input
stringlengths
2.65k
237k
output
stringclasses
1 value
- data1)) """ def __init__(self, in_dim, cond_dim, n_flow_steps, wn_num_conv1d, wn_dim_channel, wn_kernel_size, flag_affine=True, flag_split = False, flag_final_block=False, split_dim = 2, flag_affine_block_legacy=False): """WaveGlowBlock(in_dim, cond_dim, n_flow_steps, wn_num_conv1d, wn_dim_channel, wn_kernel_size, flag_affine=True, flag_split = False, split_dim = 2, flag_affine_block_legacy=False) Args ---- in_dim: int, input feature dim, (batch, length, in_dim) cond_dim:, int, conditional feature dim, (batch, length, cond_dim) n_flow_steps: int, number of flow steps in one block wn_num_conv1d: int, number of dilated conv WaveNet blocks wn_dim_channel: int, dim of the WaveNet residual and skip channels wn_kernel_size: int, kernel size of the dilated convolution layers flag_affine: bool, whether use affine or additive transformation? default True flag_split: bool, whether split output z for multi-scale structure default True flag_final_block: bool, whether this block is the final block default False split_dim: int, if flag_split==True, z[:, :, :split_dim] will be extracted, z[:, :, split_dim:] can be used for the next WaveGlowBlock flag_affine_block_legacy, bool, whether use the legacy implementation of wavenet-based affine transformaiton layer default False. For wn_dim_channel and wn_kernel_size, see AffineCouplingWaveGlow For flag_affine, see AffineCouplingWaveGlow """ super(WaveGlowBlock, self).__init__() tmp_flows = [] for i in range(n_flow_steps): tmp_flows.append( FlowStepWaveGlow( in_dim, cond_dim, wn_num_conv1d, wn_dim_channel, wn_kernel_size, flag_affine, flag_affine_block_legacy)) self.m_flows = torch_nn.ModuleList(tmp_flows) self.flag_split = flag_split self.flag_final_block = flag_final_block self.split_dim = split_dim if self.flag_split and self.flag_final_block: print("WaveGlowBlock: flag_split and flag_final_block are True") print("This is unexpected. Please check model definition") sys.exit(1) if self.flag_split and self.split_dim <= 0: print("WaveGlowBlock: split_dim should be > 0") sys.exit(1) return def forward(self, y, cond, factor=1): """x, z, log_detjac = WaveGlowBlock(y) y -> H() -> [z, x], log_det_jacobian H() consists of multiple flow steps (1x1conv + AffineCoupling) input ----- y: tensor, (batch, length, dim) cond, tensor, (batch, length, cond_dim) factor, None or int, this is used to divde likelihood, default 1 output ------ log_detjac: tensor or scalar if self.flag_split: x: tensor, (batch, length, in_dim - split_dim), z: tensor, (batch, length, split_dim), else: if self.flag_final_block: x: None, no input to the next block z: tensor, (batch, length, dim), for N(z; 0, I) else: x: tensor, (batch, length, dim), z: None, no latent for N(z; 0, I) from this block concate([x,z]) should have the same size as y """ # flows log_detjac = 0 x_tmp = y for l_flow in self.m_flows: x_tmp, log_detjac_tmp = l_flow(x_tmp, cond, factor) log_detjac = log_detjac + log_detjac_tmp if self.flag_split: z = x_tmp[:, :, :self.split_dim] x = x_tmp[:, :, self.split_dim:] else: if self.flag_final_block: z = x_tmp x = None else: z = None x = x_tmp return x, z, log_detjac def reverse(self, x, z, cond): """y = WaveGlowBlock.reverse(x, z, cond) [z, x] -> H^{-1}() -> y input ----- if self.flag_split: x: tensor, (batch, length, in_dim - split_dim), z: tensor, (batch, length, split_dim), else: if self.flag_final_block: x: None z: tensor, (batch, length, in_dim) else: x: tensor, (batch, length, in_dim) z: None output ------ y: tensor, (batch, length, in_dim) """ if self.flag_split: if x is None or z is None: print("WaveGlowBlock.reverse: x and z should not be None") sys.exit(1) y_tmp = torch.cat([z, x], dim=-1) else: if self.flag_final_block: if z is None: print("WaveGlowBlock.reverse: z should not be None") sys.exit(1) y_tmp = z else: if x is None: print("WaveGlowBlock.reverse: x should not be None") sys.exit(1) y_tmp = x for l_flow in self.m_flows[::-1]: # affine y_tmp = l_flow.reverse(y_tmp, cond) return y_tmp class WaveGlow(torch_nn.Module): """WaveGlow Example cond_dim = 4 upsample = 80 num_blocks = 4 num_flows_inblock = 5 wn_num_conv1d = 8 wn_dim_channel = 512 wn_kernel_size = 3 # waveforms of length 1600 wave1 = torch.randn([2, 1600, 1]) # condition feature cond = torch.randn([2, 1600//upsample, cond_dim]) # model m_model = nii_waveglow.WaveGlow( cond_dim, upsample, num_blocks, num_flows_inblock, wn_num_conv1d, wn_dim_channel, wn_kernel_size) # forward computation, neg_log = -(logp + log_detjac) # neg_log.backward() can be used for backward z, neg_log, logp, log_detjac = m_model(wave1, cond) # recover the signal wave2 = m_model.reverse(z, cond) # check difference between original wave and recovered wave print(torch.std(wave1 - wave2)) """ def __init__(self, cond_dim, upsample_rate, num_blocks, num_flows_inblock, wn_num_conv1d, wn_dim_channel, wn_kernel_size, flag_affine = True, early_hid_dim=2, flag_affine_block_legacy=False): """WaveGlow(cond_dim, upsample_rate, num_blocks, num_flows_inblock, wn_num_conv1d, wn_dim_channel, wn_kernel_size, flag_affine = True, early_hid_dim=2, flag_affine_block_legacy=False) Args ---- cond_dim:, int, conditional feature dim, (batch, length, cond_dim) upsample_rate: int, up-sampling rate for condition features num_blocks: int, number of WaveGlowBlocks num_flows_inblock: int, number of flow steps in one WaveGlowBlock wn_num_conv1d: int, number of 1Dconv WaveNet block in this flow step wn_dim_channel: int, dim of the WaveNet residual and skip channels wn_kernel_size: int, kernel size of the dilated convolution layers flag_affine: bool, whether use affine or additive transformation? default True early_hid_dim: int, dimension for z_1, z_2 ... , default 2 flag_affine_block_legacy, bool, whether use the legacy implementation of wavenet-based affine transformaiton layer default False. The difference is on the WaveNet part Please configure AffineCouplingWaveGlow and AffineCouplingWaveGlow_legacy This model defines: cond -> upsample/squeeze -> | ------> | --------> | v v v y -> squeeze -> WaveGlowBlock -> WGBlock ... WGBlock -> z |-> z_1 |-> z_2 z_1, z_2, ... are the extracted z from a multi-scale flow structure concate([z_1, z_2, z]) is expected to be the white Gaussian noise If early_hid_dim == 0, z_1 and z_2 will not be extracted """ super(WaveGlow, self).__init__() # input is assumed to be waveform self.m_input_dim = 1 self.m_early_hid_dim = early_hid_dim # squeeze layer self.m_squeeze = SqueezeForWaveGlow() # up-sampling layer #self.m_upsample = nii_nn.UpSampleLayer(cond_dim, upsample_rate, True) self.m_upsample = upsampleByTransConv(cond_dim, upsample_rate) # wavenet-based flow blocks # squeezed input dimension squeezed_in_dim = self.m_input_dim * self.m_squeeze.get_squeeze_factor() # squeezed condition feature dimension squeezed_cond_dim = cond_dim * self.m_squeeze.get_squeeze_factor() # save the dimension for get_z_noises self.m_feat_dim = [] # define blocks tmp_squeezed_in_dim = squeezed_in_dim tmp_flow_blocks = [] for i in range(num_blocks): # if this is not the last block and early_hid_dim >0 flag_split = (i < (num_blocks-1)) and early_hid_dim > 0 flag_final_block = i == (num_blocks-1) # save the dimension for get_z_noises if flag_final_block: self.m_feat_dim.append(tmp_squeezed_in_dim) else: self.m_feat_dim.append(early_hid_dim if flag_split else 0) tmp_flow_blocks.append( WaveGlowBlock( tmp_squeezed_in_dim, squeezed_cond_dim, num_flows_inblock, wn_num_conv1d, wn_dim_channel, wn_kernel_size, flag_affine, flag_split = flag_split, flag_final_block=flag_final_block, split_dim = early_hid_dim, flag_affine_block_legacy = flag_affine_block_legacy)) # multi-scale approach will extract a few dimensions for next flow # thus, input dimension to the next block will be this tmp_squeezed_in_dim = tmp_squeezed_in_dim - early_hid_dim self.m_flowblocks = torch_nn.ModuleList(tmp_flow_blocks) # done return def _normal_lh(self, noise): # likelihood of normal distribution on the given noise return -0.5 * np.log(2 * np.pi) - 0.5 * noise ** 2 def forward(self, y, cond): """z, neg_logp_y, logp_z, logdet = WaveGlow.forward(y, cond) cond -> upsample/squeeze -> | ------> | --------> | v v v y -> squeeze -> WaveGlowBlock -> WGBlock ... WGBlock -> z |-> z_1 |-> z_2 input ----- y: tensor, (batch, waveform_length, 1) cond: tensor, (batch, cond_length, 1) output ------ z: list of tensors, [z_1, z_2, ... ,z ] in figure above neg_logp_y: scalar, - log p(y) logp_z: scalar, -log N(z), summed over one data sequence, but averaged over batch. logdet: scalar, -|det dH(.)/dy|, summed over one data sequence, but averaged over batch. If self.early_hid_dim == 0, z_1, z_2 ... will be None """ # Rather than summing the likelihood and divide it by the number of # data in the final step, we divide this factor from the likelihood # caculating by each flow step and sum the scaled likelihood. # Two methods are equivalent, but the latter may prevent numerical # overflow of the likelihood value for long sentences factor = np.prod([dim for dim in y.shape]) # waveform squeeze (batch, squeezed_length, squeezed_dim) y_squeezed = self.m_squeeze(y) squeezed_dim = y_squeezed.shape[-1] # condition feature upsampling and
"ordering": ["name"], "abstract": False, }, ), migrations.CreateModel( name="PlanUnitIntendedUse", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=255, verbose_name="Name")), ], options={ "verbose_name": "Plan unit intended use", "verbose_name_plural": "Plan unit intended uses", "ordering": ["name"], "abstract": False, }, ), migrations.CreateModel( name="PlanUnitState", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=255, verbose_name="Name")), ], options={ "verbose_name": "Plan unit state", "verbose_name_plural": "Plan unit states", "ordering": ["name"], "abstract": False, }, ), migrations.CreateModel( name="PlanUnitType", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=255, verbose_name="Name")), ], options={ "verbose_name": "Plan unit type", "verbose_name_plural": "Plan unit types", "ordering": ["name"], "abstract": False, }, ), migrations.CreateModel( name="PlotDivisionState", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=255, verbose_name="Name")), ], options={ "verbose_name": "Plot divisions state", "verbose_name_plural": "Plot division states", "ordering": ["name"], "abstract": False, }, ), migrations.CreateModel( name="ReceivableType", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=255, verbose_name="Name")), ( "sap_material_code", models.CharField( blank=True, max_length=255, null=True, verbose_name="SAP material code", ), ), ( "sap_order_item_number", models.CharField( blank=True, max_length=255, null=True, verbose_name="SAP order item number", ), ), ], options={ "verbose_name": "Receivable type", "verbose_name_plural": "Receivable types", }, ), migrations.CreateModel( name="Regulation", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=255, verbose_name="Name")), ], options={ "verbose_name": "Form of regulation", "verbose_name_plural": "Forms of regulation", "ordering": ["name"], "abstract": False, }, ), migrations.CreateModel( name="Rent", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("deleted", models.DateTimeField(editable=False, null=True)), ( "created_at", models.DateTimeField( auto_now_add=True, verbose_name="Time created" ), ), ( "modified_at", models.DateTimeField(auto_now=True, verbose_name="Time modified"), ), ( "type", enumfields.fields.EnumField( enum=leasing.enums.RentType, max_length=30, verbose_name="Type" ), ), ( "cycle", enumfields.fields.EnumField( blank=True, enum=leasing.enums.RentCycle, max_length=30, null=True, verbose_name="Cycle", ), ), ( "index_type", enumfields.fields.EnumField( blank=True, enum=leasing.enums.IndexType, max_length=30, null=True, verbose_name="Index type", ), ), ( "due_dates_type", enumfields.fields.EnumField( blank=True, enum=leasing.enums.DueDatesType, max_length=30, null=True, verbose_name="Due dates type", ), ), ( "due_dates_per_year", models.PositiveIntegerField( blank=True, null=True, verbose_name="Due dates per year" ), ), ( "elementary_index", models.PositiveIntegerField( blank=True, null=True, verbose_name="Elementary index" ), ), ( "index_rounding", models.PositiveIntegerField( blank=True, null=True, verbose_name="Index rounding" ), ), ( "x_value", models.PositiveIntegerField( blank=True, null=True, verbose_name="X value" ), ), ( "y_value", models.PositiveIntegerField( blank=True, null=True, verbose_name="Y value" ), ), ( "y_value_start", models.DateField( blank=True, null=True, verbose_name="Y value start date" ), ), ( "equalization_start_date", models.DateField( blank=True, null=True, verbose_name="Equalization start date" ), ), ( "equalization_end_date", models.DateField( blank=True, null=True, verbose_name="Equalization end date" ), ), ( "amount", models.DecimalField( blank=True, decimal_places=2, max_digits=10, null=True, verbose_name="Amount", ), ), ("note", models.TextField(blank=True, null=True, verbose_name="Note")), ( "start_date", models.DateField(blank=True, null=True, verbose_name="Start date"), ), ( "end_date", models.DateField(blank=True, null=True, verbose_name="End date"), ), ( "seasonal_start_day", models.PositiveIntegerField( blank=True, null=True, validators=[ django.core.validators.MinValueValidator(1), django.core.validators.MaxValueValidator(31), ], verbose_name="Seasonal start day", ), ), ( "seasonal_start_month", models.PositiveIntegerField( blank=True, null=True, validators=[ django.core.validators.MinValueValidator(1), django.core.validators.MaxValueValidator(12), ], verbose_name="Seasonal start month", ), ), ( "seasonal_end_day", models.PositiveIntegerField( blank=True, null=True, validators=[ django.core.validators.MinValueValidator(1), django.core.validators.MaxValueValidator(31), ], verbose_name="Seasonal end day", ), ), ( "seasonal_end_month", models.PositiveIntegerField( blank=True, null=True, validators=[ django.core.validators.MinValueValidator(1), django.core.validators.MaxValueValidator(12), ], verbose_name="Seasonal end month", ), ), ( "manual_ratio", models.DecimalField( blank=True, decimal_places=2, max_digits=10, null=True, verbose_name="Manual ratio", ), ), ( "manual_ratio_previous", models.DecimalField( blank=True, decimal_places=2, max_digits=10, null=True, verbose_name="Manual ratio (previous)", ), ), ( "lease", models.ForeignKey( on_delete=django.db.models.deletion.PROTECT, related_name="rents", to="leasing.Lease", verbose_name="Lease", ), ), ], options={"verbose_name": "Rent", "verbose_name_plural": "Rents"}, ), migrations.CreateModel( name="RentAdjustment", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("deleted", models.DateTimeField(editable=False, null=True)), ( "created_at", models.DateTimeField( auto_now_add=True, verbose_name="Time created" ), ), ( "modified_at", models.DateTimeField(auto_now=True, verbose_name="Time modified"), ), ( "type", enumfields.fields.EnumField( enum=leasing.enums.RentAdjustmentType, max_length=30, verbose_name="Type", ), ), ( "start_date", models.DateField(blank=True, null=True, verbose_name="Start date"), ), ( "end_date", models.DateField(blank=True, null=True, verbose_name="End date"), ), ( "full_amount", models.DecimalField( blank=True, decimal_places=2, max_digits=10, null=True, verbose_name="Full amount", ), ), ( "amount_type", enumfields.fields.EnumField( enum=leasing.enums.RentAdjustmentAmountType, max_length=30, verbose_name="Amount type", ), ), ( "amount_left", models.DecimalField( blank=True, decimal_places=2, max_digits=10, null=True, verbose_name="Amount left", ), ), ("note", models.TextField(blank=True, null=True, verbose_name="Note")), ( "subvention_type", enumfields.fields.EnumField( blank=True, enum=leasing.enums.SubventionType, max_length=30, null=True, verbose_name="Subvention type", ), ), ( "subvention_base_percent", models.DecimalField( blank=True, decimal_places=2, max_digits=10, null=True, verbose_name="Subvention base percent", ), ), ( "subvention_graduated_percent", models.DecimalField( blank=True, decimal_places=2, max_digits=10, null=True, verbose_name="Graduated subvention percent", ), ), ( "decision", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, related_name="+", to="leasing.Decision", verbose_name="Decision", ), ), ], options={ "verbose_name": "Rent adjustment", "verbose_name_plural": "Rent adjustments", }, ), migrations.CreateModel( name="RentIntendedUse", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=255, verbose_name="Name")), ], options={ "verbose_name": "Rent intended use", "verbose_name_plural": "Rent intended uses", "ordering": ["name"], "abstract": False, }, ), migrations.CreateModel( name="ReservationProcedure", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=255, verbose_name="Name")), ], options={ "verbose_name": "Reservation procedure", "verbose_name_plural": "Reservation Procedures", "ordering": ["name"], "abstract": False, }, ), migrations.CreateModel( name="SpecialProject", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=255, verbose_name="Name")), ], options={ "verbose_name": "Special project", "verbose_name_plural": "Special projects", "ordering": ["name"], "abstract": False, }, ), migrations.CreateModel( name="StatisticalUse", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=255, verbose_name="Name")), ], options={ "verbose_name": "Statistical use", "verbose_name_plural": "Statistical uses", "ordering": ["name"], "abstract": False, }, ), migrations.CreateModel( name="SupportiveHousing", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=255, verbose_name="Name")), ], options={ "verbose_name": "Supportive housing", "verbose_name_plural": "Supportive housings", "ordering": ["name"], "abstract": False, }, ), migrations.CreateModel( name="Tenant", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("deleted", models.DateTimeField(editable=False, null=True)), ( "created_at", models.DateTimeField( auto_now_add=True, verbose_name="Time created" ), ), ( "modified_at", models.DateTimeField(auto_now=True, verbose_name="Time modified"), ), ( "share_numerator", models.PositiveIntegerField(verbose_name="Numerator"), ), ( "share_denominator", models.PositiveIntegerField(verbose_name="Denominator"), ), ( "reference", models.CharField( blank=True, max_length=35, null=True, verbose_name="Reference" ), ), ], options={"verbose_name": "Tenant", "verbose_name_plural": "Tenants"}, ), migrations.CreateModel( name="Vat", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "percent", models.IntegerField( validators=[ django.core.validators.MinValueValidator(0), django.core.validators.MaxValueValidator(100), ], verbose_name="Percent", ), ), ("start_date", models.DateField(verbose_name="Start