal_info: return self.nonterminal_info[nt_name] die("Did not find " + nt_name + " in the nonterminal dictionary.") def add_to_dict(self,short_nt_name, nt_type=None): msge("Adding " + short_nt_name + " to nonterminal dict") #nonterminal_info_t has {name, type, start_node, encode, decoder} new_nt = nonterminal_info_t(short_nt_name, nt_type) self.nonterminal_info[short_nt_name] = new_nt def record_nonterminal(self,nt_name, nt_type): if nt_name: if nt_name not in self.nonterminal_info: #msge("Adding NT: " + nt_name) self.add_to_dict(nt_name, nt_type) else: die("Bad nonterminal name") ############################################################################ # $$ bit_info_t class bit_info_t(object): """The patterns are built up of bits of various kinds. Normal 1/0 bits are type bit. The other kinds of bits are dontcares which are letter names, state bits, operand tests and nonterminals. """ bit_types = [ 'bit', 'dontcare', 'operand', 'nonterminal' ] def __init__(self, value, btype='bit', pbit=-1): self.btype = btype # See bit_info_t.bit_types self.value = value # Physical bits are bits that are real. They are offsets from # the beginnning of this nonterminal or the last nonterminal. self.pbit = pbit self.token = None # operand decider self.test = None # eq or ne self.requirement = None # the value the od must have (or not have) if btype == 'operand': # for operands, we split them in to a token name and a required value. #search for FOO=233 or FOO!=233 m = restriction_pattern.search(value) if not m: die("bad operand decider: "+ value) (token,test,requirement) = m.groups([0,1,2]) if vod(): msge("OperandDecider Token= " + token + " Test= " + test + " Requirement= " + requirement) self.token = token self.requirement = make_numeric(requirement, value) if test == '=': self.test='eq' else: self.test='ne' def __eq__(self,other): if other == None: return False if self.value == other.value: if self.btype == other.btype: return True return False def __ne__(self,other): if other == None: return True if self.value != other.value: return True if self.btype != other.btype: return True return False def __str__(self): s = self.btype + '/' + str(self.value) if self.pbit != -1: s += '/PBIT' + str(self.pbit) return s def just_bits(self): return self.value def is_nonterminal(self): if self.btype == 'nonterminal': return True return False def is_operand_decider(self): if self.btype == 'operand': return True return False def is_dont_care(self): if self.btype == 'dontcare': return True return False def is_real_bit(self): if self.btype == 'dontcare' or self.btype == 'bit': return True return False def is_one_or_zero(self): if self.btype == 'bit': return True return False def nonterminal_name(self): if self.is_nonterminal(): g = nonterminal_pattern.search(self.value) if
self._client.report_instances_status(instance_id=self.instance_id, **_params) def allocate_public_ip_address(self, **params): _params = _transfer_params(params) self._client.allocate_public_ip_address(instance_id=self.instance_id, **_params) def attach_classic_link_vpc(self, **params): _params = _transfer_params(params) self._client.attach_classic_link_vpc(instance_id=self.instance_id, **_params) def convert_nat_public_ip_to_eip(self, **params): _params = _transfer_params(params) self._client.convert_nat_public_ip_to_eip(instance_id=self.instance_id, **_params) def delete(self, **params): _params = _transfer_params(params) self._client.delete_instance(instance_id=self.instance_id, **_params) def describe_eni_monitor_data(self, **params): _params = _transfer_params(params) self._client.describe_eni_monitor_data(instance_id=self.instance_id, **_params) def describe_instance_attribute(self, **params): _params = _transfer_params(params) self._client.describe_instance_attribute(instance_id=self.instance_id, **_params) def describe_instance_monitor_data(self, **params): _params = _transfer_params(params) self._client.describe_instance_monitor_data(instance_id=self.instance_id, **_params) def describe_instance_physical_attribute(self, **params): _params = _transfer_params(params) self._client.describe_instance_physical_attribute(instance_id=self.instance_id, **_params) def describe_instance_vnc_passwd(self, **params): _params = _transfer_params(params) self._client.describe_instance_vnc_passwd(instance_id=self.instance_id, **_params) def describe_instance_vnc_url(self, **params): _params = _transfer_params(params) self._client.describe_instance_vnc_url(instance_id=self.instance_id, **_params) def describe_user_data(self, **params): _params = _transfer_params(params) self._client.describe_user_data(instance_id=self.instance_id, **_params) def detach_classic_link_vpc(self, **params): _params = _transfer_params(params) self._client.detach_classic_link_vpc(instance_id=self.instance_id, **_params) def get_instance_console_output(self, **params): _params = _transfer_params(params) response = self._client.get_instance_console_output(instance_id=self.instance_id, **_params) return response def get_instance_screenshot(self, **params): _params = _transfer_params(params) response = self._client.get_instance_screenshot(instance_id=self.instance_id, **_params) return response def modify_attribute(self, **params): _params = _transfer_params(params) self._client.modify_instance_attribute(instance_id=self.instance_id, **_params) def modify_auto_release_time(self, **params): _params = _transfer_params(params) self._client.modify_instance_auto_release_time(instance_id=self.instance_id, **_params) def modify_auto_renew_attribute(self, **params): _params = _transfer_params(params) self._client.modify_instance_auto_renew_attribute(instance_id=self.instance_id, **_params) def modify_deployment(self, **params): _params = _transfer_params(params) self._client.modify_instance_deployment(instance_id=self.instance_id, **_params) def modify_disk_charge_type(self, **params): _params = _transfer_params(params) self._client.modify_disk_charge_type(instance_id=self.instance_id, **_params) def modify_network_spec(self, **params): _params = _transfer_params(params) self._client.modify_instance_network_spec(instance_id=self.instance_id, **_params) def modify_prepay_instance_spec(self, **params): _params = _transfer_params(params) self._client.modify_prepay_instance_spec(instance_id=self.instance_id, **_params) def modify_spec(self, **params): _params = _transfer_params(params) self._client.modify_instance_spec(instance_id=self.instance_id, **_params) def modify_vnc_passwd(self, **params): _params = _transfer_params(params) self._client.modify_instance_vnc_passwd(instance_id=self.instance_id, **_params) def reactivate(self, **params): _params = _transfer_params(params) self._client.reactivate_instances(instance_id=self.instance_id, **_params) def reboot(self, **params): _params = _transfer_params(params) self._client.reboot_instance(instance_id=self.instance_id, **_params) def redeploy(self, **params): _params = _transfer_params(params) self._client.redeploy_instance(instance_id=self.instance_id, **_params) def renew(self, **params): _params = _transfer_params(params) self._client.renew_instance(instance_id=self.instance_id, **_params) def replace_system_disk(self, **params): _params = _transfer_params(params) response = self._client.replace_system_disk(instance_id=self.instance_id, **_params) return response['DiskId'] def start(self, **params): _params = _transfer_params(params) self._client.start_instance(instance_id=self.instance_id, **_params) def stop(self, **params): _params = _transfer_params(params) self._client.stop_instance(instance_id=self.instance_id, **_params) def modify_vpc_attribute(self, **params): _params = _transfer_params(params) self._client.modify_instance_vpc_attribute(instance_id=self.instance_id, **_params) def refresh(self): result = self._client.describe_instances(instance_ids=self.instance_id) items = _new_get_key_in_response(result, 'Instances.Instance') if not items: raise ClientException(msg= "Failed to find instance data from DescribeInstances response. " "InstanceId = {0}".format(self.instance_id)) self._assign_attributes(items[0]) def wait_until(self, target_status, timeout=120): start_time = time.time() while True: end_time = time.time() if end_time - start_time >= timeout: raise Exception("Timed out: no {0} status after {1} seconds.".format( target_status, timeout)) self.refresh() if self.status == target_status: return time.sleep(1) class _ECSInstanceTypeResource(ServiceResource): def __init__(self, instance_type_id, _client=None): ServiceResource.__init__(self, "ecs.instance_type", _client=_client) self.instance_type_id = instance_type_id self.baseline_credit = None self.cpu_core_count = None self.eni_private_ip_address_quantity = None self.eni_quantity = None self.gpu_amount = None self.gpu_spec = None self.initial_credit = None self.instance_bandwidth_rx = None self.instance_bandwidth_tx = None self.instance_family_level = None self.instance_pps_rx = None self.instance_pps_tx = None self.instance_type_family = None self.local_storage_amount = None self.local_storage_capacity = None self.local_storage_category = None self.memory_size = None class _ECSKeyPairResource(ServiceResource): def __init__(self, key_pair_name, _client=None): ServiceResource.__init__(self, "ecs.key_pair", _client=_client) self.key_pair_name = key_pair_name self.key_pair_finger_print = None self.resource_group_id = None self.tags = None def delete(self, **params): _params = _transfer_params(params) self._client.delete_key_pairs(key_pair_name=self.key_pair_name, **_params) def attach(self, **params): _params = _transfer_params(params) self._client.attach_key_pair(key_pair_name=self.key_pair_name, **_params) def detach(self, **params): _params = _transfer_params(params) self._client.detach_key_pair(key_pair_name=self.key_pair_name, **_params) def refresh(self): result = self._client.describe_key_pairs(key_pair_name=self.key_pair_name) items = _new_get_key_in_response(result, 'KeyPairs.KeyPair') if not items: raise ClientException(msg= "Failed to find key_pair data from DescribeKeyPairs response. " "KeyPairName = {0}".format(self.key_pair_name)) self._assign_attributes(items[0]) class _ECSLaunchTemplateResource(ServiceResource): def __init__(self, launch_template_id, _client=None): ServiceResource.__init__(self, "ecs.launch_template", _client=_client) self.launch_template_id = launch_template_id self.create_time = None self.created_by = None self.default_version_number = None self.latest_version_number = None self.launch_template_name = None self.modified_time = None self.resource_group_id = None self.tags = None def refresh(self): result = self._client.describe_launch_templates( list_of_launch_template_id=[self.launch_template_id, ]) items = _new_get_key_in_response(result, 'LaunchTemplateSets.LaunchTemplateSet') if not items: raise ClientException(msg= "Failed to find launch_template data from DescribeLaunchTemplates response. " "LaunchTemplateId = {0}".format(self.launch_template_id)) self._assign_attributes(items[0]) class _ECSNatGatewayResource(ServiceResource): def __init__(self, nat_gateway_id, _client=None): ServiceResource.__init__(self, "ecs.nat_gateway", _client=_client) self.nat_gateway_id = nat_gateway_id def delete(self, **params): _params = _transfer_params(params) self._client.delete_nat_gateway(nat_gateway_id=self.nat_gateway_id, **_params) class _ECSNetworkInterfaceResource(ServiceResource): def __init__(self, network_interface_id, _client=None): ServiceResource.__init__(self, "ecs.network_interface", _client=_client) self.network_interface_id = network_interface_id self.associated_public_ip = None self.creation_time = None self.description = None self.instance_id = None self.ipv6_sets = None self.mac_address = None self.network_interface_name = None self.private_ip_address = None self.private_ip_sets = None self.resource_group_id = None self.security_group_ids = None self.service_id = None self.service_managed = None self.status = None self.tags = None self.type_ = None self.vswitch_id = None self.vpc_id = None self.zone_id = None def assign_ipv6_addresses(self, **params): _params = _transfer_params(params) self._client.assign_ipv6_addresses(network_interface_id=self.network_interface_id, **_params) def assign_private_ip_addresses(self, **params): _params = _transfer_params(params) self._client.assign_private_ip_addresses(network_interface_id=self.network_interface_id, **_params) def delete(self, **params): _params = _transfer_params(params) self._client.delete_network_interface(network_interface_id=self.network_interface_id, **_params) def modify_attribute(self, **params): _params = _transfer_params(params) self._client.modify_network_interface_attribute( network_interface_id=self.network_interface_id, **_params) def unassign_ipv6_addresses(self, **params): _params = _transfer_params(params) self._client.unassign_ipv6_addresses(network_interface_id=self.network_interface_id, **_params) def unassign_private_ip_addresses(self, **params): _params = _transfer_params(params) self._client.unassign_private_ip_addresses(network_interface_id=self.network_interface_id, **_params) def attach(self, **params): _params = _transfer_params(params) self._client.attach_network_interface(network_interface_id=self.network_interface_id, **_params) def create_network_interface_permission(self, **params): _params = _transfer_params(params) self._client.create_network_interface_permission( network_interface_id=self.network_interface_id, **_params) def detach(self, **params): _params = _transfer_params(params) self._client.detach_network_interface(network_interface_id=self.network_interface_id, **_params) def refresh(self): result = self._client.describe_network_interfaces( list_of_network_interface_id=[self.network_interface_id, ]) items = _new_get_key_in_response(result, 'NetworkInterfaceSets.NetworkInterfaceSet') if not items: raise ClientException(msg= "Failed to find network_interface data from DescribeNetworkInterfaces response. " "NetworkInterfaceId = {0}".format(self.network_interface_id)) self._assign_attributes(items[0]) class _ECSNetworkInterfacePermissionResource(ServiceResource): def __init__(self, network_interface_permission_id, _client=None): ServiceResource.__init__(self, "ecs.network_interface_permission", _client=_client) self.network_interface_permission_id = network_interface_permission_id self.account_id = None self.network_interface_id = None self.permission = None self.permission_state = None self.service_name = None def delete(self, **params): _params = _transfer_params(params) self._client.delete_network_interface_permission( network_interface_permission_id=self.network_interface_permission_id, **_params) def refresh(self): result = self._client.describe_network_interface_permissions( list_of_network_interface_permission_id=[self.network_interface_permission_id, ]) items = _new_get_key_in_response(result, 'NetworkInterfacePermissions.NetworkInterfacePermission') if not items: raise ClientException(msg= "Failed to find network_interface_permission data from DescribeNetworkInterfacePermissions response. " "NetworkInterfacePermissionId = {0}".format( self.network_interface_permission_id)) self._assign_attributes(items[0]) class _ECSPhysicalConnectionResource(ServiceResource): def __init__(self, physical_connection_id, _client=None): ServiceResource.__init__(self, "ecs.physical_connection", _client=_client) self.physical_connection_id = physical_connection_id self.access_point_id = None self.ad_location = None self.bandwidth = None self.business_status = None self.circuit_code = None self.creation_time = None self.description = None self.enabled_time = None self.line_operator = None self.name = None self.peer_location = None self.port_number = None self.port_type = None self.redundant_physical_connection_id = None self.spec = None self.status = None self.type_ = None def cancel(self, **params): _params = _transfer_params(params) self._client.cancel_physical_connection(physical_connection_id=self.physical_connection_id, **_params) def delete(self, **params): _params = _transfer_params(params) self._client.delete_physical_connection(physical_connection_id=self.physical_connection_id, **_params) def describe_virtual_border_routers_for(self, **params): _params = _transfer_params(params) self._client.describe_virtual_border_routers_for_physical_connection( physical_connection_id=self.physical_connection_id, **_params) def enable(self, **params): _params = _transfer_params(params) self._client.enable_physical_connection(physical_connection_id=self.physical_connection_id, **_params) def modify_attribute(self, **params): _params = _transfer_params(params) self._client.modify_physical_connection_attribute( physical_connection_id=self.physical_connection_id, **_params) def terminate(self, **params): _params = _transfer_params(params) self._client.terminate_physical_connection( physical_connection_id=self.physical_connection_id, **_params) class _ECSRegionResource(ServiceResource): def __init__(self, region_id, _client=None): ServiceResource.__init__(self, "ecs.region", _client=_client) self.region_id = region_id self.local_name = None self.region_endpoint = None self.status = None def refresh(self): result = self._client.describe_regions(region_id=self.region_id) items = _new_get_key_in_response(result, 'Regions.Region') if not items: raise ClientException(msg= "Failed to find region data from DescribeRegions response. " "RegionId = {0}".format(self.region_id)) self._assign_attributes(items[0]) class _ECSReservedInstanceResource(ServiceResource): def __init__(self, reserved_instance_id, _client=None): ServiceResource.__init__(self, "ecs.reserved_instance", _client=_client) self.reserved_instance_id = reserved_instance_id self.creation_time = None self.description = None self.expired_time = None self.instance_amount = None self.instance_type = None self.offering_type = None self.operation_locks = None self.platform = None self.region_id = None self.reserved_instance_name = None self.resource_group_id = None self.scope = None self.start_time = None self.status = None self.zone_id = None def modify_attribute(self, **params): _params = _transfer_params(params) self._client.modify_reserved_instance_attribute( reserved_instance_id=self.reserved_instance_id, **_params) def refresh(self): result = self._client.describe_reserved_instances( list_of_reserved_instance_id=[self.reserved_instance_id, ]) items = _new_get_key_in_response(result, 'ReservedInstances.ReservedInstance') if not items: raise ClientException(msg= "Failed to find reserved_instance data from DescribeReservedInstances response. " "ReservedInstanceId = {0}".format(self.reserved_instance_id)) self._assign_attributes(items[0]) def wait_until(self, target_status, timeout=120): start_time = time.time() while True: end_time = time.time() if end_time - start_time >= timeout: raise Exception("Timed out: no {0} status after {1} seconds.".format( target_status, timeout)) self.refresh() if self.status == target_status: return time.sleep(1) class _ECSRouteTableResource(ServiceResource): def __init__(self, route_table_id, _client=None): ServiceResource.__init__(self, "ecs.route_table", _client=_client) self.route_table_id = route_table_id self.creation_time = None self.resource_group_id = None self.route_entrys = None self.route_table_type = None self.vrouter_id = None def create_route_entry(self, **params): _params = _transfer_params(params) self._client.create_route_entry(route_table_id=self.route_table_id, **_params) def delete_route_entry(self, **params): _params = _transfer_params(params) self._client.delete_route_entry(route_table_id=self.route_table_id, **_params) def refresh(self): result = self._client.describe_route_tables(route_table_id=self.route_table_id) items = _new_get_key_in_response(result, 'RouteTables.RouteTable') if not items: raise ClientException(msg= "Failed to find route_table data from DescribeRouteTables response. " "RouteTableId = {0}".format(self.route_table_id)) self._assign_attributes(items[0]) class _ECSRouterInterfaceResource(ServiceResource): def __init__(self, router_interface_id, _client=None): ServiceResource.__init__(self, "ecs.router_interface", _client=_client) self.router_interface_id = router_interface_id self.access_point_id = None self.business_status = None self.charge_type = None self.connected_time = None self.creation_time = None self.description = None self.end_time = None self.health_check_source_ip = None self.health_check_target_ip = None self.name = None self.opposite_access_point_id = None self.opposite_interface_business_status = None self.opposite_interface_id = None self.opposite_interface_owner_id = None self.opposite_interface_spec = None self.opposite_interface_status = None self.opposite_region_id = None self.opposite_router_id = None self.opposite_router_type = None self.role = None self.router_id = None self.router_type = None self.spec = None self.status = None def activate(self, **params): _params = _transfer_params(params) self._client.activate_router_interface(router_interface_id=self.router_interface_id, **_params) def connect(self, **params): _params = _transfer_params(params) self._client.connect_router_interface(router_interface_id=self.router_interface_id, **_params) def deactivate(self, **params): _params = _transfer_params(params) self._client.deactivate_router_interface(router_interface_id=self.router_interface_id, **_params) def delete(self, **params): _params = _transfer_params(params) self._client.delete_router_interface(router_interface_id=self.router_interface_id, **_params) def modify_attribute(self, **params): _params = _transfer_params(params) self._client.modify_router_interface_attribute(router_interface_id=self.router_interface_id, **_params) def modify_spec(self, **params): _params = _transfer_params(params) self._client.modify_router_interface_spec(router_interface_id=self.router_interface_id, **_params) class _ECSSecurityGroupResource(ServiceResource): def __init__(self, security_group_id, _client=None): ServiceResource.__init__(self, "ecs.security_group", _client=_client) self.security_group_id = security_group_id self.available_instance_amount =
# encoding: utf-8 import os import re import sys import gzip import time import json import socket import random import weakref import datetime import functools import threading import collections import urllib.error import urllib.parse import urllib.request import collections.abc import json_dict from . import utils class ProxyURLRefreshError(Exception): pass class AliveProxiesNotFound(Exception): pass class NoFreeProxies(Exception): pass def _get_missing(target, source): """Возвращает присутствующие в `target`, но отсутствующие в `source` элементы """ old_target = set(target) new_target = old_target.intersection(source) return old_target.difference(new_target) def _build_opener(proxy=None): if proxy is not None: parsed = urllib.parse.urlparse(proxy) handler = urllib.request.ProxyHandler({parsed.scheme: proxy}) return urllib.request.build_opener(handler) else: return urllib.request.build_opener() class Proxies: default_opener = _build_opener() def __init__( self, proxies=None, proxies_url=None, proxies_url_gateway=None, proxies_file=None, options=None, ): """ @param proxies: список адресов прокси-серверов @param proxies_url: ссылка на список прокси-серверов @param proxies_file: путь до файла со списком прокси-серверов @param options: доп. параметры """ if options is None: options = {} shuffle = options.get('shuffle', False) if proxies is not None: proxies = list(proxies) if shuffle: random.shuffle(proxies) auto_refresh_period = options.get('auto_refresh_period') if auto_refresh_period: auto_refresh_period = datetime.timedelta(**auto_refresh_period) blacklist = utils.get_json_dict(json_dict.JsonLastUpdatedOrderedDict, filename=options.get('blacklist')) cooling_down = utils.get_json_dict(json_dict.JsonOrderedDict, filename=options.get('cooldown')) stats = utils.get_json_dict(json_dict.JsonDict, filename=options.get('stats')) if proxies_url_gateway: url_opener = _build_opener(proxies_url_gateway) else: url_opener = None self._url_opener = url_opener self._proxies = proxies self.proxies_url = proxies_url self.proxies_file = proxies_file self._shuffle = shuffle self.slice = options.get('slice') self.force_type = options.get('type') self.auto_refresh_period = auto_refresh_period self._blacklist = blacklist self._cooling_down = cooling_down self._stats = stats self._cleanup_lock = threading.RLock() self._last_auto_refresh = None self._auto_refresh_lock = threading.Lock() self._load_lock = threading.Lock() self._modified_at = time.perf_counter() self.__pool = None self._smart_holdout_start = options.get('smart_holdout_start') self._options = options if self._proxies is not None: proxies = set(self._proxies) self._cleanup_internals(proxies) @property def proxies(self): if self._proxies is None: with self._load_lock: # Вышли из состояния гонки, теперь можно удостовериться в реальной необходимости if self._proxies is None: self._proxies = self._load() self._cleanup_internals(self._proxies) self._modified_at = time.perf_counter() return self._proxies def _load(self): if self.proxies_url: proxies = self.read_url(self.proxies_url, opener=self._url_opener) elif self.proxies_file: proxies = self.read_file(self.proxies_file) else: raise NotImplementedError( "Can't load proxies: " "please specify one of the sources ('proxies_url' or 'proxies_file')" ) if self.slice: proxies = proxies[slice(*self.slice)] if self.force_type: new_type = self.force_type + '://' # `socks` format proxies = [ re.sub(r'^(?:(.*?)://)?', new_type, proxy) for proxy in proxies ] if self._shuffle: random.shuffle(proxies) return proxies def _cleanup_internals(self, proxies): with self._cleanup_lock: self._cleanup_blacklist(proxies) self._cleanup_cooling_down(proxies) self._cleanup_stats(proxies) def _cleanup_cooling_down(self, proxies): for proxy in _get_missing(self._cooling_down, proxies): self._cooling_down.pop(proxy) def _cleanup_blacklist(self, proxies): for proxy in _get_missing(self._blacklist, proxies): self._blacklist.pop(proxy) def _cleanup_stats(self, proxies): for proxy in _get_missing(self._stats, proxies): self._stats.pop(proxy) def _get_options(self, *options, missing_ok=True): if missing_ok: return {k: self._options.get(k) for k in options} else: return {k: self._options[k] for k in options} @classmethod def read_string(cls, string, sep=','): return list(x for x in map(str.strip, string.split(sep)) if x) @classmethod def read_url(cls, url, sep='\n', retry=10, sleep_range=(2, 10), timeout=2, opener=None): if opener is None: opener = cls.default_opener while True: try: resp = opener.open(url, timeout=timeout) break except (urllib.error.HTTPError, socket.timeout): if not retry: raise retry -= 1 time.sleep(random.randint(*sleep_range)) content = resp.read() if resp.headers.get('Content-Encoding', 'identity') == 'gzip': content = gzip.decompress(content) charset = resp.headers.get_content_charset('utf-8') content = content.decode(charset) return cls.read_string(content, sep=sep) @classmethod def read_file(cls, file_name, sep='\n'): with open(file_name) as f: return cls.read_string(f.read(), sep=sep) def refresh(self): if not self.proxies_url and not self.proxies_file: return try: self._proxies = self._load() self._cleanup_internals(self._proxies) except urllib.error.HTTPError: import problems problems.handle(ProxyURLRefreshError, extra={'url': self.proxies_url}) else: self._modified_at = time.perf_counter() def _auto_refresh(self): if self.proxies_file: with self._auto_refresh_lock: modification_time = datetime.datetime.fromtimestamp(os.stat(self.proxies_file).st_mtime) if modification_time == self._last_auto_refresh: return self.refresh() self._last_auto_refresh = modification_time elif self.proxies_url: if self.auto_refresh_period is None: return with self._auto_refresh_lock: now = datetime.datetime.now() if self._last_auto_refresh is not None: if now - self._last_auto_refresh < self.auto_refresh_period: return self.refresh() self._last_auto_refresh = now def get_random_address(self): self._auto_refresh() return random.choice(self.proxies) def get_pool(self): if self.__pool is None: with self._cleanup_lock: # оптимизация: используем уже существующий лок # Вышли из состояния гонки, теперь можно удостовериться в реальной необходимости if self.__pool is None: options = self._get_options('default_holdout', 'default_bad_holdout', 'force_defaults') if self._smart_holdout_start is not None: options['smart_holdout'] = True options['smart_holdout_start'] = self._smart_holdout_start options.update(self._get_options('smart_holdout_min', 'smart_holdout_max')) self.__pool = _Pool( self, self._cooling_down, self._blacklist, self._stats, self._cleanup_lock, **options ) return self.__pool @classmethod def from_cfg_string(cls, cfg_string): """Возвращает список прокси с тем исключением что список опций берется автоматически. Формат: json Доступные опции: type ('socks5', 'http'; для полного списка типов см. модуль socks): все прокси будут автоматически промаркированы этип типом slice (tuple c аргументами для builtins.slice): будет взят только указанный фрагмент списка прокси-серверов auto_refresh_period (dict): {'days': ..., 'hours': ..., 'minutes': ...} как часто необходимо обновлять список прокси-серверов (только для `url` и `file`) url_gateway: адрес proxy, через которые будет загружаться список прокси по url (url, file, list) - может быть именем файла, ссылкой или списком в формате json Параметры slice и force_type являются необязательными Примеры: option = {"list": ["127.0.0.1:3128"]} option = {"list": ["127.0.0.1:3128", "127.0.0.1:9999"]} option = {"file": "./my_new_proxies.txt", "type": "socks5"} option = {"url": "http://example.com/get/proxy_list/", "slice": [35, null], "type": "http"} option = {"url": "http://example.com/get/proxy_list/", "auto_refresh_period": {"days": 1}} option = {"url": "http://example.com/get/proxy_list/", "url_gateway": "http://proxy.example.com:9999"} """ cfg = json.loads(cfg_string) proxies = cfg.pop('list', None) proxies_url = cfg.pop('url', None) proxies_url_gateway = cfg.pop('url_gateway', None) proxies_file = cfg.pop('file', None) return cls( proxies=proxies, proxies_url=proxies_url, proxies_url_gateway=proxies_url_gateway, proxies_file=proxies_file, options=cfg ) class _Pool: def __init__( self, proxies: "`Proxies` instance", cooling_down, blacklist, stats, _cleanup_lock=None, smart_holdout=False, smart_holdout_start=None, smart_holdout_min=None, smart_holdout_max=None, default_holdout=None, default_bad_holdout=None, force_defaults=False, ): if smart_holdout: if smart_holdout_start in (None, 0): raise RuntimeError("Вы должны указать начальное время охлаждения") if smart_holdout_max is None: smart_holdout_max = float('inf') self._used = set() self._cond = threading.Condition(lock=_cleanup_lock) self._free = collections.deque( p for p in proxies.proxies if ( p not in blacklist and p not in cooling_down ) ) self._proxies = proxies self._cooling_down = cooling_down self._blacklist = blacklist self._stats = stats self._smart_holdout = smart_holdout self._smart_holdout_start = smart_holdout_start self._smart_holdout_min = smart_holdout_min or 0 self._smart_holdout_max = smart_holdout_max self._default_holdout = default_holdout self._default_bad_holdout = default_bad_holdout self._force_defaults = force_defaults self._proxies_modified_at = proxies._modified_at @property def _size(self): return len(self._free) + len(self._used) + len(self._cooling_down) + len(self._blacklist) def _cool_released(self): now = time.time() cooled = [] for proxy, holdout in self._cooling_down.items(): if now >= holdout: cooled.append(proxy) for proxy in cooled: self._cooling_down.pop(proxy, None) if proxy not in self._blacklist: self._free.append(proxy) def _is_proxies_changed(self): self._proxies._auto_refresh() return self._proxies._modified_at != self._proxies_modified_at def _remove_outdated(self): # список прокси изменился, оставляем только актуальные full_list = set(self._proxies.proxies) for proxy in _get_missing(self._blacklist, full_list): self._blacklist.pop(proxy, None) for proxy in _get_missing(self._cooling_down, full_list): self._cooling_down.pop(proxy, None) for proxy in _get_missing(self._used, full_list): self._used.remove(proxy) for proxy in _get_missing(self._stats, full_list): self._stats.pop(proxy, None) free = set( p for p in full_list if ( p not in self._used and p not in self._blacklist and p not in self._cooling_down ) ) old_free = set(self._free) new_free = old_free.intersection(free) if old_free.difference(new_free): self._free.clear() self._free.extend(new_free) self._proxies_modified_at = self._proxies._modified_at def _update_stats(self, proxy, bad=False, holdout=None): proxy_stat = self._stats.get(proxy) or {} ok, fail = proxy_stat.get('uptime', (0, 0)) if not bad: ok += 1 else: fail += 1 proxy_stat['uptime'] = ok, fail proxy_stat['last_holdout'] = holdout if ( not bad or ( holdout is not None and holdout >= (proxy_stat.get('last_good_holdout') or 0) ) ): proxy_stat['last_good_holdout'] = holdout # универсальный способ сказать что статистика обновилась # тк без вызова метода .save будет работать и с обычным словарем (не только с JsonDict) self._stats[proxy] = proxy_stat def _get_next_holdout(self, proxy, bad=False): """Рассчитывает время охлаждения. @param proxy: прокси, для которого необходимо вычислить @param bad: True - вычисляем охлаждение для неудачи, иначе False @return: рекомендуемое время охлаждения в секундах или None, если недостаточно данных """ # Алгоритм основан на бинарном поиске, # в отличии от которого нам не известна верхняя граница proxy_stat = self._stats.get(proxy) if proxy_stat is None: return None last_holdout = proxy_stat['last_holdout'] last_good_holdout = proxy_stat.get('last_good_holdout', 0) lo = last_holdout # предыдущее время охлаждения (нижняя граница) if bad: # Мы получили "бан" ... if lo < last_good_holdout: # ... возвращаемся к предыдущему хорошему значению ... holdout = last_good_holdout else: # ... или сдвигаем границу дальше holdout = lo * 2 else: # возвращаемся к предыдущей границе (lo / 2) # но с небольшим отступом - на середину отрезка [(lo / 2), lo] holdout = lo * 0.75 return holdout def acquire(self, timeout=None): start = time.perf_counter() with self._cond: while True: if self._is_proxies_changed(): self._remove_outdated() self._cool_released() if self._free: proxy = self._free.popleft() self._used.add(proxy) return proxy if self._blacklist: # Возвращаем самый стабильный из блеклиста. Возможно бан снят. def _uptime(p): uptime = float('inf') p_stat = self._stats.get(p) if p_stat is not None: ok, failed = p_stat.get('uptime', (0, 0)) if failed != 0: uptime = ok // failed else: uptime = ok return uptime proxy = next(( p for p in
<gh_stars>1-10 import sys import datetime import time import selenium from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from .config.aaConfig import aaConfig from .parser.aaConfigParser import aaConfigParser class AutoAA: def __init__(self, show): self.browser = None self.pr = aaConfigParser() self.url = "https://www.airasia.com/zh/tw" self.pricecounter = 1 self.show = show self.departureFullNameList = dict() self.departureAbbrevNameList = dict() self.arrivalFullNameList = dict() self.arrivalAbbrevNameList = dict() self.pr.__run__() # read user's config try: self.startTime = datetime.datetime.strptime(self.pr.startTime, "%Y/%m/%d %H:%M:%S") self.frequency = int(self.pr.frequency) except ValueError as e: print("AutoAA: start time format incorrect. abort") sys.exit(1) def __start__(self): try: self.pricecounter = 1 # prevent to open another new chrome window options = webdriver.ChromeOptions() options.add_argument("--headless") # command line argument if self.show == "show": self.browser = webdriver.Chrome( executable_path='/usr/local/bin/chromedriver' ) else: self.browser = webdriver.Chrome( chrome_options=options, executable_path='/usr/local/bin/chromedriver' ) except selenium.common.exceptions.WebDriverException as e: print("AutoAA: Chromedriver need to be in /usr/local/bin. exit") sys.exit(1) except selenium.common.exceptions.SessionNotCreatedException as e: print("AutoAA: Chromedriver version not matching. exit") sys.exit(1) try: # start print("AutoAA: Start selenium on {}... ".format(self.url), end="") self.browser.get(self.url) print("done\n") except: print("error. exit") sys.exit(1) def selectTicketNum(self): print("AutoAA: Selecting ticket number... ") userTicket = { 0: int(self.pr.flightAdult), 1: int(self.pr.flightChildren), 2: int(self.pr.flightBaby) } print("AutoAA: {} adults, {} children, {} infants".format( userTicket[0], userTicket[1], userTicket[2] )) if userTicket[2] > userTicket[0]: print("AutoAA: error! 1 infant need at least 1 adult") sys.exit(1) # click ticket number button to bring up manual WebDriverWait(self.browser, 3).until( EC.element_to_be_clickable( (By.ID, aaConfig.flightIdField) ) ).click() # wait pop up menu show WebDriverWait(self.browser, 3).until( EC.visibility_of_element_located( ( By.XPATH, '//div[@id="{}"]//div[contains(@class, "{} {}")]'.format( aaConfig.flightIdField, aaConfig.flightField1, aaConfig.flightField2 ) ) ) ) # get current ticket status number dropdown = self.browser.find_elements_by_xpath( '//div[contains(@class, "{} {}")] \ //ul[@class="{}"] \ //li[contains(@class, "{} {}")] \ //div[contains(@class, "{} {}")] \ //div[@class="{}"] \ //span[@class="{}"]'.format( aaConfig.flightField1, aaConfig.flightField2, aaConfig.flightField3, aaConfig.flightField4, aaConfig.flightField2, aaConfig.flightField5, aaConfig.flightField6, aaConfig.flightField7, aaConfig.flightField8 ) ) # press button tempTicketClass = { 0: "adult", 1: "child", 2: "infant" } # iterate 3 kinds of ticket number(website) counter = 0 for element in dropdown: # get offset of config.ini with website's offset = userTicket.get(counter, 0) - int(element.text) for i in range(offset): # click add ticket button self.browser.find_element_by_id( "{}{}{}".format( aaConfig.flightButtonFieldHead, tempTicketClass.get(counter, 0), aaConfig.flightButtonFieldTail ) ).click() counter += 1 # get current ticket status number dropdown = self.browser.find_elements_by_xpath( '//div[contains(@class, "{} {}")] \ //ul[@class="{}"] \ //li[contains(@class, "{} {}")] \ //div[contains(@class, "{} {}")] \ //div[@class="{}"] \ //span[@class="{}"]'.format( aaConfig.flightField1, aaConfig.flightField2, aaConfig.flightField3, aaConfig.flightField4, aaConfig.flightField2, aaConfig.flightField5, aaConfig.flightField6, aaConfig.flightField7, aaConfig.flightField8 ) ) # verify operation, recheck counter = 0 for element in dropdown: offset = userTicket.get(counter, 0) - int(element.text) counter += 1 if offset != 0: print("AutoAA: Selecting ticket number error. exit") sys.exit(1) print("AutoAA: Selecting ticket number done") def selectFlight(self): print("AutoAA: Checking flight departure and arrival... ") # get flight departure and arrival from config file fd = self.pr.flightDeparture fa = self.pr.flightArrival # check departure flight location departureClcikerId = self.getDepartureList(fd) if departureClcikerId == -1: print("failed") print("AutoAA: {} not found. exit".format(fd)) sys.exit(1) else: print("AutoAA: {} ({}) found".format( self.departureFullNameList.get(departureClcikerId, 0), self.departureAbbrevNameList.get(departureClcikerId, 0) )) # click departure location on list self.browser.find_element_by_id( "{}{}".format(aaConfig.departureListField, departureClcikerId) ).click() # check arrival flight location arrivalClickerId = self.getArrivalList(fa) if arrivalClickerId == -1: print("failed") print("AutoAA: {} not found. exit".format(fd)) sys.exit(1) else: print("AutoAA: {} ({}) found".format( self.arrivalFullNameList.get(arrivalClickerId, 0), self.arrivalAbbrevNameList.get(arrivalClickerId, 0) )) # click arrival location on list self.browser.find_element_by_id( "{}{}".format(aaConfig.arrivalListField, arrivalClickerId) ).click() def getArrivalList(self, configArrival): print("AutoAA: Get arrival list... ", end="") # bring up arrival list WebDriverWait(self.browser, 3).until( EC.element_to_be_clickable( (By.ID, aaConfig.arrivalBoxField) ) ) # get all arrival name items = self.browser.find_elements_by_xpath( '//*[starts-with(@id, "{}")]'.format(aaConfig.arrivalListField) ) # write to internal array list counter = 0 for element in items: tempF = element.find_element_by_class_name( aaConfig.stationnameField ).text tempA = element.find_element_by_class_name( aaConfig.stationcodeField ).text self.arrivalFullNameList[counter] = tempF self.arrivalAbbrevNameList[counter] = tempA # found config arrival location # abort constructing arrival list if configArrival == tempF or configArrival == tempA: print("done") return counter counter += 1 return -1 def getDepartureList(self, configDeparture): print("AutoAA: Get departure list... ", end="") # bring up departure list WebDriverWait(self.browser, 3).until( EC.element_to_be_clickable( (By.ID, aaConfig.departureButtonField) ) ).click() # get all departure name items = self.browser.find_elements_by_xpath( '//*[starts-with(@id, "{}")]'.format(aaConfig.departureListField) ) # home-origin-autocomplete-heatmaplist-33 # write to internal array list counter = 0 for element in items: tempF = element.find_element_by_class_name( aaConfig.stationnameField ).text tempA = element.find_element_by_class_name( aaConfig.stationcodeField ).text self.departureFullNameList[counter] = tempF self.departureAbbrevNameList[counter] = tempA # found config departure location # abort constructing departure list if configDeparture == tempF or configDeparture == tempA: print("done") return counter counter += 1 return -1 def __login__(self): # bring up login page WebDriverWait(self.browser, 30).until( EC.element_to_be_clickable( ( By.XPATH, '//button[contains(@class, "{} {}")]'.format( aaConfig.loginModalFieldClass1, aaConfig.loginModalFieldClass2 ) ) ) ).click() try: # fill user's email to login WebDriverWait(self.browser, 3).until( EC.element_to_be_clickable((By.ID, aaConfig.loginEmailFieldId)) ).send_keys(self.pr.loginEmail) # fill user's password to login WebDriverWait(self.browser, 3).until( EC.element_to_be_clickable((By.ID, aaConfig.loginPasswordFieldId)) ).send_keys(self.pr.loginPassword) print("AutoAA: Logging to air asia... ", end="") WebDriverWait(self.browser, 3).until( EC.element_to_be_clickable( ( By.XPATH, '//button[@class="{}" and @type="{}"]'.format( aaConfig.loginButtonFieldClass, aaConfig.loginButtonFieldType ) ) ) ).click() except selenium.common.exceptions.TimeoutException as e: print("failed. exit") sys.exit(1) # verify try: # get air asia user id on website WebDriverWait(self.browser, 60).until( EC.element_to_be_clickable( ( By.XPATH, '//*[contains(text(), "BIG會員帳號")]' ) ) ) print("done") # get air asia true user name tuserName = self.browser.find_element_by_xpath( '//div[@class="{}"]//span[@class="{}"]'.format( aaConfig.loginPrompt1, aaConfig.loginPrompt2 ) ).text print("AutoAA: Welcome, {}!".format(tuserName)) # close login panel self.browser.find_element_by_xpath( '(//button[@aria-label="{}"])[2]'.format( "Close navigation" ) ).click() except selenium.common.exceptions.TimeoutException as e: print("failed. exit") sys.exit(1) def setTicketType(self): oneWay = int(self.pr.flightOne) returnWay = int(self.pr.flightReturn) print("AutoAA: ", end="") if oneWay == 1 and returnWay == 1: print("set ticket type error. exit") sys.exit(1) else: if oneWay: self.browser.find_element_by_xpath( '//label[@for="{}"]'.format(aaConfig.flightTripOne) ).click() else: self.browser.find_element_by_xpath( '//label[@for="{}"]'.format(aaConfig.flightTripReturn) ).click() print("{} done".format("one way ticket" if oneWay else "returnWay")) def setTicketDate(self): oneWay = int(self.pr.flightOne) returnWay = int(self.pr.flightReturn) oneDate = self.pr.flightDDate returnDate = self.pr.flightRDate print("AutoAA: Setting ticket date...\nAutoAA: ", end="") if not self.validate(oneDate) or not self.validate(returnDate): print("Date format incorrect. exit") sys.exit(1) if oneWay == 1 and returnWay == 1: print("set ticket type error. exit") sys.exit(1) else: # 無論如何都必須選擇起始時間 self.browser.find_element_by_id( aaConfig.flightDDateField ).click() self.browser.find_element_by_id( aaConfig.flightDDateField ).clear() self.browser.find_element_by_id( aaConfig.flightDDateField ).send_keys(oneDate) print("departure date: {}".format(oneDate)) if returnWay: tmp = self.browser.find_element_by_id( aaConfig.flightRDateField ) selenium.webdriver.ActionChains(self.browser).move_to_element(tmp).click(tmp).perform() self.browser.find_element_by_id( aaConfig.flightRDateField ).clear() self.browser.find_element_by_id( aaConfig.flightRDateField ).send_keys(returnDate) print("AutoAA: return date: {}".format(returnDate)) self.browser.find_element_by_xpath( '//button[@class="{}"]'.format( "calendar-button" ) ).click() self.browser.find_element_by_id( aaConfig.flightSearchField ).click() def queryFlight(self): oneDate = self.pr.flightDDate returnDate = self.pr.flightRDate # 隱性等待直到頁面載入完成 self.browser.implicitly_wait(60) # 等待頁面載入完成 WebDriverWait(self.browser, 60).until( EC.visibility_of_element_located( ( By.ID, aaConfig.flightDepartureRightBtn ) ) ) WebDriverWait(self.browser, 60).until( EC.presence_of_element_located( ( By.XPATH, '//*[contains(@class, "{} {}")]'.format( "fare-date-item-inner", "active" ) ) ) ) self.browser.implicitly_wait(0) # 尋找當日班機 checker = True oneDate = self.shorten(oneDate) # 實做 python do-while while checker: # 挑選選擇班次日期相關訊息 lala = self.browser.find_elements_by_css_selector( 'div[id*="{}"]'.format( "{}{}".format( aaConfig.flightDepartureDate, aaConfig.flightDepartureIndex ) ) ) # 依次遞迴搜索 5 筆結果進行比對 for element in lala: try: tempDate = element.text.split(",")[0].replace("月", "/").replace("日", "") except selenium.common.exceptions.StaleElementReferenceException as e: tempDate = element.text.split(",")[0].replace("月", "/").replace("日", "") if oneDate == self.padding(tempDate): checker = False # 取得當前 id id = element.get_attribute("id").replace("{}{}".format( aaConfig.flightDepartureDate, aaConfig.flightDepartureIndex ), "") # 點擊方框,取得票價以及剩餘票數 self.browser.find_element_by_id( "{}{}{}{}".format( aaConfig.flightDepartureClickH, aaConfig.flightDepartureIndex, id, aaConfig.flightDepartureClickT ) ).click() break if checker: # 按下一頁 self.browser.find_element_by_xpath( '//div[@id="{}"]//div[@class="{}"]'.format( aaConfig.flightDepartureRightBtn, aaConfig.flightScrollBarDefault ) ).click() # 等待頁面載入完成 WebDriverWait(self.browser, 60).until( EC.visibility_of_element_located( ( By.ID, aaConfig.flightDepartureRightBtn ) ) ) WebDriverWait(self.browser, 60).until( EC.presence_of_element_located( ( By.XPATH, '//*[contains(@class, "{} {}")]'.format( "fare-date-item-inner", "active" ) ) ) ) print("AutoAA: departure date selected") def selectDepaturePrice(self): # 等待頁面載入完成 WebDriverWait(self.browser, 60).until( EC.visibility_of_element_located( ( By.ID, aaConfig.flightDepartureRightBtn ) ) ) WebDriverWait(self.browser, 60).until( EC.presence_of_element_located( ( By.XPATH, '//div[contains(@class, "{} {}")]'.format( "fare-date-item-inner", "active" ) ) ) ) time.sleep(2) tmp = self.browser.find_elements_by_xpath( '//div[contains(@class, "{}")]'.format( aaConfig.noFlightField ) ) if tmp: print("AutoAA: No flights in the desired time. exit") sys.exit(1) WebDriverWait(self.browser, 10).until( EC.presence_of_element_located( ( By.XPATH, '//*[contains(@id, "{}{}{}0-")]'.format( aaConfig.flightNormalSeatFieldH, aaConfig.flightAmountField, aaConfig.flightSeatFieldT ) ) ) ) try: tps = self.pricecounter - 1 print("AutoAA: Querying departure flight price...") # find all price button tflightBtn = self.browser.find_elements_by_xpath( '//*[contains(@id, "{}")]'.format( aaConfig.flightChoosePriceField ) ) except selenium.common.exceptions.NoSuchElementException or selenium.common.exceptions.TimeoutException: print("AutoAA: No flights in the desired time. exit") sys.exit(1) # 取得貨幣 self.ct = self.browser.find_element_by_xpath( '//*[contains(@id, "{}{}{}0-")]'.format( aaConfig.flightNormalSeatFieldH, aaConfig.flightCurrencyField, aaConfig.flightSeatFieldT ) ).text numUp = 0 # find parity seat price parityJourney = self.browser.find_elements_by_xpath( '//*[contains(@id, "{}")]'.format( aaConfig.flightJourneyField1 ) ) parityAmount = self.browser.find_elements_by_xpath( '//*[starts-with(@id, "{}") and contains(@id, "{}{}{}-")]'.format( aaConfig.flightSeatFieldH, aaConfig.flightAmountField, aaConfig.flightSeatFieldT, numUp ) ) parityBadge = self.browser.find_elements_by_xpath( '//*[starts-with(@id, "{}") and contains(@id, "{}{}{}-")]'.format( aaConfig.flightSeatFieldH, aaConfig.flightBageField, aaConfig.flightSeatFieldT, numUp ) ) parityFlat = self.browser.find_elements_by_xpath( '//*[starts-with(@id, "{}") and contains(@id, "{}{}{}-")]'.format( aaConfig.flightPrioritySeatFieldH, aaConfig.flightAmountField, aaConfig.flightSeatFieldT, numUp ) ) parityBadge2 = self.browser.find_elements_by_xpath( '//*[starts-with(@id, "{}") and contains(@id, "{}{}{}-")]'.format( aaConfig.flightPrioritySeatFieldH, aaConfig.flightBageField, aaConfig.flightSeatFieldT, numUp ) ) #