date")), ( "end_date", models.DateField(blank=True, null=True, verbose_name="End date"), ), ], options={ "verbose_name": "VAT", "verbose_name_plural": "VATs", "ordering": ("-start_date",), }, ), migrations.CreateModel( name="UiData", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "created_at", models.DateTimeField( auto_now_add=True, verbose_name="Time created" ), ), ( "modified_at", models.DateTimeField(auto_now=True, verbose_name="Time modified"), ), ("key", models.CharField(max_length=255, verbose_name="Key")), ("value", models.TextField(verbose_name="Value")), ( "user", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, related_name="+", to=settings.AUTH_USER_MODEL, verbose_name="User", ), ), ], options={ "verbose_name": "UI Datum", "verbose_name_plural": "UI Data", "permissions": ( ( "edit_global_ui_data", "Can create, edit and delete global UI data", ), ), }, ), migrations.CreateModel( name="TenantRentShare", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("deleted", models.DateTimeField(editable=False, null=True)), ( "created_at", models.DateTimeField( auto_now_add=True, verbose_name="Time created" ), ), ( "modified_at", models.DateTimeField(auto_now=True, verbose_name="Time modified"), ), ( "share_numerator", models.PositiveIntegerField(verbose_name="Rent share numerator"), ), ( "share_denominator", models.PositiveIntegerField(verbose_name="Rent share denominator"), ), ( "intended_use", models.ForeignKey( on_delete=django.db.models.deletion.PROTECT, related_name="+", to="leasing.RentIntendedUse", verbose_name="Intended use", ), ), ( "tenant", models.ForeignKey( on_delete=django.db.models.deletion.PROTECT, related_name="rent_shares", to="leasing.Tenant", verbose_name="Tenant", ), ), ], options={ "verbose_name": "Tenant rent share", "verbose_name_plural": "Tenant rent shares", }, ), migrations.CreateModel( name="TenantContact", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("deleted", models.DateTimeField(editable=False, null=True)), ( "created_at", models.DateTimeField( auto_now_add=True, verbose_name="Time created" ), ), ( "modified_at", models.DateTimeField(auto_now=True, verbose_name="Time modified"), ), ( "type", enumfields.fields.EnumField( enum=leasing.enums.TenantContactType, max_length=255 ), ), ("start_date", models.DateField(verbose_name="Start date")), ( "end_date", models.DateField(blank=True, null=True, verbose_name="End date"), ), ( "contact", models.ForeignKey( on_delete=django.db.models.deletion.PROTECT, to="leasing.Contact", verbose_name="Contact", ), ), ( "tenant", models.ForeignKey( on_delete=django.db.models.deletion.PROTECT, to="leasing.Tenant", verbose_name="Tenant", ), ), ], options={ "verbose_name": "Tenant contact", "verbose_name_plural": "Tenant contacts", }, ), migrations.AddField( model_name="tenant", name="contacts", field=models.ManyToManyField( related_name="tenants", through="leasing.TenantContact", to="leasing.Contact", ), ), migrations.AddField( model_name="tenant", name="lease", field=models.ForeignKey( on_delete=django.db.models.deletion.PROTECT, related_name="tenants", to="leasing.Lease", verbose_name="Lease", ), ), migrations.CreateModel( name="TemporarySubvention", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "description", models.CharField( blank=True, max_length=255, null=True, verbose_name="Description", ), ), ( "subvention_percent", models.DecimalField( decimal_places=2, max_digits=10, verbose_name="Subvention percent", ), ), ( "rent_adjustment", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="temporary_subventions", to="leasing.RentAdjustment", verbose_name="Rent adjustment", ), ), ], options={ "verbose_name": "Temporary subvention (Rent adjustment)", "verbose_name_plural": "Temporary subventions (Rent adjustment)", }, ), migrations.CreateModel( name="RentDueDate", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("deleted", models.DateTimeField(editable=False, null=True)), ( "created_at", models.DateTimeField( auto_now_add=True, verbose_name="Time created" ), ), ( "modified_at", models.DateTimeField(auto_now=True, verbose_name="Time modified"), ), ( "day", models.IntegerField( validators=[ django.core.validators.MinValueValidator(1), django.core.validators.MaxValueValidator(31), ], verbose_name="Day", ), ), ( "month", models.IntegerField( validators=[ django.core.validators.MinValueValidator(1), django.core.validators.MaxValueValidator(12), ], verbose_name="Month", ), ), ( "rent", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="due_dates", to="leasing.Rent", verbose_name="Rent", ), ), ], options={ "verbose_name": "Rent due date", "verbose_name_plural": "Rent due dates", }, ), migrations.AddField( model_name="rentadjustment", name="intended_use", field=models.ForeignKey( on_delete=django.db.models.deletion.PROTECT, related_name="+", to="leasing.RentIntendedUse", verbose_name="Intended use", ), ), migrations.AddField( model_name="rentadjustment", name="rent", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="rent_adjustments", to="leasing.Rent", verbose_name="Rent", ), ), migrations.CreateModel( name="RelatedLease", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("deleted", models.DateTimeField(editable=False, null=True)), ( "created_at", models.DateTimeField( auto_now_add=True, verbose_name="Time created" ), ), ( "modified_at", models.DateTimeField(auto_now=True, verbose_name="Time modified"), ), ( "type", enumfields.fields.EnumField( blank=True, enum=leasing.enums.LeaseRelationType, max_length=30, null=True, verbose_name="Lease relation type", ), ), (
import json import mock from werkzeug.routing import Rule from doctor.docs import base from doctor.resource import ResourceAnnotation from doctor.response import Response from .base import TestCase from .types import ( Age, AgeOrColor, Auth, Color, Colors, ExampleArray, ExampleObject, ExampleObjects, ExampleObjectsAndAge, FooInstance, IsAlive, IsDeleted, Name, TwoItems) from .utils import add_doctor_attrs class TestDocsBase(TestCase): def test_prefix_lines_bytes(self): """ This is a regression test where the response was a bytes instance. """ lines = b'"Notes API v1.0.0"' prefix = ' ' expected = [' "Notes API v1.0.0"'] assert expected == base.prefix_lines(lines, prefix) def test_get_example_lines_json(self): """Tests an example when the response is valid JSON.""" headers = {'GeoIp-Country-Code': 'US'} lines = base.get_example_lines(headers, 'GET', 'http://example.com/', {}, json.dumps({'foo': 1, 'bar': 2})) assert lines == [ '', 'Example Request:', '', '.. code-block:: bash', '', ' curl http://example.com/ -X GET -H \'GeoIp-Country-Code: US\'', '', 'Example Response:', '', '.. code-block:: json', '', ' {', ' "bar": 2,', ' "foo": 1', ' }', ] def test_get_example_lines_text(self): """Tests an example when the response is *not* valid JSON.""" lines = base.get_example_lines({}, 'GET', 'http://example.com/', {}, 'hello, world!') assert lines == [ '', 'Example Request:', '', '.. code-block:: bash', '', ' curl http://example.com/ -X GET', '', 'Example Response:', '', '.. code-block:: text', '', ' hello, world!', ] def test_get_json_object_lines_for_request_with_enum(self): def mock_logic(auth: Auth, is_alive: IsAlive, name: Name=None, color: Color='blue'): pass mock_logic = add_doctor_attrs(mock_logic) annotation = ResourceAnnotation(mock_logic, 'GET') parameters = annotation.logic._doctor_signature.parameters properties = {k: p.annotation for k, p in parameters.items()} result = base.get_json_object_lines( annotation, properties, field='>json', url_params=[], request=True) assert result == [ ':>json str auth: **Required**. auth token', ':>json bool is_alive: **Required**. Is alive?', (":>json str color: Color Must be one of: `['blue', 'green']` " "(case-insensitive). (Defaults to `blue`) "), ':>json str name: name (Defaults to `None`) '] def test_get_json_object_lines_for_request(self): """ This tests that when the request kwarg is True that any required params have the description prefixed with **Required** and sorted in alphabetical order, followed by any optional parameters in alpabetical order. """ def mock_logic(auth: Auth, age: Age, is_deleted: IsDeleted=True): pass mock_logic = add_doctor_attrs(mock_logic) annotation = ResourceAnnotation(mock_logic, 'GET') parameters = annotation.logic._doctor_signature.parameters properties = {k: p.annotation for k, p in parameters.items()} url_params = ['age'] result = base.get_json_object_lines( annotation, properties, field='>json', url_params=url_params, request=True) assert result == [ ':param int age: **Required**. age', ':>json str auth: **Required**. auth token', (':>json bool is_deleted: Indicates if the item should be marked ' 'as deleted (Defaults to `True`) '), ] def test_get_json_object_lines_object_response(self): """ This tests that when our response is an object that we return all of it's documented properties. """ def mock_logic() -> ExampleObject: pass mock_logic = add_doctor_attrs(mock_logic) annotation = ResourceAnnotation(mock_logic, 'GET') result = base.get_json_lines( annotation, field='>json', route='/foo', request=False) expected = [ ':>json str str: auth token' ] assert expected == result def test_get_json_lines_logic_defines_req_obj_type(self): """ This tests that we properly generate the json params for a request when the logic function defines a `req_obj_type`. """ def mock_logic(foo: FooInstance): pass mock_logic = add_doctor_attrs(mock_logic, req_obj_type=FooInstance) annotation = ResourceAnnotation(mock_logic, 'POST') result = base.get_json_lines( annotation, field='<json', route='/foo', request=True) expected = [ ':<json int foo_id: **Required**. foo id', ':<json str foo: foo' ] assert expected == result def test_get_json_lines_array_response(self): """ Verifies we document properties of an array of objects. """ def mock_logic() -> ExampleObjects: pass mock_logic = add_doctor_attrs(mock_logic) annotation = ResourceAnnotation(mock_logic, 'GET') result = base.get_json_lines( annotation, field='<json', route='/foo') assert result == [':<jsonarr str str: auth token'] def test_get_json_lines_response_response(self): """ Verifies when our response is a doctor.response.Response instance and it has a type associated with it that we use that type to document it. """ def mock_logic() -> Response[ExampleObject]: pass mock_logic = add_doctor_attrs(mock_logic) annotation = ResourceAnnotation(mock_logic, 'GET') result = base.get_json_lines( annotation, field='>json', route='/foo', request=False) expected = [ ':>json str str: auth token' ] assert expected == result def test_get_name(self): mock_class = mock.Mock() mock_class.__module__ = 'foo.bar' mock_class.__name__ = 'baz' assert base.get_name(mock_class) == 'foo.bar.baz' mock_class.__module__ = '__builtin__' assert base.get_name(mock_class) == 'baz' class TestDocsBaseHarness(TestCase): def test_init(self): harness = base.BaseHarness('http://foo/') assert harness.url_prefix == 'http://foo' def test_get_annotation_heading_doctor_heading(self): """ This test verifies we use the _doctor_heading attribute of the handler if it is present. """ handler = mock.Mock(_doctor_heading='Test Title') route = '^foo/?$' harness = base.BaseHarness('http://foo/') actual = harness._get_annotation_heading(handler, route) assert 'Test Title' == actual def test_get_annotation_heading_class_path(self): """ This test verifies if the class path has a resource name in it, that we use it for the heading. e.g. class <api.handlers.foo_bar.FooListHandler> becomes `Foo Bar` """ handler = mock.Mock(spec_set=base.BaseHarness) handler.__str__ = mock.Mock( return_value='<class api.foo_bar.FooBarListHandler>') route = '^foo_bar/?$' harness = base.BaseHarness('http://foo/') actual = harness._get_annotation_heading(handler, route) expected = 'Foo Bar' assert expected == actual def test_get_annotation_heading_generic_handlers(self): """ This test verifies if our handlers are not in their own resource modules that we get the heading from the handler class name. e.g. class <api.handlers.handlers.FooBarListHandler> becomes `Foo Bar` """ handler = mock.Mock(spec_set=base.BaseHarness) handler.__str__ = mock.Mock( return_value='<class api.handlers.FooBarListHandler>') route = '^foo_bar/?$' harness = base.BaseHarness('http://foo/') actual = harness._get_annotation_heading(handler, route) expected = 'Foo Bar' assert expected == actual def test_get_annotation_heading_class_name_only(self): """ This test verifies that if our handler has no path and is just the class name that we get the heading from the name. e.g. class <FooBarListHandler> becomes `Foo Bar` """ handler = mock.Mock(spec_set=base.BaseHarness) handler.__str__ = mock.Mock( return_value='<class FooBarListHandler>') route = '^foo_bar/?$' harness = base.BaseHarness('http://foo/') actual = harness._get_annotation_heading(handler, route) expected = 'Foo Bar' assert expected == actual def test_get_annotation_heading_class_path_internal(self): """ This test verifies the path where the class path has the resource name in it and it's an internal route. """ handler = mock.Mock(spec_set=base.BaseHarness) handler.__str__ = mock.Mock( return_value='<class api.foo_bar.InternalFooBarListHandler>') route = '^internal/r/foo_bar/?$' harness = base.BaseHarness('http://foo/') actual = harness._get_annotation_heading(handler, route) expected = 'Foo Bar (Internal)' assert expected == actual @mock.patch('doctor.docs.base.hasattr') def test_get_annotation_heading_class_name_only_internal(self, mock_has): """ This test verifies the path where our handler has no path and just the class name and that class is internal. """ mock_has.return_value = False handler = mock.MagicMock(spec_set=base.BaseHarness) handler.__str__ = mock.Mock( return_value='<class InternalFooBarListHandler>') route = '^/internal/foo_bar/?$' harness = base.BaseHarness('http://foo/') actual = harness._get_annotation_heading(handler, route) expected = 'Foo Bar (Internal)' assert expected == actual def test_get_example_values_get_http_method_with_list_and_dict_vals(self): """ This test verifies if the route we are generating example values for is a GET endpoint and the example values are lists or dicts, that we json.dumps them when they are returned. If the HTTP method is any other method, they will be returned as normal lists or dicts. """ def mock_logic(e: ExampleArray, f: ExampleObject): pass mock_logic = add_doctor_attrs(mock_logic) route = Rule('/foo/bar/') annotation = ResourceAnnotation(mock_logic, 'GET') harness = base.BaseHarness('http://foo/bar/') example_values = harness._get_example_values(route, annotation) expected = { 'e': json.dumps(['ex', 'array']), 'f': json.dumps({'str': 'ex str'}), } assert expected == example_values # Change the http method to something other than GET, they should # not be json dumped. annotation.http_method = 'POST' example_values = harness._get_example_values(route, annotation) expected = { 'e': ['ex', 'array'], 'f': {'str': 'ex str'}, } assert expected == example_values def test_get_example_values_when_logic_defines_req_obj_type(self): """ This tests that we generate example values appropriately when the route defineds a req_obj_type which will pass all request params as that object instance to the logic function. If a req_obj_type was not defined for the logic, it would expect the json body to look like: { "foo": { "foo": "foo", "foo_id": 1 } } Defining a req_obj_type tells the code that the request body should contain those attributes rather than a sub-key within the request. """ def mock_logic(foo: FooInstance): pass mock_logic = add_doctor_attrs(mock_logic, req_obj_type=FooInstance) route = Rule('/foo/bar/') annotation = ResourceAnnotation(mock_logic, 'POST') harness = base.BaseHarness('http://foo/bar/') example_values = harness._get_example_values(route, annotation) expected = { 'foo': 'foo', 'foo_id': 1, } assert expected == example_values def test_class_name_to_resource_name(self): tests = ( # (input, expected) ('Foo', 'Foo'), ('FooBar', 'Foo Bar'), ('FooV1Bar', 'Foo V1 Bar'), ('Reallylongnamewithnoothercase', 'Reallylongnamewithnoothercase'), ('HTTPResponse', 'HTTP Response'), ) for arg, expected in tests: assert expected == base.class_name_to_resource_name(arg) @mock.patch.dict('doctor.docs.base.ALL_RESOURCES', {'An Object': ExampleObject}) def test_get_resource_object_doc_lines(self): actual = base.get_resource_object_doc_lines() expected = [ 'Resource Objects', '----------------', '.. _resource-an-object:', '', 'An Object', '#########', 'ex description f', '', 'Attributes', '**********', '* **str** (*str*) - auth token', '', 'Example', '*******', '.. code-block:: json', '', ' {', ' "str": "ex str"', ' }' ] assert expected == actual @mock.patch.dict('doctor.docs.base.ALL_RESOURCES', {}) def test_get_resource_object_doc_lines_no_resources(self): """ This test verifies if we have no