<= 0) m.e968 = Constraint(expr= m.x472 - 20 * m.b1052 <= 0) m.e969 = Constraint(expr= m.x473 - 24 * m.b1053 <= 0) m.e970 = Constraint(expr= m.x474 - 21 * m.b1054 <= 0) m.e971 = Constraint(expr= m.x475 - 20 * m.b1055 <= 0) m.e972 = Constraint(expr= m.x476 - 20 * m.b1056 <= 0) m.e973 = Constraint(expr= m.x477 - 24 * m.b1057 <= 0) m.e974 = Constraint(expr= m.x478 - 21 * m.b1058 <= 0) m.e975 = Constraint(expr= m.x479 - 20 * m.b1059 <= 0) m.e976 = Constraint(expr= m.x480 - 20 * m.b1060 <= 0) m.e977 = Constraint(expr= m.x481 - 24 * m.b1061 <= 0) m.e978 = Constraint(expr= m.x482 - 21 * m.b1062 <= 0) m.e979 = Constraint(expr= m.x483 - 20 * m.b1063 <= 0) m.e980 = Constraint(expr= m.x484 - 20 * m.b1064 <= 0) m.e981 = Constraint(expr= m.x485 - 24 * m.b1065 <= 0) m.e982 = Constraint(expr= m.x486 - 21 * m.b1066 <= 0) m.e983 = Constraint(expr= m.x487 - 20 * m.b1067 <= 0) m.e984 = Constraint(expr= m.x488 - 20 * m.b1068 <= 0) m.e985 = Constraint(expr= m.x505 - 30 * m.b1053 <= 0) m.e986 = Constraint(expr= m.x506 - 25 * m.b1054 <= 0) m.e987 = Constraint(expr= m.x507 - 21 * m.b1055 <= 0) m.e988 = Constraint(expr= m.x508 - 19 * m.b1056 <= 0) m.e989 = Constraint(expr= m.x509 - 30 * m.b1057 <= 0) m.e990 = Constraint(expr= m.x510 - 25 * m.b1058 <= 0) m.e991 = Constraint(expr= m.x511 - 21 * m.b1059 <= 0) m.e992 = Constraint(expr= m.x512 - 19 * m.b1060 <= 0) m.e993 = Constraint(expr= m.x513 - 30 * m.b1061 <= 0) m.e994 = Constraint(expr= m.x514 - 25 * m.b1062 <= 0) m.e995 = Constraint(expr= m.x515 - 21 * m.b1063 <= 0) m.e996 = Constraint(expr= m.x516 - 19 * m.b1064 <= 0) m.e997 = Constraint(expr= m.x517 - 30 * m.b1065 <= 0) m.e998 = Constraint(expr= m.x518 - 25 * m.b1066 <= 0) m.e999 = Constraint(expr= m.x519 - 21 * m.b1067 <= 0) m.e1000 = Constraint(expr= m.x520 - 19 * m.b1068 <= 0) m.e1001 = Constraint(expr= m.x489 - 30 * m.b1069 <= 0) m.e1002 = Constraint(expr= m.x490 - 25 * m.b1070 <= 0) m.e1003 = Constraint(expr= m.x491 - 21 * m.b1071 <= 0) m.e1004 = Constraint(expr= m.x492 - 19 * m.b1072 <= 0) m.e1005 = Constraint(expr= m.x493 - 30 * m.b1073 <= 0) m.e1006 = Constraint(expr= m.x494 - 25 * m.b1074 <= 0) m.e1007 = Constraint(expr= m.x495 - 21 * m.b1075 <= 0) m.e1008 = Constraint(expr= m.x496 - 19 * m.b1076 <= 0) m.e1009 = Constraint(expr= m.x497 - 30 * m.b1077 <= 0) m.e1010 = Constraint(expr= m.x498 - 25 * m.b1078 <= 0) m.e1011 = Constraint(expr= m.x499 - 21 * m.b1079 <= 0) m.e1012 = Constraint(expr= m.x500 - 19 * m.b1080 <= 0) m.e1013 = Constraint(expr= m.x501 - 30 * m.b1081 <= 0) m.e1014 = Constraint(expr= m.x502 - 25 * m.b1082 <= 0) m.e1015 = Constraint(expr= m.x503 - 21 * m.b1083 <= 0) m.e1016 = Constraint(expr= m.x504 - 19 * m.b1084 <= 0) m.e1017 = Constraint(expr= m.x345 - 10 * m.b957 <= 0) m.e1018 = Constraint(expr= m.x346 - 10 * m.b958 <= 0) m.e1019 = Constraint(expr= m.x347 - 10 * m.b959 <= 0) m.e1020 = Constraint(expr= m.x348 - 10 * m.b960 <= 0) m.e1021 = Constraint(expr= m.x349 - 10 * m.b961 <= 0) m.e1022 = Constraint(expr= m.x350 - 10 * m.b962 <= 0) m.e1023 = Constraint(expr= m.x351 - 10 * m.b963 <= 0) m.e1024 = Constraint(expr= m.x352 - 10 * m.b964 <= 0) m.e1025 = Constraint(expr= m.x353 - 50 * m.b965 <= 0) m.e1026 = Constraint(expr= m.x354 - 50 * m.b966 <= 0) m.e1027 = Constraint(expr= m.x355 - 50 * m.b967 <= 0) m.e1028 = Constraint(expr= m.x356 - 50 * m.b968 <= 0) m.e1029 = Constraint(expr= m.x357 - 50 * m.b969 <= 0) m.e1030 = Constraint(expr= m.x358 - 50 * m.b970 <= 0) m.e1031 = Constraint(expr= m.x359 - 50 * m.b971 <= 0) m.e1032 = Constraint(expr= m.x360 - 50 * m.b972 <= 0) m.e1033 = Constraint(expr= m.x361 + m.x377 - 40 * m.b973 <= 0) m.e1034 = Constraint(expr= m.x362 + m.x378 - 40 * m.b974 <= 0) m.e1035 = Constraint(expr= m.x363 + m.x379 - 40 * m.b975 <= 0) m.e1036 = Constraint(expr= m.x364 + m.x380 - 40 * m.b976 <= 0) m.e1037 = Constraint(expr= m.x365 + m.x381 - 40 * m.b977 <= 0) m.e1038 = Constraint(expr= m.x366 + m.x382 - 40 * m.b978 <= 0) m.e1039 = Constraint(expr= m.x367 + m.x383 - 40 * m.b979 <= 0) m.e1040 = Constraint(expr= m.x368 + m.x384 - 40 * m.b980 <= 0) m.e1041 = Constraint(expr= m.x369 + m.x385 - 60 * m.b981 <= 0) m.e1042 = Constraint(expr= m.x370 + m.x386 - 60 * m.b982 <= 0) m.e1043 = Constraint(expr= m.x371 + m.x387 - 60 * m.b983 <= 0) m.e1044 = Constraint(expr= m.x372 + m.x388 - 60 * m.b984 <= 0) m.e1045 = Constraint(expr= m.x373 + m.x389 - 60 * m.b985 <= 0) m.e1046 = Constraint(expr= m.x374 + m.x390 - 60 * m.b986 <= 0) m.e1047 = Constraint(expr= m.x375 + m.x391 - 60 * m.b987 <= 0) m.e1048 = Constraint(expr= m.x376 + m.x392 - 60 * m.b988 <= 0) m.e1049 = Constraint(expr= m.x393 - 15 * m.b989 <= 0) m.e1050 = Constraint(expr= m.x394 - 15 * m.b990 <= 0) m.e1051 = Constraint(expr= m.x395 - 15 * m.b991 <= 0) m.e1052 = Constraint(expr= m.x396 - 15 * m.b992 <= 0) m.e1053 = Constraint(expr= m.x397 - 15 * m.b993 <= 0) m.e1054 = Constraint(expr= m.x398 - 15 * m.b994 <= 0) m.e1055 = Constraint(expr= m.x399 - 15 * m.b995 <= 0) m.e1056 = Constraint(expr= m.x400 - 15 * m.b996 <= 0) m.e1057 = Constraint(expr= m.x401 - 25 * m.b997 <= 0) m.e1058 = Constraint(expr= m.x402 - 25 * m.b998 <= 0) m.e1059 = Constraint(expr= m.x403 - 25 * m.b999 <= 0) m.e1060 = Constraint(expr= m.x404 - 25 * m.b1000 <= 0) m.e1061 = Constraint(expr= m.x405 - 25 * m.b1001 <= 0) m.e1062 = Constraint(expr= m.x406 - 25 * m.b1002 <= 0) m.e1063 = Constraint(expr= m.x407 - 25 * m.b1003 <= 0) m.e1064 = Constraint(expr= m.x408 - 25 * m.b1004 <= 0) m.e1065 = Constraint(expr= m.x409 - 15 * m.b1005 <= 0) m.e1066 = Constraint(expr= m.x410 - 15 * m.b1006 <= 0) m.e1067 = Constraint(expr= m.x411 - 15 * m.b1007 <= 0) m.e1068 = Constraint(expr= m.x412 - 15 * m.b1008 <= 0) m.e1069 = Constraint(expr= m.x413 - 15 * m.b1009 <= 0) m.e1070 = Constraint(expr= m.x414 - 15 * m.b1010 <= 0) m.e1071 = Constraint(expr= m.x415 - 15 * m.b1011 <= 0) m.e1072 = Constraint(expr= m.x416 - 15 * m.b1012 <= 0) m.e1073 = Constraint(expr= m.x417 - 20 * m.b1013 <= 0) m.e1074 = Constraint(expr= m.x418 - 20 * m.b1014 <= 0) m.e1075 = Constraint(expr= m.x419 - 20 * m.b1015 <= 0) m.e1076 = Constraint(expr= m.x420 - 20 * m.b1016 <= 0) m.e1077 = Constraint(expr= m.x421 - 20 * m.b1017 <= 0) m.e1078 = Constraint(expr= m.x422 - 20 * m.b1018 <= 0) m.e1079 = Constraint(expr= m.x423 - 20 * m.b1019 <= 0) m.e1080 = Constraint(expr= m.x424 - 20 * m.b1020 <= 0) m.e1081 = Constraint(expr= m.x441 - 10 * m.b1021 <= 0) m.e1082 = Constraint(expr= m.x442 - 10 * m.b1022 <= 0) m.e1083 = Constraint(expr= m.x443 - 10 * m.b1023 <= 0) m.e1084 = Constraint(expr= m.x444 - 10 * m.b1024 <= 0) m.e1085 = Constraint(expr= m.x445 - 10 * m.b1025 <= 0) m.e1086 = Constraint(expr= m.x446 - 10 * m.b1026 <= 0) m.e1087 = Constraint(expr= m.x447 - 10 * m.b1027 <= 0) m.e1088 = Constraint(expr= m.x448 - 10 * m.b1028 <= 0) m.e1089 = Constraint(expr= m.x449 - 20 * m.b1029 <= 0) m.e1090 = Constraint(expr= m.x450 - 20 * m.b1030 <= 0) m.e1091 = Constraint(expr= m.x451 - 20 * m.b1031 <= 0) m.e1092 = Constraint(expr= m.x452 - 20 * m.b1032 <= 0) m.e1093 = Constraint(expr= m.x453 - 20 * m.b1033 <= 0) m.e1094 = Constraint(expr= m.x454 - 20 * m.b1034 <= 0) m.e1095 = Constraint(expr= m.x455 - 20 * m.b1035 <= 0) m.e1096 = Constraint(expr= m.x456 - 20 * m.b1036 <= 0) m.e1097 = Constraint(expr= m.x425 + m.x457 - 20 * m.b1037 <= 0) m.e1098 = Constraint(expr= m.x426 + m.x458 - 20 * m.b1038 <= 0) m.e1099 = Constraint(expr= m.x427 + m.x459 - 20 * m.b1039 <= 0) m.e1100 = Constraint(expr= m.x428 + m.x460 - 20 * m.b1040 <= 0) m.e1101 = Constraint(expr= m.x429 + m.x461 - 20 * m.b1041 <= 0) m.e1102 = Constraint(expr= m.x430 + m.x462 - 20 * m.b1042 <= 0) m.e1103 = Constraint(expr= m.x431 + m.x463 - 20 * m.b1043 <= 0) m.e1104 = Constraint(expr= m.x432 + m.x464 - 20 *
<filename>exocartographer/gp_illumination_map.py from __future__ import division import numpy as np import healpy as hp from . import gp_map as gm from .gp_map import draw_map_cl, map_logprior_cl from .util import logit, inv_logit, flat_logit_log_prior from .analytic_kernel import viewgeom, kernel def quaternion_multiply(qa, qb): result = np.zeros(np.broadcast(qa, qb).shape) result[..., 0] = qa[..., 0]*qb[..., 0] - np.sum(qa[..., 1:]*qb[..., 1:], axis=-1) result[..., 1] = qa[..., 0]*qb[..., 1] + qa[..., 1]*qb[..., 0] + qa[..., 2]*qb[..., 3] - qa[..., 3]*qb[..., 2] result[..., 2] = qa[..., 0]*qb[..., 2] - qa[..., 1]*qb[..., 3] + qa[..., 2]*qb[..., 0] + qa[..., 3]*qb[..., 1] result[..., 3] = qa[..., 0]*qb[..., 3] + qa[..., 1]*qb[..., 2] - qa[..., 2]*qb[..., 1] + qa[..., 3]*qb[...,0] return result def rotation_quaternions(axis, angles): angles = np.atleast_1d(angles) result = np.zeros((angles.shape[0], 4)) result[:, 0] = np.cos(angles/2.0) result[:, 1:] = np.sin(angles/2.0)[:, np.newaxis]*axis return result def rotate_vector(rqs, v): nrs = rqs.shape[0] rqs = rqs vq = np.zeros((nrs, 4)) vq[:,1:] = v result = quaternion_multiply(rqs, vq) rqs[:,1:] *= -1 result = quaternion_multiply(result, rqs) return result[:,1:] class IlluminationMapPosterior(object): """A posterior class for mapping surfaces from a reflectance time series" :param times: Array of times of photometric measurements. :param reflectance: Array of photometric measurements at corresponding `times`. :param sigma_reflectance: Single value or array of 1-sigma uncertainties on reflectance measurements. :param nside: (optional) Resolution of HEALPix surface map. Has to be a power of 2. The number of pixels will be :math:`12 N_\mathrm{side}^2`. (default: ``4``) :param nside_illum: (optional): Resolution of HEALPix illumination map, i.e., the "kernel" of illumination that is integrated against the pixel map. (default: ``16``) :param map_parameterization: (optional): Parameterization of surface map to use. `pix` will parameterize the map with values of each pixel; `alm` will parameterize the map in spherical harmonic coefficients. (default: ``pix``) """ def __init__(self, times, reflectance, sigma_reflectance, nside=4, nside_illum=16, map_parameterization='pix'): assert nside_illum >= nside, 'IlluminationMapPosterior: must have nside_illum >= nside' self._map_parameterization = map_parameterization self._times = np.array(times) self._reflectance = np.array(reflectance) self._sigma_reflectance = sigma_reflectance * np.ones_like(times) self._nside = nside self._nside_illum = nside_illum self._fixed_params = {} _param_names = ['log_error_scale', 'mu', 'log_sigma', 'logit_wn_rel_amp', 'logit_spatial_scale', 'log_rotation_period', 'log_orbital_period', 'logit_phi_orb', 'logit_cos_obl', 'logit_obl_orientation', 'logit_cos_inc'] @property def times(self): return self._times @property def ntimes(self): return self.times.shape[0] @property def reflectance(self): return self._reflectance @property def sigma_reflectance(self): return self._sigma_reflectance @property def map_parameterization(self): return self._map_parameterization @property def nside(self): return self._nside @property def lmax(self): return self.nside*4 - 1 @property def mmax(self): return self.lmax @property def nalms(self): ncomplex = self.mmax * (2 * self.lmax + 1 - self.mmax) / 2 + self.lmax + 1 return int(2*ncomplex) @property def npix(self): return hp.nside2npix(self.nside) @property def nmap_params(self): if self.map_parameterization == 'pix': return self.npix elif self.map_parameterization == 'alm': return self.nalms else: raise RuntimeError("Unrecognized map parameterization {}".format(self.map_parameterization)) @property def nside_illum(self): return self._nside_illum @property def npix_illum(self): return hp.nside2npix(self.nside_illum) @property def fixed_params(self): return self._fixed_params @property def full_dtype(self): return np.dtype([(n, np.float) for n in self._param_names]) @property def dtype(self): dt = self.full_dtype free_dt = [(param, dt[param]) for param in dt.names if param not in self.fixed_params] return np.dtype(free_dt) @property def dtype_map(self): typel = [(param, self.dtype[param]) for param in self.dtype.names] typel.append(('map', np.float, self.nmap_params)) return np.dtype(typel) @property def full_dtype_map(self): typel = [(n, self.full_dtype[n]) for n in self.full_dtype.names] typel.append(('map', np.float, self.nmap_params)) return np.dtype(typel) @property def nparams_full(self): return len(self.full_dtype) @property def nparams(self): return len(self.dtype) @property def nparams_full_map(self): return self.nparams_full + self.nmap_params @property def nparams_map(self): return self.nparams + self.nmap_params @property def wn_low(self): return 0.01 @property def wn_high(self): return 0.99 @property def spatial_scale_low(self): return hp.nside2resol(self.nside)/3.0 @property def spatial_scale_high(self): return 3.0*np.pi def error_scale(self, p): return np.exp(self.to_params(p)['log_error_scale']) def sigma(self, p): p = self.to_params(p) return np.exp(p['log_sigma']) def wn_rel_amp(self, p): p = self.to_params(p) return inv_logit(p['logit_wn_rel_amp'], self.wn_low, self.wn_high) def spatial_scale(self, p): p = self.to_params(p) return inv_logit(p['logit_spatial_scale'], self.spatial_scale_low, self.spatial_scale_high) def rotation_period(self, p): return np.exp(self.to_params(p)['log_rotation_period']) def orbital_period(self, p): return np.exp(self.to_params(p)['log_orbital_period']) def phi_orb(self, p): return inv_logit(self.to_params(p)['logit_phi_orb'], low=0, high=2*np.pi) def cos_obl(self, p): return inv_logit(self.to_params(p)['logit_cos_obl'], low=0, high=1) def obl(self, p): return np.arccos(self.cos_obl(p)) def obl_orientation(self, p): return inv_logit(self.to_params(p)['logit_obl_orientation'], low=0, high=2*np.pi) def cos_inc(self, p): return inv_logit(self.to_params(p)['logit_cos_inc'], low=0, high=1) def inc(self, p): return np.arccos(self.cos_inc(p)) def set_params(self, p, dict): p = np.atleast_1d(p).view(self.dtype) logit_names = {'wn_rel_amp': (self.wn_low, self.wn_high), 'spatial_scale': (self.spatial_scale_low, self.spatial_scale_high), 'phi_orb': (0, 2*np.pi), 'cos_obl': (0, 1), 'obl_orientation': (0, 2*np.pi), 'cos_inc': (0, 1)} log_names = set(['err_scale', 'sigma', 'rotation_period', 'orbital_period']) for n, x in dict.items(): if n in p.dtype.names: p[n] = x elif n in logit_names: l,h = logit_names[n] p['logit_' + n] = logit(x, l, h) elif n in log_names: p['log_' + n] = np.log(x) return p def fix_params(self, params): """Fix parameters to the specified values and remove them from the Posterior's `dtype`. :param params: A dictionary of parameters to fix, and the values to fix them to. """ self._fixed_params.update(params) def unfix_params(self, params=None): """Let fixed parameters vary. :param params: A list of parameters to unfix. If ``None``, all parameters will be allowed to vary. (default: ``None``) """ if params is None: self._fixed_params = {} else: for p in params: try: self._fixed_params.pop(p) except KeyError: continue def to_params(self, p): """ Return a typed version of ndarray `p`. """ if isinstance(p, np.ndarray): if p.dtype == self.full_dtype or p.dtype == self.full_dtype_map: return p.squeeze() else: if p.dtype == self.dtype: # Extend the array with the fixed parameters pp = np.empty(p.shape, dtype=self.full_dtype) for n in p.dtype.names: pp[n] = p[n] for n in self.fixed_params.keys(): pp[n] = self.fixed_params[n] return pp.squeeze() elif p.dtype == self.dtype_map: pp = np.empty(p.shape, dtype=self.full_dtype_map) for n in p.dtype.names: pp[n] = p[n] for n in self.fixed_params.keys(): pp[n] = self.fixed_params[n] return pp.squeeze() else: if p.shape[-1] == self.nparams: return self.to_params(p.view(self.dtype).squeeze()) elif p.shape[-1] == self.nparams_map: return self.to_params(p.view(self.dtype_map).squeeze()) else: print(p.shape[-1], self.nparams_map) raise ValueError("to_params: bad parameter dimension") else: p = np.atleast_1d(p) return self.to_params(p) def add_map_to_full_params(self, p, map): return self._add_map(p, map) def params_map_to_params(self, pm, include_fixed_params=False): pm = self.to_params(pm) pp = self.to_params(np.zeros(self.nparams)) for n in pp.dtype.names: pp[n] = pm[n] if not include_fixed_params: unfixed_params = [p for p in pp.dtype.names if p not in self.fixed_params] pp = pp[unfixed_params] return pp def spatial_scale(self, p): p = self.to_params(p) return inv_logit(p['logit_spatial_scale'], low=self.spatial_scale_low, high=self.spatial_scale_high) def wn_rel_amp(self, p): p = self.to_params(p) return inv_logit(p['logit_wn_rel_amp'], low=self.wn_low, high=self.wn_high) def visibility_illumination_matrix(self, p): r"""Produce the "kernel" of illumination that is integrated against the pixel map. :param p: Array of values for unfixed parameters. The kernel is composed of a product of cosines: the illumination is proportional to :math:`\vec{n} \cdot \vec{n_s}`, where :math:`\vec{n}` is the pixel normal and :math:`\vec{n_s}` is the vector to the star. The visibility is proportional to :math:`\vec{n} \cdot \vec{n_o}`, where :math:`\vec{n_o}` is the vector to the observer. The contribution of any pixel of value `p` to the lightcurve is therefore :math:`p (\vec{n} \cdot \vec{n_s}) (\vec{n} \cdot \vec{n_o})` if both :math:`\vec{n} \cdot \vec{n_s}` and :math:`\vec{n} \cdot \vec{n_o}` are > 0, and zero otherwise. So, we need to evaluate these dot products. Fix a coordinate system in which to evaluate these dot products as follows: The orbit is in the x-y plane (so :math:`\hat{L} \parallel \hat{z}`), with the x-axis pointing along superior conjunction. The observer is therefore in the x-z plane, and has an inclination angle :math:`\iota` in :math:`[0, \pi/2]` to the orbital plane. So :math:`\vec{n_o} = (-\sin(\iota), 0, \cos(\iota))`. The planet star vector, :math:`\vec{n_s}`, is given by :math:`\vec{n_s} = (-\sin(x_i), -\cos(x_i), 0)`, where :math:`x_i` is the orbital phase. If the orbit has phase :math:`x_{i0}` at `t = 0`, then :math:`n_s = R_z(2\pi/P_\mathrm{orb}t + x_{i0}) \cdot (-1,0,0)`. For the normal vector to the planet, we must describe the series of rotations that maps the orbital coordinate system into the planet-centred coordinate system. Imagine that the planet spin axis is at first aligned with the z-axis. We apply :math:`R_y(\mathrm{obl})`, where `obl` is the obliquity angle in :math:`[0, \pi/2]`, and then :math:`R_z(\phi_\mathrm{rot})`, where :math:`\phi_\mathrm{rot}` is the azimuthal angle of the planet's spin axis in :math:`[0, 2\pi]`. Now the planet's spin axis points to :math:`S = (\cos(\phi_\mathrm{rot})*\sin(\mathrm{obl}), \sin(\phi_\mathrm{rot})*\sin(\mathrm{obl}), \cos(\mathrm{obl}))`. At time :math:`t`, the planet's normals are given by :math:`n(t) = R_S(2\pi/P_\mathrm{rot} t) n(0)`, where :math:`n(0) = R_z(\phi_\mathrm{rot}) R_y(\mathrm{obl}) n`, with `n` the body-centred normals to the pixels. We can now evaluate dot products in the fixed orbital frame. In principle, we are done, but there is an efficiency consideration. For each time at which we have an observation,
a list of string or a list of pair of string (see details in ``encode_plus``). batch_entity_spans_or_entity_spans_pairs (:obj:`List[List[Tuple[int, int]]]`, :obj:`List[Tuple[List[Tuple[int, int]], List[Tuple[int, int]]]]`, `optional`):: Batch of entity span sequences or pairs of entity span sequences to be encoded (see details in ``encode_plus``). batch_entities_or_entities_pairs (:obj:`List[List[str]]`, :obj:`List[Tuple[List[str], List[str]]]`, `optional`): Batch of entity sequences or pairs of entity sequences to be encoded (see details in ``encode_plus``). max_entity_length (:obj:`int`, `optional`): The maximum length of the entity sequence. """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, batch_entity_spans_or_entity_spans_pairs=batch_entity_spans_or_entity_spans_pairs, batch_entities_or_entities_pairs=batch_entities_or_entities_pairs, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, max_entity_length=max_entity_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _batch_encode_plus( self, batch_text_or_text_pairs: Union[List[TextInput], List[TextInputPair]], batch_entity_spans_or_entity_spans_pairs: Optional[ Union[List[EntitySpanInput], List[Tuple[EntitySpanInput, EntitySpanInput]]] ] = None, batch_entities_or_entities_pairs: Optional[ Union[List[EntityInput], List[Tuple[EntityInput, EntityInput]]] ] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, stride: int = 0, is_split_into_words: Optional[bool] = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) if is_split_into_words: raise NotImplementedError("is_split_into_words is not supported in this tokenizer.") # input_ids is a list of tuples (one for each example in the batch) input_ids = [] entity_ids = [] entity_token_spans = [] for index, text_or_text_pair in enumerate(batch_text_or_text_pairs): if not isinstance(text_or_text_pair, (list, tuple)): text, text_pair = text_or_text_pair, None else: text, text_pair = text_or_text_pair entities, entities_pair = None, None if batch_entities_or_entities_pairs is not None: entities_or_entities_pairs = batch_entities_or_entities_pairs[index] if entities_or_entities_pairs: if isinstance(entities_or_entities_pairs[0], str): entities, entities_pair = entities_or_entities_pairs, None else: entities, entities_pair = entities_or_entities_pairs entity_spans, entity_spans_pair = None, None if batch_entity_spans_or_entity_spans_pairs is not None: entity_spans_or_entity_spans_pairs = batch_entity_spans_or_entity_spans_pairs[index] if entity_spans_or_entity_spans_pairs: if isinstance(entity_spans_or_entity_spans_pairs[0][0], int): entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs, None else: entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs ( first_ids, second_ids, first_entity_ids, second_entity_ids, first_entity_token_spans, second_entity_token_spans, ) = self._create_input_sequence( text=text, text_pair=text_pair, entities=entities, entities_pair=entities_pair, entity_spans=entity_spans, entity_spans_pair=entity_spans_pair, **kwargs, ) input_ids.append((first_ids, second_ids)) entity_ids.append((first_entity_ids, second_entity_ids)) entity_token_spans.append((first_entity_token_spans, second_entity_token_spans)) batch_outputs = self._batch_prepare_for_model( input_ids, batch_entity_ids_pairs=entity_ids, batch_entity_token_spans_pairs=entity_token_spans, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, max_entity_length=max_entity_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) def _create_input_sequence( self, text: Union[TextInput], text_pair: Optional[Union[TextInput]] = None, entities: Optional[EntityInput] = None, entities_pair: Optional[EntityInput] = None, entity_spans: Optional[EntitySpanInput] = None, entity_spans_pair: Optional[EntitySpanInput] = None, **kwargs ) -> Tuple[list, list, list, list, list, list]: def get_input_ids(text): tokens = self.tokenize(text, **kwargs) return self.convert_tokens_to_ids(tokens) def get_input_ids_and_entity_token_spans(text, entity_spans): if entity_spans is None: return get_input_ids(text), None cur = 0 input_ids = [] entity_token_spans = [None] * len(entity_spans) split_char_positions = sorted(frozenset(itertools.chain(*entity_spans))) char_pos2token_pos = {} for split_char_position in split_char_positions: orig_split_char_position = split_char_position if ( split_char_position > 0 and text[split_char_position - 1] == " " ): # whitespace should be prepended to the following token split_char_position -= 1 if cur != split_char_position: input_ids += get_input_ids(text[cur:split_char_position]) cur = split_char_position char_pos2token_pos[orig_split_char_position] = len(input_ids) input_ids += get_input_ids(text[cur:]) entity_token_spans = [ (char_pos2token_pos[char_start], char_pos2token_pos[char_end]) for char_start, char_end in entity_spans ] return input_ids, entity_token_spans first_ids, second_ids = None, None first_entity_ids, second_entity_ids = None, None first_entity_token_spans, second_entity_token_spans = None, None if self.task is None: unk_entity_id = self.entity_vocab["[UNK]"] mask_entity_id = self.entity_vocab["[MASK]"] if entity_spans is None: first_ids = get_input_ids(text) else: assert isinstance(entity_spans, list) and ( len(entity_spans) == 0 or isinstance(entity_spans[0], tuple) ), "entity_spans should be given as a list of tuples containing the start and end character indices" assert entities is None or ( isinstance(entities, list) and (len(entities) == 0 or isinstance(entities[0], str)) ), "If you specify entities, they should be given as a list of entity names" assert entities is None or len(entities) == len( entity_spans ), "If you specify entities, entities and entity_spans must be the same length" first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) if entities is None: first_entity_ids = [mask_entity_id] * len(entity_spans) else: first_entity_ids = [self.entity_vocab.get(entity, unk_entity_id) for entity in entities] if text_pair is not None: if entity_spans_pair is None: second_ids = get_input_ids(text_pair) else: assert isinstance(entity_spans_pair, list) and ( len(entity_spans_pair) == 0 or isinstance(entity_spans_pair[0], tuple) ), "entity_spans_pair should be given as a list of tuples containing the start and end character indices" assert entities_pair is None or ( isinstance(entities_pair, list) and (len(entities_pair) == 0 or isinstance(entities_pair[0], str)) ), "If you specify entities_pair, they should be given as a list of entity names" assert entities_pair is None or len(entities_pair) == len( entity_spans_pair ), "If you specify entities_pair, entities_pair and entity_spans_pair must be the same length" second_ids, second_entity_token_spans = get_input_ids_and_entity_token_spans( text_pair, entity_spans_pair ) if entities_pair is None: second_entity_ids = [mask_entity_id] * len(entity_spans_pair) else: second_entity_ids = [self.entity_vocab.get(entity, unk_entity_id) for entity in entities_pair] elif self.task == "entity_classification": assert ( isinstance(entity_spans, list) and len(entity_spans) == 1 and isinstance(entity_spans[0], tuple) ), "Entity spans should be a list containing a single tuple containing the start and end character indices of an entity" first_entity_ids = [self.entity_vocab["[MASK]"]] first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) # add special tokens to input ids entity_token_start, entity_token_end = first_entity_token_spans[0] first_ids = ( first_ids[:entity_token_end] + [self.additional_special_tokens_ids[0]] + first_ids[entity_token_end:] ) first_ids = ( first_ids[:entity_token_start] + [self.additional_special_tokens_ids[0]] + first_ids[entity_token_start:] ) first_entity_token_spans = [(entity_token_start, entity_token_end + 2)] elif self.task == "entity_pair_classification": assert ( isinstance(entity_spans, list) and len(entity_spans) == 2 and isinstance(entity_spans[0], tuple) and isinstance(entity_spans[1], tuple) ), "Entity spans should be provided as a list of tuples, each tuple containing the start and end character indices of an entity" head_span, tail_span = entity_spans first_entity_ids = [self.entity_vocab["[MASK]"], self.entity_vocab["[MASK2]"]] first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) head_token_span, tail_token_span = first_entity_token_spans token_span_with_special_token_ids = [ (head_token_span, self.additional_special_tokens_ids[0]), (tail_token_span, self.additional_special_tokens_ids[1]), ] if head_token_span[0] < tail_token_span[0]: first_entity_token_spans[0] = (head_token_span[0], head_token_span[1] + 2) first_entity_token_spans[1] = (tail_token_span[0] + 2, tail_token_span[1] + 4) token_span_with_special_token_ids = reversed(token_span_with_special_token_ids) else: first_entity_token_spans[0] = (head_token_span[0] + 2, head_token_span[1] + 4) first_entity_token_spans[1] = (tail_token_span[0], tail_token_span[1] + 2) for (entity_token_start, entity_token_end), special_token_id in token_span_with_special_token_ids: first_ids = first_ids[:entity_token_end] + [special_token_id] + first_ids[entity_token_end:] first_ids = first_ids[:entity_token_start] + [special_token_id] + first_ids[entity_token_start:] elif self.task == "entity_span_classification": mask_entity_id = self.entity_vocab["[MASK]"] assert isinstance(entity_spans, list) and isinstance( entity_spans[0], tuple ), "Entity spans should be provided as a list of tuples, each tuple containing the start and end character indices of an entity" first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) first_entity_ids = [mask_entity_id] * len(entity_spans) else: raise ValueError(f"Task {self.task} not supported") return ( first_ids, second_ids, first_entity_ids, second_entity_ids, first_entity_token_spans, second_entity_token_spans, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def _batch_prepare_for_model( self, batch_ids_pairs: List[Tuple[List[int], None]], batch_entity_ids_pairs: List[Tuple[Optional[List[int]], Optional[List[int]]]], batch_entity_token_spans_pairs: List[Tuple[Optional[List[Tuple[int, int]]], Optional[List[Tuple[int, int]]]]], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens Args: batch_ids_pairs: list of tokenized input ids or input ids pairs batch_entity_ids_pairs: list of entity ids or entity ids pairs batch_entity_token_spans_pairs: list of entity spans or entity spans pairs max_entity_length: The maximum length of the entity sequence. """ batch_outputs = {} for input_ids, entity_ids, entity_token_span_pairs in zip( batch_ids_pairs, batch_entity_ids_pairs, batch_entity_token_spans_pairs ): first_ids, second_ids = input_ids first_entity_ids, second_entity_ids = entity_ids first_entity_token_spans, second_entity_token_spans = entity_token_span_pairs outputs = self.prepare_for_model( first_ids, second_ids, entity_ids=first_entity_ids, pair_entity_ids=second_entity_ids, entity_token_spans=first_entity_token_spans, pair_entity_token_spans=second_entity_token_spans, add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward truncation=truncation_strategy.value, max_length=max_length, max_entity_length=max_entity_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterward return_attention_mask=False, # we pad in batch afterward return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, )
\ 'ORDER BY forecastdate DESC LIMIT 1'.format(algoCode, ID) latest_date = pd.read_sql_query(date_query, self.engine) # most recent forecast date calculation # if table has forecast prices already find the latest one and delete it # need to use most recent data for today if before market close at 4pm if not latest_date.empty: latest_date_str = "'" + str(latest_date['forecastdate'][0]) + "'" delete_query = 'DELETE FROM dbo_algorithmforecast WHERE algorithmcode={} AND instrumentid={} AND ' \ 'forecastdate={}'.format(algoCode, ID, latest_date_str) self.engine.execute(delete_query) # get raw price data from database data_query = 'SELECT date, close FROM dbo_instrumentstatistics WHERE instrumentid=%s ORDER BY Date ASC' % ID data = pd.read_sql_query(data_query, self.engine) # regression model from previous days input_length = 20 # predict ahead forecast_length = 5 for n in range(input_length, len(data)): recent_data = data[n - input_length:n] # get most recent trading day forecastDate = "'" + str(data['date'][n]) + "'" # x and y axis x_axis = np.array(recent_data['date']) y_axis = np.array(recent_data['close']) # convert date to a ordinal value to allow for regression df = pd.DataFrame({'date': x_axis, 'close': y_axis}) df['date'] = pd.to_datetime(df['date']) df['date'] = df['date'].map(dt.datetime.toordinal) X = np.array(df['date']) X = np.array(X) X = X.reshape(-1, 1) y = np.array(df['close']) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(X) pol_reg = LinearRegression() pol_reg.fit(X_poly, y) # plt.scatter(X, y, color='red') # plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color='blue') # plt.title('Prediction') # plt.xlabel('Date') # plt.ylabel('Percentage Change') # plt.show() forecast_dates_query = 'SELECT date from dbo_datedim WHERE date > {} AND weekend=0 AND isholiday=0 ' \ 'ORDER BY date ASC LIMIT {}'.format(forecastDate, forecast_length) future_dates = pd.read_sql_query(forecast_dates_query, self.engine) # delete outdated forecasts for the next period delete_query = 'DELETE FROM dbo_algorithmforecast WHERE algorithmcode={} AND instrumentid={} AND ' \ 'forecastdate>{}'.format(algoCode, ID, forecastDate) self.engine.execute(delete_query) for n in range(len(future_dates)): insert_query = 'INSERT INTO dbo_algorithmforecast VALUES ({}, {}, {}, {}, {})' forecastDate = future_dates['date'][n] ordinalDate = forecastDate.toordinal() forecastDate = "'" + str(future_dates['date'][n]) + "'" forecastClose = pol_reg.predict(poly_reg.fit_transform([[ordinalDate]])) forecastClose = (round(forecastClose[0], 3)) # populate entire table if empty # or add new dates based on information in Statistics table insert_query = insert_query.format(forecastDate, ID, forecastClose, algoCode, 0) self.engine.execute(insert_query) def MSF1(self): #Queires the database to grab all of the Macro Economic Variable codes query = "SELECT macroeconcode FROM dbo_macroeconmaster WHERE activecode = 'A'" id = pd.read_sql_query(query, self.engine) id = id.reset_index(drop=True) #Queries the database to grab all of the instrument IDs query = 'SELECT instrumentid FROM dbo_instrumentmaster' id2 = pd.read_sql_query(query, self.engine) id2 = id2.reset_index(drop = True) # Sets value for number of datapoints you would like to work with n = 9 # Getting Dates for Future Forecast# #Initialize the currentDate variable for use when grabbing the forecasted dates currentDate = datetime.today() # Creates a list to store future forecast dates date = [] # This will set the value of count according to which month we are in, this is to avoid having past forecast dates in the list if (currentDate.month < 4): count = 0 elif (currentDate.month < 7 and currentDate.month >= 4): count = 1 elif (currentDate.month < 10 and currentDate.month >= 7): count = 2 else: count = 3 # Initialize a variable to the current year year = currentDate.year #Prints out the accuracy figures, not necessary can be commented out FinsterTab.W2020.AccuracyTest.MSF1_accuracy(self.engine) # Setup a for loop to loop through and append the date list with the date of the start of the next quarter # For loop will run n times, corresponding to amount of data points we are working with for i in range(n): # If the count is 0 then we are still in the first quarter if (count == 0): # Append the date list with corresponding quarter and year date.append(str(year) + "-03-" + "31") # Increase count so this date is not repeated for this year count += 1 #Do it again for the next quarter elif (count == 1): date.append(str(year) + "-06-" + "30") count += 1 #And again for the next quarter elif (count == 2): date.append(str(year) + "-09-" + "30") count += 1 # Until we account for the last quarter of the year else: date.append(str(year) + "-12-" + "31") count = 0 # Where we then incrament the year for the next iterations year = year + 1 #Initializes a list for which we will eventually be storing all data to add to the macroeconalgorithm database table data = [] #Create a for loop to iterate through all of the instrument ids for v in id2['instrumentid']: #Median_forecast will be a dictionary where the key is the date and the value is a list of forecasted prices median_forecast = {} #This will be used to easily combine all of the forecasts for different dates to determine the median forecast value for i in date: temp = {i: []} median_forecast.update(temp) # Initiailizes a variable to represent today's date, used to fetch forecast dates currentDate = str(datetime.today()) # Applies quotes to current date so it can be read as a string currentDate = ("'" + currentDate + "'") #This query will grab quarterly instrument prices from between 2014 and the current date to be used in the forecasting query = "SELECT close, instrumentid FROM ( SELECT date, close, instrumentID, ROW_NUMBER() OVER " \ "(PARTITION BY YEAR(date), MONTH(date) ORDER BY DAY(date) DESC) AS rowNum FROM " \ "dbo_instrumentstatistics WHERE instrumentid = {} AND date BETWEEN '2014-03-21' AND {} ) z " \ "WHERE rowNum = 1 AND ( MONTH(z.date) = 3 OR MONTH(z.date) = 6 OR MONTH(z.date) = 9 OR " \ "MONTH(z.date) = 12)".format(v, currentDate) # Executes the query and stores the result in a dataframe variable df2 = pd.read_sql_query(query, self.engine) #This for loop iterates through the different macro economic codes to calculate the percent change for each macroeconomic variable for x in id['macroeconcode']: #Retrieves Relevant Data from Database query = 'SELECT * FROM dbo_macroeconstatistics WHERE macroeconcode = {}'.format('"' + str(x) + '"') df = pd.read_sql_query(query, self.engine) macro = df.tail(n) SP = df2.tail(n) temp = df.tail(n+1) temp = temp.reset_index() #Converts macro variables to precent change macroPercentChange = macro macro = macro.reset_index(drop=True) SP = SP.reset_index(drop=True) macroPercentChange = macroPercentChange.reset_index(drop=True) for i in range(0, n): if (i == 0): macrov = (macro['statistics'][i]-temp['statistics'][i])/temp['statistics'][i] macroPercentChange['statistics'].iloc[i] = macrov * 100 else: macrov = (macro['statistics'][i]-macro['statistics'][i - 1])/macro['statistics'][i - 1] macroPercentChange['statistics'].iloc[i] = macrov * 100 #Algorithm for forecast price S = DataForecast.calc(self, macroPercentChange, SP, n) #Calculates the average GDP and S&P values for the given data points over n days and performs operations on GDP average # temp_price will be used to hold the previous forecast price for the next prediction temp_price = 0 # isFirst will determine whether or not this is the first calculation being done # If it is true then we use the most recent instrument statistic to forecast the first pricepoint # IF it is false then we use the previous forecast price to predict the next forecast price isFirst = True # Setup a for loop to calculate the final forecast price and add data to the list variable data for i in range(n): if isFirst: if x in [2, 3, 4]: temp_price = ((S*SP['close'].iloc[n-1]) + SP['close'].iloc[n-1]) isFirst = False else: temp_price = ((S*SP['close'].iloc[n-1]) + SP['close'].iloc[n-1]) isFirst = False else: if x in [2, 3, 4]: temp_price = ((S*temp_price) + temp_price) else: temp_price = ((S*temp_price)+ temp_price) #Once the forecast price is calculated append it to median_forecast list median_forecast[date[i]].append(temp_price) #Calculates the median value for each date using a list of prices forecasted by each individual macro economic variable forecast_prices = [] for i in date: #Sort the forecasted prices based on date sorted_prices = sorted(median_forecast[i]) #calculate the median forecasted price for each date if len(sorted_prices) % 2 == 0: center = int(len(sorted_prices)/2) forecast_prices.append(sorted_prices[center]) else: center = int(len(sorted_prices)/2) forecast_prices.append((sorted_prices[center] + sorted_prices[center - 1])/2) #Set up a for loop to construct a list using variables associated with macroeconalgorithm database table for i in range(len(forecast_prices)): data.append([date[i], v, 'ALL', forecast_prices[i], 'MSF1', 0]) # Convert
<filename>code_python/1.2/edge-extract.py # ------------------------------------------------------------------------------ # IMPORTS # ------------------------------------------------------------------------------ from sys import version_info from sys import path as syspath from os import path import json _CURRENT_DIRECTORY = syspath[0] try: import util # if you have problems visit: # https://gist.github.com/pinxau1000/8817d4ef0ed766c78bac8e6feafc8b47 # https://github.com/pinxau1000/ except ModuleNotFoundError: from urllib import request print("'util.py' not found on the same folder as this script!") _url_utilpy = "https://gist.githubusercontent.com/pinxau1000/8817d4ef0ed766c78bac8e6feafc8b47/raw/util.py" print("Downloading util.py from:\n" + _url_utilpy) # https://stackoverflow.com/questions/7243750/download-file-from-web-in-python-3 request.urlretrieve(_url_utilpy, "util.py") print("Downloading finished!") import util try: import cv2 as cv except ModuleNotFoundError: util.install("opencv-python") import cv2 as cv try: from matplotlib import pyplot as plt except ModuleNotFoundError: util.install("matplotlib") from matplotlib import pyplot as plt try: import numpy as np except ModuleNotFoundError: util.install("numpy>=1.19,<1.19.4") import numpy as np try: from packaging import version except ModuleNotFoundError: util.install("packaging") from packaging import version try: import click except ModuleNotFoundError: util.install("click") import click # ------------------------------------------------------------------------------ # REQUIREMENTS CHECK # ------------------------------------------------------------------------------ assert version_info.major >= 3 and \ version_info.minor >= 5, \ "This script requires Python 3.5.0 or above!" assert version.parse(cv.__version__).major >= 4 and \ version.parse(cv.__version__).minor >= 4, \ "This script requires OpenCV 4.4.0 or above!" assert version.parse(plt.matplotlib.__version__).major >= 3 and \ version.parse(plt.matplotlib.__version__).minor >= 3, \ "This script requires MatPlotLib 3.3.0 or above!" assert version.parse(np.__version__).major >= 1 and \ version.parse(np.__version__).minor >= 19 and \ version.parse(np.__version__).micro < 4, \ "This script requires Numpy version >= 1.19.0 and < 1.19.4 !" assert version.parse(click.__version__).major >= 7 and \ version.parse(click.__version__).minor >= 1, \ "This script requires Click 7.1.0 or above!" # ------------------------------------------------------------------------------ # Load Default Pictures # ------------------------------------------------------------------------------ _PATH_2_DATA = path.join(_CURRENT_DIRECTORY, "../../data/") _IMG_ORIG_NAME = "img05.jpg" _IMG_NOISE_NAME = "img05_noise.jpg" _IMG_HARRIS_NAME = "Harris.jpg" _FULL_PATH_ORIG = path.join(_PATH_2_DATA, _IMG_ORIG_NAME) _FULL_PATH_NOISE = path.join(_PATH_2_DATA, _IMG_NOISE_NAME) _FULL_PATH_HARRIS = path.join(_PATH_2_DATA, _IMG_HARRIS_NAME) # ------------------------------------------------------------------------------ # Functions # ------------------------------------------------------------------------------ # ------------------------------------------------------------------------------ # Sobel Filter # ------------------------------------------------------------------------------ # PASSED @click.command() @click.option("--image", prompt="Path", default=_FULL_PATH_ORIG, type=str, help="The path to the image") @click.option("--deriv_x", default=str(list(range(1, 3))), help="List with X derivatives order") @click.option("--deriv_y", default=str(list(range(1, 3))), help="List with Y derivatives order") @click.option("--ksize", default=None, type=int, help="Size of the extended Sobel kernel; it must be 1, 3, 5, " "or 7.") @click.option("--threshold", default=0.125, type=float, help="Values below threshold*max(SobelMagnitude) are set to 0.") @click.option("--filter_params", default=str([0]), help="Tuple with initial filtering parameters. If None no " "filter will be applied. If a 2 element tuple the a " "Gaussian Blur will be applied with ksize=(filter_params[" "0], filter_params[1]). If a 3 elements tuple a bilateral " "filtering will be applied with d=filter_params[0], " "sigmaColor=filter_params[1] and sigmaSpace=filter_params[" "2]") @click.option("--save", default="output_SobelFilter", type=str, help="The save name(s) of the output figure(s)") @click.option("--dpi", default=None, type=int, help="Quality of the figure window generated. If None its the " "default 100 dpi.") @click.option("--num", default=None, type=int, help="Number of the figure window generated. If None its " "cumulative.") def sobel_filter(image, deriv_x, deriv_y, ksize, threshold, filter_params, save, dpi, num): image = util.load_image_RGB(image) deriv_x = json.loads(deriv_x) deriv_y = json.loads(deriv_y) filter_params = json.loads(filter_params) if len(filter_params) == 2: print("Applying Gaussian Filter") image = cv.GaussianBlur(src=image, ksize=(filter_params[0], filter_params[1]), sigmaX=0, sigmaY=0) # Best bilateral_params = (6, 200, 20) elif len(filter_params) == 3: print("Applying Bilateral Filter") image = cv.bilateralFilter(src=image, d=filter_params[0], sigmaColor=filter_params[1], sigmaSpace=filter_params[2]) image = cv.cvtColor(src=image, code=cv.COLOR_RGB2GRAY) # Initialize the mean_images as list. Values are assigned on the for-loop sobel_images_dx = [] titles_images_dx = [] for dx in deriv_x: # If not specified or set to None KSize is 3! sobel_images_dx.append(cv.Sobel(src=image, ddepth=cv.CV_64F, dx=dx, dy=0, ksize=ksize)) titles_images_dx.append(f"dx = {dx}") sobel_images_dy = [] titles_images_dy = [] for dy in deriv_y: sobel_images_dy.append(cv.Sobel(src=image, ddepth=cv.CV_64F, dx=0, dy=dy, ksize=ksize)) titles_images_dy.append(f"dy = {dy}") mag = cv.magnitude(sobel_images_dx[-1], sobel_images_dy[-1]) ang = cv.phase(sobel_images_dx[-1], sobel_images_dy[-1], angleInDegrees=True) # Values below threshold are set to zero. # Needed to visualize the orientation/angle _, mask = cv.threshold(mag, np.max(mag) * threshold, 1, cv.THRESH_BINARY) mag = np.multiply(mask, mag) ang = np.multiply(mask, ang) sobel_images_dxdy = [mag, ang] titles_images_dxdy = [f"Magnitude\ndx = {max(deriv_x)}, " f"dy = {max(deriv_y)}", f"Orientation\ndx = {max(deriv_x)}, " f"dy = {max(deriv_y)}"] # Before plotting we need to type convert sobel_images_dx = list(np.uint8(np.abs(sobel_images_dx))) sobel_images_dy = list(np.uint8(np.abs(sobel_images_dy))) sobel_images_dxdy = list(np.uint8(np.abs(sobel_images_dxdy))) # Copy the arrays with the images generated in the for-loop and adds the # original noisy image for comparison. Also copies and adds the titles. plot_images = sobel_images_dx + sobel_images_dy + [sobel_images_dxdy[0]] plot_images.insert(0, image) plot_titles = titles_images_dx + titles_images_dy + [titles_images_dxdy[0]] plot_titles.insert(0, "Original Image") # Plots the images. fig = util.plotImages(plot_images, plot_titles, show=True, main_title="Sobel Filter - cv.Sobel", cmap="gray", num=num, dpi=dpi) # Saves the figure. if save != "None": fig.savefig(save) if num is not None: num += 1 # Plots the images. fig = util.plotImages(sobel_images_dxdy, titles_images_dxdy, show=True, main_title="Sobel Filter - cv.Sobel", cols=2, cmap="turbo", num=num, dpi=dpi) # Saves the figure. if save != "None": fig.savefig(save + "_MagAng") # Wait for a key press to close figures input("Press Enter to continue...") # ------------------------------------------------------------------------------ # Sobel Filter Ddepth Problems # ------------------------------------------------------------------------------ # PASSED @click.command() @click.option("--image", prompt="Path", default=_FULL_PATH_ORIG, type=str, help="The path to the image") @click.option("--ksize", default=None, type=int, help="Size of the extended Sobel kernel; it must be 1, 3, 5, " "or 7.") @click.option("--threshold", default=0.125, type=float, help="Values below threshold*max(SobelMagnitude) are set to 0.") @click.option("--filter_params", default=str([0]), help="Tuple with initial filtering parameters. If None no " "filter will be applied. If a 2 element tuple the a " "Gaussian Blur will be applied with ksize=(filter_params[" "0], filter_params[1]). If a 3 elements tuple a bilateral " "filtering will be applied with d=filter_params[0], " "sigmaColor=filter_params[1] and sigmaSpace=filter_params[" "2]") @click.option("--save", default="output_SobelFilter_dataTypesProblems", type=str, help="The save name(s) of the output figure(s)") @click.option("--dpi", default=None, type=int, help="Quality of the figure window generated. If None its the " "default 100 dpi.") @click.option("--num", default=None, type=int, help="Number of the figure window generated. If None its " "cumulative.") def sobel_filter_ddepth(image, ksize, threshold, filter_params, save, dpi, num): image = util.load_image_RGB(image) filter_params = json.loads(filter_params) if len(filter_params) == 2: print("Applying Gaussian Filter") image = cv.GaussianBlur(src=image, ksize=(filter_params[0], filter_params[1]), sigmaX=0, sigmaY=0) # Best bilateral_params = (6, 200, 20) elif len(filter_params) == 3: print("Applying Bilateral Filter") image = cv.bilateralFilter(src=image, d=filter_params[0], sigmaColor=filter_params[1], sigmaSpace=filter_params[2]) image_gray = cv.cvtColor(src=image, code=cv.COLOR_RGB2GRAY) sobel_1st_float64 = cv.Sobel(src=image_gray, ddepth=cv.CV_64F, dx=1, dy=0, ksize=ksize) sobel_1st_float64 = np.uint8(np.abs(sobel_1st_float64)) sobel_1st_uint8 = cv.Sobel(src=image_gray, ddepth=cv.CV_8U, dx=1, dy=0, ksize=ksize) sobel_2nd_float64 = cv.Sobel(src=image_gray, ddepth=cv.CV_64F, dx=2, dy=0, ksize=ksize) sobel_2nd_float64 = np.uint8(np.abs(sobel_2nd_float64)) sobel_2nd_uint8 = cv.Sobel(src=image_gray, ddepth=cv.CV_8U, dx=2, dy=0, ksize=ksize) plot_images = [sobel_1st_float64, sobel_1st_uint8, sobel_2nd_float64, sobel_2nd_uint8] plot_titles = ["dx=1 64F", "dx=1 8U", "dx=2 64F", "dx=2 8U"] # Plots the Black and White images. fig = util.plotImages(plot_images, plot_titles, show=True, main_title="Sobel Derivatives Problems 1 - cv.Sobel", cmap="gray", num=num, dpi=dpi) # Saves the figure. if save != "None": fig.savefig(save + "_1") image_1st_uint8 = np.copy(image) image_1st_float64 = np.copy(image) image_2nd_uint8 = np.copy(image) image_2nd_float64 = np.copy(image) image_1st_uint8[sobel_1st_uint8 > threshold * np.max(sobel_1st_uint8)] \ = [255, 0, 0] image_1st_float64[sobel_1st_float64 > threshold * np.max(sobel_1st_float64)] \ = [255, 0, 0] image_2nd_uint8[sobel_2nd_uint8 > threshold * np.max(sobel_2nd_uint8)] \ = [255, 0, 0] image_2nd_float64[sobel_2nd_float64 > threshold * np.max(sobel_2nd_float64)] \ = [255, 0, 0] plot_images = [image_1st_float64, image_1st_uint8, image_2nd_float64, image_2nd_uint8] plot_titles = ["dx=1 64F", "dx=1 8U", "dx=2 64F", "dx=2 8U"] if num is not None: num += 1 # Plots the images. fig = util.plotImages(plot_images, plot_titles, show=True, main_title="Sobel Derivatives Problems 2 - cv.Sobel", num=num, dpi=dpi) # Saves the figure. if save != "None": fig.savefig(save + "_2") # Wait for a key press to close figures input("Press Enter to continue...") # ------------------------------------------------------------------------------ # Scharr Filter # ------------------------------------------------------------------------------ # PASSED @click.command() @click.option("--image", prompt="Path", default=_FULL_PATH_ORIG, type=str, help="The path to the image") @click.option("--filter_params", default=str([0]), help="Tuple with initial filtering parameters. If None no " "filter will be applied. If a 2 element tuple the a " "Gaussian Blur will be applied with ksize=(filter_params[" "0], filter_params[1]). If a 3 elements tuple a bilateral " "filtering will be applied with d=filter_params[0], " "sigmaColor=filter_params[1] and sigmaSpace=filter_params[" "2]") @click.option("--save", default="output_ScharrFilter", type=str, help="The save name(s) of the output figure(s)") @click.option("--dpi", default=None, type=int, help="Quality of the figure window generated. If None its the " "default 100 dpi.") @click.option("--num", default=None, type=int, help="Number of the figure window generated. If None its " "cumulative.") def scharr_filter(image, filter_params, save, dpi, num): image = util.load_image_RGB(image) filter_params = json.loads(filter_params) if len(filter_params) == 2: print("Applying Gaussian Filter") image = cv.GaussianBlur(src=image, ksize=(filter_params[0], filter_params[1]), sigmaX=0, sigmaY=0) # Best bilateral_params = (6, 200, 20) elif len(filter_params) == 3: print("Applying Bilateral Filter") image = cv.bilateralFilter(src=image, d=filter_params[0], sigmaColor=filter_params[1], sigmaSpace=filter_params[2]) image = cv.cvtColor(src=image, code=cv.COLOR_RGB2GRAY) scharr_x = cv.Scharr(src=image, ddepth=cv.CV_64F, dx=1, dy=0) scharr_y = cv.Scharr(src=image, ddepth=cv.CV_64F, dx=0, dy=1) scharr_xy = cv.magnitude(scharr_x, scharr_y) scharr_x = list(np.uint8(np.abs(scharr_x))) scharr_y = list(np.uint8(np.abs(scharr_y))) scharr_xy = list(np.uint8(np.abs(scharr_xy))) scharr_images = [image, scharr_x, scharr_y, scharr_xy] titles_images = ["Original Image", "Scharr dx=1", "Scharr dy=1", "Magnitude"] # Plots the images. fig = util.plotImages(scharr_images, titles_images, show=True, main_title="Scharr Filter - cv.Scharr", cmap="gray", num=num, dpi=dpi) # Saves the figure. if save != "None": fig.savefig(save) #