# -*- coding: utf-8 -*- """Unit test for the actions module. Copyright (c) 2017 carlosperate https://github.com/carlosperate/ Licensed under the Apache License, Version 2.0 (the "License"): http://www.apache.org/licenses/LICENSE-2.0 """ from __future__ import unicode_literals, absolute_import, print_function import os import gc import sys import shutil import codecs import unittest # Python 2 and 3 compatibility imports try: from mock import patch, MagicMock except ImportError: from unittest.mock import patch, MagicMock # This package modules try: import ardublocklyserver.actions as actions except ImportError: file_dir = os.path.dirname(os.path.realpath(__file__)) package_dir = os.path.dirname(os.path.dirname(file_dir)) sys.path.insert(0, package_dir) import ardublocklyserver.actions as actions from ardublocklyserver.compilersettings import ServerCompilerSettings class ActionsTestCase(unittest.TestCase): """Tests for actions module.""" settings = None temp_folder = None # # Test fixtures # @classmethod def setUpClass(cls): """Create a temporary folder to play round.""" cls.temp_folder = os.path.join( os.path.abspath(os.path.dirname(__file__)), 'TestTemp_actions') if os.path.isdir(cls.temp_folder): raise Exception('Directory %s already exists.' % cls.temp_folder) os.makedirs(cls.temp_folder) # Create settings file and check it's a new instance by looking at path cls.settings = ServerCompilerSettings(cls.temp_folder) if cls.temp_folder not in cls.settings.get_settings_file_path(): raise Exception('Settings file not created in temp folder:\n' '\t%s' % cls.settings.get_settings_file_path()) @classmethod def tearDownClass(cls): """Deletes the previously created temporary folder.""" cls.settings._drop() del cls.settings cls.settings = None gc.collect() if os.path.isdir(cls.temp_folder): shutil.rmtree(cls.temp_folder) def setUp(self): """Ensure the temp folder and settings file exists.""" if not os.path.isdir(self.__class__.temp_folder): os.makedirs(self.__class__.temp_folder) # Create settings file in the TestTemp_actions folder self.settings.set_default_settings() def tearDown(self): """Delete the temp folder and any files created inside.""" if os.path.isdir(self.__class__.temp_folder): shutil.rmtree(self.__class__.temp_folder) # # Command line tests # @patch('ardublocklyserver.compilersettings.os.path.isfile') @patch('ardublocklyserver.actions.subprocess.Popen', autospec=True) @patch.object(actions.ServerCompilerSettings, '__new__') def test_load_arduino_cli_open( self, mock_settings, mock_popen, mock_isfile): """ Tests that a compiler path and arduino sketch path can be set and that a command line can be launched to open the sketch in the Arduino IDE. """ sketch_path = os.path.join(self.temp_folder, 'sketch.ino') compiler_dir = 'whatever/arduino' mock_settings.return_value.compiler_dir = compiler_dir mock_popen.return_value.communicate.return_value = ('out1', 'out2') mock_isfile.return_value = True mock_settings.return_value.load_ide_option = 'open' success, ide_mode, std_out, err_out, exit_code = \ actions.load_arduino_cli(sketch_path) mock_popen.assert_called_with([compiler_dir, sketch_path], shell=False) self.assertTrue(success) self.assertEqual(ide_mode, 'open') self.assertNotEqual(std_out, 'out1') self.assertNotEqual(err_out, 'out2') self.assertEqual(exit_code, 0) @patch('ardublocklyserver.compilersettings.os.path.isfile') @patch('ardublocklyserver.actions.subprocess.Popen', autospec=True) @patch.object(actions.ServerCompilerSettings, '__new__') def test_load_arduino_cli_verify( self, mock_settings, mock_popen, mock_isfile): """ Tests that a compiler path and arduino sketch path can be set and that a command line can be launched to open the sketch in the Arduino IDE. """ sketch_path = os.path.join(self.temp_folder, 'sketch.ino') compiler_dir = 'whatever/arduino' board_flag = 'whatever:flag' mock_settings.return_value.compiler_dir = compiler_dir mock_settings.return_value.get_arduino_board_flag = MagicMock() mock_settings.return_value.get_arduino_board_flag.return_value =\ board_flag mock_popen.return_value.communicate.return_value =\ ('out1'.encode('latin-1'), 'out2'.encode('latin-1')) mock_popen.return_value.returncode = 0 mock_isfile.return_value = True mock_settings.return_value.load_ide_option = 'verify' success, ide_mode, std_out, err_out, exit_code = \ actions.load_arduino_cli(sketch_path) mock_popen.assert_called_with( [compiler_dir, sketch_path, '--board', board_flag, '--verify'], shell=False, stderr=-1, stdout=-1) self.assertTrue(success) self.assertEqual(ide_mode, 'verify') self.assertEqual(std_out, 'out1') self.assertEqual(err_out, 'out2') self.assertEqual(exit_code, 0) @patch('ardublocklyserver.compilersettings.os.path.isfile') @patch('ardublocklyserver.actions.subprocess.Popen', autospec=True) @patch.object(actions.ServerCompilerSettings, '__new__') def test_load_arduino_cli_upload( self, mock_settings, mock_popen, mock_isfile): """ Tests that a compiler path and arduino sketch path can be set and that a command line can be launched to open the sketch in the Arduino IDE. """ sketch_path = os.path.join(self.temp_folder, 'sketch.ino') compiler_dir = 'whatever/arduino' board_flag = 'whatever:flag' port = 'whatever_port' mock_settings.return_value.compiler_dir = compiler_dir mock_settings.return_value.get_arduino_board_flag = MagicMock() mock_settings.return_value.get_arduino_board_flag.return_value = \ board_flag mock_settings.return_value.get_serial_port_flag = MagicMock() mock_settings.return_value.get_serial_port_flag.return_value = port mock_popen.return_value.communicate.return_value = \ ('out1'.encode('latin-1'), 'out2'.encode('latin-1')) mock_popen.return_value.returncode = 0 mock_isfile.return_value = True mock_settings.return_value.load_ide_option = 'upload' success, ide_mode, std_out, err_out, exit_code = \ actions.load_arduino_cli(sketch_path) mock_popen.assert_called_with( [compiler_dir, sketch_path, '--upload', '--port', port, '--board', board_flag], shell=False, stderr=-1, stdout=-1) self.assertTrue(success) self.assertEqual(ide_mode, 'upload') self.assertEqual(std_out, 'out1') self.assertEqual(err_out, 'out2') self.assertEqual(exit_code, 0) @unittest.skip('Need to solve multiple locale std out issue first') @patch('ardublocklyserver.compilersettings.os.path.isfile') @patch('ardublocklyserver.actions.subprocess.Popen', autospec=True) @patch.object(actions.ServerCompilerSettings, '__new__') def test_load_arduino_cli_upload_unicode( self, mock_settings, mock_popen, mock_isfile): sketch_path = os.path.join(self.temp_folder, 'sketch.ino') compiler_dir = 'いろはにほへとちり' board_flag = 'whatever:flag' port = 'whatever_port' mock_settings.return_value.compiler_dir = compiler_dir mock_settings.return_value.get_arduino_board_flag = MagicMock() mock_settings.return_value.get_arduino_board_flag.return_value = \ board_flag mock_settings.return_value.get_serial_port_flag = MagicMock() mock_settings.return_value.get_serial_port_flag.return_value = port mock_popen.return_value.communicate.return_value = \ ('Γαζέες καὶ μυρτιὲς', 'Âne ex aéquo au whist') mock_popen.return_value.returncode = 0 mock_isfile.return_value = True mock_settings.return_value.load_ide_option = 'upload' success, ide_mode, std_out, err_out, exit_code = \ actions.load_arduino_cli(sketch_path) mock_popen.assert_called_with( [compiler_dir, sketch_path, '--upload', '--port', port, '--board', board_flag], shell=False, stderr=-1, stdout=-1) self.assertTrue(success) self.assertEqual(ide_mode, 'upload') self.assertEqual(std_out, 'out1') self.assertEqual(err_out, 'out2') self.assertEqual(exit_code, 0) def test_load_arduino_cli_sketch_path_invalid(self): invalid_sketch_path = os.path.join(self.temp_folder, 'bad.ino') success, ide_mode, std_out, err_out, exit_code = \ actions.load_arduino_cli(invalid_sketch_path) self.assertFalse(success) self.assertEqual(ide_mode, 'unknown') self.assertEqual(std_out, '') self.assertTrue(invalid_sketch_path in err_out) self.assertEqual(exit_code, 52) @patch('ardublocklyserver.compilersettings.os.path.isfile') @patch.object(actions.ServerCompilerSettings, '__new__') def test_load_arduino_cli_compiler_dir_invalid( self, mock_settings, mock_isfile): mock_settings.return_value.compiler_dir = None mock_isfile.return_value = True success, ide_mode, std_out, err_out, exit_code = \ actions.load_arduino_cli(os.path.join(self.temp_folder, 's.ino')) self.assertFalse(success) self.assertEqual(ide_mode, 'unknown') self.assertEqual(std_out, '') self.assertEqual(exit_code, 53) @patch('ardublocklyserver.compilersettings.os.path.isfile') @patch.object(actions.ServerCompilerSettings, '__new__') def test_load_arduino_cli_load_ide_invalid( self, mock_settings, mock_isfile): mock_settings.return_value.compiler_dir = 'compiler_dir' mock_settings.return_value.load_ide_option = None mock_isfile.return_value = True success, ide_mode, std_out, err_out, exit_code = \ actions.load_arduino_cli(os.path.join(self.temp_folder, 's.ino')) self.assertFalse(success) self.assertEqual(ide_mode, 'unknown') self.assertEqual(std_out, '') self.assertEqual(exit_code, 54) @patch('ardublocklyserver.compilersettings.os.path.isfile') @patch.object(actions.ServerCompilerSettings, '__new__') def test_load_arduino_cli_board_flag_invalid( self, mock_settings, mock_isfile): mock_isfile.return_value = True mock_settings.return_value.compiler_dir = 'compiler_dir' mock_settings.return_value.load_ide_option = 'upload' mock_settings.return_value.get_arduino_board_flag = MagicMock() mock_settings.return_value.get_arduino_board_flag.return_value = None success, ide_mode, std_out, err_out, exit_code = \ actions.load_arduino_cli(os.path.join(self.temp_folder, 's.ino')) self.assertFalse(success) self.assertEqual(ide_mode, 'unknown') self.assertEqual(std_out, '') self.assertEqual(exit_code, 56) @patch('ardublocklyserver.compilersettings.os.path.isfile') @patch.object(actions.ServerCompilerSettings, '__new__') def test_load_arduino_cli_port_flag_invalid( self, mock_settings, mock_isfile): mock_isfile.return_value = True mock_settings.return_value.compiler_dir = 'compiler_dir' mock_settings.return_value.load_ide_option = 'upload' mock_settings.return_value.get_arduino_board_flag = MagicMock() mock_settings.return_value.get_arduino_board_flag.return_value = 'avr' mock_settings.return_value.get_serial_port_flag = MagicMock() mock_settings.return_value.get_serial_port_flag.return_value = None success, ide_mode, std_out, err_out, exit_code = \ actions.load_arduino_cli(os.path.join(self.temp_folder, 's.ino')) self.assertFalse(success) self.assertEqual(ide_mode, 'unknown') self.assertEqual(std_out, '') self.assertEqual(exit_code, 55) @patch('ardublocklyserver.compilersettings.os.path.isfile') @patch('ardublocklyserver.actions.subprocess.Popen', autospec=True) @patch.object(actions.ServerCompilerSettings, '__new__') def test_load_arduino_cli_exit_code_error( self, mock_settings, mock_popen, mock_isfile): sketch_path = os.path.join(self.temp_folder, 'sketch.ino') compiler_dir = 'whatever/arduino' board_flag = 'whatever:flag' mock_settings.return_value.compiler_dir = compiler_dir mock_settings.return_value.get_arduino_board_flag = MagicMock() mock_settings.return_value.get_arduino_board_flag.return_value =\ board_flag mock_popen.return_value.communicate.return_value =\ ('out1'.encode('latin-1'), 'out2'.encode('latin-1')) mock_popen.return_value.returncode = 2 mock_isfile.return_value = True mock_settings.return_value.load_ide_option = 'verify' success, ide_mode, std_out, err_out, exit_code = \ actions.load_arduino_cli(sketch_path) self.assertFalse(success) self.assertEqual(ide_mode, 'verify') self.assertEqual(std_out, 'out1') self.assertTrue(err_out, 'out2') self.assertEqual(exit_code, 2) @patch('ardublocklyserver.compilersettings.os.path.isfile') @patch('ardublocklyserver.actions.subprocess.Popen', autospec=True) @patch.object(actions.ServerCompilerSettings, '__new__') def test_load_arduino_cli_exit_code_50( self, mock_settings, mock_popen, mock_isfile): sketch_path = os.path.join(self.temp_folder, 'sketch.ino') compiler_dir = 'whatever/arduino' board_flag = 'whatever:flag' mock_settings.return_value.compiler_dir = compiler_dir mock_settings.return_value.get_arduino_board_flag = MagicMock() mock_settings.return_value.get_arduino_board_flag.return_value =\ board_flag mock_popen.return_value.communicate.return_value =\ ('out1'.encode('latin-1'), 'out2'.encode('latin-1')) mock_popen.return_value.returncode = 51 # Will be replaced to 50 mock_isfile.return_value = True mock_settings.return_value.load_ide_option = 'verify' success, ide_mode, std_out, err_out, exit_code = \ actions.load_arduino_cli(sketch_path) self.assertFalse(success) self.assertEqual(ide_mode, 'verify') self.assertEqual(std_out, 'out1') self.assertTrue('51' in err_out) self.assertEqual(exit_code, 50) def test_load_arduino_cli_invalid(self): pass # # Tests sketch creation # @patch('ardublocklyserver.actions.create_sketch_from_string') @patch('ardublocklyserver.actions.load_arduino_cli') def test_arduino_ide_send_code_valid( self, mock_load_arduino_cli, mock_create_sketch_from_string): """Test a valid input to arduino_ide_send_code function. Because this function basically bridges two functions also tested here we only need to test they've been called correctly. :param mock_load_arduino_cli: Mock for load_arduino_cli() :param mock_create_sketch_from_string: Mock for create_sketch_from_string() :return: None. """ actions.arduino_ide_send_code('dummy sketch content here') self.assertTrue(mock_create_sketch_from_string.called) self.assertTrue(mock_load_arduino_cli.called) @patch('ardublocklyserver.actions.create_sketch_from_string') @patch('ardublocklyserver.actions.load_arduino_cli') def test_arduino_ide_send_code_invalid( self, mock_load_arduino_cli, mock_create_sketch_from_string): """Test an error occurring inside arduino_ide_send_code function call. Because this function basically bridges two functions also tested here we only need to test the error condiction caused if the create_sketch_from_string() function fails. :param mock_load_arduino_cli: Mock for load_arduino_cli() :param mock_create_sketch_from_string: Mock for create_sketch_from_string() :return: None. """ mock_create_sketch_from_string.return_value = None success, ide_mode, std_out, err_out, exit_code = \ actions.arduino_ide_send_code('dummy sketch content here') self.assertTrue(mock_create_sketch_from_string.called) self.assertFalse(mock_load_arduino_cli.called) self.assertFalse(success) self.assertEqual(ide_mode, 'unknown') self.assertIsNone(std_out) self.assertIsNone(err_out) self.assertEqual(exit_code, 51) @patch.object(actions.ServerCompilerSettings, '__new__') def test_create_sketch_from_string_file(self, mock_settings): """Test the create_sketch_from_string creates the file correctly. :param mock_settings: Mock for ServerCompilerSettings class. :return: None. """ sketch_name = 'test_sketch' mock_settings.return_value.sketch_dir = self.temp_folder mock_settings.return_value.sketch_name = sketch_name sketch_path = os.path.join( self.temp_folder, sketch_name, sketch_name + '.ino') self.assertFalse(os.path.exists(sketch_path)) returned_path = actions.create_sketch_from_string('') self.assertEqual(returned_path, sketch_path) self.assertTrue(os.path.exists(returned_path)) @patch.object(actions.ServerCompilerSettings, '__new__') def test_create_sketch_from_string_content(self, mock_settings): """Test the create_sketch_from_string creates the file correctly. :param mock_settings: Mock for ServerCompilerSettings class. :return: None. """ sketch_code = 'いろはにほへとちり Γαζέες καὶ μυρτς Âne aéquo au whist' mock_settings.return_value.sketch_dir = self.temp_folder mock_settings.return_value.sketch_name = 'test_sketch' returned_path = actions.create_sketch_from_string(sketch_code) with codecs.open(returned_path, 'r', encoding='utf-8') as sketch: self.assertEqual(sketch.read(), sketch_code) # # Tests for getting and setting compiler directory # @patch('ardublocklyserver.compilersettings.os.path.isfile') def test_set_compiler_path_valid(self, mock_isfile): """Test set_compiler_path function changes the compiler Setting. :param mock_isfile: Mock for os.path.isfile() inside accessor. :return: None. """ old_compiler_dir = self.settings.compiler_dir new_compiler_dir = os.path.join(self.temp_folder, 'arduino_debug.exe') self.assertNotEqual(old_compiler_dir, new_compiler_dir) mock_isfile.return_value = True returned_path = actions.set_compiler_path(new_compiler_dir) self.assertEqual(returned_path, self.settings.compiler_dir) self.assertNotEqual(returned_path, old_compiler_dir) self.assertNotEqual(self.settings.compiler_dir, old_compiler_dir) # Using in as each OSs will dealt with compiler path differently self.assertTrue(new_compiler_dir in returned_path) self.assertTrue(new_compiler_dir in self.settings.compiler_dir) @patch('ardublocklyserver.compilersettings.os.path.isfile') def test_set_compiler_path_invalid(self, mock_isfile): """Test invalid file path send to set_compiler_path function. Tests that the set_compiler_path() function does not edit the settings based on a entered directory that is not valid. :param mock_isfile: Mock for os.path.isfile(). :return: None. """ old_compiler_dir = self.settings.compiler_dir new_compiler_dir = os.path.join(self.temp_folder, 'arduino_debug.exe') self.assertNotEqual(old_compiler_dir, new_compiler_dir) mock_isfile.return_value = False returned_path = actions.set_compiler_path(new_compiler_dir) self.assertEqual(returned_path, old_compiler_dir) self.assertEqual(returned_path, self.settings.compiler_dir) self.assertNotEqual(returned_path, new_compiler_dir) self.assertEqual(self.settings.compiler_dir, old_compiler_dir) self.assertNotEqual(self.settings.compiler_dir, new_compiler_dir) @patch.object(actions.ServerCompilerSettings, '__new__') def test_get_compiler_path_valid(self, mock_settings): """Test getting a valid compiler path in get_compiler_path. :param mock_settings: Mock for ServerCompilerSettings constructor. :return:
**func_dict['kwargs']) for it, batch in self.iter_batch(enumerate(train_loader)): for func_dict in self._schedule[self._begin_iter_].values(): func_dict['func'](*func_dict['args'], **func_dict['kwargs']) net.train(True) batch = utils.batch_to_device(batch, device=device) solver.zero_grad() loss = net.train_procedure(batch, *args, **kwargs) if not (T.isnan(loss) or T.isinf(loss)): loss.backward() else: raise ValueError('NaN or Inf encountered. Training failed!') solver.step(closure) if scheduler is not None and scheduler_iter: scheduler.step() for func_dict in self._schedule[self._end_iter_].values(): func_dict['func'](*func_dict['args'], **func_dict['kwargs']) if valid_freq and hasattr(net, 'evaluate'): if self.iter % valid_freq == 0: net.eval() with T.set_grad_enabled(False): for itt, batch in enumerate(eval_loader): batch = utils.batch_to_device(batch, device=device) try: net.eval_procedure(batch, *args, **kwargs) except NotImplementedError: root_logger.exception('An evaluation procedure must be specified') raise if scheduler is not None and not scheduler_iter: scheduler.step() for func_dict in self._schedule[self._end_epoch_].values(): func_dict['func'](*func_dict['args'], **func_dict['kwargs']) def _atexit(self): if self._initialized: self.flush() plt.close() if self.writer is not None: self.writer.flush() self.writer.close() self._q.join() @check_path_init def dump_rep(self, name, obj): """ saves a string representation of the given object. :param name: name of the txt file containing the string representation. :param obj: object to saved as string representation. :return: ``None``. """ with open(os.path.join(self.current_folder, name + '.txt'), 'w') as outfile: outfile.write(str(obj)) outfile.close() @check_path_init def dump_model(self, network, use_tensorboard=False, *args, **kwargs): """ saves a string representation of the given neural net. :param network: neural net to be saved as string representation. :param use_tensorboard: use tensorboard to save `network`'s graph. :param args: additional arguments to Tensorboard's :meth:`SummaryWriter` when `use_tensorboard` is ``True``. :param kwargs: additional keyword arguments to Tensorboard's :meth:`SummaryWriter` when `~se_tensorboard` is ``True``. :return: ``None``. """ assert isinstance(network, ( nn.Module, nn.Sequential)), 'network must