import os import sys import glob import gzip import multiprocessing import re import uuid from core.log import log from core.config import HotSOSConfig class FileSearchException(Exception): def __init__(self, msg): self.msg = msg class FilterDef(object): def __init__(self, pattern, invert_match=False): """ Add a filter definition @param pattern: regex pattern to search for @param invert_match: return True if match is positive """ self.pattern = re.compile(pattern) self.invert_match = invert_match def filter(self, line): ret = self.pattern.search(line) if self.invert_match: return ret is not None else: return ret is None class SearchDef(object): def __init__(self, pattern, tag=None, hint=None): """ Add a search definition @param pattern: regex pattern or list of patterns to search for @param tag: optional user-friendly identifier for this search term @param hint: pre-search term to speed things up """ if type(pattern) != list: self.patterns = [re.compile(pattern)] else: self.patterns = [] for _pattern in pattern: self.patterns.append(re.compile(_pattern)) self.tag = tag if hint: self.hint = re.compile(hint) else: self.hint = None def run(self, line): """Execute search patterns against line and return first match.""" if self.hint: ret = self.hint.search(line) if not ret: return None ret = None for pattern in self.patterns: ret = pattern.match(line) if ret: return ret return ret class SequenceSearchDef(object): def __init__(self, start, tag, end=None, body=None): """ Define search for sequences. A sequence must match a start and end with optional body in between. If no end defined, the sequence ends with the start of the next or EOF. NOTE: sequences must not overlap. This is therefore not suitable for finding sequences generated by parallel/concurrent tasks. @param start: SearchDef object for matching start @param tag: tag used to identify this sequence definition @param end: optional SearchDef object for matching end @param body: optional SearchDef object for matching body """ self.s_start = start self.s_end = end self.s_body = body self.tag = tag self._mark = None # Each section identified gets its own id. Since each file is processed # using a separate process and memory is not shared, these values must # be unique to avoid collisions when results are aggregated. self._section_id = None self._unique_id = "{}-{}".format(self.tag, uuid.uuid4()) @property def start_tag(self): """Tag used to identify start of section""" return "{}-start".format(self.tag) @property def end_tag(self): """Tag used to identify end of section""" return "{}-end".format(self.tag) @property def body_tag(self): """Tag used to identify body of section""" return "{}-body".format(self.tag) @property def id(self): return self._unique_id @property def section_id(self): """ ID of current section. A new id should be set after each completed section. """ return self._section_id @property def started(self): """Indicate a section sequence has been started.""" return self._mark == 1 def start(self): """Indicate that a sequence start has been detected.""" self._section_id = str(uuid.uuid4()) self._mark = 1 def reset(self): """Used to restart a section. This is used e.g. if the start expression matches midway through a sequence (and before the end). """ self._mark = 0 def stop(self): """Indicate that a sequence is complete.""" self._mark = 0 self._section_id = str(uuid.uuid4()) class SearchResultPart(object): def __init__(self, index, value): self.index = index self.value = value class SearchResult(object): def __init__(self, linenumber, source, result, search_term_tag=None, section_id=None, sequence_obj_id=None): """ @param linenumber: line number that produced a match @param source: data source (path) @param result: python.re match object @param search_term_tag: SearchDef object tag @param section_id: SequenceSearchDef object section id @param sequence_obj_id: SequenceSearchDef object unique id """ self.tag = search_term_tag self.source = source self.linenumber = linenumber self._parts = {} self.sequence_obj_id = sequence_obj_id self.section_id = section_id num_groups = len(result.groups()) # NOTE: this does not include group(0) if num_groups: # To reduce memory footprint, don't store group(0) i.e. the whole # line, if there are actual groups in the result. for i in range(1, num_groups + 1): self._add(i, result.group(i)) else: self._add(0, result.group(0)) def _add(self, index, value): self._parts[index] = SearchResultPart(index, value) def get(self, index): """Retrieve a result part by its index.""" if index not in self._parts: return None return self._parts[index].value class SearchResultsCollection(object): def __init__(self): self.reset() def __len__(self): return self.count @property def count(self): _count = 0 for f in self.files: _count += len(self.find_by_path(f)) return _count @property def files(self): return list(self._results.keys()) def reset(self): self._iter_idx = 0 self._results = {} def add(self, path, results): if path not in self._results: self._results[path] = results else: self._results[path] += results def find_by_path(self, path): if path not in self._results: return [] return self._results[path] def find_by_tag(self, tag, path=None, sequence_obj_id=None): """Return all result tagged with tag. If no path is provided tagged results from all paths are returned. """ if path: paths = [path] else: paths = list(self._results.keys()) results = [] for path in paths: for result in self._results.get(path, []): if sequence_obj_id is None: if result.tag == tag: results.append(result) else: if (result.tag == tag and result.sequence_obj_id == sequence_obj_id): results.append(result) return results def find_sequence_sections(self, sequence_obj, path=None): """Return results of running the given sequence search. Returns a dictionary keyed by section id where each is a list of results for that section with start, body, end etc. """ _results = [] sections = {} _results += self.find_by_tag(tag=sequence_obj.start_tag, path=path, sequence_obj_id=sequence_obj.id) _results += self.find_by_tag(tag=sequence_obj.body_tag, path=path, sequence_obj_id=sequence_obj.id) _results += self.find_by_tag(tag=sequence_obj.end_tag, path=path, sequence_obj_id=sequence_obj.id) for r in _results: if r.section_id in sections: sections[r.section_id].append(r) else: sections[r.section_id] = [r] return sections def __iter__(self): return iter(self._results.items()) class FileSearcher(object): def __init__(self): self.paths = {} self.filters = {} self.results = SearchResultsCollection() @property def num_cpus(self): if HotSOSConfig.MAX_PARALLEL_TASKS == 0: cpus = 1 # i.e. no parallelism else: cpus = min(HotSOSConfig.MAX_PARALLEL_TASKS, os.cpu_count()) return cpus def add_filter_term(self, filter, path): """Add a term to search for that will be used as a filter for the given data source. This filter is applied to each line in a file prior to executing the full search(es) as means of reducing the amount of full searches we have to do by filtering out lines that do not qualify. A negative match results in the line being skipped and no further searches performed. A filter definition is registered against a path which can be a file, directory or glob. Any number of filters can be registered. @param filtedef: FilterDef object @param path: path to which the filter should be applied. """ if path in self.filters: self.filters[path].append(filter) else: self.filters[path] = [filter] def add_search_term(self, searchdef, path): """Add a term to search for. A search definition is registered against a path which can be a file, directory or glob. Any number of searches can be registered. Searches are executed concurrently by file. @param searchdef: SearchDef object @param path: path that we will be searching for this key """ if path in self.paths: self.paths[path].append(searchdef) else: self.paths[path] = [searchdef] def _job_wrapper(self, pool, path, entry): term_key = path return pool.apply_async(self._search_task_wrapper, (entry, term_key)) def _search_task_wrapper(self, path, term_key): try: with gzip.open(path, 'r') as fd: try: # test if file is gzip fd.read(1) fd.seek(0) return self._search_task(term_key, fd, path) except OSError: pass with open(path) as fd: return self._search_task(term_key, fd, path) except UnicodeDecodeError: # ignore the file if it can't be decoded log.debug("caught UnicodeDecodeError for path %s - skipping", path) except EOFError as e: msg = ("an exception occured while searching {} - {}". format(path, e)) raise FileSearchException(msg) from e except Exception as e: msg = ("an unknown exception occured while searching {} - {}". format(path, e)) raise FileSearchException(msg) from e def line_filtered(self, term_key, line): """Returns True if line is to be skipped.""" for f_term in self.filters.get(term_key, []): if f_term.filter(line): return True return False def _search_task(self, term_key, fd, path): results = [] sequence_results = {} for ln, line in enumerate(fd, start=1): if type(line) == bytes: line = line.decode("utf-8") # global filters (untagged) if self.line_filtered(term_key, line): continue for s_term in self.paths[term_key]: if type(s_term) == SequenceSearchDef: # if the ending is defined and we match a start while # already in a section, we start again. if s_term.s_end: ret = s_term.s_start.run(line) if s_term.started: if ret: # reset and start again if sequence_results: del sequence_results[s_term.id] s_term.reset() else: ret = s_term.s_end.run(line) else: ret = s_term.s_start.run(line) else: ret = s_term.run(line) if ret: section_id = None sequence_obj_id = None tag = s_term.tag if type(s_term) == SequenceSearchDef: if not s_term.started: tag = s_term.start_tag s_term.start() section_id = s_term.section_id else: tag = s_term.end_tag section_id = s_term.section_id
variables in the stochastic process. * **phi** (`ndarray`): The random phase angles used in the simulation of the stochastic process. The shape of the phase angles (`nsamples`, `number_of_variables`, `number_frequency_intervals[0]`, ..., `number_frequency_intervals[number_of_dimensions-1]`) * **b_ampl** (`ndarray`): The amplitude of the bispectrum. * **b_real** (`ndarray`): The real part of the bispectrum. * **b_imag** (`ndarray`): The imaginary part of the bispectrum. * **biphase** (`ndarray`): The biphase values of the bispectrum. * **pure_power_spectrum** (`ndarray`): The pure part of the power spectrum. * **bc2** (`ndarray`): The bicoherence values of the power spectrum and bispectrum. * **sum_bc2** (`ndarray`): The sum of the bicoherence values for single frequencies. **Methods** """ def __init__(self, nsamples, power_spectrum, bispectrum, time_interval, frequency_interval, number_time_intervals, number_frequency_intervals, case='uni', random_state=None, verbose=False): self.nsamples = nsamples self.number_frequency_intervals = np.array(number_frequency_intervals) self.number_time_intervals = np.array(number_time_intervals) self.frequency_interval = np.array(frequency_interval) self.time_interval = np.array(time_interval) self.number_of_dimensions = len(power_spectrum.shape) self.power_spectrum = power_spectrum self.bispectrum = bispectrum # Error checks t_u = 2 * np.pi / (2 * self.number_frequency_intervals * self.frequency_interval) if (self.time_interval > t_u).any(): raise RuntimeError('UQpy: Aliasing might occur during execution') self.random_state = random_state if isinstance(self.random_state, int): np.random.seed(self.random_state) elif not isinstance(self.random_state, (type(None), np.random.RandomState)): raise TypeError('UQpy: random_state must be None, an int or an np.random.RandomState object.') self.b_ampl = np.absolute(bispectrum) self.b_real = np.real(bispectrum) self.b_imag = np.imag(bispectrum) self.biphase = np.arctan2(self.b_imag, self.b_real) self.biphase[np.isnan(self.biphase)] = 0 self.phi = None self.samples = None self.case = case self.verbose = verbose if self.number_of_dimensions == len(self.power_spectrum.shape): self.case = 'uni' else: self.number_of_variables = self.power_spectrum.shape[0] self.case = 'multi' if self.nsamples is not None: self.run(nsamples=self.nsamples) def _compute_bicoherence_uni(self): if self.verbose: print('UQpy: Stochastic Process: Computing the partial bicoherence values.') self.bc2 = np.zeros_like(self.b_real) self.pure_power_spectrum = np.zeros_like(self.power_spectrum) self.sum_bc2 = np.zeros_like(self.power_spectrum) if self.number_of_dimensions == 1: self.pure_power_spectrum[0] = self.power_spectrum[0] self.pure_power_spectrum[1] = self.power_spectrum[1] if self.number_of_dimensions == 2: self.pure_power_spectrum[0, :] = self.power_spectrum[0, :] self.pure_power_spectrum[1, :] = self.power_spectrum[1, :] self.pure_power_spectrum[:, 0] = self.power_spectrum[:, 0] self.pure_power_spectrum[:, 1] = self.power_spectrum[:, 1] if self.number_of_dimensions == 3: self.pure_power_spectrum[0, :, :] = self.power_spectrum[0, :, :] self.pure_power_spectrum[1, :, :] = self.power_spectrum[1, :, :] self.pure_power_spectrum[:, 0, :] = self.power_spectrum[:, 0, :] self.pure_power_spectrum[:, 1, :] = self.power_spectrum[:, 1, :] self.pure_power_spectrum[:, :, 0] = self.power_spectrum[:, :, 0] self.pure_power_spectrum[:, 0, 1] = self.power_spectrum[:, :, 1] self.ranges = [range(self.number_frequency_intervals[i]) for i in range(self.number_of_dimensions)] for i in itertools.product(*self.ranges): wk = np.array(i) for j in itertools.product(*[range(np.int32(k)) for k in np.ceil((wk + 1) / 2)]): wj = np.array(j) wi = wk - wj if self.b_ampl[(*wi, *wj)] > 0 and self.pure_power_spectrum[(*wi, *[])] * \ self.pure_power_spectrum[(*wj, *[])] != 0: self.bc2[(*wi, *wj)] = self.b_ampl[(*wi, *wj)] ** 2 / ( self.pure_power_spectrum[(*wi, *[])] * self.pure_power_spectrum[(*wj, *[])] * self.power_spectrum[(*wk, *[])]) * self.frequency_interval ** self.number_of_dimensions self.sum_bc2[(*wk, *[])] = self.sum_bc2[(*wk, *[])] + self.bc2[(*wi, *wj)] else: self.bc2[(*wi, *wj)] = 0 if self.sum_bc2[(*wk, *[])] > 1: print('UQpy: Stochastic Process: Results may not be as expected as sum of partial bicoherences is ' 'greater than 1') for j in itertools.product(*[range(k) for k in np.ceil((wk + 1) / 2, dtype=np.int32)]): wj = np.array(j) wi = wk - wj self.bc2[(*wi, *wj)] = self.bc2[(*wi, *wj)] / self.sum_bc2[(*wk, *[])] self.sum_bc2[(*wk, *[])] = 1 self.pure_power_spectrum[(*wk, *[])] = self.power_spectrum[(*wk, *[])] * (1 - self.sum_bc2[(*wk, *[])]) def _simulate_bsrm_uni(self, phi): coeff = np.sqrt((2 ** ( self.number_of_dimensions + 1)) * self.power_spectrum * self.frequency_interval ** self.number_of_dimensions) phi_e = np.exp(phi * 1.0j) biphase_e = np.exp(self.biphase * 1.0j) self._compute_bicoherence_uni() b = np.sqrt(1 - self.sum_bc2) * phi_e bc = np.sqrt(self.bc2) phi_e = np.einsum('i...->...i', phi_e) b = np.einsum('i...->...i', b) for i in itertools.product(*self.ranges): wk = np.array(i) for j in itertools.product(*[range(np.int32(k)) for k in np.ceil((wk + 1) / 2)]): wj = np.array(j) wi = wk - wj b[(*wk, *[])] = b[(*wk, *[])] + bc[(*wi, *wj)] * biphase_e[(*wi, *wj)] * phi_e[(*wi, *[])] * \ phi_e[(*wj, *[])] b = np.einsum('...i->i...', b) b = b * coeff b[np.isnan(b)] = 0 samples = np.fft.fftn(b, self.number_time_intervals) samples = samples[:, np.newaxis] return np.real(samples) def run(self, nsamples): """ Execute the random sampling in the ``BSRM`` class. The ``run`` method is the function that performs random sampling in the ``BSRM`` class. If `nsamples` is provided, the ``run`` method is automatically called when the ``BSRM`` object is defined. The user may also call the ``run`` method directly to generate samples. The ``run`` method of the ``BSRM`` class can be invoked many times and each time the generated samples are appended to the existing samples. ** Input:** * **nsamples** (`int`): Number of samples of the stochastic process to be simulated. If the ``run`` method is invoked multiple times, the newly generated samples will be appended to the existing samples. **Output/Returns:** The ``run`` method has no returns, although it creates and/or appends the `samples` attribute of the ``BSRM`` class. """ if nsamples is None: raise ValueError('UQpy: Stochastic Process: Number of samples must be defined.') if not isinstance(nsamples, int): raise ValueError('UQpy: Stochastic Process: nsamples should be an integer.') if self.verbose: print('UQpy: Stochastic Process: Running 3rd-order Spectral Representation Method.') samples = None phi = None if self.case == 'uni': if self.verbose: print('UQpy: Stochastic Process: Starting simulation of uni-variate Stochastic Processes.') print('UQpy: The number of dimensions is :', self.number_of_dimensions) phi = np.random.uniform( size=np.append(self.nsamples, np.ones(self.number_of_dimensions, dtype=np.int32) * self.number_frequency_intervals)) * 2 * np.pi samples = self._simulate_bsrm_uni(phi) if self.samples is None: self.samples = samples self.phi = phi else: self.samples = np.concatenate((self.samples, samples), axis=0) self.phi = np.concatenate((self.phi, phi), axis=0) if self.verbose: print('UQpy: Stochastic Process: 3rd-order Spectral Representation Method Complete.') class KLE: """ A class to simulate stochastic processes from a given auto-correlation function based on the Karhunen-Loeve Expansion **Input:** * **nsamples** (`int`): Number of samples of the stochastic process to be simulated. The ``run`` method is automatically called if `nsamples` is provided. If `nsamples` is not provided, then the ``KLE`` object is created but samples are not generated. * **correlation_function** (`list or numpy.ndarray`): The correlation function of the stochastic process of size (`number_time_intervals`, `number_time_intervals`) * **time_interval** (`float`): The length of time discretization. * **threshold** (`int`): The threshold number of eigenvalues to be used in the expansion. * **random_state** (None or `int` or ``numpy.random.RandomState`` object): Random seed used to initialize the pseudo-random number generator. Default is None. If an integer is provided, this sets the seed for an object of ``numpy.random.RandomState``. Otherwise, the object itself can be passed directly. * **verbose** (Boolean): A boolean declaring whether to write text to the terminal. **Attributes:** * **samples** (`ndarray`): Array of generated samples. * **xi** (`ndarray`): The independent gaussian random variables used in the expansion. **Methods** """ # TODO: Test this for non-stationary processes. def __init__(self, nsamples, correlation_function, time_interval, threshold=None, random_state=None, verbose=False): self.correlation_function = correlation_function self.time_interval = time_interval if threshold: self.number_eigen_values = threshold else: self.number_eigen_values = len(self.correlation_function[0]) self.random_state = random_state if isinstance(self.random_state, int): np.random.seed(self.random_state) elif not isinstance(self.random_state, (type(None), np.random.RandomState)): raise TypeError('UQpy: random_state must be None, an int or an np.random.RandomState object.') self.verbose = verbose self.nsamples = nsamples self.samples = None self.xi = None if self.nsamples is not None: self.run(nsamples=self.nsamples) def _simulate(self, xi): lam, phi = np.linalg.eig(self.correlation_function) lam = np.diag(lam) lam = lam.astype(np.float64) samples = np.dot(phi[:, :self.number_eigen_values], np.dot(sqrtm(lam[:self.number_eigen_values]), xi)) samples = np.real(samples) samples = samples.T samples = samples[:, np.newaxis] return samples def run(self, nsamples): """ Execute the random sampling in the ``KLE`` class. The ``run`` method is the function that performs random sampling in the ``KLE`` class. If `nsamples` is provided when the ``KLE`` object is defined, the ``run`` method is automatically called. The user may also call the ``run`` method directly to generate samples. The ``run`` method of the ``KLE`` class can be invoked many times and each time the generated samples are appended to the existing samples. ** Input:** * **nsamples** (`int`): Number of samples of the stochastic process to be simulated. If the ``run`` method is invoked multiple times, the newly generated samples will be appended to the existing samples. **Output/Returns:** The ``run`` method has no returns, although it creates and/or appends the `samples` attribute of the ``KLE`` class. """ if nsamples is None: raise ValueError('UQpy: Stochastic Process: Number of samples must be defined.') if not isinstance(nsamples, int): raise ValueError('UQpy: Stochastic Process: nsamples should be an integer.') if self.verbose: print('UQpy:
<reponame>amarallab/waldo # coding: utf-8 # Description: # This notebook is an attempt to implement the state behaivior model from # The Geometry of Locomotive Behavioral States in C. elegans # Gallagher et al. # ### Imports # In[2]: # standard imports import os import sys import numpy as np import scipy import scipy.interpolate as interpolate import scipy.stats as stats import pandas as pd import matplotlib.pyplot as plt import prettyplotlib as ppl # Path definitions HERE = os.path.dirname(os.path.realpath(__file__)) CODE_DIR = os.path.abspath(os.path.join(HERE, '..')) SHARED_DIR = os.path.join(CODE_DIR, 'shared') print CODE_DIR print SHARED_DIR sys.path.append(CODE_DIR) sys.path.append(SHARED_DIR) # nonstandard imports from wio.file_manager import get_timeseries, write_timeseries_file, write_metadata_file ### Functions def deskew_data(data, e=0.1): return np.arcsinh(np.array(data)/e) def reskew_data(data,e=0.1): return np.sinh(np.array(data)) * e #### Calculation Functions def markov_measures_for_xy(x, y, dt=0.1, verbose=False): """ reversal speed acceleration angular acceleration """ vs = np.zeros((2, len(x)-1)) vs[0] = np.diff(x) / dt vs[1] = np.diff(y) / dt vs = vs.T data = [] v23 = vs[0] for v in vs[1:]: v12, v23 = v23, v if np.dot(v12, v23) < 0: r = 1 d = (v12 - v23) / np.linalg.norm(v12 - v23) alpha = (v23 + v12) / dt R = [[d[0], d[1]], [-d[1], d[0]]] else: r = 0 d = (v12 + v23) / np.linalg.norm(v12 + v23) alpha = (v23 - v12) / dt R = [[-d[0], -d[1]], [-d[1], d[0]]] s = (np.linalg.norm(v12) + np.linalg.norm(v23)) / dt if s == 0: a, ar = 0, 0 else: a = np.dot(R, alpha) ar = a[1] a = np.linalg.norm(a) if verbose: print 'r={r} | s={s} | a={a} | ar={ar}'.format(r=r, s=s, a=a, ar=ar) if np.isnan(a): print 'nan' data.append((r, s, a, ar)) data = np.array(data) for i,dat in enumerate(data): if any(np.isnan(dat)): print i, dat return data # In[8]: def initialize_transition_mat(tau=10, dt=0.1, m=3): if m ==1: return np.array([1.0]) off_diag = 1.0 / ((m-1) * tau) * (np.ones((m,m)) - np.identity(m)) diag = ( - 1.0/tau) * np.identity(m) full = off_diag + diag return scipy.linalg.expm(full*dt) return full # In[9]: def estimate_params(N_states, rel_probs, observations, verbose=False): all_params = np.zeros((N_states, 7)) for i, ps in enumerate(rel_probs.T): psum = np.sum(ps) wi = ps / psum Ci = 1 / (1 - np.sum(wi ** 2)) #pr, mean_s, mean_a, var_s, var_a, var_ar, covar_as = params # reversals r, s, a, ar = observations[:, 0], observations[:, 1], observations[:, 2], observations[:, 3] pr = np.sum(r * wi) # speeds mean_s = np.sum(s * wi) var_s = Ci * (np.sum((s**2) * wi) - mean_s) # tangential acceleration mean_a = np.sum(a * wi) var_a = Ci * (np.sum((a**2) * wi) - mean_a) # radial acceleration # mean = 0 var_ar = np.sum((ar**2) * wi) # speed acceleration coovariance covar_as = Ci * (np.sum(a * s * wi) - (mean_a * mean_s)) if verbose: print i print '\tpr', pr print '\tmean s', mean_s print '\tmean_a', mean_a print '\tvar s', var_s print '\tvar a', var_a print '\tvar ar', var_ar print '\tcovar as', covar_as #for dtype, xi in zip(['r', 's', 'a', 'ar'], observations.T): # print dtype, all_params[i, :] = pr, mean_s, mean_a, var_s, var_a, var_ar, covar_as return all_params # In[11]: def probablity_of_observation(params, observation): ''' params = [pr, mean_s, mean_a, var_s, var_a, var_ar, covar_as] state = [r, s, a, ar] ''' mean_ar = 0 # this is a constant # unpack pr, mean_s, mean_a, var_s, var_a, var_ar, covar_as = list(params) r, s, a, ar = list(observation) # set up reversal probablity if r: Pr = pr else: Pr = 1 - pr # set up all other probabilities x = np.array([[s - mean_s], [a - mean_a], [ar - mean_ar]]) E = np.array([[var_s, covar_as, 0], [covar_as, var_a, 0], [0, 0, var_ar]]) # calculate all parts of main probability equation A = Pr B = 4 / ((np.pi ** 2) * np.sqrt(np.linalg.det(E))) C = (1 / (1 + np.dot(np.dot(x.T, np.linalg.inv(E)), x))) **3 #print A #print B #print C P = A * B * float(C) return P def calculate_state_probabilities_no_memory(N_states, params, observations): probs = np.zeros((len(observations), N_states)) for i, par in enumerate(params): probs[:, i] = [probablity_of_observation(par, obs) for obs in observations] return probs # In[15]: def baum_welch(probs, T, initial=None): N_obs, N_states = probs.shape assert (N_states, N_states) == T.shape, 'rel_probs and Transition matrix do not have matching numbers of states' print N_states ** 2, 'transitions' all_transition_points = np.ones(shape=(N_obs-1, N_states**2)) if initial == None: initial = (1.0 / N_states) * np.ones(N_states) p = probs[1, :] for i, p_new in enumerate(probs[1:,:]): p, p_old = p_new, p # step forward if p_old == None: # skip first value. continue current = np.array(T) * p current = (current.T * p_old * initial).T all_transition_points[i,:] = current.flatten() highest_prob = np.amax(all_transition_points, axis=1).sum() new_T = (all_transition_points.sum(axis=0) / highest_prob).reshape((N_states, N_states)) row_sums = new_T.sum(axis=1) new_T = new_T / row_sums[:, np.newaxis] return new_T def test_baum_welch(): # data and solution T = np.array([[0.5, 0.5], [0.3, 0.7]]) p = np.array([[.3, .8], [.3, .8], [.3, .8], [.3, .8], [.3, .8], [.7, .2], [.7, .2], [.3, .8], [.3, .8], [.3, .8]]) initial = np.array([0.2, 0.8]) solution_T = np.array([[0.39726027, 0.60273973], [ 0.18333333, 0.81666667]]) T2 = baum_welch(p, T, initial) print 'solution' print solution_T print 'T' print T2 print 'difference' print solution_T - T2 # TODO: Get baum_welch alogrithm working for re-estimating the transition matrix for real data ''' print states print params.shape print observations.shape probs = calculate_state_probabilities_no_memory(states, params, observations) print probs.shape print baum_welch(probs, T) ''' # In[12]: def forward_backward(N_states, probs, trans_mat, start_probs, end_probs): def forward(N_states, probs, trans_mat, start_probs): last_p = start_probs forward_p = np.zeros(probs.shape) for i, p in enumerate(probs[:]): p = p * np.identity(N_states) new_p = np.dot(np.dot(p, trans_mat), last_p) new_p = new_p / sum(new_p) # normalize forward_p[i] = new_p last_p = new_p return forward_p def backward(N_states, probs, trans_mat, end_probs): probs = probs[::-1,:] # reverse row order backward_p = np.zeros(probs.shape) last_p = end_probs for i, p in enumerate(probs[:]): p = p * np.identity(N_states) new_p = np.dot(np.dot(trans_mat, p), last_p) # reverse trans and p from forward algorithm new_p = new_p / sum(new_p) # normalize backward_p[i] = new_p last_p = new_p # if 6970 < i < 6980: # print i, p # print i, last_p # print i, new_p backward_p = backward_p[::-1,:] return backward_p f = forward(N_states, probs, trans_mat, start_probs) b = backward(N_states, probs, trans_mat, end_probs) posterior = f * b # normalize posterior for i, p in enumerate(posterior): posterior[i] = p / sum(p) return posterior # In[56]: def closed_loop_fit(params, observations, T, start_probs, end_probs, max_iterations=1, sim_threshold=0.1): N_states, _ = T.shape history = [] for it in range(max_iterations): #print 'itteration ', it # calculate probailities each observation # comes from each state completely independent of one another probs = calculate_state_probabilities_no_memory(N_states, params, observations) # use forward backward algorithm to calculate relative probailities # of each point being in each state with transition pentality rel_probs = forward_backward(N_states, probs, T, start_probs, end_probs) # recalculate what the parameters should be, given the current split of the data. params = estimate_params(N_states, rel_probs, observations, verbose=False) # TODO! Turn into weighted average... rather than just standard # if len(states) > 1: # for i in range(3,7): # params[:,i] = np.mean(params[:,i]) weights = rel_probs[:, :].sum(axis=0) / rel_probs.sum() for i in range(3,7): params[:,i] = np.average(params[:,i], weights=weights) if it >= 1: diff = history[-1] - params if diff.sum().sum() <= 0.1: break history.append(params) print it, 'itterations' # estimate params one final time with variances unconstrained. params = estimate_params(N_states, rel_probs, observations, verbose=False) history.append(params) # run baum-welch to estimate T now that we have decent state params. probs = calculate_state_probabilities_no_memory(N_states, params, observations) T = baum_welch(probs, T) return params, T, rel_probs, history # TODO: This is still nonfunctional. def add_parameter_row(params, step=0.5): N = 2 if not isinstance(params, np.ndarray) or not params.shape[1]: params = np.ones((1,7)) * params print params p = np.zeros((N, 7)) for i in range(params.shape[1]): print p[i, :].shape, params[i: 0].shape p[i, :] = params[i: 0] p[-1, :] = params[-1, :] p[-1, 1] += step return p def excess_entropy(rel_probs): N, M = rel_probs.shape A = sum([(rel_probs[:,i] * np.log2(rel_probs[:,i])).sum() for i in range(M)]) / N pi = rel_probs.sum(axis=0) / N B = (pi * np.log2(pi)).sum() return A - B def fit_one_state(observations): N_states = 1 T = initialize_transition_mat(tau=1, dt=0.1, m=N_states) rel_probs = np.ones((len(observations), 1), dtype=float) params = estimate_params(N_states, rel_probs, observations, verbose=False) history = [] return params, T, rel_probs, history def fit_two_states(params1, observations, tau, dt=0.1): N_states = 2 p = np.zeros((N_states, 7)) p[0, :] = p[1, :] =params1
<gh_stars>1-10 #!/usr/bin/env python3 import sys import os import getopt import shutil import json import urllib.request import hashlib import tarfile import re exe_name = 'docker-bundle' project_name = 'Docker-bundle' bundle_install_dir = 'docker' bundles_dir = 'bundles' version_code = '0.1.0' version_number = 1 # ------------------------------------------------------------------------ config_path = os.path.expanduser(os.path.join('~', '.' + exe_name)) file_source_list = 'sources.list' file_config = 'config.json' source_list_file_path = os.path.join(config_path, file_source_list) config_file_path = os.path.join(config_path, file_config) packages_dir = 'packages' default_source = 'https://docker-bundle.github.io/bundles.json' upgrade_info_url = 'https://docker-bundle.github.io/update.json' config = { # <version_number>: skip a version update # 'all': don't update 'skip_version_number': '', 'upgrade_info_url': upgrade_info_url, } def write_config(config): f = open(config_file_path, 'w') f.write(json.dumps(config, indent=2)) f.flush() f.close() def init_config_file(): try: os.makedirs(config_path) except BaseException: pass try: if not os.path.isfile(source_list_file_path): sources_list = open(source_list_file_path, 'w') sources_list.write(default_source) sources_list.flush() sources_list.close() except BaseException: print('[WARNING] Load sources list failed.') try: if not os.path.isfile(config_file_path): write_config(config) else: config.update(json.loads(open(config_file_path).read())) except BaseException: print('[WARNING] Load config file failed.') # ------------------------------------------------------------------------ def upgrade(user_call_update=False, update_with_ask=True): skip_version_number = config['skip_version_number'] if not user_call_update and skip_version_number.lower() == 'all': return update_info = { # must have 'url': '', 'hash': '', 'version_code': version_code, 'version_number': version_number, # option # ask: ask for update # silent: silent update 'mode': 'normal', } try: update_info.update( json.loads( urllib.request.urlopen( config['upgrade_info_url']).read())) except BaseException: return update_url = update_info['url'] update_hash = update_info['hash'] update_version_code = update_info['version_code'] update_version_number = update_info['version_number'] update_mode = update_info['mode'].lower() if '' == update_url or '' == update_hash or '' == update_version_code: return if int(update_version_number) <= version_number: if user_call_update: print('-' * 80) print(' %s is newest version.' % exe_name) print('-' * 80) return is_ask_for_upgrade = update_mode == 'ask' is_silent_upgrade = update_mode == 'silent' if not user_call_update and not is_silent_upgrade\ and not is_ask_for_upgrade\ and skip_version_number >= str(update_version_number): return if not is_silent_upgrade and (is_ask_for_upgrade or update_with_ask): answer = input( """-------------------------------------------------------------------------------- A newly version (%s) of %s is available. Upgrade? [Y]= Yes [N]= Not now [S]= Skip this version [D]= Disable upgrade -------------------------------------------------------------------------------- Answer: [Y]: """ % (update_version_code, exe_name))[:1].upper() print() if answer == 'N': return elif answer == 'D': config['skip_version_number'] = 'all' write_config(config) return elif answer == 'S': config['skip_version_number'] = str(update_version_number) write_config(config) return try: new_exe = urllib.request.urlopen(update_url).read() if md5(new_exe) != update_hash: if user_call_update or is_ask_for_upgrade: print('[FAILED] Upgrade data hash error!') return f = open(__file__, 'wb') f.write(new_exe) f.flush() f.close() if user_call_update or is_ask_for_upgrade: print('=' * 80) print( ' %s (%s) is up to date in your next command.' % (project_name, update_version_code)) print('=' * 80) except BaseException: if user_call_update or is_ask_for_upgrade: print('[FAILED] upgrade:', sys.exc_info()[1]) return # ------------------------------------------------------------------------ is_installed = False # import bundle.py def load_sub_bundle(): current_path = os.getcwd() paths = [] while True: paths.append(os.path.join(current_path, bundle_install_dir)) parent_path = os.path.dirname(current_path) if parent_path == current_path: break current_path = parent_path bak_path = sys.path sys.path = paths + sys.path bundles = {} try: import bundle except ImportError: pass else: os.chdir(os.path.dirname(bundle.__file__)) bundles.update(bundle.load_bundles()) global is_installed is_installed = True sys.path = bak_path return bundles # import from '__file__/bundles_dir' def load_bundles(bundle_dir_path=os.path.join(os.path.dirname(__file__), bundles_dir)): bundles = {} try: bundle_names = list(map( lambda x: x[0:-3], filter(lambda x: x[-3:] == '.py', os.listdir(bundle_dir_path)))) except BaseException: bundle_names = [] if len(bundle_names) > 0: sys.path.insert(0, bundle_dir_path) for bundle in bundle_names: module = __import__(bundle) if 'actions' in dir(module): bundles.update(module.actions) return bundles BUNDLE_INSTALLED = '__bundle_installed__' BUNDLE_MESSAGE = '__bundle_message__' _bundle_handler = {} def handle_actions(actions): global _bundle_handler if BUNDLE_INSTALLED in actions: _bundle_handler[BUNDLE_INSTALLED] = actions[BUNDLE_INSTALLED] del actions[BUNDLE_INSTALLED] if BUNDLE_MESSAGE in actions: _bundle_handler[BUNDLE_MESSAGE] = actions[BUNDLE_MESSAGE] del actions[BUNDLE_MESSAGE] return actions def bundle_message(actions): if BUNDLE_MESSAGE in _bundle_handler and _bundle_handler[BUNDLE_MESSAGE](actions): return print('Bundle Commands:') for name, action in actions.items(): print(" %-30s%s" % (name, action.get('desc', ''))) print() # ------------------------------------------------------------------------ def load_source(): return set(filter(lambda x: x != '', map( lambda x: x.strip(), open(source_list_file_path).readlines()))) def write_source(sources): f = open(source_list_file_path, 'w') for source in sources: f.write(source + '\n') f.flush() f.close() def load_packages(sources=[]): try: sources += load_source() except BaseException: pass if len(sources) == 0: sources = [default_source] packages = {} for source in sources: try: packages.update(json.loads(urllib.request.urlopen(source).read())) except BaseException: pass return packages # ------------------------------------------------------------------------ # install def md5(data): if isinstance(data, str): data = data.encode() return hashlib.md5(data).hexdigest() def install_from_dir(package_path, target_path): try: shutil.copytree( package_path, target_path, ignore=shutil.ignore_patterns('.git')) return True except BaseException: print( '[ERROR] Install from dir \'%s\' failed, %s.' % package_path, sys.exc_info()[1]) return None def install_from_tarfile(package_path, target_path): try: t = tarfile.open(package_path, "r:gz") t.extractall(target_path) return True except BaseException: print('[ERROR] Package illegal.') return None def install_from_url(package_name, package_path, target_path): file_name = package_name + '-' + md5(package_path) + '.bundle' download_dir = os.path.join(config_path, packages_dir) download_path = os.path.join(download_dir, file_name) try: os.makedirs(download_dir) except BaseException: pass if os.path.isfile(download_path): print('[INFO] Load from cache...') return install_from_tarfile(download_path, target_path) try: urllib.request.urlretrieve(package_path, download_path) return install_from_tarfile(download_path, target_path) except BaseException: print( '[ERROR] Download \'%s\' failed, %s.' % package_path, sys.exc_info()[1]) return None def install_from_git(package_name, package_path, target_path, branch='master'): file_name = package_name + '-' + md5(package_path) + '.bundle' download_dir = os.path.join(config_path, packages_dir) download_path = os.path.join(download_dir, file_name) success = False if os.path.isdir(download_path): if 0 == os.system( 'cd "%s" && git checkout %s && git pull -f' % (download_path, branch)): success = True else: try: shutil.rmtree(download_path) except BaseException: pass if not success and not os.path.isdir(download_path): if 0 == os.system("git clone --depth 1 \"%s\" \"%s\" -b %s" % (package_path, download_path, branch)): success = True if not success: print('[ERROR] Pull \'%s\' failed.' % package_path) return None return install_from_dir(download_path, target_path) def install_from_package(package_name, package_path, target_path): if package_path.find('http://') == 0 or package_path.find('https://') == 0: return install_from_url(package_name, package_path, target_path) elif os.path.isdir(package_path): return install_from_dir(package_path, target_path) elif os.path.isfile(package_path): return install_from_tarfile(package_path, target_path) else: print( '[ERROR] Can\'t find package \'%s\' in \'%s\'' % (package_name, package_path)) return None def install(argv=[]): def install_help(): print( """ Usage: %(name)s install [option] <bundle-name> Options: -p, --package Install bundle from package or dir, not from source. -s, --source <source> Find bundle from given source. Description: <bundle-name> Run '%(name)s search <your bundle>' get bundle-names, or in '-p' for package path. """ % {'name': exe_name}) opts, args = getopt.getopt(argv, 'ps:', ['package', 'source=']) if len(args) == 0: install_help() return target_path = os.path.join(os.getcwd(), bundle_install_dir) if is_installed or os.path.isdir(target_path): print( ' %(project_name)s already installed, if want reinstall, manully delete \'docker\' folder first.' % { 'project_name': project_name}) return bundle_name = args[0] use_sources = [] from_package = False for opt in opts: if opt[0] == '-p' or opt[0] == '--package': from_package = True elif opt[0] == '-s' or opt[0] == '--source': use_sources.append(opt[1]) result = None if from_package: result = install_from_package(bundle_name, bundle_name, target_path) else: print('[INFO] Fetching source list...') upgrade() packages = load_packages(use_sources) if bundle_name not in packages: print("[ERROR] Bundle '%s' not found." % (bundle_name)) return print('[INFO] Bundle: ' + bundle_name) package_info = packages[bundle_name] package_type = package_info.get('type') package_url = package_info.get('url') print('[INFO] Package: ' + package_url) if package_type == 'git': result = install_from_git( bundle_name, package_url, target_path, package_info.get( 'branch', 'master')) elif not package_type: result = install_from_package( bundle_name, package_url, target_path) if not result: print('[ERROR] Install bundle failed..') return # copy self to target self_path = os.path.join(os.path.realpath(__file__)) shutil.copyfile(self_path, os.path.join(target_path, 'bundle.py')) os.chdir(target_path) print('[OK] Install bundle success.') loaded_actions = handle_actions(load_bundles(os.path.join(target_path, bundles_dir))) if BUNDLE_INSTALLED in _bundle_handler and _bundle_handler[BUNDLE_INSTALLED](loaded_actions): return bundle_message(loaded_actions) # ------------------------------------------------------------------------ # search def search(argv=[]): def search_help(): print( """ Usage: %(name)s search <keyword> Options: -n, --name Search in bundle-name only, not description -r, --regex Keyword use Regex -s, --source <source> Find bundle from given source. -h, --help Show this. """ % {'name': exe_name}) opts, args = getopt.getopt( argv, 'nrs:h', [ 'name', 'regex', 'source=', 'help']) if len(args) == 0: search_help() return keyword = args[0] use_sources = [] name_only = False use_regex = False for opt in opts: if opt[0] == '-n' or opt[0] == '--name': name_only = True elif opt[0] == '-r' or opt[0] == '--regex': use_regex = True elif opt[0] == '-s' or opt[0] == '--source': use_sources.append(opt[1]) elif opt[0] == '-h' or opt[0] == '--help': search_help() exit() upgrade() packages = load_packages(use_sources) if use_regex: re_keyword = re.compile(keyword) def check(content): if use_regex: return re_keyword.search(content) is not None else: return content.find(keyword) >= 0 print("%-40s%s" % ('NAME', 'Description')) for name, info in packages.items(): desc = '' if 'desc' in info: desc = info.get('desc', '') if check(name) or not name_only and check(desc): print("%-40s%s" % (name, desc)) # ------------------------------------------------------------------------ # source def source(argv=[]): def source_help(): print( """ Usage: %(name)s source [OPTIONS] Options: -a, --add <source> Add Source -r, --remove <source> Remove Source -l, --list List sources. -h, --help Show this. """ % {'name': exe_name}) opts, args = getopt.getopt( argv, 'a:r:lh', [ 'add=', 'remove=', 'list', 'help']) if len(opts) == 0: source_help() return sources = load_source() modify = False for opt in opts: if opt[0] == '-l' or opt[0] == '--list': for source in sources: print(source) elif opt[0] == '-h' or opt[0] == '--help': source_help() exit() elif opt[0] == '-a' or opt[0] == '--add': modify = True
<filename>omnitool/tlib.py """Low level interface to Terraria data""" from struct import unpack, pack, Struct import sys from .database import items, rev_items, multitiles is_exe = hasattr(sys, "frozen") ### Parser for .wld data types ### def decode7bit(bytes): lbytes = list(bytes) value = 0 shift = 0 while True: byteval = lbytes.pop(0) if (byteval & 128) == 0: break value |= ((byteval & 0x7F) << shift) shift += 7 return (value | (byteval << shift)) def encode7bit(value): temp = value bytes = "" while temp >= 128: bytes += chr(0x000000FF & (temp | 0x80)) temp >>= 7 bytes += chr(temp) return bytes def get_long_string(f): namelen = decode7bit(f.read(2)) # int(unpack("<B", f.read(1))[0]) if namelen < 127: f.seek(-1, 1) name = unpack("<" + str(namelen) + "s", f.read(namelen))[0].decode() return name formats = ( # ("word" , "<H", 2), ("byte", "<B", 1), ("short", "<h", 2), ("ushort", "<H", 2), ("int", "<I", 4), ("uint", "<i", 4), ("long", "<Q", 8), ("double", "<d", 8), ("float", "<f", 4), ) def get_short(f, num=1): if num == 1: return unpack("<h", f.read(2))[0] return unpack("<" + "h" * num, f.read(2 * num)) def get_ushort(f, num=1): if num == 1: return unpack("<H", f.read(2))[0] return unpack("<" + "H" * num, f.read(2 * num)) def get_uint(f, num=1): if num == 1: return unpack("<I", f.read(4))[0] return unpack("<" + "I" * num, f.read(num * 4)) def get_int(f, num=1): if num == 1: return unpack("<i", f.read(4))[0] return unpack("<" + "i" * num, f.read(num * 4)) def get_long(f, num=1): if num == 1: return unpack("<Q", f.read(8))[0] return unpack("<" + "Q" * num, f.read(num * 8)) def get_byte(f, num=1): if num == 1: return unpack("<B", f.read(1))[0] return unpack("<" + "B" * num, f.read(num)) def get_double(f, num=1): if num == 1: return unpack("<d", f.read(8))[0] return unpack("<" + "d" * num, f.read(num * 8)) def get_float(f, num=1): if num == 1: return unpack("<f", f.read(4))[0] return unpack("<" + "f" * num, f.read(num * 4)) def set_uint(data): return pack("<I", data) def set_int(data): return pack("<i", data) def set_ushort(data): return pack("<H", data) #def set_word(data): # return pack("<H", data) def set_byte(data): return pack("<B", data) def get_string(f): namelen = int(unpack("<B", f.read(1))[0]) return unpack("<" + str(namelen) + "s", f.read(namelen))[0] #.decode() def set_string(data): if len(data) > 126: return encode7bit(len(data)) + pack("<" + str(len(data)) + "s", str.encode(data)) #return encode7bit(len(data))+pack("<"+len(data)*"s",*data) else: return pack("<B", len(data)) + pack("<" + str(len(data)) + "s", str.encode(data)) #return pack("<B", len(data))+pack("<"+len(data)*"s",*data) def set_double(data): return pack("<d", data) def set_float(data): return pack("<f", data) for name, form, l in formats: s = Struct(form) def make_local(s, l): def generic(f): return s.unpack(f.read(l))[0] return generic globals()["get_g%s" % name] = make_local(s, l) ### Parser end ### ### content parser for .wld structures ### def get_item(f): amount = get_gbyte(f) if amount: return amount, items[get_int(f)], get_gbyte(f) else: return 0, None def set_items(f, items): for item in items: f.write(set_byte(item[0])) #amount if item[0]: f.write(set_int(rev_items[item[1]])) #itemid if len(item) > 2: f.write(set_byte(item[2])) #prefix else: f.write(zero) def set_items_id(f, items): for item in items: f.write(set_byte(item[0])) #amount if item[0]: f.write(set_uint(item[1])) #itemid if len(item) > 2: f.write(set_byte(item[2])) #prefix else: f.write(zero) def set_items_uni(f, items): for item in items: f.write(set_byte(item[0])) if item[0]: f.write(set_string(str(item[1]))) f.write(set_byte(item[2])) def get_chest(f): if get_gbyte(f): #if exists return get_uint(f, 2), [get_item(f) for x in range(20)] # return none if no chest exists # otherwise return (pos, [(amount, name), (amount, name) ....] def set_chests(f, chests): for chest in chests: if chest == None: f.write(zero) else: f.write(one) f.write(set_uint(chest[0][0]) + set_uint(chest[0][1])) set_items(f, chest[1]) def get_npc_names(f): return [get_string(f) for x in range(10)] def set_npc_names(f, names): [f.write(set_string(name)) for name in names] def set_chests_uni(f, chests): for chest in chests: if chest == None: f.write(zero) else: f.write(one) f.write(set_uint(chest[0][0]) + set_uint(chest[0][1])) set_items_uni(f, chest[1]) def get_sign(f): if get_gbyte(f): return get_long_string(f), get_uint(f, 2) def set_sign(f, sign): if sign != None: f.write(one + set_string(sign[0]) + set_uint(sign[1][0]) + set_uint(sign[1][1])) else: f.write(zero) def set_signs(f, signs): [set_sign(f, sign) for sign in signs] def get_npc(f): #get_byte(f) if get_gbyte(f): return get_string(f), get_float(f, 2), get_gbyte(f), get_uint(f, 2) #return none if no npc exists #otherwise return (name, (current_x, current_y), homeless, (home_X, home_Y)) def get_trail(f): return (get_gbyte(f), get_string(f), get_gint(f)) #(1,name,ID) def set_trail(f, trail): f.write(set_byte(trail[0]) + set_string(trail[1]) + set_uint(trail[2])) def set_npc(f, npc): if npc != None: f.write( one + set_string(str(npc[0])) + set_float(npc[1][0]) + set_float(npc[1][1]) + set_byte(npc[2]) + set_uint( npc[3][0]) + set_uint(npc[3][1])) else: f.write(zero) def get_name(f): header = get_header(f)[0] return header["name"].decode() def get_header(f): """ returns a dict of header data""" sectiondata = None version = get_gint(f) if version >= 87: if version > 140: if get_long(f) != 172097103742133618: raise Exception("Invalid world header. (Typecheck number mismatch)") rev = get_uint(f) get_long(f) #get sections sectiondata = {"sections" : get_uint(f, get_gshort(f)), "tiletypes" : get_gshort(f)} multitiles_ = set() mask = 0x80 for x in range(sectiondata["tiletypes"]): if mask == 0x80: flags = get_gbyte(f) mask = 0x01 else: mask <<=1 if flags & mask == mask: multitiles_.add(x) if f.tell() != sectiondata["sections"][0]: print("Warning: SectionHeader for world", self.header["name"].decode(), "of different size than expected, errors may occur.") else: multitiles_ = multitiles if version <= 36: d = {"name": get_string(f), "ID": get_gint(f), "worldrect": get_uint(f, 4), "height": get_gint(f), "width": get_gint(f), "spawn": get_uint(f, 2), "groundlevel": get_gdouble(f), "rocklevel": get_gdouble(f), "time": get_gdouble(f), "is_day": get_gbyte(f), "moonphase": get_gint(f), "is_bloodmoon": get_gbyte(f), "dungeon_xy": get_uint(f, 2), "bosses_slain": get_byte(f, 3), "npcs_saved": get_byte(f, 3), "special_slain": get_byte(f, 2), "is_a_shadow_orb_broken": get_gbyte(f), "is_meteor_spawned": get_gbyte(f), "shadow_orbs_broken": get_gbyte(f), "altars_broken": get_gint(f), "hardmode": get_gbyte(f), "gob_inv_time": get_gint(f), "gob_inv_size": get_gint(f), "gob_inv_type": get_gint(f), "gob_inv_x": get_gdouble(f)} elif version < 68: d = {"name": get_string(f), "ID": get_gint(f), "worldrect": get_uint(f, 4), "height": get_gint(f), "width": get_gint(f), "spawn": get_uint(f, 2), "groundlevel": get_gdouble(f), "rocklevel": get_gdouble(f), "time": get_gdouble(f), "is_day": get_gbyte(f), "moonphase": get_gint(f), "is_bloodmoon": get_gbyte(f), "dungeon_xy": get_uint(f, 2), "bosses_slain": get_byte(f, 3), "npcs_saved": get_byte(f, 3), "special_slain": get_byte(f, 3), "is_a_shadow_orb_broken": get_gbyte(f), "is_meteor_spawned": get_gbyte(f), "shadow_orbs_broken": get_gbyte(f), "altars_broken": get_gint(f), "hardmode": get_gbyte(f), "gob_inv_time": get_gint(f), "gob_inv_size": get_gint(f), "gob_inv_type": get_gint(f), "gob_inv_x": get_gdouble(f)} elif version < 71: d = {"name": get_string(f), "ID": get_gint(f), "worldrect": get_uint(f, 4), "height": get_gint(f), "width": get_gint(f), "moontype": get_byte(f), "treedata": get_uint(f, 7), "cavedata": get_uint(f, 10), "spawn": get_uint(f, 2), "groundlevel": get_gdouble(f), "rocklevel": get_gdouble(f), "time": get_gdouble(f), "is_day": get_gbyte(f), "moonphase": get_gint(f), "is_bloodmoon": get_gbyte(f), "dungeon_xy": get_uint(f, 2), "is_crimson": get_gbyte(f), "bosses_slain": get_byte(f, 10), "npcs_saved": get_byte(f, 3), "special_slain": get_byte(f, 4), "is_a_shadow_orb_broken": get_gbyte(f), "is_meteor_spawned": get_gbyte(f), "shadow_orbs_broken": get_gbyte(f), "altars_broken": get_gint(f), "hardmode": get_gbyte(f), "gob_inv_time": get_gint(f), "gob_inv_size": get_gint(f), "gob_inv_type": get_gint(f), "gob_inv_x": get_gdouble(f), "raining": get_gbyte(f), "raintime": get_gint(f), "maxrain": get_float(f), "oretiers": get_int(f, 3), "background_styles": get_byte(f, 8), "clouds": get_uint(f), "cloudcount": get_gushort(f), "windspeed": get_float(f), } elif version < 80: d = {"name": get_string(f), "ID": get_gint(f), "worldrect": get_uint(f, 4), "height": get_gint(f), "width": get_gint(f), "moontype": get_byte(f), "treedata": get_uint(f, 7), "cavedata": get_uint(f, 10), "spawn": get_uint(f, 2), "groundlevel": get_gdouble(f), "rocklevel": get_gdouble(f), "time": get_gdouble(f), "is_day": get_gbyte(f), "moonphase": get_gint(f), "is_bloodmoon": get_gbyte(f), "is_eclipse": get_gbyte(f), "dungeon_xy": get_uint(f, 2), "is_crimson": get_gbyte(f), "bosses_slain": get_byte(f, 10), "npcs_saved": get_byte(f, 3), "special_slain": get_byte(f, 4), "is_a_shadow_orb_broken": get_gbyte(f), "is_meteor_spawned": get_gbyte(f), "shadow_orbs_broken": get_gbyte(f), "altars_broken": get_gint(f), "hardmode": get_gbyte(f), "gob_inv_time": get_gint(f), "gob_inv_size": get_gint(f), "gob_inv_type": get_gint(f), "gob_inv_x": get_gdouble(f), "raining": get_gbyte(f), "raintime": get_gint(f), "maxrain": get_float(f), "oretiers": get_int(f, 3), "background_styles": get_byte(f, 8), "clouds": get_uint(f), "cloudcount": get_gushort(f), "windspeed": get_float(f), } elif version < 103:# version 102+ d = {"name": get_string(f), "ID": get_gint(f), "worldrect": get_uint(f, 4), "height": get_gint(f), "width": get_gint(f), "moontype": get_byte(f), "treedata": get_uint(f, 7), "cavedata": get_uint(f, 10), "spawn": get_uint(f, 2), "groundlevel": get_gdouble(f), "rocklevel": get_gdouble(f), "time": get_gdouble(f), "is_day": get_gbyte(f), "moonphase": get_gint(f), "is_bloodmoon": get_gbyte(f), "is_eclipse": get_gbyte(f), "dungeon_xy": get_uint(f, 2), "is_crimson": get_gbyte(f), "bosses_slain": get_byte(f, 10), "npcs_saved": get_byte(f, 3), "special_slain": get_byte(f, 4), "is_a_shadow_orb_broken": get_gbyte(f), "is_meteor_spawned": get_gbyte(f), "shadow_orbs_broken": get_gbyte(f), "altars_broken": get_gint(f), "hardmode": get_gbyte(f), "gob_inv_time": get_gint(f), "gob_inv_size": get_gint(f), "gob_inv_type": get_gint(f), "gob_inv_x": get_gdouble(f), "raining": get_gbyte(f), "raintime": get_gint(f), "maxrain": get_float(f), "oretiers": get_int(f, 3), "background_styles": get_byte(f, 8), "clouds": get_uint(f), "cloudcount": get_gushort(f), "windspeed": get_float(f), "anglerstrings" : [get_string(f) for _ in range(get_gint(f))], "angler_saved" : get_gbyte(f), "angler_quest" : get_gint(f) } elif version < 148:#version 147 d = {"name": get_string(f), "ID": get_gint(f), "worldrect": get_uint(f, 4), "height": get_gint(f), "width": get_gint(f), "expert" : get_gbyte(f), "creationtime" : get_glong(f), "moontype": get_gbyte(f), "treedata": get_uint(f, 7), "cavedata": get_uint(f, 10), "spawn": get_uint(f, 2), "groundlevel": get_gdouble(f), "rocklevel": get_gdouble(f), "time": get_gdouble(f), "is_day": get_gbyte(f), "moonphase": get_gint(f), "is_bloodmoon": get_gbyte(f), "is_eclipse": get_gbyte(f), "dungeon_xy": get_uint(f, 2), "is_crimson": get_gbyte(f), "bosses_slain": get_byte(f, 11), "npcs_saved": get_byte(f, 3), "special_slain": get_byte(f, 4), "is_a_shadow_orb_broken": get_gbyte(f), "is_meteor_spawned": get_gbyte(f), "shadow_orbs_broken": get_gbyte(f), "altars_broken": get_gint(f), "hardmode": get_gbyte(f), "gob_inv_time": get_gint(f), "gob_inv_size": get_gint(f), "gob_inv_type": get_gint(f), "gob_inv_x": get_gdouble(f), "slime_rain_time" : get_gdouble(f), "sundial_cooldown" : get_gbyte(f), "raining": get_gbyte(f), "raintime": get_gint(f), "maxrain": get_float(f), "oretiers": get_int(f, 3), "background_styles": get_byte(f, 8), "clouds": get_uint(f), "cloudcount": get_gushort(f), "windspeed": get_float(f), "anglerstrings" : [get_string(f) for _ in range(get_gint(f))], "angler_saved" : get_gbyte(f), "angler_quest" : get_gint(f), "saved_stylist" : get_gbyte(f), "saved_collector" : get_gbyte(f), "invasionsize" : get_gint(f), "cultist_delay" : get_gint(f), "mobkills" : get_uint(f, get_ushort(f)),