be an instance of Module or Sequential, got {}'.format( type(network)) self.dump_rep('network.txt', network) if use_tensorboard: self.writer.add_graph(network, *args, **kwargs) @check_path_init def backup(self, files_or_folders, ignore=None): """ saves a copy of the given files to :attr:`~current_folder`. Accepts a str or list/tuple of file or folder names. You can backup your codes and/or config files for later use. :param files_or_folders: file to be saved. :param ignore: files or patterns to ignore. Default: ``None``. :return: ``None``. """ assert isinstance(files_or_folders, (str, list, tuple)), \ 'unknown type of \'files_or_folders\'. Expect list, tuple or string, got {}'.format(type(files_or_folders)) files_or_folders = (files_or_folders,) if isinstance(files_or_folders, str) else files_or_folders if ignore is None: ignore = () # filter ignored files import fnmatch to_backup = [] for f in files_or_folders: if not any(fnmatch.fnmatch(f, p) for p in ignore): to_backup.append(f) for f in to_backup: try: if os.path.isfile(f): copyfile(f, '%s/%s' % (self.file_folder, os.path.split(f)[-1])) elif os.path.isdir(f): copytree(f, '%s/%s' % (self.file_folder, os.path.split(f)[-1])) except FileNotFoundError: root_logger.warning('No such file or directory: %s' % f) @utils.deprecated(backup, '1.1.0') def copy_files(self, files): self.backup(files) @standardize_name def add_hparam(self, name: str, value): if name not in self._options[self._hparams].keys(): if isinstance(value, T.Tensor): value = utils.to_numpy(value) self._options[self._hparams][name] = value @standardize_name def add_metric(self, name: str, value): if name not in self._options[self._hparam_metrics].keys(): if isinstance(value, T.Tensor): value = utils.to_numpy(value) self._options[self._hparam_metrics][name] = value @standardize_name def plot(self, name: str, value, smooth=0, filter_outliers=True, **kwargs): """ schedules a plot of scalar value. A :mod:`matplotlib` figure will be rendered and saved every :attr:`~print_freq` iterations. :param name: name of the figure to be saved. Must be unique among plots. :param value: scalar value to be plotted. :param smooth: a value between ``0`` and ``1`` to define the smoothing window size. See :func:`~neuralnet_pytorch.utils.numpy_utils.smooth`. Default: ``0``. :param filter_outliers: whether to filter out outliers in plot. This affects only the plot and not the raw statistics. Default: True. :param kwargs: additional options to tensorboard. :return: ``None``. """ self._options[name]['smooth'] = smooth self._options[name]['filter_outliers'] = filter_outliers if isinstance(value, T.Tensor): value = utils.to_numpy(value) self._num_since_last_flush[name][self.iter] = value if self.writer is not None: prefix = kwargs.pop('prefix', 'scalar/') self.writer.add_scalar(prefix + name.replace(' ', '-'), value, global_step=self.iter, **kwargs) def plot_hparam(self): try: self.writer.add_hparams(dict(self._options[self._hparams]), dict(self._options[self._hparam_metrics])) except AttributeError: print('Tensorboard must be initialized to use this feature') raise @standardize_name def plot_matrix(self, name: str, value, labels=None, show_values=False): """ plots the given matrix with colorbar and labels if provided. :param name: name of the figure to be saved. Must be unique among plots. :param value: matrix value to be plotted. :param labels: labels of each axis. Can be a list/tuple of strings or a nested list/tuple. Defaults: None. :return: ``None``. """ self._options[name]['labels'] = labels self._options[name]['show_values'] = show_values if isinstance(value, T.Tensor): value = utils.to_numpy(value) self._mat_since_last_flush[name] = value self._mat_since_beginning[name][self.iter] = value @standardize_name def scatter(self, name: str, value, latest_only=False, **kwargs): """ schedules a scattor plot of (a batch of) points. A 3D :mod:`matplotlib` figure will be rendered and saved every :attr:`~print_freq` iterations. :param name: name of the figure to be saved. Must be unique among plots. :param value: 2D or 3D tensor to be plotted. The last dim should be 3. :param latest_only: whether to save only the latest statistics or keep everything from beginning. :param kwargs: additional options to tensorboard. :return: ``None``. """ self._options[name]['latest_only'] = latest_only if isinstance(value, T.Tensor): value = utils.to_numpy(value) if len(value.shape) == 2: value = value[None] self._points_since_last_flush[name][self.iter] = value if self.writer is not None: self.writer.add_mesh(name, value, global_step=self.iter, **kwargs) @standardize_name def imwrite(self, name: str, value, latest_only=False, **kwargs): """ schedules to save images. The images will be rendered and saved every :attr:`~print_freq` iterations. There are some assumptions about input data: - If the input is ``'uint8'`` it is an 8-bit image. - If the input is ``'float32'``, its values lie between ``0`` and ``1``. - If the input has 3 dims, the shape is ``[h, w, 3]`` or ``[h, w, 1]``. - If the channel dim is different from 3 or 1, it will be considered as multiple gray images. :param name: name of the figure to be saved. Must be unique among plots. :param value: 2D, 3D or 4D tensor to be plotted. The expected shape is ``(H, W)`` for 2D tensor, ``(H, W, C)`` for 3D tensor and ``(N, C, H, W)`` for 4D tensor. If the number of channels is other than 3 or 1, each channel is saved as a gray image. :param latest_only: whether to save only the latest statistics or keep everything from beginning. :param kwargs: additional options to tensorboard. :return: ``None``. """ self._options[name]['latest_only'] = latest_only if isinstance(value, T.Tensor): value = utils.to_numpy(value) if value.dtype != 'uint8': value = (255.99 * value).astype('uint8') if len(value.shape) == 3: value = np.transpose(value, (2, 0, 1))[None] elif len(value.shape) == 2: value = value[None, None] self._img_since_last_flush[name][self.iter] = value if self.writer is not None: prefix = kwargs.pop('prefix', 'image/') self.writer.add_images(prefix + name.replace(' ', '-'), value, global_step=self.iter, dataformats='NCHW') @standardize_name def hist(self, name, value, n_bins=20, latest_only=False, **kwargs): """ schedules a histogram plot of (a batch of) points. A :mod:`matplotlib` figure will be rendered and saved every :attr:`~print_freq` iterations. :param name: name of the figure to be saved. Must be unique among plots. :param value: any-dim tensor to be histogrammed. :param n_bins: number of bins of the histogram. :param latest_only: whether to save only the latest statistics or keep everything from beginning. :param kwargs: additional options to tensorboard :return: ``None``. """ self._options[name]['latest_only'] = latest_only self._options[name]['n_bins'] = n_bins if isinstance(value, T.Tensor): value = utils.to_numpy(value) self._hist_since_last_flush[name][self.iter] = value if self.writer is not None: prefix = kwargs.pop('prefix', 'hist/') self.writer.add_histogram(prefix + name.replace(' ', '-'), value, global_step=self.iter, **kwargs) def schedule(self, func, when=None, *args, **kwargs): """ uses to schedule a routine during every epoch in :meth:`~run_training`. :param func: a routine to be executed in :meth:`~run_training`. :param when: the moment when the ``func`` is executed. For the moment, choices are: ``'begin_epoch'``, ``'end_epoch'``, ``'begin_iter'``, and ``'end_iter'``. Default: ``'begin_epoch'``. :param args: additional arguments to `func`. :param kwargs: additional keyword arguments to `func`. :return: ``None`` """ assert callable(func), 'func must be callable' name = func.__name__ if when is None: when = self._begin_epoch_ self._schedule[when][name]['func'] = func self._schedule[when][name]['args'] = args self._schedule[when][name]['kwargs'] = kwargs def _plot(self, nums, prints): fig = plt.figure() plt.xlabel('iteration') for name, val in list(nums.items()): smooth = self._options[name].get('smooth') filter_outliers = self._options[name].get('filter_outliers') self._num_since_beginning[name].update(val) plt.ylabel(name) x_vals = sorted(self._num_since_beginning[name].keys()) y_vals = [self._num_since_beginning[name][x] for x in x_vals] max_, min_, med_, mean_ = np.max(y_vals), np.min(y_vals), np.median(y_vals), np.mean(y_vals) argmax_, argmin_ = np.argmax(y_vals), np.argmin(y_vals) plt.title('max: {:.8f} at iter {} min: {:.8f} at iter {} \nmedian: {:.8f} mean: {:.8f}' .format(max_, x_vals[argmax_], min_, x_vals[argmin_], med_, mean_)) x_vals, y_vals = np.array(x_vals), np.array(y_vals) y_vals_smoothed = utils.smooth(y_vals, smooth)[:x_vals.shape[0]] if smooth else y_vals plt.plot(x_vals, y_vals_smoothed)
<reponame>deaconjs/SPADE """Wrapper for BWidget family of widgets""" # The authors hereby grant permission to use, copy, modify, distribute, # and license this software and its documentation for any purpose, provided # that existing copyright notices are retained in all copies and that this # notice is included verbatim in any distributions. No written agreement, # license, or royalty fee is required for any of the authorized uses. # Modifications to this software may be copyrighted by their authors # and need not follow the licensing terms described here, provided that # the new terms are clearly indicated on the first page of each file where # they apply. # # IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY # FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES # ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY # DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE # IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE # NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR # MODIFICATIONS. # # GOVERNMENT USE: If you are acquiring this software on behalf of the # U.S. government, the Government shall have only "Restricted Rights" # in the software and related documentation as defined in the Federal # Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2). If you # are acquiring the software on behalf of the Department of Defense, the # software shall be classified as "Commercial Computer Software" and the # Government shall have only "Restricted Rights" as defined in Clause # 252.227-7013 (c) (1) of DFARs. Notwithstanding the foregoing, the # authors grant the U.S. Government and others acting in its behalf # permission to use and distribute the software in accordance with the # terms specified in this license. __author__ = "<NAME> <jepler AT unpy DOT net>" __all__ = """ Entry Label Button ArrowButton ProgressBar ScrollView Separator MainFrame LabelFrame TitleFrame PanelFrame ScrolledWindow ScrollableFrame PanedWindow ButtonBox PagesManager NoteBook Dialog StatusBar LabelEntry ComboBox SpinBox Tree ListBox MessageDialog ProgressDialog PasswordDialog SelectFont SelectColor SelectColorMenu CASCADE CHECKBUTTON COMMAND RADIOBUTTON SEPARATOR STATUS PROGRESSION LINK """.split() import Tkinter, types, os, sys, new ROOT='root' def _wrap(wrapper, oldfunc): return new.function(wrapper.func_code, wrapper.func_globals, oldfunc.func_name, wrapper.func_defaults, wrapper.func_closure) def returnswidget(f): def w(self, *args, **kw): r = f(self, *args, **kw) return self.nametowidget(str(r)) return _wrap(w, f) def makeswidget(f, t): def w(self, *args, **kw): r = str(f(self, *args, **kw)) try: return self.nametowidget(r) except KeyError: return makewidget(self, t, str(r)) return _wrap(w, f) def nametowidget(self, name): """Return the Tkinter instance of a widget identified by its Tcl name NAME.""" w = self if name[0] == '.': w = w._root() name = name[1:] while name: i = name.find('.') if i >= 0: name, tail = name[:i], name[i+1:] else: tail = '' while tail: try: w.children[name] except KeyError: j = tail.find('.') if j >= 0: name, tail = name + "." + tail[:j], tail[j+1:] else: name, tail = name + "." + tail, '' else: break w = w.children[name] name = tail return w Tkinter.Misc.nametowidget = nametowidget def makewidget(master, klass, path): path = str(path) self = types.InstanceType(klass) self._name = path[len(master._w)+1:] self._w = path self.children = {} master.children[self._name] = self self.master = master self.tk = master.tk return self _datadir = os.path.join("C:\\Users\\Dude\\Desktop\\SPADE\\Dependencies\\pybwidget-0.1.2_1.7.0") class BWidget: def _require(self, master): auto_path = master.tk.call("set", "auto_path") if not _datadir in auto_path: master.tk.call("lappend", "auto_path", _datadir) master.tk.call("package", "require", "BWidget") def __init__(self, master, cnf={}, **kw): self._require(master) Tkinter.Widget.__init__(self, master, self.__class__.__name__, cnf, kw) # Simple Widgets class Entry(BWidget, Tkinter.Entry): def invoke(self): return self.tk.call(self._w, "invoke") class Label(BWidget, Tkinter.Label): def setfocus(self): return self.tk.call(self._w, "setfocus") class Button(BWidget, Tkinter.Button): pass class ArrowButton(BWidget, Tkinter.Button): pass class ProgressBar(BWidget, Tkinter.Widget): pass class ScrollView(BWidget, Tkinter.Widget): pass class Separator(BWidget, Tkinter.Widget): pass # Manager Widgets class _Frame: def getframe(self): return self.tk.call(self._w, "getframe") getframe = makeswidget(getframe, Tkinter.Frame) class _Items: def itemcget(self, index, option): return self.tk.call(self._w, "itemcget", index, '-' + option) def itemconfigure(self, index, cnf=None, **kw): return self._configure(('itemconfigure', index), cnf, kw) LINK="link" CASCADE="cascade" CHECKBUTTON="checkbutton" COMMAND="command" RADIOBUTTON="radiobutton" SEPARATOR="separator" STATUS = "status" PROGRESSION = "progression" class MainFrame(BWidget, _Frame, Tkinter.Widget): def addindicator(self, **kw): return self.tk.call(self._w, "addindicator", *self._options(kw)) addindicator = makeswidget(addindicator, Label) def getindicator(self, i): return self.tk.call(self._w, "getindicator", i) getindicator = returnswidget(getindicator) def getmenu(self): return self.tk.call(self._w, "getmenu") getmenu = returnswidget(getmenu) def setmenustate(self, tag, state): return self.tk.call(self._w, "setmenustate", tag, state) def showstatusbar(self, name): return self.tk.call(self._w, "showstatusbar", name) def showtoolbar(self, index, bool_): return self.tk.call(self._w, "showtoolbar", index, bool_) class LabelFrame(BWidget, _Frame, Tkinter.Widget): def align(self, others): return self.tk.call("LabelFrame::align", self, *others) class TitleFrame(BWidget, _Frame, Tkinter.Frame): pass class PanelFrame(BWidget, Tkinter.Frame): pass class ScrolledWindow(BWidget, _Frame, Tkinter.Frame): def setwidget(self, child): return self.tk.call(self._w, "setwidget", child) class ScrollableFrame(BWidget, _Frame, Tkinter.Frame): def see(self, w, vert=None, horiz=None): if vert is None and horiz is None: return self.tk.call(self._w, "see", w) return self.tk.call(self._w, "see", w, vert, horiz) def xview(self, *args): return self.tk.call(self._w, "xview", *args) def yview(self, *args): return self.tk.call(self._w, "yview", *args) class PanedWindow(BWidget, Tkinter.Frame): def add(self, **kw): return self.tk.call(self._w, "add", *self._options(kw)) add = makeswidget(add, Tkinter.Frame) def getframe(self, index): return self.tk.call(self._w, "getframe", index) getframe = makeswidget(getframe, Tkinter.Frame) class ButtonBox(BWidget, _Items, Tkinter.Frame): def add(self, **kw): return self.tk.call(self._w, "add", *self._options(kw)) add = makeswidget(add, Button) def delete(self, index): self.tk.call(self._w, "delete", index) def index(self, item): self.tk.call(self._w, "index", item) def insert(self, index, *kw): return self.tk.call(self._w, "insert", index, *self._options(kw)) insert = makeswidget(insert, Button) def invoke(self, index): return self.tk.call(self._w, "invoke", index) def setfocus(self, index): return self.tk.call(self._w, "setfocus", index) class PagesManager(BWidget, Tkinter.Frame): def add(self, page): return self.tk.call(self._w, "add", page) add = makeswidget(add, Tkinter.Frame) def compute_size(self): return self.tk.call(self._w, "compute_size") def delete(self, page): return self.tk.call(self._w, "delete", page) def getframe(self, page): return self.tk.call(self._w, "delete", page) getframe = makeswidget(getframe, Tkinter.Frame) def pages(self, *args): return self.tk.call(self._w, "pages", *args) def raise_page(self, page=None): if page is None: return self.tk.call(self._w, "raise") return self.tk.call(self._w, "raise", page) class NoteBook(BWidget, Tkinter.Frame, _Items): def bindtabs(self, event, func): if callable(func): command = self.register( func ) else: command = func return self.tk.call(self._w, "bindtabs", event, command) def delete(self, page, destroyframe=True): return self.tk.call(self._w, "delete", page, destroyframe) def insert(self, index, page, **kw): return self.tk.call(self._w, "insert", index, page, *self._options(kw)) insert = makeswidget(insert, Tkinter.Frame) def move(self, page, index): return self.tk.call(self._w, "move", page, index) def see(self, page): return self.tk.call(self._w, "see", page) # XXX these methods are from PagesManager but inheritance # won't work, because NoteBook has no 'add' command def compute_size(self): return self.tk.call(self._w, "compute_size") def delete(self, page): return self.tk.call(self._w, "delete", page) def getframe(self, page): return self.tk.call(self._w, "delete", page) getframe = makeswidget(getframe, Tkinter.Frame) def pages(self, *args): return self.tk.call(self._w, "pages", *args) def raise_page(self, page=None): if page is None: return self.tk.call(self._w, "raise") return self.tk.call(self._w, "raise", page) class Dialog(ButtonBox, Tkinter.BaseWidget, _Frame): def draw(self, focus=None): if focus is None: return self.tk.call(self, "draw") return self.tk.call(self._w, "draw", focus) def enddialog(self): return self.tk.call(self._w, "enddialog") def withdraw(self): return self.tk.call(self._w, "withdraw") class StatusBar(BWidget): pass class LabelEntry(Entry): pass class ComboBox(Entry): def bind_entry(self, *args): return self.tk.call(self._w, "bind", *args) def getlistbox(self): r = str(self.tk.call(self._w, "getlistbox")) try: return self.nametowidget(r) except KeyError: c = self.tk.call("winfo", "class", r) if c == "ListBox": return makewidget(self, ListBox, r) else: return makewidget(self, Tkinter.Listbox, r) def getvalue(self): return self.tk.call(self._w, "getvalue") def post(self): return self.tk.call(self._w, "post") def setvalue(self, index): return self.tk.call(self._w, "setvalue", index) def unpost(self): return self.tk.call(self._w, "unpost") class SpinBox(Entry): def bind_entry(self, *args): return self.tk.call(self._w, "bind", *args) def setvalue(self, index): return self.tk.call(self._w, "setvalue", index) def getvalue(self): return self.tk.call(self._w, "getvalue") class Tree(BWidget, Tkinter.Widget, _Items): def bind_image(self, event, func): if callable(func): command = self.register( func ) else: command = func return self.tk.call(self._w, "bindImage", event, command) bindImage = bind_image def bind_text(self, event, func): if callable(func): command = self.register( func ) else: command = func return self.tk.call(self._w, "bindText", event, command) bindText = bind_text def closetree(self, node): return self.tk.call(self._w, "closetree", node) def delete(self, arg, *args): return self.tk.call(self._w, "delete", arg, *args) def edit(self, node, text, *args): "edit(self, node, text, verifycmd=None, clickres=None, select=None)" return self.tk.call(self._w, "edit", node, text, *args) def exists(self, node): return self.tk.call(self._w, "exists", node) def index(self, node): return self.tk.call(self._w, "index", node) def insert(self, index, parent, node="#auto", **kw): return self.tk.call(self._w, "insert", index, parent, node, *self._options(kw)) def move(self, parent, node, index): return self.tk.call(self._w, "move", parent, node, index) def nodes(self, node, *args): return self.tk.call(self._w, "nodes", node, *args) def opentree(self, node, recurse=True): return self.tk.call(self._w, "opentree", node, recurse) def parent(self, node): return self.tk.call(self._w, "parent", node) def reorder(self, node, neworder): return self.tk.call(self._w, "reorder", node, neworder)