""" Functions for creating a graph from a skeletonized image (produce_graph) and for simplifying graphs in various ways. Graphs are NetworkX graphs where nodes are points, represented as (x,y) pairs. Some vocabulary: A juncture is a node with less than 2 or more than 2 edges. A bridge is a node with exactly 2 edges. A clump is a set of junctures that are all close to each other. A path is a list of nodes, each one connects to the next. """ import networkx as nx import itertools import math import numpy as np import infrastructure.helper as helper def pairwise(iterable): """s -> (s0,s1), (s1,s2), (s2, s3), ... via https://docs.trans-module imports.org/2/library/itertools.html """ a, b = itertools.tee(iterable) next(b, None) return itertools.izip(a, b) def neighbor_coords((x,y), (width,height)): """Returns up to 8 pixel neighbor coordinates of (x,y).""" neighbors = [] for i in [-1, 0, 1]: for j in [-1, 0, 1]: if i == 0 and j == 0: continue neighbor_x = x + i neighbor_y = y + j if 0 < neighbor_x < width and 0 < neighbor_y < height: neighbors.append((neighbor_x, neighbor_y)) return neighbors def quadrance((x1,y1), (x2,y2)): """Returns distance-squared between two points.""" dx = x2 - x1 dy = y2 - y1 return dx*dx + dy*dy def distance(p1, p2): return math.sqrt(quadrance(p1, p2)) def point_line_distance(point, start, end): if (start == end): return distance(point, start) else: n = abs( (end[0] - start[0]) * (start[1] - point[1]) - (start[0] - point[0]) * (end[1] - start[1]) ) d = math.sqrt( (end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2 ) return n / d def rdp(points, epsilon): """Reduces a series of points to a simplified version that loses detail, but maintains the general shape of the series. The Ramer-Douglas-Peucker algorithm roughly ported from the pseudo-code provided by http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm via https://github.com/sebleier/RDP/ """ dmax = 0.0 index = 0 for i in range(1, len(points) - 1): d = point_line_distance(points[i], points[0], points[-1]) if d > dmax: index = i dmax = d if dmax >= epsilon: results = rdp(points[:index+1], epsilon)[:-1] + \ rdp(points[index:], epsilon) else: results = [points[0], points[-1]] return results def produce_graph(skeleton_img, hsv_image = None): """Takes in a skeletonized image (with foreground as 255 and background as 0) and produces a graph of appropriately connected pixel locations. """ graph = nx.Graph() (rows, cols) = skeleton_img.shape for y in xrange(rows): for x in xrange(cols): pixel = skeleton_img.item(y, x) if pixel == 255: point = (x, y) attribute_dict = None if hsv_image is not None: hsv_pixel = tuple( hsv_image[y][x] ) color = helper.Colors.get_color_compartment(hsv_pixel) attribute_dict = {'color': color} graph.add_node(point, attribute_dict) for neighbor in neighbor_coords(point, (cols, rows)): neighbor_pixel = skeleton_img.item(neighbor[1], neighbor[0]) if neighbor_pixel == 255: graph.add_edge(point, neighbor) return graph def find_junctures(graph): return find_nodes_with_degree(graph, lambda degree: degree != 2) def find_termination_junctures(graph): return find_nodes_with_degree(graph, lambda degree: degree == 1) def find_nodes_with_degree(graph, filter_function): junctures = [] for node in nx.nodes_iter(graph): degree = nx.degree(graph, node) if filter_function(degree): junctures.append(node) return junctures def find_clumps(graph, epsilon): """Returns a list of "clumps". Each clump is a set of junctures which are within epsilon of each other.""" max_quadrance = epsilon * epsilon junctures = find_junctures(graph) clump_graph = nx.Graph() for juncture in junctures: clump_graph.add_node(juncture) for (i, j) in itertools.combinations(junctures, 2): if quadrance(i, j) < max_quadrance: clump_graph.add_edge(i, j) return nx.connected_components(clump_graph) def get_path_color(graph, path): color_occurrence = {} for node in path: if 'color' in graph.node[node]: color = graph.node[node]['color'] if color not in color_occurrence: color_occurrence[color] = 1 else: color_occurrence[color] += 1 if len(color_occurrence) == 0: return helper.Colors.Black return max(color_occurrence) def find_same_length_constraints(graph): # find_paths from t-junctions! termination_junctures = find_termination_junctures(graph) paths_from_t_junctures = find_paths_from_junctures(graph, termination_junctures) constraint_junctions = [] for (p1, p2) in itertools.combinations(paths_from_t_junctures, 2): last_node_p1 = p1[len(p1)-1] last_node_p2 = p2[len(p2)-1] path_end_degree = nx.degree(graph, last_node_p1) color_p1 = get_path_color(graph, p1) color_p2 = get_path_color(graph, p2) if last_node_p1 == last_node_p2 and color_p1 == color_p2 and path_end_degree == 4: print "found same length constraint!" constraint_junctions.append(last_node_p1) graph.node[last_node_p1]["constraint"] = "same_length" mygraph = nx.Graph() for path in paths_from_t_junctures: path_color = get_path_color(graph, path) start = path[0] end = path[len(path)-1] mygraph.add_node(start, {'color': path_color}) mygraph.add_node(end, {'color': path_color}) mygraph.add_edge(start, end, {'color': path_color}) if path_color != helper.Colors.Black: for i in range(len(path)): # do not delete path end juncture if it implements a constraint node = path[i] if i != len(path)-1 and "constraint" not in graph.node[node]: graph.remove_node(node) else: print "left constraint juncture in place" return mygraph, constraint_junctions def simplify_junctures(graph, epsilon=5): """Simplifies clumps by replacing them with a single juncture node. For each clump, any nodes within epsilon of the clump are deleted. Remaining nodes are connected back to the simplified junctures appropriately.""" graph = graph.copy() max_quadrance = epsilon * epsilon clumps = find_clumps(graph, epsilon) for clump in clumps: to_delete = set([]) for node in graph.nodes_iter(): for juncture in clump: if quadrance(node, juncture) < max_quadrance: to_delete.add(node) to_join = set([]) for node in to_delete: for neighbor in nx.all_neighbors(graph, node): if not (neighbor in to_delete): to_join.add(neighbor) clump_center = (0, 0) for juncture in clump: clump_center = ( clump_center[0]+juncture[0], clump_center[1]+juncture[1]) clump_center = ( clump_center[0] / len(clump), clump_center[1] / len(clump)) for node in to_delete: graph.remove_node(node) for node in to_join: graph.add_edge(node, clump_center) return graph def find_paths(graph): return find_paths_from_junctures(graph, find_junctures(graph)) def find_paths_from_junctures(graph, junctures): """Returns a list of paths between junctures. Each path is a list of nodes. The first and last node in the path is a juncture, and each intermediate node in the path is a bridge. """ # TODO: This should also find cyclical paths, that is circular paths which # are not connected to any junctures. Or perhaps there should be a # separate function for finding cyclical paths. paths = [] visited_nodes = set([]) def follow_path(path, current_node, previous_node): path.append(current_node) visited_nodes.add(current_node) if nx.degree(graph, current_node) == 2: neighbors = list(nx.all_neighbors(graph, current_node)) if neighbors[0] == previous_node: next_node = neighbors[1] else: next_node = neighbors[0] follow_path(path, next_node, current_node) for juncture in junctures: neighbors = nx.all_neighbors(graph, juncture) for neighbor in neighbors: if not (neighbor in visited_nodes): path = [juncture] follow_path(path, neighbor, juncture) paths.append(path) return paths def simplify_paths(graph, epsilon=3): """Finds all paths and simplifies them using the RDP algorithm for reducing the number of points on a curve. All remaining nodes will be within epsilon of the original curve.""" # TODO: Should also simplify cyclical paths. See find_paths. But RDP needs # endpoints. A robust way to deal with cycles might be to use the potrace # algorithm instead of RDP. # http://potrace.sourceforge.net/potrace.pdf graph = graph.copy() paths = find_paths(graph) for path in paths: simplified_path = rdp(path, epsilon) # Delete original path. edge_attributes = {"same_length_strokes": 0} for index, node in enumerate(path): if "constraint" in graph.node[node] and graph.node[node]["constraint"] == "same_length": edge_attributes["same_length_strokes"] += 1 print "added strokes", edge_attributes["same_length_strokes"] if index == 0 or index == len(path)-1: continue graph.remove_node(node) for (a, b) in pairwise(simplified_path): graph.add_edge(a, b, edge_attributes) return graph def is_horizontal((x1,y1), (x2,y2)): """Returns True if points are more horizontal to each other than vertical to each other.""" dx = abs(x2 - x1) dy = abs(y2 - y1) return dx > dy def get_bridge_ends(graph, node): """Returns the nodes on either side of a bridge (a node with 2 edges).""" neighbors = list(nx.all_neighbors(graph, node)) p1 = neighbors[0] p2 = neighbors[1] return (p1, p2) def merge_attributes(dict1, dict2): for key in dict2: if key in dict1: dict1[key] += dict2[key] else: dict1[key] = dict2[key] return dict1 def remove_bridge(graph, node): """Mutates graph. Assumes node is a bridge (has 2 edges). Removes bridge node and connects either side of the bridge to each other.""" (p1, p2) = get_bridge_ends(graph, node) # preserve constraints from old edges to new edge edge1attributes = graph.get_edge_data(p1, node) edge2attributes = graph.get_edge_data(p2, node) graph.remove_node(node) graph.add_edge(p1, p2, merge_attributes(edge1attributes, edge2attributes)) def hv_lines(graph): """Removes any nodes of two edges that are redundant assuming the graph only represents horizontal and vertical lines.""" graph = graph.copy() to_delete = set([]) for node in graph.nodes_iter(): if graph.degree(node) == 2: (p1, p2) = get_bridge_ends(graph, node) if is_horizontal(p1, node) == is_horizontal(node, p2): to_delete.add(node) for node in to_delete: remove_bridge(graph, node) return graph def straighten_lines(graph, max_angle): """Removes any nodes of two edges that form an angle less than max_angle from pi radians. """ # TODO: This could use cleanup. The formulation of max_angle is awkward. graph
color = 'r', rasterized = True) ax1.plot(t, quasars_total / norm, color = PlotScripts.colors[model_number], linestyle = PlotScripts.linestyles[0], rasterized = True, linewidth = PlotScripts.global_linewidth) p = np.where((ZZ < 15))[0] #ax1.plot(ZZ[p], quasars_total[p] / norm, color = PlotScripts.colors[model_number], linestyle = PlotScripts.linestyles[0], rasterized = True, linewidth = PlotScripts.global_linewidth) ax3.plot(t, boost_total, color = PlotScripts.colors[model_number], linestyle = PlotScripts.linestyles[0], rasterized = True, label = title, linewidth = PlotScripts.global_linewidth) w = np.where((gal_count_total > 0.0))[0] # Since we're doing a division, need to only plot those redshifts that actually have galaxies. ax5.plot(t[w], np.divide(boost_total[w], gal_count_total[w]), color = PlotScripts.colors[model_number], linestyle = PlotScripts.linestyles[1], rasterized = True, linewidth = PlotScripts.global_linewidth) ax6.plot(t[w], gal_count_total[w] / norm, color = PlotScripts.colors[model_number], linestyle = PlotScripts.linestyles[1], rasterized = True, linewidth = PlotScripts.global_linewidth) #ax6.plot(ZZ[p], gal_count_total[p] / norm, color = PlotScripts.colors[model_number], linestyle = PlotScripts.linestyles[1], rasterized = True, linewidth = PlotScripts.global_linewidth) ax1.plot(np.nan, np.nan, color = PlotScripts.colors[0], linestyle = PlotScripts.linestyles[0], label = "Quasar Ejection Density") ax1.plot(np.nan, np.nan, color = PlotScripts.colors[0], linestyle = PlotScripts.linestyles[1], label = "Galaxy Density") ax3.plot(np.nan, np.nan, color = 'k', linestyle = PlotScripts.linestyles[0], label = "Count") ax3.plot(np.nan, np.nan, color = 'k', linestyle = PlotScripts.linestyles[1], label = "Fraction of Galaxies") ax7.set_xlabel(r'$\log_{10}\ M_\mathrm{vir}\ [M_{\odot}]$', size = PlotScripts.global_fontsize) ax7.set_ylabel(r'$\mathrm{Mean \: Quasar \: Activity}$', size = PlotScripts.global_fontsize) ax50.set_xlabel(r'$\log_{10}\ M_\mathrm{vir}\ [M_{\odot}]$', size = PlotScripts.global_fontsize) #ax50.set_ylabel(r'$\mathrm{Fraction \: Galaxies \: Undergoing \: Merger}$', size = PlotScripts.global_fontsize) ax50.set_ylabel(r'$\mathrm{Number \: Galaxies \: Undergoing \: Merger}$', size = PlotScripts.global_fontsize) ax55.set_xlabel(r'$\log_{10}\ M_\mathrm{*}\ [M_{\odot}]$', size = PlotScripts.global_fontsize) ax55.set_ylabel(r'$\mathrm{Fraction \: Galaxies \: Undergoing \: Merger}$', size = PlotScripts.global_fontsize) #ax55.set_ylabel(r'$\mathrm{Number \: Galaxies \: Undergoing \: Merger}$', size = PlotScripts.global_fontsize) ax56.set_xlabel(r"$\mathrm{Time \: Since \: Big \: Bang \: [Myr]}$", size = PlotScripts.global_labelsize) ax56.set_ylabel(r'$\mathrm{Fraction \: Galaxies \: Undergoing \: Merger}$', size = PlotScripts.global_fontsize) #ax56.set_ylabel(r'$\mathrm{Fraction \: Galaxies \: Quasar \: Activity}$', size = PlotScripts.global_fontsize) ax56.set_yscale('log', nonposy='clip') ax50.axvline(np.log10(32.0*AllVars.PartMass / AllVars.Hubble_h), color = 'k', linewidth = PlotScripts.global_linewidth, linestyle = '-.') ax1.xaxis.set_minor_locator(mtick.MultipleLocator(PlotScripts.time_tickinterval)) ax1.set_xlim(PlotScripts.time_xlim) ax1.set_yscale('log', nonposy='clip') ax3.xaxis.set_minor_locator(mtick.MultipleLocator(PlotScripts.time_tickinterval)) ax3.set_xlim(PlotScripts.time_xlim) ax3.set_yscale('log', nonposy='clip') ## Create a second axis at the top that contains the corresponding redshifts. ## ## The redshift defined in the variable 'z_plot' will be displayed. ## ax2 = ax1.twiny() ax4 = ax3.twiny() ax57 = ax56.twiny() t_plot = (AllVars.t_BigBang - AllVars.cosmo.lookback_time(PlotScripts.z_plot).value) * 1.0e3 # Corresponding time values on the bottom. z_labels = ["$%d$" % x for x in PlotScripts.z_plot] # Properly Latex-ize the labels. ax2.set_xlabel(r"$z$", size = PlotScripts.global_labelsize) ax2.set_xlim(PlotScripts.time_xlim) ax2.set_xticks(t_plot) # Set the ticks according to the time values on the bottom, ax2.set_xticklabels(z_labels) # But label them as redshifts. ax4.set_xlabel(r"$z$", size = PlotScripts.global_labelsize) ax4.set_xlim(PlotScripts.time_xlim) ax4.set_xticks(t_plot) # Set the ticks according to the time values on the bottom, ax4.set_xticklabels(z_labels) # But label them as redshifts. ax57.set_xlabel(r"$z$", size = PlotScripts.global_labelsize) ax57.set_xlim(PlotScripts.time_xlim) ax57.set_xticks(t_plot) # Set the ticks according to the time values on the bottom, ax57.set_xticklabels(z_labels) # But label them as redshifts. ax1.set_xlabel(r"$\mathrm{Time \: Since \: Big \: Bang \: [Myr]}$", size = PlotScripts.global_labelsize) #ax1.set_xlabel(r"$z$", size = PlotScripts.global_labelsize) ax1.set_ylabel(r'$N_\mathrm{Quasars} \: [\mathrm{Mpc}^{-3}]$', fontsize = PlotScripts.global_fontsize) ax6.set_ylabel(r'$N_\mathrm{Gal} \: [\mathrm{Mpc}^{-3}]$', fontsize = PlotScripts.global_fontsize) ax3.set_xlabel(r"$\mathrm{Time \: Since \: Big \: Bang \: [Myr]}$", size = PlotScripts.global_labelsize) ax3.set_ylabel(r'$N_\mathrm{Boosted}$', fontsize = PlotScripts.global_fontsize) ax5.set_ylabel(r'$\mathrm{Fraction \: Boosted}$', fontsize = PlotScripts.global_fontsize) leg = ax1.legend(loc='lower right', numpoints=1, labelspacing=0.1) leg.draw_frame(False) # Don't want a box frame for t in leg.get_texts(): # Reduce the size of the text t.set_fontsize(PlotScripts.global_legendsize) leg = ax3.legend(loc='lower left', numpoints=1, labelspacing=0.1) leg.draw_frame(False) # Don't want a box frame for t in leg.get_texts(): # Reduce the size of the text t.set_fontsize(PlotScripts.global_legendsize) leg = ax7.legend(loc='upper left', numpoints=1, labelspacing=0.1) leg.draw_frame(False) # Don't want a box frame for t in leg.get_texts(): # Reduce the size of the text t.set_fontsize(PlotScripts.global_legendsize) leg = ax50.legend(loc='upper right', numpoints=1, labelspacing=0.1) leg.draw_frame(False) # Don't want a box frame for t in leg.get_texts(): # Reduce the size of the text t.set_fontsize(PlotScripts.global_legendsize) leg = ax55.legend(loc='upper right', numpoints=1, labelspacing=0.1) leg.draw_frame(False) # Don't want a box frame for t in leg.get_texts(): # Reduce the size of the text t.set_fontsize(PlotScripts.global_legendsize) fig.tight_layout() fig2.tight_layout() fig3.tight_layout() fig5.tight_layout() fig6.tight_layout() outputFile1 = './{0}_quasardensity{1}'.format(output_tag, output_format) outputFile2 = './{0}_boostedcount{1}'.format(output_tag, output_format) outputFile3 = './{0}_quasar_activity_halo{1}'.format(output_tag, output_format) outputFile4 = './{0}_mergercount_global{1}'.format(output_tag, output_format) outputFile5 = './{0}_mergercount_global_stellarmass{1}'.format(output_tag, output_format) outputFile6 = './{0}_mergercount_total{1}'.format(output_tag, output_format) fig.savefig(outputFile1) # Save the figure fig2.savefig(outputFile2) # Save the figure fig3.savefig(outputFile3) # Save the figure fig4.savefig(outputFile4) # Save the figure fig5.savefig(outputFile5) # Save the figure fig6.savefig(outputFile6) # Save the figure print("Saved to {0}".format(outputFile1)) print("Saved to {0}".format(outputFile2)) print("Saved to {0}".format(outputFile3)) print("Saved to {0}".format(outputFile4)) print("Saved to {0}".format(outputFile5)) print("Saved to {0}".format(outputFile6)) plt.close(fig) plt.close(fig2) plt.close(fig3) ## def plot_photon_quasar_fraction(snapshot, filenr, output_tag, QuasarFractionalPhoton, QuasarActivityToggle, NumSubsteps): ax1 = plt.subplot(111) counts, bin_edges, bin_middle = AllVars.Calculate_Histogram(QuasarFractionalPhoton, 0.05, 0, 0, 1) ax1.plot(bin_middle, counts, lw = PlotScripts.global_linewidth, color = 'r') ax1.axvline(np.mean(QuasarFractionalPhoton[QuasarFractionalPhoton != 0]), lw = 0.5, ls = '-') ax1.set_yscale('log', nonposy='clip') ax1.set_xlabel(r"$\mathrm{Fractional \: Photon \: Boost}$") ax1.set_ylabel(r"$\mathrm{Count}$") ax1.set_ylim([1e1, 1e5]) outputFile1 = './photonfraction/file{0}_snap{1}_{2}{3}'.format(filenr, snapshot, output_tag, output_format) plt.tight_layout() plt.savefig(outputFile1) print("Saved to {0}".format(outputFile1)) plt.close() ### def plot_quasar_substep(snapshot, filenr, output_tag, substep): ax1 = plt.subplot(111) counts, bin_edges, bin_middle = AllVars.Calculate_Histogram(substep, 0.1, 0, 0, 10) ax1.plot(bin_middle, counts, lw = PlotScripts.global_linewidth, color = 'r') ax1.axvline(np.mean(substep[substep != -1]), lw = 0.5, ls = '-') ax1.set_yscale('log', nonposy='clip') ax1.set_xlabel(r"$\mathrm{Substep \: Quasar \: Activity}$") ax1.set_ylabel(r"$\mathrm{Count}$") # ax1.set_ylim([1e1, 1e5]) outputFile1 = './substep_activity/file{0}_snap{1}_{2}{3}'.format(filenr, snapshot, output_tag, output_format) plt.tight_layout() plt.savefig(outputFile1) print("Saved to {0}".format(outputFile1)) plt.close() ### def plot_post_quasar_SFR(PlotSnapList, model_number, Gal, output_tag): ax1 = plt.subplot(111) ax2 = ax1.twinx() count = 0 snapshot_thickness = 20 # How many snapshots before/after the quasar event do we want to track? for snapshot_idx in PlotSnapList[model_number]: w = np.where((G.QuasarActivity[:, snapshot_idx] == 1) & (G.LenHistory[:, snapshot_idx] > 200.0) & (G.GridStellarMass[:, snapshot_idx] > 0.001))[0] w_slice_gridhistory = G.GridHistory[w,snapshot_idx-snapshot_thickness:snapshot_idx+snapshot_thickness] potential_gal = [] for i in range(len(w_slice_gridhistory)): ww = np.where((w_slice_gridhistory[i] >= 0))[0] if (len(ww) == snapshot_thickness * 2): potential_gal.append(w[i]) if (len(potential_gal) == 0): return count += 1 print("There were {0} galaxies that had an energetic quasar wind event at snapshot {1} (z = {2:.3f})".format(len(potential_gal), snapshot_idx, AllVars.SnapZ[snapshot_idx])) chosen_gal = potential_gal[1] lenhistory_array = np.empty((int(snapshot_thickness*2 + 1))) SFR_array = np.empty((int(snapshot_thickness*2 + 1))) gridhistory_array = np.empty((int(snapshot_thickness*2 + 1))) coldgas_array = np.empty((int(snapshot_thickness*2 + 1))) t = np.empty((int(snapshot_thickness*2 + 1))) for i in range(-snapshot_thickness, snapshot_thickness+1): #print("SFR {0} {1}".format(snapshot_idx + i, G.GridSFR[chosen_gal, snapshot_idx+i])) #print("ColdGas {0} {1}".format(snapshot_idx + i, G.GridColdGas[chosen_gal, snapshot_idx+i])) lenhistory_array[i+snapshot_thickness] = (G.LenHistory[chosen_gal, snapshot_idx+i]) SFR_array[i+snapshot_thickness] = (G.GridSFR[chosen_gal, snapshot_idx+i]) #- (G.GridSFR[chosen_gal, snapshot_idx]) gridhistory_array[i+snapshot_thickness] = (G.GridHistory[chosen_gal, snapshot_idx+i]) coldgas_array[i+snapshot_thickness] = (G.GridColdGas[chosen_gal, snapshot_idx+i] * 1.0e10 / AllVars.Hubble_h) #- (G.GridColdGas[chosen_gal, snapshot_idx]) t[i+snapshot_thickness] = (-AllVars.Lookback_Time[snapshot_idx+i] + AllVars.Lookback_Time[snapshot_idx]) * 1.0e3 print("Len History {0}".format(lenhistory_array)) print("Grid History {0}".format(gridhistory_array)) print("Cold Gas {0}".format(coldgas_array)) print("SFR {0}".format(SFR_array)) stellarmass_text = r"$log M_* = {0:.2f} \: M_\odot$".format(np.log10(G.GridStellarMass[chosen_gal, snapshot_idx] * 1.0e10 / AllVars.Hubble_h)) Ndym_text = "Dynamical Time = {0:.2f} Myr".format(G.DynamicalTime[chosen_gal, snapshot_idx]) z_text = "z = {0:.2f}".format(AllVars.SnapZ[snapshot_idx]) ax1.text(0.05, 0.95, z_text, transform = ax1.transAxes, fontsize = PlotScripts.global_fontsize - 4) ax1.text(0.05, 0.9, stellarmass_text, transform = ax1.transAxes, fontsize = PlotScripts.global_fontsize - 4) ax1.text(0.05, 0.85, Ndym_text, transform = ax1.transAxes, fontsize = PlotScripts.global_fontsize - 4) ax1.plot(t, SFR_array, color = 'r', lw = PlotScripts.global_linewidth) ax2.plot(t, coldgas_array, color = 'b', lw = PlotScripts.global_linewidth) ax1.set_xlabel(r"$\mathrm{Time \: Since \: Quasar \: Event \: [Myr]}$", size = PlotScripts.global_labelsize - 10) # ax1.set_ylabel(r"$\mathrm{Fractional \: SFR \: Relative \: To \: SFR_{Quasar}}$", size = PlotScripts.global_labelsize - 10) # ax2.set_ylabel(r"$\mathrm{Difference \: Cold \: Gas \: Mass \: Relative \: To \: Cold_{Quasar}}$", size = PlotScripts.global_labelsize - 10) ax1.set_ylabel(r"$\mathrm{SFR} \: [\mathrm{M}_\odot \mathrm{yr}^{-1}]$", size = PlotScripts.global_labelsize - 10) ax2.set_ylabel(r"$\mathrm{Cold \: Gas \: Mass \: [\mathrm{M}_\odot]}$",size = PlotScripts.global_labelsize - 10) ax1.set_yscale('log', nonposy='clip') ax2.set_yscale('log', nonposy='clip') ax1.plot(np.nan, np.nan, color = 'r', label = r"$\mathrm{SFR}$") ax1.plot(np.nan, np.nan, color = 'b', label = r"$\mathrm{Cold \: Gas}$") leg = ax1.legend(loc='upper right', numpoints=1, labelspacing=0.1) leg.draw_frame(False) # Don't want a box frame for t in leg.get_texts(): # Reduce the size of the text t.set_fontsize(PlotScripts.global_legendsize) outputFile = "{0}_galaxy{2}{1}".format(output_tag, output_format, chosen_gal) plt.tight_layout() plt.savefig(outputFile) print("Saved to {0}".format(outputFile)) plt.close() exit() ### def plot_stellarmass_blackhole(SnapList, simulation_norm, mean_galaxy_BHmass, std_galaxy_BHmass, N_galaxy_BHmass, FirstFile, LastFile, NumFile, model_tags, output_tag): master_mean_SMBH, master_std_SMBH, master_N, master_bin_middle = \ collect_across_tasks(mean_galaxy_BHmass, std_galaxy_BHmass, N_galaxy_BHmass, SnapList, SnapList, True, m_gal_low, m_gal_high) if rank == 0: fig = plt.figure()