nearest_stream.get('closest_stream_point') stream_name = nearest_stream.get('gnis_name', '') stream_feature_id = nearest_stream.get('linear_feature_id', None) point_on_stream = shape(nearest_stream_point) return (stream_feature_id, stream_name, point_on_stream) def get_watershed_id_at_point(db: Session, point: Point): """ given a point (degrees lng lat / EPSG:4326), return the ID of the watershed containing it. """ q = db.query(FreshwaterAtlasWatersheds.WATERSHED_FEATURE_ID).filter( func.ST_Contains( FreshwaterAtlasWatersheds.GEOMETRY, func.ST_GeomFromText( point.wkt, 4326) ) ) watershed_id = q.first() if not watershed_id: if WATERSHED_DEBUG: logger.warning("No watershed found") return None watershed_id = watershed_id[0] if WATERSHED_DEBUG: logger.info("watershed id %s", watershed_id) return watershed_id def get_upstream_watershed_polygon_count(db: Session, watershed_id: int) -> int: """Returns the number of polygons upstream from watershed_id. This helps if we want to determine if a group of watershed polygons originating from `watershed_id` will take too long to dissolve or will take too long to do GIS operations on the resulting area. The average polygon size is (very roughly) 0.2 to 0.3 square km, so if we want to approximately predict whether an upstream area might be more than 1000 square km, we can check to ensure there are less than about 4000 polygons. This query can be expensive but is much faster than attempting a full watershed delineation and finding out too late that we're working in an unmanageable large area. """ q = """ with subwscode_ltree as ( SELECT "WATERSHED_FEATURE_ID" as origin_id, wscode_ltree as origin_wscode, localcode_ltree as origin_localcode, ltree2text(subpath(localcode_ltree, -1))::integer as downstream_tributary, nlevel(localcode_ltree) as downstream_tributary_code_pos FROM freshwater_atlas_watersheds WHERE "WATERSHED_FEATURE_ID" = :watershed_feature_id ) SELECT count(*) FROM freshwater_atlas_watersheds WHERE wscode_ltree <@ (select origin_wscode from subwscode_ltree) AND ltree2text(subltree( localcode_ltree || '000000'::ltree, (select downstream_tributary_code_pos from subwscode_ltree) - 1, (select downstream_tributary_code_pos from subwscode_ltree) - 0 ))::integer >= (select downstream_tributary from subwscode_ltree) AND (NOT wscode_ltree <@ (select origin_localcode from subwscode_ltree) OR (select origin_wscode from subwscode_ltree) = (select origin_localcode from subwscode_ltree)) """ res = db.execute(q, {"watershed_feature_id": watershed_id}) record = res.fetchone() if not record or not record[0]: logger.warning( 'unable to calculate polygon count from watershed feature id %s', watershed_id) return None return record[0] def calculate_watershed( db: Session, user, click_point: Point = None, watershed_id: int = None, hydat_station_number: str = None, upstream_method='DEM+FWA', dem_source='cdem' ) -> GeneratedWatershedDetails: """ estimates the watershed area upstream of a POI and returns a GeneratedWatershedDetails object. It uses one of several methods to estimate the upstream area, described below. Optional arguments: upstream_method: 'FWA+FULLSTREAM', 'FWA+UPSTREAM', 'DEM', or 'DEM+FWA'. FWA+FULLSTREAM: Use the Freshwater Atlas to return the catchment area of the entire selected stream. FWA+UPSTREAM: Estimate the upstream catchment area using only the Freshwater Atlas. This will be accurate to the FWA linework around the outer perimeter but will over or under-estimate the area around the point of interest (because the watershed polygons forming the catchment area will not be split, even if the point of interest is in the middle of a polygon) DEM: Use the DEM (Digital Elevation Model) to delineate the catchment. WhiteboxTools is used. See `get_watershed_using_dem` for more info. This is more accurate around the point of interest but the outer reaches are less smooth than the FWA linework and may slightly under or overestimate around the outer perimeter of the watershed. DEM+FWA: Attempt to combine both the DEM and FWA methods by using the DEM close to the point of interest, and the FWA around the outer perimeter. This is the default. """ start = time.perf_counter() warnings = [] if click_point and watershed_id: raise ValueError( "Do not provide both point and watershed_id at the same time") if not click_point and not watershed_id and not hydat_station_number: raise ValueError( "Must provide either a starting point (lat, long), a starting watershed ID, or a HYDAT station number") if watershed_id and not upstream_method.startswith("FWA"): raise ValueError( f"Starting watershed ID incompatible with {upstream_method}. Use only FWA methods.") if WATERSHED_DEBUG: logger.info("calculating watershed") stream_name = '' point_on_stream = None stream_feature_id = None # if this watershed is based on a HYDAT station, look up the lat/long. # Since sometimes the lat/long can be incorrect or still in an ambigious location # (e.g. at a confluence where the station point may be closer to a tributary than # the centreline of the stream being monitored), correct the point onto the stream # in the Station name. if hydat_station_number: point_on_stream, stream_feature_id, click_point = get_point_on_stream(db, hydat_station_number) elif click_point: # move the click point to the nearest stream based on the FWA Stream Networks. # this will make it easier to snap the point to the Flow Accumulation raster # we will generate. nearest_stream = get_nearest_streams(db, click_point, limit=1)[0] stream_feature_id, stream_name, point_on_stream = get_nearest_stream_name_id(nearest_stream) stream_distance = transform( transform_4326_3005, point_on_stream ).distance( transform(transform_4326_3005, click_point)) # create a warning if the distance between the stream and click point is # greater than stream_distance_warning_threshold stream_distance_warning_threshold = 500 if stream_distance > stream_distance_warning_threshold: point_not_on_stream_warning = WatershedDataWarning( message=f"This point is more than {stream_distance_warning_threshold} m from the nearest stream" + " (based on Freshwater Atlas stream mapping)." + " WALLY's Surface Water Analysis is applicable to points of interest along streams." + " If you believe this is an error, please contact the WALLY team." ) warnings.append(point_not_on_stream_warning) if point_on_stream: # get the ID of the watershed we are starting in. # this will be used later to help with queries against the fundamental watersheds. watershed_id = get_watershed_id_at_point(db, point_on_stream) watershed_point = None watershed = None # declare some variables that will be used for watershed metadata. dem_error = None is_near_border = bool(len(watershed_touches_border(db, watershed_id))) # the location of point after correcting/snapping to a stream. # This means either snapping to a vector FWA stream or using a SnapPourPoint # routine (SnapPourPoints or JensonSnapPourPoints). If both, this value # will be from the SnapPourPoint routine since that will be done after # moving the point to a stream. snapped_point = point_on_stream or click_point # choose method based on function argument. if upstream_method.startswith('DEM'): # estimate the watershed using the DEM (watershed, snapped_point, dem_error) = get_watershed_using_dem( db, point_on_stream, stream_feature_id, watershed_id, dem_source=dem_source, use_fwa=upstream_method == 'DEM+FWA') watershed_source = "Estimated using CDEM and WhiteboxTools." generated_method = 'generated_dem' watershed_point = base64.urlsafe_b64encode( point_on_stream.wkb).decode('utf-8') if dem_error: dem_error_warning = WatershedDataWarning( message="Your watershed could not be refined to the dropped point. There may be significant" + " extra area downstream of your point of interest, or other errors. Please carefully verify the watershed" + " boundary." ) warnings.append(dem_error_warning) # ensure that we stop here if the watershed touches a border. if upstream_method == 'DEM+FWA' and is_near_border: no_cross_border_fwa_warning = WatershedDataWarning( message=f"This watershed was delineated from a DEM without using the Freshwater Atlas" + " because it is close to or crosses a boundary with another jurisdiction where FWA data" + " is not available. Please verify estimated watershed boundary." ) warnings.append(no_cross_border_fwa_warning) # if using DEM+FWA and not near a border, add the source info for CDEM/WBT/FWA. elif upstream_method == 'DEM+FWA': watershed_source = "Estimated by combining the result from CDEM/WhiteboxTools " + \ "with Freshwater Atlas fundamental watershed polygons." generated_method = 'generated_dem_fwa' elif upstream_method == 'FWA+UPSTREAM': watershed = get_upstream_catchment_area(db, watershed_id) watershed_source = "Estimated by combining Freshwater Atlas watershed polygons that are " + \ "determined to be part of the selected stream based on FWA_WATERSHED_CODE and upstream " + \ "of the selected point based on LOCAL_WATERSHED_CODE. Note: the watershed polygon " + \ "containing the selected point is included." generated_method = 'generated' watershed_point = watershed_id elif upstream_method == 'FWA+FULLSTREAM': watershed = get_full_stream_catchment_area(db, watershed_id) watershed_source = "Estimated by combining Freshwater Atlas watershed polygons that are " + \ "determined to be part of the selected stream based on FWA_WATERSHED_CODE." generated_method = 'generated_full_stream' watershed_point = watershed_id else: raise ValueError( f"Invalid method {upstream_method}. Valid methods are DEM, DEM+FWA, FWA+UPSTREAM, FWA+FULLSTREAM") feature = Feature( geometry=watershed, id=f"{generated_method}.{watershed_point}", properties={ "name": f"Estimated catchment area {f'({stream_name})' if stream_name else ''}", "watershed_source": watershed_source, "stream_name": stream_name } ) if not feature: # was not able to calculate a watershed with the provided params. # return None; the calling function will skip this calculated watershed # and return other pre-generated ones. logger.info( "skipping calculated watershed based on watershed feature
Label(self.matrixOfGraphLabel, text="Matrix Entry", bg=self.color_main_content, fg=self.color_red, bd=0, anchor=W) self.matrixLabel.place(relx=0, rely=0.05, relheight=0.1, relwidth=0.8) self.matrixLabel['font'] = font1 #self.text_matrix_1 = "Please Enter matrix separated by ','(example: 0010,1101,0101,1111 => 4*4 matrix)" self.matrixEntry = MyEntry(self.matrixOfGraphLabel, 0, 0.18, 1, 0.22, self.color_main_content, "black", font.Font(family="Times", size=9, slant="italic", weight='bold'), self.text_matrix_1) self.validateMatrixMessage = Label(self.matrixOfGraphLabel, bg=self.color_main_content, text="", fg=self.color_red) self.validateMatrixMessage['font'] = font3 self.validateMatrixMessage.place(relx=0, rely=0.52, relheight=0.22, relwidth=0.7) self.validateMatrixEntry = MyButton(self.matrixOfGraphLabel, 0.75, 0.5, 0.25, 0.25, self.color_main_content, self.ButtonValidate, lambda event: self.validateCustomizableMatrix(event, self.matrixEntry, self.validateMatrixMessage)) # Button of after and back self.optionBackButton = MyButton(self.frameRight2, 0.02, 0.9, 0.1, 0.1, self.color_main_content, self.ButtonBack, self.OptionBack) self.optionNextButton = MyButton(self.frameRight2, 0.85, 0.9, 0.15, 0.1, self.color_main_content, self.ButtonNext, self.OptionNext) self.optionNextButton.place_forget() ## Starting working on the main content => frameRight3 # Creating graph container self.drawGraphLabel = LabelFrame(self.frameRight3, bd=0, bg=self.color_main_content, text="") self.drawGraphLabel.place(relx=0, rely=0, relwidth=1, relheight=1) # frame graph content self.drawgraphtextlabel = Label(self.drawGraphLabel, bg=self.color_main_content, text="Graph Representation", fg=self.color_red) self.drawgraphtextlabel.place(relx=0.05, rely=0, relheight=0.05, relwidth=0.9) self.drawgraphtextlabel['font'] = font1 self.drawGraphContainer = LabelFrame(self.drawGraphLabel, bg="white", bd=0) self.drawGraphContainer.place(relx=0.05, rely=0.06, relwidth=0.9, relheight=0.75) self.GraphAlgorithmOptionLabel = LabelFrame(self.drawGraphLabel, bg=self.color_main_content, text="", bd=0) self.GraphAlgorithmOptionLabel.place(relx=0.05, rely=0.81, relheight=0.11, relwidth=0.9) self.textEntry1 = "Enter the Starting Vertex" self.GraphAlgorithmEntry1 = MyEntry(self.GraphAlgorithmOptionLabel, 0.05, 0.25, 0.3, 0.4, self.color_main_content, self.color_red, font2, self.textEntry1) self.textEntry2 = "Enter the Ending Vertex" self.GraphAlgorithmEntry2 = MyEntry(self.GraphAlgorithmOptionLabel, 0.36, 0.25, 0.3, 0.4, self.color_main_content, self.color_red, font2, self.textEntry2) self.GraphAlgorithmButton = MyButton(self.GraphAlgorithmOptionLabel, 0.73, 0.17, 0.27, 0.6, self.color_main_content, self.ButtonRunAlgorithm, self.validateAlgoPar) # after and back buttons self.processingBackButton = MyButton(self.frameRight3, 0.02, 0.923, 0.1, 0.077, self.color_main_content, self.ButtonBack, self.ProcessingBack) self.processingExitButton = MyButton(self.frameRight3, 0.84, 0.92, 0.15, 0.08, self.color_main_content, self.ButtonExit, self.Exit) self.GraphResetButton = MyButton(self.frameRight3, 0.45, 0.908, 0.12, 1-0.908, self.color_main_content, self.ButtonReset, lambda event, frame=self.frameRight3, btn=self.processingButton, type="Graph": self.reset(event, frame, btn, type)) ## Starting working on the main content => frameRight3 # Creating PathFinding container self.drawPathLabel = LabelFrame(self.frameRight4, bd=0, bg=self.color_main_content, text="") self.drawPathLabel.place(relx=0, rely=0, relwidth=1, relheight=1) # Pathfinding content self.pathTextLabel = Label(self.drawPathLabel, bg=self.color_main_content, text="The Pathfinding Problem", fg=self.color_red) self.pathTextLabel.place(relx=0.025, rely=0, relheight=0.08, relwidth=0.73) self.pathTextLabel['font'] = font2 self.pathCanvas = Canvas(self.drawPathLabel, bg=self.color_main_content, width=525, height=450, bd=0, highlightthickness=1) self.pathCanvas.place(relx=0.025, rely=0.085) self.runButton = MyButton(self.drawPathLabel, 0.825, 0.2, 0.1, 0.1, self.color_main_content, self.RunImage, lambda event: self.runPath(event)) self.clearButton = MyButton(self.drawPathLabel, 0.82, 0.4, 0.12, 0.1, self.color_main_content, self.ClearImage, lambda event: self.clearPath(event)) self.clearButton.disable() self.pathBackButton = MyButton(self.frameRight4, 0.02, 0.923, 0.1, 0.077, self.color_main_content, self.ButtonBack, lambda event: self.pathBack(event)) self.pathExitButton = MyButton(self.frameRight4, 0.85, 0.923, 0.12, 1 - 0.923, self.color_main_content, self.ButtonExit, self.Exit) self.pathResetButton = MyButton(self.frameRight4, 0.45, 0.908, 0.12, 1-0.908, self.color_main_content, self.ButtonReset, lambda event, frame=self.frameRight4, btn=self.processingButton, type="Path": self.reset(event, frame, btn, type)) def NextPage(self, event, first_frame, second_frame, btn1, btn2): first_frame.place_forget() second_frame.place(relx=0.2, rely=0, relwidth=0.8, relheight=1) btn1.ChangeBackgroundColor(self.color_menu) btn2.ChangeBackgroundColor(self.color_main_content) def BackPage(self, event, first_frame, second_frame, btn1, btn2): first_frame.place(relx=0.2, rely=0, relwidth=0.8, relheight=1) second_frame.place_forget() btn2.ChangeBackgroundColor(self.color_menu) btn1.ChangeBackgroundColor(self.color_main_content) # Methods of the Input Page def inputChoice(self, num): self.inputNextButton.place_forget() if num == 1: self.graphLabel.place_forget() self.pathLabel.place(relx=0.1, rely=0.31, relheight=0.6, relwidth=0.8) self.optionInput = 1 else: self.pathLabel.place_forget() self.graphLabel.place(relx=0.1, rely=0.31, relheight=0.6, relwidth=0.8) def validatePath(self, event): try: self.column = int(self.numberOfColumnsEntry.get()) self.row = int(self.numberOfRowsEntry.get()) text1 = f"Validation complete: \nColumn = {self.column} \nRow = {self.row}" self.optionButton = True self.validatepathText.configure(text=text1) self.inputNextButton.show() except ValueError: self.optionButton = False self.validatepathText.configure(text="") messagebox.showerror("Error", "Please Enter A Valid Integer Number") def graphChoice(self, num): self.inputNextButton.place_forget() self.isMatrixOk = False if num == 1: self.matrixOfGraphLabel1.place(relx=0.1, rely=0.42, relheight=0.55, relwidth=0.8) self.matrixLabel.place(relx=0, rely=0.05, relheight=0.1, relwidth=0.8) self.matrixEntry.show() self.validateMatrixMessage.place(relx=0, rely=0.52, relheight=0.22, relwidth=0.7) self.validateMatrixEntry.show() self.graphLabelImage1.place(relx=0, rely=0.3, relwidth=0.3) self.graphLabel2.place(relx=0.31, rely=0.3, relwidth=0.69, relheight=1) self.graphLabelImage2.place_forget() self.graphLabel3.place_forget() self.optionInput = 2 else: self.graphLabelImage2.place(relx=0, rely=0.3, relwidth=0.3) self.graphLabel3.place(relx=0.31, rely=0.3, relwidth=0.69, relheight=1) self.graphLabelImage1.place_forget() self.graphLabel2.place_forget() self.optionInput = 3 self.matrixOfGraphLabel1.place_forget() self.matrixLabel.place_forget() self.matrixEntry.place_forget() self.validateMatrixMessage.place_forget() self.validateMatrixEntry.place_forget() def validateVertices(self, event): try: self.numVertices = int(self.numberOfVerticesEntry.get()) text = f"Value : {self.numVertices}" self.validateVerticesButtonMessage.configure(text=text) self.inputNextButton.show() except ValueError: messagebox.showerror("Error", "Please Enter A Valid Integer Number") self.validateVerticesButtonMessage.configure(text="") def OpenFile(self, event): self.filepath = askopenfilename(initialdir="/", title="Select A File", filetypes=(("text files", "*.txt"), ('All files', '*.*'))) if self.filepath != "": self.titleOfFile.configure(text=self.filepath) self.isFileSelected = True self.isFileRead = False else: self.isFileSelected = False self.isFileRead = False def squaredMatrix(self, matrix): return all(len(row) == len(matrix) for row in matrix) def ReadFile(self, event): self.listOfFile = list() # Make sure that the fonction works correctly self.isMatrixValide = True # edit to initial value important! if self.isFileSelected and (".txt" in self.filepath): with open(self.filepath, "r") as f: try: li = [i for i in f.readlines()] self.listOfFile = [[int(i) for i in li[j].split()] for j in range(len(li))] for i in range(len(self.listOfFile)): for j in range(len(self.listOfFile[i])): if self.listOfFile[i][j] not in {1, 0}: self.isMatrixValide = False break # Not necessary to check all elements if one doesn't respect the condition # Doing condition on whether the matrix is valide or not (contains only 1 and 0) if not self.isMatrixValide: self.readMessage.configure(text="Please enter a matrix where it's elements are 1 or 0") else: if self.squaredMatrix(self.listOfFile): self.readMessage.configure(text="Matrix Saved Successfully") self.inputNextButton.show() self.numVertices = len(self.listOfFile) # check if this line works !! self.isFileRead = True else: self.readMessage.configure(text="Please enter a squared Matrix") except ValueError: messagebox.showerror("Error", "Please Check if the matrix is valid\nand each element is separated by space") else: messagebox.showerror("Error", "Please Enter A valid Path to a text file") self.titleOfFile.configure(text="No Path Selected..") def InputBack(self, event): self.frameRight1.place_forget() self.frameRight.place(relx=0.2, rely=0, relwidth=0.8, relheight=1) # global self.color_main_content self.questionButton.ChangeBackgroundColor(self.color_main_content) self.inputButton.ChangeBackgroundColor(self.color_menu) self.var1.set(None) self.var2.set(None) self.graphLabel.place_forget() self.pathLabel.place_forget() def InputNext(self, event): self.var3.set(None) self.isMatrixOk = False if self.optionInput == 1: self.NextPage(event, self.frameRight1, self.frameRight4, self.inputButton, self.processingButton) self.test = PathFindingBfs(self.pathCanvas, self.column, self.row, 525, 450) elif self.optionInput == 2 or self.optionInput == 3: if self.optionInput == 2: self.isMatrixOk = False else: self.isMatrixOk = True self.NextPage(event, self.frameRight1, self.frameRight2, self.inputButton, self.choiceButton) else: pass ## Beginning the methods of the third page => frameRight2 def OptionBack(self, event): self.BackPage(event, self.frameRight1, self.frameRight2, self.inputButton, self.choiceButton) def OptionNext(self, event): if self.isMatrixOk and self.isNameOk: self.NextPage(event, self.frameRight2, self.frameRight3, self.choiceButton, self.processingButton) # change it to next self.Graph = DrawGraph(self.drawGraphContainer, self.NameVertices, self.listOfFile) else: messagebox.showerror("Error", "Please Check Your Entry") def nameOption(self, num): if num == 1: list1 = list(range(1, self.numVertices + 1)) list1 = [str(i) for i in list1] self.NameVertices = list1 self.matrixOfGraphLabel.place(relx=0.1, rely=0.3, relwidth=0.8, relheight=0.3) self.customizableNameOption.place_forget() self.isNameOk = True elif num == 2: self.matrixOfGraphLabel.place(relx=0.1, rely=0.3, relwidth=0.8, relheight=0.3) self.customizableNameOption.place_forget() if self.numVertices > len(self.alphabets): messagebox.showerror("error", "Number Of Names surpassed the limit\nPlease choose other option") self.isNameOk = False else: self.NameVertices = self.alphabets[0:self.numVertices] self.isNameOk = True else: # means num = 3 self.customizableNameOption.place(relx=0.1, rely=0.3, relwidth=0.8, relheight=0.55) self.matrixOfGraphLabel.place_forget() self.isNameok = False if self.isMatrixOk and self.isNameOk: self.optionNextButton.show() else: self.optionNextButton.place_forget() def listCheckLength(self, list1): return all(len(element) < 3 for element in list1) # validate names of vertices in a list called : self.NameVertices def validateCustomizableName(self, event): names = self.labelNameEntry.get() if len(names) == 0 or names == self.text_name_entry: self.labelNameMessage.configure(text="") messagebox.showwarning("Warning", "Please Enter Valid Names") self.labelNameEntry.insert(0, self.text_name_entry) self.isNameOk = False else: list1 = names.split(",") if not self.listCheckLength(list1): self.labelNameMessage.configure(text="") messagebox.showwarning("Warning", "Please make sure each name has 1 or 2 characters") self.labelNameEntry.insert(0, names) self.isNameOk = False else: if len(list1) != self.numVertices: self.labelNameMessage.configure(text="") messagebox.showwarning("Warning", "Number of vertices and names does not match") self.labelNameEntry.insert(0, names) self.isNameOk = False else: self.NameVertices = list1 self.labelNameMessage.configure(text="Names Saved Successfully") self.isNameOk = True if self.isMatrixOk and self.isNameOk: self.optionNextButton.show() else: self.optionNextButton.place_forget() # basically this function return the list of names and a boolean variable(self.isNameOk) to know if # name is ok def validateCustomizableMatrix(self, event, entry1, message): # was entry1, message self.isMatrixValide = True message.configure(text="") entry = entry1.get() if len(entry) == 0 or entry == self.text_matrix_1: messagebox.showwarning("Error", "Please Enter A valid matrix") entry1.configure(text=self.text_matrix_1) else: try: splited = entry.split(",") # spliting the string to a list of rows list1 = [list(i) for i in splited] # rows and columns but it's a string for i in range(len(list1)): for j in range(len(list1[i])): list1[i][j] = int(list1[i][j]) # Start the testing on the list if not self.squaredMatrix(list1): self.isMatrixOk = False message.configure(text="Please Enter a squared matrix") elif len(list1) != self.numVertices: self.isMatrixOk = False messagebox.showwarning("Matrix Dimension Error", f"Please Enter a matrix of {self.numVertices}x{self.numVertices}") else: for i in range(len(list1)): for j in range(len(list1[i])): if list1[i][j] not in {0, 1}: self.isMatrixValide = False break if self.isMatrixValide: self.listOfFile = list1 message.configure(text="Matrix Registered successfully") self.isMatrixOk = True else: messagebox.showerror("Error", "All values of the matrix must be either 1 or 0") self.isMatrixOk = False except ValueError: self.isMatrixOk = False messagebox.showwarning("Error", "Please make sure that all elements are either 0 or 1") if self.isMatrixOk and self.isNameOk: self.optionNextButton.show() else: self.optionNextButton.place_forget() ## Beginning the methods of the third page => frameRight3 def ProcessingBack(self, event): self.BackPage(event, self.frameRight2, self.frameRight3, self.choiceButton, self.processingButton) def Exit(self, event): self.master.destroy() def validateAlgoPar(self, event): start = self.GraphAlgorithmEntry1.get() end = self.GraphAlgorithmEntry2.get() if (start in
<reponame>earthlab/firedpy # -*- coding: utf-8 -*- from bs4 import BeautifulSoup from collections import OrderedDict import datetime as dt import gc import geopandas as gpd from getpass import getpass from glob import glob from io import BytesIO from multiprocessing import cpu_count, Pool from netCDF4 import Dataset import numpy as np import os import pandas as pd import pycurl import rasterio from rasterio import logging from rasterio.merge import merge import xarray as xr import rioxarray as rxr from shapely.geometry import Point, Polygon, MultiPolygon import sys from tqdm import tqdm import requests import warnings import paramiko # The python gdal issue (matching system gdal version) try: from osgeo import gdal, ogr, osr except ImportError: raise ImportError(""" Unfortunately, you still need to install GDAL for Python. Try pip install `pygdal==version` where the version matches the first three digits of the output from the command `gdalinfo --version`. To see available pygdal versions run `pip install pygdal== ' """) # MODIS CRS retrieved from a single HDF file outCRS = '''PROJCS["unnamed",GEOGCS["Unknown datum based upon the custom spheroid", DATUM["Not specified (based on custom spheroid)", SPHEROID["Custom spheroid",6371007.181,0]], PRIMEM["Greenwich",0], UNIT["degree",0.0174532925199433, AUTHORITY["EPSG","9122"]]], PROJECTION["Sinusoidal"], PARAMETER["longitude_of_center",0], PARAMETER["false_easting",0], PARAMETER["false_northing",0], UNIT["Meter",1], AXIS["Easting",EAST],AXIS["Northing",NORTH]]''' # Suppress rasterio errors for now log = logging.getLogger() log.addFilter(rasterio.errors.NotGeoreferencedWarning) warnings.filterwarnings("ignore", category=FutureWarning) pd.options.mode.chained_assignment = None # Functions def convertDates(array, year): """Convert everyday in an array to days since Jan 1 1970""" def convertDate(julien_day, year): base = dt.datetime(1970, 1, 1) date = dt.datetime(year, 1, 1) + dt.timedelta(int(julien_day)) days = date - base return days.days # Loop through each position with data and convert locs = np.where(array > 0) ys = locs[0] xs = locs[1] locs = [[ys[i], xs[i]] for i in range(len(xs))] for loc in locs: y = loc[0] x = loc[1] array[y, x] = convertDate(array[y, x], year) return array def dateRange(perimeter): """Converts days in a perimeter object since Jan 1 1970 to date strings""" if len(perimeter.coords) > 0: base = dt.datetime(1970, 1, 1) days = [p[2] for p in perimeter.coords] day1 = (base + dt.timedelta(days=int(min(days)))).strftime("%Y-%m-%d") else: day1 = "N/A" return day1 def edgeCheck(yedges, xedges, coord, sp_buffer): """Identify edge cases to make merging events quicker later""" y = coord[0] x = coord[1] if y in yedges: edge = True elif x in xedges: edge = True else: edge = False return edge def flttn(lst): """Just a quick way to flatten lists of lists""" lst = [l for sl in lst for l in sl] return lst # def maxGrowthDate(x): # dates = x["date"].to_numpy() # pixels = x["pixels"].to_numpy() # loc = np.where(pixels == np.max(pixels))[0] # d = np.unique(dates[loc])[0] # # if len(d) > 1: # # d = ", ".join(d) # # else: # # d = d[0] # return d def maxGrowthDate(x): dates = x["date"].to_numpy() pixels = x["pixels"].to_numpy() loc = np.where(pixels == np.max(pixels))[0] d = np.unique(dates[loc])[0] # if len(d) > 1: # d = ", ".join(d) # else: # d = d[0] return d def mergeChecker(new_coords, full_list, temporal_param, radius): """ This uses a radius for the spatial window as opposed to a square and is not currently being used to merge events. """ t1 = np.min([c[2] for c in new_coords]) - temporal_param t2 = np.max([c[2] for c in new_coords]) + temporal_param for i in range(len(full_list)): old_event = full_list[i] old_coords = old_event[1] old_times = [c[2] for c in old_coords] time_checks = [t for t in old_times if t >= t1 and t <= t2] if len(time_checks) > 0: for coord in new_coords: # Check if the time coordinate is within an old event radii = [] new_y = coord[0] new_x = coord[1] for oc in old_coords: old_y = oc[0] old_x = oc[1] dy = abs(old_y - new_y) dx = abs(old_x - new_x) r = np.sqrt((dy ** 2) + (dx ** 2)) radii.append(r) check = [r for r in radii if r <= radius] if any(check): return i, True else: return i, False else: return i, False def mode(lst): return max(set(list(lst)), key=list(lst).count) def pquery(p, lc, lc_array): """Find the landcover code for a particular point (p).""" row, col = lc.index(p.x, p.y) lc_value = lc_array[row, col] return lc_value def rasterize(src, dst, attribute, resolution, crs, extent, all_touch=False, na=-9999): """Rasterizes input vector data""" # Open shapefile, retrieve the layer src_data = ogr.Open(src) layer = src_data.GetLayer() # Use transform to derive coordinates and dimensions xmin = extent[0] ymin = extent[1] xmax = extent[2] ymax = extent[3] # Create the target raster layer cols = int((xmax - xmin)/resolution) rows = int((ymax - ymin)/resolution) + 1 trgt = gdal.GetDriverByName("GTiff").Create(dst, cols, rows, 1, gdal.GDT_Float32) trgt.SetGeoTransform((xmin, resolution, 0, ymax, 0, -resolution)) # Add crs refs = osr.SpatialReference() refs.ImportFromWkt(crs) trgt.SetProjection(refs.ExportToWkt()) # Set no value band = trgt.GetRasterBand(1) band.SetNoDataValue(na) # Set options if all_touch is True: ops = ["-at", "ATTRIBUTE=" + attribute] else: ops = ["ATTRIBUTE=" + attribute] # Finally rasterize gdal.RasterizeLayer(trgt, [1], layer, options=ops) # Close target an source rasters del trgt del src_data def requestIO(url): """Function for setting IO request for data download""" b = BytesIO() c = pycurl.Curl() c.setopt(c.URL, url) c.setopt(c.WRITEFUNCTION, b.write) c.perform() c.close() content = b.getvalue() return content def spCheck(diffs, sp_buf): """Quick function to check if events land within the spatial window.""" checks = [e for e in diffs if abs(e) < sp_buf] if any(checks): check = True else: check = False return check def toAcres(p, res): return (p*res**2) * 0.000247105 def toHa(p, res): return (p*res**2) * 0.0001 def toKms(p, res): return (p*res**2)/1000000 def toDays(date, base): """Convert dates to days since a base date""" if type(date) is str: date = dt.datetime.strptime(date, "%Y-%m-%d") delta = (date - base) days = delta.days return days def asMultiPolygon(polygon): if type(polygon) == Polygon: polygon = MultiPolygon([polygon]) return polygon def get(self, remotepath, localpath=None): """Copies a file between the remote host and the local host.""" """For Paramiko SSH/SFTP Client Access: fuoco.geog.umd.edu""" if not localpath: localpath = os.path.split(remotepath)[1] self._sftp_connect() self._sftp.get(remotepath, localpath) def downloadLC(query, session): """Downloads MODIS land cover data""" link = query[0] dst = query[1] try: # submit the request using the session response = session.get(link, stream=True) # raise an exception in case of http errors response.raise_for_status() # save the file with open(dst, 'wb') as fd: fd.write(response.content) except requests.exceptions.HTTPError as e: # handle any errors here print(e) # Classes class DataGetter: """ Things to do/remember: - parallel downloads """ def __init__(self, proj_dir, start_yr, end_yr, username, password): self.proj_dir = proj_dir self.start_yr= start_yr self.end_yr = end_yr self.username = username self.password = password self.date = dt.datetime.today().strftime("%m-%d-%Y") self.createPaths() self.cpus = os.cpu_count() self.modis_template_path = os.path.join(proj_dir, "rasters/") self.modis_template_file_root = "mosaic_template.tif" self.landcover_path = os.path.join(proj_dir, "rasters/landcover") self.landcover_file_root = "lc_mosaic_" self.modis_crs = ("+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs") self.nc_path = os.path.join(proj_dir, "rasters/burn_area/netcdfs") self.hdf_path = os.path.join(proj_dir, "rasters/burn_area/hdfs") self.tiles = ["h08v04", "h09v04", "h10v04", "h11v04", "h12v04", "h13v04", "h08v05", "h09v05", "h10v05", "h11v05", "h12v05", "h08v06", "h09v06", "h10v06", "h11v06"] print("Project Folder: " + proj_dir) def createPaths(self): sub_folders = ["rasters/burn_area", "rasters/burn_area/hdfs", "rasters/ecoregion", "rasters/landcover", "rasters/landcover/mosaics/", "shapefiles/ecoregion", "tables"] folders = [os.path.join(self.proj_dir, sf) for sf in sub_folders] for f in folders: if not os.path.exists(f): os.makedirs(f) def getBurns(self): """ This will download the MODIS burn event data set tiles and create a singular mosaic to use as a template file for coordinate reference information and geometries. User manual: http://modis-fire.umd.edu/files/MODIS_C6_BA_User_Guide_1.2.pdf Update 02/2021 -> fuoco server transitioned to SFTP Dec 2020 Update firedpy to use Paramiko SSHClient / SFTPClient Server-side changes are described in the user manual linked above SFTP: sftp://fire:[email protected]/gfed4/MCD64A1/C6/ username: fire password: <PASSWORD> """ ################################################################################## # Check into the UMD SFTP fuoco server using Paramiko ssh_client = paramiko.SSHClient() ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh_client.connect(hostname="fuoco.geog.umd.edu", username="fire", password="<PASSWORD>") print("Connected to 'fuoco.geog.umd.edu' ...") # Open the connection to the SFTP sftp_client = ssh_client.open_sftp() ################################################################################## # Use specified tiles or...download all tiles if the list is empty if self.tiles[0].lower() != "all": tiles = self.tiles else: sftp_client.chdir('/data/MODIS/C6/MCD64A1/HDF') dirs = sftp_client.listdir() tiles = dirs # print(tiles) # Download the available files and catch failed downloads for tile in tiles: # Find remote folder for the tile sftp_folder = '/data/MODIS/C6/MCD64A1/HDF/' + tile # Check if remote folder exists and if not, continue to next tile try: # Change directory to remote folder sftp_client.chdir(sftp_folder) hdfs = sftp_client.listdir() # hdfs = [h for h in hdfs if ".hdf" in h] # Make sure local target folder exists folder = os.path.join(self.hdf_path, tile) if not os.path.exists(folder): os.mkdir(folder) # Skip this if the final product exists nc_file = os.path.join(self.proj_dir, "rasters/burn_area/netcdfs/" + tile + ".nc") # ~~~~~~~~~~~~~~~~~~Download~~~~~~~~~~~~~~~~~~~~~~~~~~ if not os.path.exists(nc_file): print("Downloading/Checking HDF files for: " + tile) if self.start_yr and self.end_yr: yrs= list(range(self.start_yr,