determines the heading along the line, using a "thinned" version of the line. The degree of thinning is based on the size of the offset; the larger the offset, the greater the distance between sample locations used to construct the thinned lined used for determining headings. The thinned line is splined at a frequency greater than the sample frequency, and the heading at any given point is determined from the vector formed by the closest two points on the splined line. The correction (behind, in front, left or right) is determined with respect to the heading, and added to the original location. IF this method fails, no dummies, no duplicated locations, no reversals are produced. The algorithm: 1. Determine average distance between each point = D 2. Smoothing interval = MAX(2*D, Offset distance) = I 3. Thin input points to be at least the smoothing interval I apart from each other. 4. Smoothly re-interpolate the thinned points at five times the original average distance D. 5. For each input point, calculate the bearing using the nearest points on the smoothed curve """ gxapi_cy.WrapVVU._offset_correct(GXContext._get_tls_geo(), vv_xi, vv_yi, dist, heading, v_vxo, v_vyo) @classmethod def offset_correct2(cls, vv_xi, vv_yi, dist, azimuth, vv_xo, vv_yo): """ Same as `offset_correct <geosoft.gxapi.GXVVU.offset_correct>`, but for an arbitrary offset angle. :param vv_xi: Input X :param vv_yi: Input Y :param dist: Offset distance :param azimuth: Offset azimuth (degrees counter-clockwise from straight ahead) :param vv_xo: Output X :param vv_yo: Output Y :type vv_xi: GXVV :type vv_yi: GXVV :type dist: float :type azimuth: float :type vv_xo: GXVV :type vv_yo: GXVV .. versionadded:: 5.1.3 **License:** `Geosoft End-User License <https://geosoftgxdev.atlassian.net/wiki/spaces/GD/pages/2359406/License#License-end-user-lic>`_ """ gxapi_cy.WrapVVU._offset_correct2(GXContext._get_tls_geo(), vv_xi, vv_yi, dist, azimuth, vv_xo, vv_yo) @classmethod def offset_correct3(cls, vv_xi, vv_yi, dist, azimuth, interval, vv_xo, vv_yo): """ Same as `offset_correct2 <geosoft.gxapi.GXVVU.offset_correct2>`, but specify smoothing interval. :param vv_xi: Input X :param vv_yi: Input Y :param dist: Offset distance :param azimuth: Offset azimuth (degrees counter-clockwise from straight ahead) :param interval: Averaging interval - `rDUMMY <geosoft.gxapi.rDUMMY>` for default :param vv_xo: Output X :param vv_yo: Output Y :type vv_xi: GXVV :type vv_yi: GXVV :type dist: float :type azimuth: float :type interval: float :type vv_xo: GXVV :type vv_yo: GXVV .. versionadded:: 5.1.4 **License:** `Geosoft End-User License <https://geosoftgxdev.atlassian.net/wiki/spaces/GD/pages/2359406/License#License-end-user-lic>`_ **Note:** See the algorithm note #2 above for the default smoothing interval. """ gxapi_cy.WrapVVU._offset_correct3(GXContext._get_tls_geo(), vv_xi, vv_yi, dist, azimuth, interval, vv_xo, vv_yo) @classmethod def offset_correct_xyz(cls, vv_xi, vv_yi, vv_zi, x_off, y_off, z_off, interval, v_vxo, v_vyo, v_vzo): """ Correct locations based on heading and fixed offset. :param vv_xi: Input X :param vv_yi: Input Y :param vv_zi: Input Z :param x_off: Offset along-track (+ve forward) :param y_off: Offset across-track (+ve to the right) :param z_off: Vertical Offset (+ve up) :param interval: Sampling interval - `rDUMMY <geosoft.gxapi.rDUMMY>` for default :param v_vxo: Output X :param v_vyo: Output Y :param v_vzo: Output Z :type vv_xi: GXVV :type vv_yi: GXVV :type vv_zi: GXVV :type x_off: float :type y_off: float :type z_off: float :type interval: float :type v_vxo: GXVV :type v_vyo: GXVV :type v_vzo: GXVV .. versionadded:: 9.0 **License:** `Geosoft End-User License <https://geosoftgxdev.atlassian.net/wiki/spaces/GD/pages/2359406/License#License-end-user-lic>`_ **Note:** In many applications, measurements are taken with an instrument which is towed behind, or pushed ahead of where the locations are recorded. Use this function to estimate the actual location of the instrument. The method determines the heading along the line, using a "thinned" version of the line. The default degree of thinning is based on the size of the offset; the larger the offset, the greater the distance between sample locations used to construct the thinned lined used for determining headings. The thinned line is splined at a frequency greater than the sample frequency, and the heading at any given point is determined from the vector formed by the closest two points on the splined line. The correction (behind, in front, left or right) is determined with respect to the heading, and added to the original location. IF this method fails, no dummies, no duplicated locations, no reversals are produced. The algorithm: 1. Determine average distance between each point = D 2. Default smoothing interval = MAX(2*D, Offset distance) = I 3. Thin input points to be at least the smoothing interval I apart from each other. 4. Smoothly re-interpolate the thinned points at five times the original average distance D. 5. For each input point, calculate the bearing using the nearest points on the smoothed curve """ gxapi_cy.WrapVVU._offset_correct_xyz(GXContext._get_tls_geo(), vv_xi, vv_yi, vv_zi, x_off, y_off, z_off, interval, v_vxo, v_vyo, v_vzo) @classmethod def offset_rectangles(cls, vv_xi, vv_yi, offset, size_x, size_y, vv_xo, vv_yo): """ Get non-overlapping offset location for rectangular symbols. :param vv_xi: Input X locations :param vv_yi: Input Y locations :param offset: Minimum offset distance :param size_x: Symbol X size (width) :param size_y: Symbol Y size (height) :param vv_xo: Output (offset) X locations :param vv_yo: Output (offset) Y locations :type vv_xi: GXVV :type vv_yi: GXVV :type offset: float :type size_x: float :type size_y: float :type vv_xo: GXVV :type vv_yo: GXVV .. versionadded:: 5.0.7 **License:** `Geosoft End-User License <https://geosoftgxdev.atlassian.net/wiki/spaces/GD/pages/2359406/License#License-end-user-lic>`_ **Note:** Often on maps plotted symbols and text overlap each other. This routine accepts of `GXVV <geosoft.gxapi.GXVV>` of locations and returns a new set of locations offset from the originals, and guaranteed not to overlap, given the size of the original symbols. The returned offset X, Y locations are offset from the original locations by the minimum of a) the input offset, b) the input symbol X or Y size. This is to ensure that the original location is never covered by the offset symbol. In addition, the offset symbol is never place directly below the original location, to make it easier to draw a connecting line. Care should be taken when choosing the symbol size, because if the point density is too high, all the points will get pushed to the outside edge and your plot will look like a hedgehog (it also takes a lot longer!). """ gxapi_cy.WrapVVU._offset_rectangles(GXContext._get_tls_geo(), vv_xi, vv_yi, offset, size_x, size_y, vv_xo, vv_yo) @classmethod def pick_peak(cls, vv_i, vv_o, pr_tol, width): """ Find peaks in a `GXVV <geosoft.gxapi.GXVV>` - method one. :param vv_i: Input `GXVV <geosoft.gxapi.GXVV>` :param vv_o: Returned peak `GXVV <geosoft.gxapi.GXVV>`, all dummies except peak points. :param pr_tol: Minimum value to accept (0.0 to find all) :param width: Minimum width to accept (1 to find all) :type vv_i: GXVV :type vv_o: GXVV :type pr_tol: float :type width: int .. versionadded:: 5.0 **License:** `Geosoft End-User License <https://geosoftgxdev.atlassian.net/wiki/spaces/GD/pages/2359406/License#License-end-user-lic>`_ **Note:** Peaks are the maximum point within a sequence of positive values in the input `GXVV <geosoft.gxapi.GXVV>`. The width is the number of points in the positive sequence. A `GXVV <geosoft.gxapi.GXVV>` may have to be pre-filtered before finding the peak values: Use `bp_filt <geosoft.gxapi.GXVVU.bp_filt>` to smooth the data as required. Use `filter <geosoft.gxapi.GXVVU.filter>` to apply a Laplace filter "-0.5,1.0,-0.5" to make curvature data. """ gxapi_cy.WrapVVU._pick_peak(GXContext._get_tls_geo(), vv_i, vv_o, pr_tol, width) @classmethod def pick_peak2(cls, vv_i, vv_o, pr_base_lvl, pr_ampl): """ Find peaks in a `GXVV <geosoft.gxapi.GXVV>` - method two. :param vv_i: Input `GXVV <geosoft.gxapi.GXVV>` :param vv_o: Returned peak `GXVV <geosoft.gxapi.GXVV>`, all dummies except peak points. :param pr_base_lvl: Base level to accept (0.0 to find all) :param pr_ampl: Minimum amplitude to accept :type vv_i: GXVV :type vv_o: GXVV :type pr_base_lvl: float :type pr_ampl: float .. versionadded:: 5.0 **License:** `Geosoft End-User License <https://geosoftgxdev.atlassian.net/wiki/spaces/GD/pages/2359406/License#License-end-user-lic>`_ **Note:** Peaks are the maximum point within a sequence of values in the input `GXVV <geosoft.gxapi.GXVV>`. Maximum points must be above the base level and have a local amplitude greater than the minimum amplitude specified. A `GXVV <geosoft.gxapi.GXVV>` may have to be pre-filtered before finding the peak values. """ gxapi_cy.WrapVVU._pick_peak2(GXContext._get_tls_geo(), vv_i, vv_o, pr_base_lvl, pr_ampl) @classmethod def pick_peak3(cls, vv_i, vv_x, vv_y, pr_base_lvl, pr_ampl, v_vind, v_vamp, v_vwid, v_vhawid): """ Find peaks in a `GXVV <geosoft.gxapi.GXVV>` - method two, returning width and half-amplitude widths. :param vv_i: [i] data `GXVV <geosoft.gxapi.GXVV>` :param vv_x:
# stdlib from io import StringIO # lib from django.core.management import call_command from django.urls import reverse from rest_framework import status # local from api.models import BISList, Character, Gear, Team, Tier from api.serializers import BISListSerializer from .test_base import SavageAimTestCase class BISListCollection(SavageAimTestCase): """ Test the creation of new BISLists """ def setUp(self): """ Create a character for use in the test """ self.char = Character.objects.create( avatar_url='https://img.savageaim.com/abcde', lodestone_id=1234567890, user=self._get_user(), name='Char 1', world='Lich', verified=True, ) call_command('job_seed', stdout=StringIO()) call_command('gear_seed', stdout=StringIO()) self.gear_id_map = {g.name: g.id for g in Gear.objects.all()} def tearDown(self): """ Clean up the DB after each test """ Character.objects.all().delete() def test_create(self): """ Create a new BIS List for the character """ url = reverse('api:bis_collection', kwargs={'character_id': self.char.pk}) self.client.force_authenticate(self.char.user) # Try one with PLD first data = { 'job_id': 'PLD', 'bis_mainhand_id': self.gear_id_map['Divine Light'], 'bis_offhand_id': self.gear_id_map['Moonward'], 'bis_head_id': self.gear_id_map['Limbo'], 'bis_body_id': self.gear_id_map['Limbo'], 'bis_hands_id': self.gear_id_map['Limbo'], 'bis_legs_id': self.gear_id_map['Limbo'], 'bis_feet_id': self.gear_id_map['Limbo'], 'bis_earrings_id': self.gear_id_map['Limbo'], 'bis_necklace_id': self.gear_id_map['Limbo'], 'bis_bracelet_id': self.gear_id_map['Limbo'], 'bis_right_ring_id': self.gear_id_map['Limbo'], 'bis_left_ring_id': self.gear_id_map['Limbo'], 'current_mainhand_id': self.gear_id_map['Moonward'], 'current_offhand_id': self.gear_id_map['Moonward'], 'current_head_id': self.gear_id_map['Moonward'], 'current_body_id': self.gear_id_map['Moonward'], 'current_hands_id': self.gear_id_map['Moonward'], 'current_legs_id': self.gear_id_map['Moonward'], 'current_feet_id': self.gear_id_map['Moonward'], 'current_earrings_id': self.gear_id_map['Moonward'], 'current_necklace_id': self.gear_id_map['Moonward'], 'current_bracelet_id': self.gear_id_map['Moonward'], 'current_right_ring_id': self.gear_id_map['Moonward'], 'current_left_ring_id': self.gear_id_map['Moonward'], 'external_link': '', } response = self.client.post(url, data) self.assertEqual(response.status_code, status.HTTP_201_CREATED, response.content) self.assertEqual(BISList.objects.count(), 1) obj = BISList.objects.first() self.assertNotEqual(obj.bis_offhand_id, obj.bis_mainhand_id) self.assertIsNone(obj.external_link) obj.delete() # Do one for a different job, ensure that offhand and mainhand are actually the same data['job_id'] = 'SGE' data['external_link'] = 'https://etro.gg' response = self.client.post(url, data) self.assertEqual(response.status_code, status.HTTP_201_CREATED, response.content) self.assertEqual(BISList.objects.count(), 1) obj = BISList.objects.first() self.assertEqual(obj.bis_offhand_id, obj.bis_mainhand_id) self.assertEqual(obj.bis_offhand_id, data['bis_mainhand_id']) self.assertEqual(obj.external_link, data['external_link']) def test_create_400(self): """ Test all the kinds of errors that can come from the create endpoint; - Invalid number for a gear type - Gear pk doesn't exist - Gear category is incorrect - Job ID doesn't exist - Job already has a BIS List - Data missing - External link isn't a url """ url = reverse('api:bis_collection', kwargs={'character_id': self.char.pk}) self.client.force_authenticate(self.char.user) response = self.client.post(url) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST, response.content) content = response.json() for field in content: self.assertEqual(content[field], ['This field is required.']) self.assertEqual(len(content), 25) # All gear errors will be run at once since there's only one actual function to test data = { 'job_id': 'abc', 'bis_mainhand_id': 'abcde', 'bis_body_id': -1, 'bis_head_id': self.gear_id_map['Eternal Dark'], 'bis_earrings_id': self.gear_id_map['Divine Light'], 'current_mainhand_id': self.gear_id_map['The Last'], 'external_link': 'abcde', } response = self.client.post(url, data) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST, response.content) # Since we checked all the "this field is required" errors above, just check the ones we send now content = response.json() invalid_gear = 'The chosen category of Gear does not have an item for this slot.' self.assertEqual(content['job_id'], ['Please select a valid Job.']) self.assertEqual(content['bis_mainhand_id'], ['A valid integer is required.']) self.assertEqual(content['bis_body_id'], ['Please ensure your value corresponds with a valid type of Gear.']) self.assertEqual(content['bis_head_id'], [invalid_gear]) self.assertEqual(content['bis_earrings_id'], [invalid_gear]) self.assertEqual(content['current_mainhand_id'], [invalid_gear]) self.assertEqual(content['external_link'], ['Enter a valid URL.']) # Create a BIS List for a job, then send a request to make one for the same job bis_gear = Gear.objects.first() curr_gear = Gear.objects.last() BISList.objects.create( bis_body=bis_gear, bis_bracelet=bis_gear, bis_earrings=bis_gear, bis_feet=bis_gear, bis_hands=bis_gear, bis_head=bis_gear, bis_left_ring=bis_gear, bis_legs=bis_gear, bis_mainhand=bis_gear, bis_necklace=bis_gear, bis_offhand=bis_gear, bis_right_ring=bis_gear, current_body=curr_gear, current_bracelet=curr_gear, current_earrings=curr_gear, current_feet=curr_gear, current_hands=curr_gear, current_head=curr_gear, current_left_ring=curr_gear, current_legs=curr_gear, current_mainhand=curr_gear, current_necklace=curr_gear, current_offhand=curr_gear, current_right_ring=curr_gear, job_id='DRG', owner=self.char, ) data = {'job_id': 'DRG'} response = self.client.post(url, data) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST, response.content) # Since we checked all the "this field is required" errors above, just check the ones we send now content = response.json() self.assertEqual(content['job_id'], ['Currently SavageAim only supports one BISList per job.']) def test_404(self): """ Test all situations where the endpoint would respond with a 404; - Invalid ID - Character is not owned by the requesting user - Character is not verified """ user = self._get_user() self.client.force_authenticate(user) # ID doesn't exist url = reverse('api:bis_collection', kwargs={'character_id': 0000000000000000000000}) response = self.client.post(url) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND, response.content) # Character belongs to a different user self.char.user = self._create_user() self.char.save() url = reverse('api:bis_collection', kwargs={'character_id': self.char.id}) response = self.client.post(url) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND, response.content) # Character is not verified self.char.verified = False self.char.user = user self.char.save() response = self.client.post(url) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND, response.content) class BISListResource(SavageAimTestCase): """ Test the update of existing BIS Lists """ def setUp(self): """ Create a character for use in the test """ self.char = Character.objects.create( avatar_url='https://img.savageaim.com/abcde', lodestone_id=1234567890, user=self._get_user(), name='Char 1', world='Lich', verified=True, ) call_command('job_seed', stdout=StringIO()) call_command('gear_seed', stdout=StringIO()) self.gear_id_map = {g.name: g.id for g in Gear.objects.all()} bis_gear = Gear.objects.first() curr_gear = Gear.objects.last() self.bis = BISList.objects.create( bis_body=bis_gear, bis_bracelet=bis_gear, bis_earrings=bis_gear, bis_feet=bis_gear, bis_hands=bis_gear, bis_head=bis_gear, bis_left_ring=bis_gear, bis_legs=bis_gear, bis_mainhand=bis_gear, bis_necklace=bis_gear, bis_offhand=bis_gear, bis_right_ring=bis_gear, current_body=curr_gear, current_bracelet=curr_gear, current_earrings=curr_gear, current_feet=curr_gear, current_hands=curr_gear, current_head=curr_gear, current_left_ring=curr_gear, current_legs=curr_gear, current_mainhand=curr_gear, current_necklace=curr_gear, current_offhand=curr_gear, current_right_ring=curr_gear, job_id='DRG', owner=self.char, external_link='https://etro.gg/', ) def tearDown(self): """ Clean up the DB after each test """ Character.objects.all().delete() def test_read(self): """ Read a BIS List via the API and ensure it is correctly returned """ url = reverse('api:bis_resource', kwargs={'character_id': self.char.pk, 'pk': self.bis.pk}) self.client.force_authenticate(self.char.user) response = self.client.get(url) self.assertEqual(response.status_code, status.HTTP_200_OK, response.content) self.assertDictEqual(response.json(), BISListSerializer(self.bis).data) def test_update(self): """ Update the existing BIS List with a PUT request """ url = reverse('api:bis_resource', kwargs={'character_id': self.char.pk, 'pk': self.bis.pk}) self.client.force_authenticate(self.char.user) # Try one with PLD first data = { 'job_id': 'PLD', 'bis_mainhand_id': self.gear_id_map['Divine Light'], 'bis_offhand_id': self.gear_id_map['Moonward'], 'bis_head_id': self.gear_id_map['Limbo'], 'bis_body_id': self.gear_id_map['Limbo'], 'bis_hands_id': self.gear_id_map['Limbo'], 'bis_legs_id': self.gear_id_map['Limbo'], 'bis_feet_id': self.gear_id_map['Limbo'], 'bis_earrings_id': self.gear_id_map['Limbo'], 'bis_necklace_id': self.gear_id_map['Limbo'], 'bis_bracelet_id': self.gear_id_map['Limbo'], 'bis_right_ring_id': self.gear_id_map['Limbo'], 'bis_left_ring_id': self.gear_id_map['Limbo'], 'current_mainhand_id': self.gear_id_map['Moonward'], 'current_offhand_id': self.gear_id_map['Moonward'], 'current_head_id': self.gear_id_map['Moonward'], 'current_body_id': self.gear_id_map['Moonward'], 'current_hands_id': self.gear_id_map['Moonward'], 'current_legs_id': self.gear_id_map['Moonward'], 'current_feet_id': self.gear_id_map['Moonward'], 'current_earrings_id': self.gear_id_map['Moonward'], 'current_necklace_id': self.gear_id_map['Moonward'], 'current_bracelet_id': self.gear_id_map['Moonward'], 'current_right_ring_id': self.gear_id_map['Moonward'], 'current_left_ring_id': self.gear_id_map['Moonward'], 'external_link': None, } response = self.client.put(url, data) self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT, response.content) self.bis.refresh_from_db() self.assertEqual(self.bis.job_id, 'PLD') self.assertNotEqual(self.bis.bis_mainhand, self.bis.bis_offhand) self.assertIsNone(self.bis.external_link) def test_update_400(self): """ Test all the kinds of errors that can come from the update endpoint; - Invalid number for a gear type - Gear pk doesn't exist - Gear category is incorrect - Job ID doesn't exist - Job already has a BIS List - Data missing """ url = reverse('api:bis_resource', kwargs={'character_id': self.char.pk, 'pk': self.bis.pk}) self.client.force_authenticate(self.char.user) response = self.client.put(url) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST, response.content) content = response.json() for field in content: self.assertEqual(content[field], ['This field is required.']) self.assertEqual(len(content), 25) # All gear errors will be run at once since there's only one actual function to test data = { 'job_id': 'abc', 'bis_mainhand_id': 'abcde', 'bis_body_id': -1, 'bis_head_id': self.gear_id_map['Eternal Dark'], 'bis_earrings_id': self.gear_id_map['Divine Light'], 'current_mainhand_id': self.gear_id_map['The Last'], } response = self.client.put(url, data) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST, response.content) # Since we checked all the "this field is required" errors above, just check the ones we send now content = response.json() invalid_gear = 'The chosen category of Gear does not have an item for this slot.' self.assertEqual(content['job_id'], ['Please select a valid Job.']) self.assertEqual(content['bis_mainhand_id'], ['A valid integer is required.']) self.assertEqual(content['bis_body_id'], ['Please ensure your value corresponds with a valid type of Gear.']) self.assertEqual(content['bis_head_id'], [invalid_gear]) self.assertEqual(content['bis_earrings_id'], [invalid_gear]) self.assertEqual(content['current_mainhand_id'], [invalid_gear]) # Create a BIS List for a job, then send a request to make one for the same job bis_gear = Gear.objects.first() curr_gear = Gear.objects.last() BISList.objects.create( bis_body=bis_gear, bis_bracelet=bis_gear, bis_earrings=bis_gear, bis_feet=bis_gear, bis_hands=bis_gear, bis_head=bis_gear, bis_left_ring=bis_gear, bis_legs=bis_gear, bis_mainhand=bis_gear, bis_necklace=bis_gear, bis_offhand=bis_gear, bis_right_ring=bis_gear, current_body=curr_gear, current_bracelet=curr_gear, current_earrings=curr_gear, current_feet=curr_gear, current_hands=curr_gear, current_head=curr_gear, current_left_ring=curr_gear, current_legs=curr_gear, current_mainhand=curr_gear, current_necklace=curr_gear, current_offhand=curr_gear, current_right_ring=curr_gear, job_id='RPR', owner=self.char, ) data = {'job_id': 'RPR'} response = self.client.put(url, data) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST, response.content) # Since we checked all the "this field is required" errors above, just check the ones we send now content = response.json() self.assertEqual(content['job_id'], ['Currently SavageAim only supports one BISList per job.']) def test_404(self): """ Test all situations where the endpoint would respond with a 404; - Invalid Character ID - Character is not owned by the requesting user - Character is not verified - Invalid BISList ID - Character doesn't own BISList """ user = self._get_user() self.client.force_authenticate(user) # ID doesn't exist url = reverse('api:bis_resource', kwargs={'character_id': 0000000000000000000000, 'pk': self.bis.pk}) response = self.client.get(url) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND, response.content) response = self.client.put(url) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND, response.content) # Character belongs to a different user self.char.user = self._create_user() self.char.save() url = reverse('api:bis_resource', kwargs={'character_id': self.char.id, 'pk': self.bis.pk}) response = self.client.get(url) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND, response.content) response = self.client.put(url) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND, response.content) # Character is not verified self.char.verified = False self.char.user = user self.char.save() response = self.client.get(url) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND, response.content) response = self.client.put(url) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND, response.content) # Invalid BISList ID self.char.verified = True self.char.save() url = reverse('api:bis_resource', kwargs={'character_id': self.char.id, 'pk': 99999}) response = self.client.get(url) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND, response.content) response = self.client.put(url) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND, response.content) # Character doesn't own BIS List char = Character.objects.create( avatar_url='https://img.savageaim.com/abcde', lodestone_id=1234567890, user=self._get_user(), name='Char 2', world='Lich', verified=True, ) self.bis.owner