<reponame>Flipajs/FERDA __author__ = 'simon' import random import matplotlib.colors as colors import numpy as np from PyQt4 import QtGui, QtCore from skimage.transform import resize from core.log import LogCategories, ActionNames from core.region.region import Region from gui.graph_widget.custom_line_selectable import Custom_Line_Selectable from gui.graph_widget.pixmap_selectable import Pixmap_Selectable from gui.img_controls.gui_utils import cvimg2qtpixmap from gui.img_controls.my_scene import MyScene from gui.plot.plot_chunks import PlotChunks from gui.settings import Settings as S_ from gui.view.chunks_on_frame import ChunksOnFrame from utils.drawing.points import draw_points_crop # Number of max boxes below graph, max is six BOX_NUM = 6 if BOX_NUM > 6: BOX_NUM = 6 # Selectable opacity of background color in % OPACITY = 60 # fixed height of buttons HEIGHT = 70 # size of font used in labels (px) FONT_SIZE = 13 # Margins of the workspace M = 3 #Multiplayer of width of graph GRAPH_WIDTH = 1 SIMILARITY = 'sim' STRONG = 's' CONFIRMED = 'c' MERGED = 'm' SPLIT = 'split' class NodeGraphVisualizer(QtGui.QWidget): def __init__(self, solver, g, regions, chunks, node_size=30, show_in_visualize_callback=None, show_vertically=False): super(NodeGraphVisualizer, self).__init__() self.show_in_visualizer_callback = show_in_visualize_callback self.solver = solver self.project = solver.project self.g = g self.regions = regions self.edges_obj = {} self.nodes_obj = {} self.pixmaps = {} self.selected_edge = [[None, None], None] self.show_frames_number = True self.used_rows = {} self.column_count = 1 self.frames = [] self.positions = {} self.node_displayed = {} self.node_size = node_size self.y_step = self.node_size + 2 self.x_step = self.node_size + 200 self.availability = np.zeros(len(regions)) self.toggled = [] self.show_vertically = show_vertically self.chunks = chunks self.view = QtGui.QGraphicsView(self) self.setLayout(QtGui.QVBoxLayout()) self.edge_info_layout = QtGui.QHBoxLayout() self.node_info_layout = QtGui.QHBoxLayout() self.edge_info_layout.setSpacing(M) self.node_info_layout.setSpacing(M) self.view.setMouseTracking(True) self.scene = MyScene() self.view.setScene(self.scene) self.scene.clicked.connect(self.scene_clicked) self.layout().addLayout(self.edge_info_layout) self.layout().addWidget(self.view) self.layout().addLayout(self.node_info_layout) self.layout().setContentsMargins(M, M, M, M) self.info_label_upper = QtGui.QLabel() self.stylesheet_info_label = "font: bold %spx" % FONT_SIZE self.info_label_upper.setStyleSheet(self.stylesheet_info_label) self.info_label_upper.setText("Frame:\nCentroid:\nArea:") self.info_label_upper.setFixedWidth(HEIGHT) self.info_label_upper.setAlignment(QtCore.Qt.AlignVCenter | QtCore.Qt.AlignRight) self.edge_info_layout.addWidget(self.info_label_upper) self.left_label = QtGui.QLabel() self.edge_info_layout.addWidget(self.left_label) self.chunk_label = QtGui.QLabel() self.edge_info_layout.addWidget(self.chunk_label) self.right_label = QtGui.QLabel() self.edge_info_layout.addWidget(self.right_label) stylesheet = "font: %spx; border-style: solid; border-radius: 25px; border-width: 1.5px" % FONT_SIZE self.right_label.setStyleSheet(stylesheet) self.left_label.setStyleSheet(stylesheet) self.chunk_label.setStyleSheet(stylesheet) self.left_label.setAlignment(QtCore.Qt.AlignCenter | QtCore.Qt.AlignVCenter) self.right_label.setAlignment(QtCore.Qt.AlignCenter | QtCore.Qt.AlignVCenter) self.chunk_label.setAlignment(QtCore.Qt.AlignCenter | QtCore.Qt.AlignVCenter) self.hide_button = QtGui.QPushButton("Hide (h)") self.hide_button.setStyleSheet("background-color: grey; border-style:outset; border-radius: 25px; \ border-width: 2px; border-color: beige; font: bold 14px; min-width:10em; padding 6px") self.hide_button.setFixedHeight(HEIGHT) self.hide_button.setShortcut(QtGui.QKeySequence(QtCore.Qt.Key_H)) self.hide_button.clicked.connect(self.hide_button_function) self.edge_info_layout.addWidget(self.hide_button) self.aux_space_upper = QtGui.QLabel() self.aux_space_upper.setFixedHeight(HEIGHT) self.aux_space_upper.setFixedWidth(0) self.upper_widgets = [self.info_label_upper, self.left_label, self.right_label, self.chunk_label, self.hide_button, self.aux_space_upper] self.widgets_hide(self.upper_widgets) for label in self.upper_widgets: label.setFixedHeight(HEIGHT) self.plot_action = QtGui.QAction('plot', self) self.plot_action.triggered.connect(self.plot_graph) self.plot_action.setShortcut(QtGui.QKeySequence(QtCore.Qt.Key_P)) self.addAction(self.plot_action) self.connect_action = QtGui.QAction('connect', self) self.connect_action.triggered.connect(self.connect_chunks) self.connect_action.setShortcut(S_.controls.global_view_join_chunks) self.addAction(self.connect_action) self.remove_action = QtGui.QAction('remove', self) self.remove_action.triggered.connect(self.remove_chunk) self.remove_action.setShortcut(S_.controls.remove_tracklet) self.addAction(self.remove_action) self.stop_following_action = QtGui.QAction('stop following', self) self.stop_following_action.triggered.connect(self.stop_following) self.stop_following_action.setShortcut(S_.controls.global_view_stop_following) self.addAction(self.stop_following_action) self.ignore_during_suggestions_action = QtGui.QAction('ignore during suggestion', self) self.ignore_during_suggestions_action.triggered.connect(self.ignore_during_suggestions) self.ignore_during_suggestions_action.setShortcut(S_.controls.ignore_case) self.addAction(self.ignore_during_suggestions_action) self.info_label_lower = QtGui.QLabel() self.info_label_lower.setStyleSheet(self.stylesheet_info_label) self.info_label_lower.setText("Frame:\nCentroid:\nArea:") self.info_label_lower.setAlignment(QtCore.Qt.AlignVCenter | QtCore.Qt.AlignRight) self.info_label_lower.setFixedWidth(HEIGHT) self.node_info_layout.addWidget(self.info_label_lower) self.aux_space_lower = QtGui.QLabel() self.aux_space_lower.setFixedHeight(HEIGHT) self.aux_space_lower.setFixedWidth(0) self.edge_info_layout.addWidget(self.aux_space_upper) self.node_info_layout.addWidget(self.aux_space_lower) self.auxes = [self.aux_space_upper, self.aux_space_lower] self.widgets_hide(self.auxes) self.boxes = [] self.box_aux_count = 0 for i in range(BOX_NUM): label = QtGui.QLabel() label.setAlignment(QtCore.Qt.AlignCenter | QtCore.Qt.AlignVCenter) label.setFixedHeight(HEIGHT) label.hide() self.boxes.append([label, None, None, None]) self.node_info_layout.addWidget(label) self.clear_all_button = QtGui.QPushButton("Clear All (x)") self.clear_all_button.setStyleSheet("background-color: grey; border-style:outset; border-width: 2px;\ border-color: beige; font: bold 14px;min-width:10em; border-radius:25px; padding 6px") self.clear_all_button.setFixedHeight(HEIGHT) self.clear_all_button.setShortcut(QtGui.QKeySequence(QtCore.Qt.Key_X)) self.clear_all_button.clicked.connect(self.clear_all_button_function) self.clear_all_button.setFixedHeight(HEIGHT) self.show_in_visualizer_action = QtGui.QAction('show in visualizer', self) self.show_in_visualizer_action.triggered.connect(self.show_in_visualizer) self.show_in_visualizer_action.setShortcut(QtGui.QKeySequence(QtCore.Qt.Key_V)) self.addAction(self.show_in_visualizer_action) self.node_info_layout.addWidget(self.clear_all_button) self.lower_widgets = [self.clear_all_button, self.info_label_lower, self.aux_space_lower] self.widgets_hide(self.lower_widgets) self.suggest_node = True self.node_positions = {} self.picked_node = None self.ignored_nodes = {} self.use_img_toggle = True def stop_following(self): self.picked_node = None self.update_view() def ignore_during_suggestions(self): n1 = self.boxes[0][3] self.ignored_nodes[n1] = True self.picked_node = None self.update_view() def scene_clicked(self, click_pos): item = self.scene.itemAt(click_pos) self.selected_edge[1] = click_pos # self.clear_all_button_function() if not item: self.widgets_hide(self.upper_widgets) self.widgets_hide(self.lower_widgets) for box in self.boxes: box[0].hide() for it in self.toggled: self.scene.removeItem(it) self.toggled = [] self.clear_all_button_function() return if isinstance(item, Custom_Line_Selectable): e_ = self.edges_obj[item] self.selected_edge[0] = e_ e = self.g[e_[0]][e_[1]] try: chunk = e["chunk_ref"] except KeyError: chunk = None self.edge_labels_update(e_, chunk) if isinstance(item, Pixmap_Selectable): parent_pixmap = item.parent_pixmap n_ = self.nodes_obj[parent_pixmap] self.node_label_update(n_) if self.use_img_toggle: self.toggle_n(n_) elif isinstance(item, QtGui.QGraphicsPixmapItem): # toggled item... return else: # self.clear_all_button_function() self.suggest_node = False self.update_view(None, None) self.suggest_node = True def node_label_update(self, node): if self.info_label_lower.isHidden(): self.widgets_show(self.lower_widgets) self.widgets_show(self.auxes) if self.box_aux_count < BOX_NUM: label = self.boxes[self.box_aux_count][0] self.boxes[self.box_aux_count][3] = node if self.box_aux_count > 0: compare_n = self.boxes[0][3] dist = round(np.linalg.norm(node.centroid() - compare_n.centroid()), 2) label.setText(str(node.frame_ - compare_n.frame_) + "\n" + str(dist) + "\n" + str(node.area()-compare_n.area())) else: c = node.centroid() x = round(c[1], 2) y = round(c[0], 2) label.setText(str(node.frame_) + "\n" + str(x) + ", " + str(y) + "\n" + str(Region.area(node))) # if self.box_aux_count % 2 == 0: self.boxes[self.box_aux_count][1] = color = random_hex_color_str() # else: # self.boxes[self.box_aux_count][1] = color = \ # inverted_hex_color_str(self.boxes[self.box_aux_count - 1][1]) color_alpha = hex2rgb_opacity_tuple(color) stylesheet = "font: %spx; color: black; background-color: rgba%s; border-style: dashed; \ border-width: 1.5px; border-radius: 25px" % (str(FONT_SIZE), str(color_alpha)) label.setStyleSheet(stylesheet) self.boxes[self.box_aux_count][0] = label label.show() self.store_border_color(color, node) self.update_dashed_borders() self.box_aux_count += 1 else: self.box_aux_count = 0 for box in self.boxes: box[0].hide() box[2].setClipped(None) self.scene.update() self.node_label_update(node) def store_border_color(self, color, node): color_rgb = hex2rgb_tuple(color) q_color = QtGui.QColor(color_rgb[0], color_rgb[1], color_rgb[2]) pixmap = self.pixmaps[node] pixmap.setClipped(q_color) self.boxes[self.box_aux_count][2] = pixmap def update_dashed_borders(self): if self.box_aux_count > 0: label_changed = self.boxes[self.box_aux_count - 1][0] color2 = self.boxes[self.box_aux_count - 1][1] color2_alpha = hex2rgb_opacity_tuple(color2) stylesheet = "font: %spx; color: black; background-color: rgba%s; border-style: solid; border-width: 1.5px; border-radius: 25px" \ % (str(FONT_SIZE), str(color2_alpha)) label_changed.setStyleSheet(stylesheet) def edge_labels_update(self, edge, chunk): self.left_label.setText(str(edge[0].frame_) + "\n" + str(edge[0].id_) + "\n" + str(Region.centroid(edge[0])) + "\n" + str(Region.area(edge[0]))) if chunk is None: text = "Not a chunk" else: text = "Chunk info:" + "\nSorted: " + str(chunk.is_sorted) + "\nReduced nodes: " + str(len(chunk.reduced)) self.chunk_label.setText(text) self.right_label.setText(str(edge[1].frame_) + "\n" + str(edge[1].id_) + "\n" + str(Region.centroid(edge[1])) + "\n" + str(Region.area(edge[1]))) self.widgets_show(self.upper_widgets) self.widgets_show(self.auxes) def widgets_hide(self, labels): for label in labels: if type(label) is list: for l in label: l.hide() else: label.hide() def widgets_show(self, labels): for label in labels: if type(label) is list: for l in label: l.show() else: label.show() def hide_button_function(self): self.widgets_hide(self.upper_widgets) if self.clear_all_button.isHidden(): self.widgets_hide(self.auxes) def clear_all_button_function(self): for box in self.boxes: box[0].hide() box[3] = None if box[2] is not None: box[2].setClipped(None) # for it in self.toggled: # # it.hide() # self.scene.removeItem(it) # del it self.toggled = [] self.box_aux_count = 0 self.widgets_hide(self.lower_widgets) if self.hide_button.isHidden(): self.widgets_hide(self.auxes) def show_node(self, n, prev_pos=0): self.node_displayed[n] = True t = n.frame_ t_num = self.frames.index(t) * GRAPH_WIDTH if n in self.positions: pos = self.positions[n] else: pos = self.get_nearest_free_slot(t, prev_pos) self.positions[n] = pos vis = self.g.node[n]['img'] if vis.shape[0] > self.node_size or vis.shape[1] > self.node_size: vis = np.asarray(resize(vis, (self.node_size, self.node_size)) * 255, dtype=np.uint8) else: z = np.zeros((self.node_size, self.node_size, 3), dtype=np.uint8) z[0:vis.shape[0], 0:vis.shape[1]] = vis vis = z it = self.scene.addPixmap(cvimg2qtpixmap(vis)) x = self.x_step * t_num y = self.y_step * pos if self.show_vertically: x, y = y, x it.setPos(x, y) self.node_positions[n] = (x, y) self.nodes_obj[it] = n it_ = Pixmap_Selectable(it, self.node_size) self.pixmaps[n] = it_ def draw_edge_selectable(self, n1, n2): t1 = n1.frame_ t2 = n2.frame_ t1_framenum = self.frames.index(t1) * GRAPH_WIDTH t2_framenums = self.frames.index(t2) * GRAPH_WIDTH from_x = self.x_step * t1_framenum + self.node_size to_x = self.x_step * t2_framenums from_y = self.y_step * self.positions[n1] + self.node_size / 2 to_y = self.y_step * self.positions[n2] + self.node_size / 2 if self.show_vertically: from_x, from_y = from_y, from_x to_x, to_y = to_y, to_x line_ = QtCore.QLineF(from_x, from_y, to_x, to_y) custom_line_ = Custom_Line_Selectable(line_) self.scene.addItem(custom_line_) self.edges_obj[custom_line_] = (n1, n2) def prepare_positions(self, frames): process_at_the_end = [] for f in frames: for n1 in self.regions[f]: if n1 not in self.g.node: continue if n1 in self.positions: continue is_ch, t_reversed, ch = self.solver.is_chunk(n1) if t_reversed: continue n2 = ch.end_n # for _, n2, d in self.g.out_edges(n1, data=True): if n2 in self.positions: continue t1 = n1.frame_ t2 = n2.frame_ if t1 not in self.frames: if t2 in self.frames: process_at_the_end.append(n2) continue if t2 not in self.frames: if t1 in self.frames: process_at_the_end.append(n1) continue # t1_framenum = self.frames.index(t1) * GRAPH_WIDTH # t2_framenum = self.frames.index(t2) * GRAPH_WIDTH p1 = self.get_nearest_free_slot(t1, 0) p2 = self.get_nearest_free_slot(t2, p1) self.positions[n1] = p1 self.positions[n2] = p2 for t in range(t1, t2): if t in self.used_rows: self.used_rows[t][p1] = True else: self.used_rows[t] = {p1: True} for n in process_at_the_end: t = n.frame_ # t_framenum = self.frames.index(t) * GRAPH_WIDTH p = self.get_nearest_free_slot(t, 0) self.positions[n] = p def get_nearest_free_slot(self, t, pos): if t in self.used_rows: step = 0 while True: test_pos = pos - step if test_pos > -1 and test_pos not in self.used_rows[t]: self.used_rows[t][test_pos] = True return test_pos test_pos = pos + step if test_pos not in self.used_rows[t]: self.used_rows[t][test_pos] = True return test_pos step += 1 else: self.used_rows[t] = {pos: True} return pos def visualize(self): self.positions = {} self.used_rows = {} k = np.array(list(self.regions.keys())) self.frames = np.sort(k).tolist() nodes_queue = [] visited =
0XF0, 0XC1, 0XE3, 0XF8, 0X70, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF1, 0XE1, 0XE3, 0XF8, 0X70, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF1, 0XE0, 0XC3, 0XF8, 0X70, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF1, 0XE0, 0X03, 0XF8, 0X70, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF1, 0XF0, 0X07, 0XF8, 0X70, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF1, 0XF0, 0X07, 0XF8, 0X70, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0XF8, 0X0F, 0X80, 0X00, 0X00, 0X07, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFC, 0X1F, 0X80, 0X00, 0X00, 0X03, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0X80, 0X00, 0X00, 0X01, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0X80, 0X00, 0X00, 0X01, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF8, 0X70, 0XE1, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0X00, 0X00, 0X03, 0XF8, 0X70, 0XE1, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0X00, 0X00, 0X03, 0XF8, 0X70, 0XE1, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0X00, 0X00, 0X03, 0XF8, 0X70, 0XE1, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0X00, 0X00, 0X03, 0XF8, 0X70, 0XE1, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0X00, 0X00, 0X03, 0XF8, 0X70, 0XE1, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFE, 0X3F, 0XFF, 0XF8, 0X00, 0X01, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFC, 0X7F, 0XFF, 0XF8, 0X00, 0X01, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF8, 0XFF, 0XFF, 0XF8, 0X00, 0X01, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0XFF, 0XFF, 0XF8, 0X00, 0X01, 0X81, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0XFF, 0XFF, 0XF8, 0X00, 0X00, 0X01, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0XFF, 0XFF, 0XFF, 0XFF, 0XFC, 0X03, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0X7F, 0XFF, 0XFF, 0XFF, 0XFE, 0X03, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0X00, 0X03, 0XFF, 0XFF, 0XFE, 0X0F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0X00, 0X03, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF8, 0X00, 0X03, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFC, 0X00, 0X03, 0XFF, 0XFC, 0X3F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0X00, 0X03, 0XFF, 0XFC, 0X3F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XC3, 0XFC, 0X3F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XC3, 0XFC, 0X3F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XC3, 0XFC, 0X3F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFC, 0X1F, 0XC3, 0XFC, 0X3F, 0XEF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF8, 0X07, 0XC3, 0XFC, 0X3F, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF8, 0X70, 0X07, 0XC3, 0XFC, 0X3F, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF8, 0XE0, 0X03, 0XC3, 0XFC, 0X3F, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF1, 0XE0, 0X03, 0XC3, 0XFC, 0X3F, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF1, 0XE1, 0XC3, 0XC3, 0XFC, 0X3F, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF1, 0XE3, 0XE3, 0XC3, 0XFC, 0X3F, 0XE1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF1, 0XE3, 0XE7, 0XC3, 0XFC, 0X3F, 0XC1, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0XC3, 0XC7, 0XC3, 0XE0, 0X00, 0X01, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0X00, 0X0F, 0XC3, 0XC0, 0X00, 0X01, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0X00, 0X03, 0XC3, 0X80, 0X00, 0X03, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF8, 0X00, 0X03, 0XC3, 0X80, 0X00, 0X07, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF8, 0X00, 0X03, 0XC3, 0X00, 0X00, 0X1F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFC, 0X00, 0X03, 0XC2, 0X04, 0X3F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0X00, 0X03, 0XC2, 0X0C, 0X3F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XC0, 0X1C, 0X3F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XC0, 0X1C, 0X3F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XC0, 0X3C, 0X3F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XC0, 0X7C, 0X3F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0X00, 0X03, 0XC0, 0XFC, 0X3F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0X00, 0X03, 0XC0, 0XFC, 0X3F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0X00, 0X03, 0XC1, 0XFC, 0X3F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0X00, 0X03, 0XC3, 0XFC, 0X3F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0X00, 0X03, 0XFF, 0XFC, 0X3F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFC, 0X3F, 0XFF, 0XFF, 0XFC, 0X3F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF8, 0X7F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0X7F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XC0, 0X7F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0X00, 0X1F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFE, 0X00, 0X0F, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFC, 0X00, 0X07, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF8, 0X00, 0X07, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF8, 0X63, 0X07, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0XE3, 0XC3, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF1, 0XE3, 0XC3, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF1, 0XE3, 0XE3, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF1, 0XE3, 0XE3, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF1, 0XE3, 0XE3, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF0, 0XE3, 0XE3, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XF8, 0X03, 0XE3, 0XFF, 0XFF,
import sys from abc import ABC, abstractmethod from typing import List, Iterable, Callable, Tuple from pygame.surface import Surface from lib.action.event import ( mouse_position, game_event, pump_event, pressed_mouse, draw_ellipse, smooth_scale, init_game ) from lib.environment.color import GameColor from lib.environment.font import GameFont from lib.environment.control import Controls, GameControls from lib.environment.screen import GameScreen, Screen from lib.environment.image import Image, GameImage from lib.environment.shape import Rectangle from lib.snake.food import Apple, Food from lib.snake.snake import Snake, SnakeEntity class Engine(ABC): """Abstract interface for a game.""" @abstractmethod def prepare_canvas(self) -> None: pass @abstractmethod def terminate(self) -> None: pass @abstractmethod def make_button(self, pos, text, color, action, text_size=20) -> None: pass @abstractmethod def reset(self) -> None: pass @abstractmethod def loop(self) -> None: pass class Menu(ABC): """Abstract interface for a menu game.""" @abstractmethod def prepare_canvas(self) -> None: pass @abstractmethod def make_text(self, x: int, y: int, text: str, size: int=20, color: Tuple=(0, 0, 0), center: bool=False) -> None: pass @abstractmethod def make_button(self, loc: Iterable, text: str, color: Iterable, action: Callable, size: int=20) -> None: pass @abstractmethod def mainloop(self) -> None: pass @abstractmethod def start_up(self) -> None: pass @abstractmethod def small(self) -> None: pass @abstractmethod def huge(self) -> None: pass @abstractmethod def easy(self) -> None: pass @abstractmethod def normal(self) -> None: pass @abstractmethod def advanced(self) -> None: pass @abstractmethod def expert(self) -> None: pass @abstractmethod def quit(self) -> None: pass class Game(ABC): """Abstract interface for a game.""" @abstractmethod def start(self, speed: float, size: int) -> None: pass @abstractmethod def restart(self) -> None: pass @abstractmethod def launch_main_menu(self) -> None: pass class Buttons(ABC): """Buttons abstract interface.""" @abstractmethod def elements(self) -> Iterable: pass @abstractmethod def start_up(self) -> None: pass @abstractmethod def small(self) -> None: pass @abstractmethod def huge(self) -> None: pass class SnakeGameEngine(Engine): """Snake game engine.""" def __init__(self, speed: float, size: int = 1) -> None: self._screen: Screen = GameScreen() self._snake: Snake = SnakeEntity(speed, size) self._controls: Controls = GameControls() self._blocks: List = [] self._score: int = 0 self._size: int = size self._left, self._right, self._up, self._down = False, False, False, False self._hover: bool = False self._click: bool = False self._button_click = None self._apple: Food = Apple(size) self.prepare_canvas() def prepare_canvas(self) -> None: for pict in range(0, 800, 10): image: Image = GameImage(location=(10, 10)) image.fill(color=(0, 0, 0)) self._blocks.append([image.surface(), [pict, 0]]) for pict in range(0, 800, 10): image: Image = GameImage(location=(10, 10)) image.fill(color=(0, 0, 0)) self._blocks.append([image.surface(), [pict, 440]]) for pict in range(0, 450, 10): image: Image = GameImage(location=(10, 10)) image.fill(color=(0, 0, 0)) self._blocks.append([image.surface(), [0, pict]]) for pict in range(0, 450, 10): image: Image = GameImage(location=(10, 10)) image.fill(color=(0, 0, 0)) self._blocks.append([image.surface(), [790, pict]]) def terminate(self) -> None: while True: for event in game_event(): if event.type == self._controls.type().quit(): sys.exit() for block in self._blocks: self._screen.blit(block[0], block[1]) text = GameFont('Courier New', 50, 'Game Over Score:', True, (255, 255, 255)).render() txt_rect = text.get_rect() txt_rect.topleft = (20, 150) self._screen.blit(text, txt_rect) text = GameFont('Courier New', 50, str(self._snake.score()), True, (255, 255, 255)).render() txt_rect = text.get_rect() txt_rect.topleft = (600, 150) self._screen.blit(text, txt_rect) self._screen.update() self.make_button((153, 300, 100, 50), 'Restart', [(255, 255, 255), (150, 150, 150)], action=PySnakeGame().restart) if self._hover: pump_event() click: List = pressed_mouse() if click[0] == 1: self._click = True if self._click: if click[0] == 0: self._button_click() self._click = False def make_button(self, loc: Iterable, text: str, color: Iterable, action: Callable, size=20): mouse = mouse_position() old_loc = loc rect = Rectangle(loc).shape() rect.topleft = 0, 0 rectangle: Surface = GameImage(rect.size, self._controls.type().src_alpha()).surface() circle: Surface = GameImage([min(rect.size) * 3] * 2, self._controls.type().src_alpha()).surface() draw_ellipse(circle, (0, 0, 0), 0) circle = smooth_scale(circle, rect) radius = rectangle.blit(circle, (0, 0)) radius.bottomright = rect.bottomright rectangle.blit(circle, radius) radius.topright = rect.topright rectangle.blit(circle, radius) radius.bottomleft = rect.bottomleft rectangle.blit(circle, radius) rectangle.fill((0, 0, 0), rect.inflate(-radius.w, 0)) rectangle.fill((0, 0, 0), rect.inflate(0, -radius.h)) loc = old_loc if (loc[0] + loc[2]) > mouse[0] > loc[0] and (loc[1] + loc[3]) > mouse[1] > loc[1]: self._hover = True self._button_click = action color = GameColor(color[1]).get() alpha = color.a color.a = 0 else: color = GameColor(color[0]).get() alpha = color.a color.a = 0 self._hover = False rectangle.fill(color, special_flags=self._controls.type().blend_rgba_max()) rectangle.fill((255, 255, 255, alpha), special_flags=self._controls.type().blend_rgba_min()) self._screen.blit(rectangle, loc) txt = GameFont('Courier New', size, text, True, (0, 0, 0)).render() txt_rect = txt.get_rect() txt_rect.center = (loc[0] + loc[2] / 2), (loc[1] + loc[3] / 2) self._screen.blit(txt, txt_rect) def reset(self) -> None: self._left, self._right, self._up, self._down = False, False, False, False def loop(self) -> None: while True: self._screen.fill((35, 38, 117)) self._snake.update() for block in self._blocks: if self._snake.verify_snake(block[1]): self.terminate() self._screen.blit(block[0], block[1]) counter: int = 0 for block in self._snake.images(): if counter != 0: if self._snake.verify_apple(block[1]): self.terminate() self._screen.blit(block[0], block[1]) counter += 1 if self._snake.verify_apple(self._apple.location()): self._snake.put_apple() del self._apple self._apple: Food = Apple(self._size) self._screen.blit(self._apple.image(), self._apple.location()) self._screen.blit(self._snake.image(), self._snake.location()) for event in game_event(): if event.type == self._controls.type().quit(): sys.exit(0) elif event.type == self._controls.type().down(): if event.key == self._controls.key().escape(): sys.exit(0) if event.key == self._controls.key().right(): if not self._left: self.reset() self._snake.move_right() self._right = True if event.key == self._controls.key().left(): if not self._right: self.reset() self._snake.move_left() self._left = True if event.key == self._controls.key().up(): if not self._down: self.reset() self._snake.move_up() self._up = True if event.key == self._controls.key().down(): if not self._up: self.reset() self._snake.move_down() self._down = True self._screen.update() class StartGameMenu(Menu): """Start game menu interface.""" def __init__(self): self._game: Game = PySnakeGame() self._controls: Controls = GameControls() self._screen: Screen = GameScreen() self._run_button = '(150, 300,100,50),"Run", [(0,255,0), (0,150,0)], action = self.start_up' self._quit_button = '(550, 300,100,50),"Quit", [(255,0,0), (150,0,0)], action = self.quit' self._hard_button, self._expert_button = None, None self._buttons = [self._run_button, self._quit_button] self._button_click = None self._hover = None self._blocks = [] self._size = 1 self._click, self._loads = False, False self.prepare_canvas() def prepare_canvas(self) -> None: for pict in range(0, 800, 10): image: Image = GameImage(location=(10, 10)) image.fill(color=(0, 0, 0)) self._blocks.append([image.surface(), [pict, 0]]) for pict in range(0, 800, 10): image: Image = GameImage(location=(10, 10)) image.fill(color=(0, 0, 0)) self._blocks.append([image.surface(), [pict, 440]]) for pict in range(0, 450, 10): image: Image = GameImage(location=(10, 10)) image.fill(color=(0, 0, 0)) self._blocks.append([image.surface(), [0, pict]]) for pict in range(0, 450, 10): image: Image = GameImage(location=(10, 10)) image.fill(color=(0, 0, 0)) self._blocks.append([image.surface(), [790, pict]]) def make_text(self, x: int, y: int, text: str, size: int=20, color: Tuple=(0, 0, 0), center: bool=False) -> None: txts = GameFont('Courier New', size, text, True, color).render() txtrect = txts.get_rect() txtrect.topleft = x, y if center: txtrect.center = x, y self._screen.blit(txts, txtrect) def make_button(self, loc: Iterable, text: str, color: Iterable, action: Callable, size: int=20) -> None: mouse = mouse_position() oldpos = loc rect = Rectangle(loc).shape() rect.topleft = 0, 0 rectangle: Surface = GameImage(rect.size, self._controls.type().src_alpha()).surface() circle: Surface = GameImage([min(rect.size) * 3] * 2, self._controls.type().src_alpha()).surface() draw_ellipse(circle, (0, 0, 0), 0) circle = smooth_scale(circle, rect) radius = rectangle.blit(circle, (0, 0)) radius.bottomright = rect.bottomright rectangle.blit(circle, radius) radius.topright = rect.topright rectangle.blit(circle, radius) radius.bottomleft = rect.bottomleft rectangle.blit(circle, radius) rectangle.fill((0, 0, 0), rect.inflate(-radius.w, 0)) rectangle.fill((0, 0, 0), rect.inflate(0, -radius.h)) loc = oldpos if (loc[0] + loc[2]) > mouse[0] > loc[0] and (loc[1] + loc[3]) > mouse[1] > loc[1]: self._hover = True self._button_click = action color = GameColor(color[1]).get() alpha = color.a color.a = 0 else: color = GameColor(color[0]).get() alpha = color.a color.a = 0 self._hover = False rectangle.fill(color, special_flags=self._controls.type().blend_rgba_max()) rectangle.fill((255, 255, 255, alpha), special_flags=self._controls.type().blend_rgba_min()) self._screen.blit(rectangle, loc) self.make_text((loc[0] + loc[2] / 2), (loc[1] + loc[3] / 2), text, center=True, size=size) def mainloop(self) -> None: while True: self._screen.fill((35, 38, 117)) self.make_text(400, 150, 'PySnake Game', color=(255, 255, 255), size=80, center=True) for event in game_event(): if event.type == self._controls.type().quit(): sys.exit() for block in self._blocks: self._screen.blit(block[0], block[1]) for button in self._buttons: exec('self.make_button({})'.format(button)) if self._hover: pump_event() click = pressed_mouse() if click[0] == 1: self._click = True if self._click: if click[0] == 0: self._button_click() self._click = False self._screen.update() def start_up(self) -> None: self._run_button: str = '(150,300,100,50),"Small", [(0,255,0), (0,150,0)], self.small' self._quit_button: str = '(550,300,100,50),"Huge", [(0,255,0), (0,150,0)], self.huge' self._buttons: List = [self._run_button, self._quit_button] def small(self) -> None: self._run_button: str = '(150,300,100,50),"Easy", [(0,255,0), (0,150,0)], self.easy' self._quit_button: str = '(283,300,100,50),"Normal", [(0,255,0), (0,150,0)], self.normal' self._hard_button: str = '(417,300,100,50),"Advanced", [(0,255,0), (0,150,0)], self.advanced' self._expert_button: str = '(550,300,100,50),"Expert", [(0,255,0), (0,150,0)], self.expert' self._buttons: List = [self._run_button, self._quit_button, self._hard_button, self._expert_button] def huge(self) -> None: self._size = 2 self._run_button: str = '(150,300,100,50),"Easy", [(0,255,0), (0,150,0)], self.easy' self._quit_button: str = '(283,300,100,50),"Normal", [(0,255,0), (0,150,0)], self.normal' self._hard_button: str = '(417,300,100,50),"Advanced", [(0,255,0), (0,150,0)], self.advanced' self._expert_button: str = '(550,300,100,50),"Expert", [(0,255,0), (0,150,0)], self.expert' self._buttons: List = [self._run_button, self._quit_button, self._hard_button, self._expert_button] def easy(self) -> None: self._game.start(1, self._size) def normal(self)
<reponame>l2tor/underworlds import uuid import time import logging;logger = logging.getLogger("underworlds.server") from underworlds.types import * import underworlds_pb2 as gRPC from grpc.beta import interfaces as beta_interfaces class Server(gRPC.BetaUnderworldsServicer): def __init__(self): self._worlds = {} # for each world (key), stores a mapping {client: list of node IDs that # are to be invalidated} self._node_invalidations = {} self._timeline_invalidations = {} self._clients = {} # for each client, stored the links (cf clients' types) with the various worlds. self._clientnames = {} # meshes are stored as a dictionary: # - the key is a unique ID # - the value is a ditionary with these keys: # - vertices: [(x,y,z), ...] # - faces: [(i1, i2, i3), ...] with i an index in the vertices list # - normals self.meshes = {} self.starttime = time.time() def _new_client(self, id, name): self._clients[id] = {} self._clientnames[id] = name logger.info("New client <%s> has connected." % name) def _clientname(self, id): return self._clientnames.get(id, id) def _new_world(self, name): self._worlds[name] = World(name) self._node_invalidations[name] = {} self._timeline_invalidations[name] = {} def _get_scene_timeline(self, ctxt): world = ctxt.world if world not in self._worlds: self._new_world(world) logger.info("<%s> created a new world <%s>" % (self._clientname(ctxt.client), world)) scene = self._worlds[world].scene timeline = self._worlds[world].timeline return scene, timeline def _update_current_links(self, client, world, type): if world in self._clients[client]: current_type = self._clients[client][world][0] # update only if the current link is 'READER' (we do not # want a 'READER' to overwrite a 'PROVIDER' for instance) type = type if current_type == READER else current_type self._clients[client][world] = (type, time.time()) def _update_node(self, scene, node): parent_has_changed = False node.last_update = time.time() oldnode = scene.node(node.id) if oldnode: # the node already exist parent_has_changed = oldnode.parent != node.parent # update the list of children node.children = [n.id for n in scene.nodes if n.parent == node.id] # replace the node scene.nodes = [node if old == node else old for old in scene.nodes] action = gRPC.NodeInvalidation.UPDATE else: # new node scene.nodes.append(node) if node.parent: parent_has_changed = True action = gRPC.NodeInvalidation.NEW return action, parent_has_changed def _delete_node(self, scene, id): scene.nodes.remove(scene.node(id)) def _add_node_invalidation(self, world, node_id, invalidation_type): for client_id in self._node_invalidations[world].keys(): self._node_invalidations[world][client_id].append(gRPC.NodeInvalidation(type=invalidation_type, id=node_id)) def _add_timeline_invalidation(self, world, sit_id, invalidation_type): for client_id in self._timeline_invalidations[world].keys(): self._timeline_invalidations[world][client_id].append(gRPC.TimelineInvalidation(type=invalidation_type, id=sit_id)) ############################################# ############ Underworlds API ################ ############ GENERAL def helo(self, client, context): client_id = str(uuid.uuid4()) logger.debug("Got <helo> from %s" % client_id) self._new_client(client_id, client.name) res = gRPC.Client(id=client_id) logger.debug("<helo> completed") return res def uptime(self, client, context): logger.debug("Got <uptime> from %s" % client.id) res = gRPC.Time(time=time.time() - self.starttime) logger.debug("<uptime> completed") return res def topology(self, client, context): logger.debug("Got <topology> from %s" % client.id) topo = gRPC.Topology() for w in self._worlds.keys(): topo.worlds.append(w) for client_id, links in self._clients.items(): client = topo.clients.add() client.id = client_id client.name = self._clientname(client_id) for w, details in links.items(): type, timestamp = details interaction = client.links.add() interaction.world = w interaction.type = type interaction.last_activity.time = timestamp logger.debug("<topology> completed") return topo def reset(self, client, context): logger.debug("Got <reset> from %s" % client.id) logger.warning("Resetting Underworlds upon client <%s> request" % client.id) logger.warning("This might break other clients!") self._worlds = {} self._node_invalidations = {} self._timeline_invalidations = {} logger.debug("<reset> completed") return gRPC.Empty() ############ NODES def getNodesLen(self, ctxt, context): logger.debug("Got <getNodesLen> from %s" % ctxt.client) self._update_current_links(ctxt.client, ctxt.world, READER) scene,_ = self._get_scene_timeline(ctxt) res = gRPC.Size(size=len(scene.nodes)) logger.debug("<getNodesLen> completed") return res def getNodesIds(self, ctxt, context): logger.debug("Got <getNodesIds> from %s" % ctxt.client) self._update_current_links(ctxt.client, ctxt.world, READER) scene,_ = self._get_scene_timeline(ctxt) nodes = gRPC.Nodes() for n in scene.nodes: nodes.ids.append(n.id) logger.debug("<getNodesIds> completed") return nodes def getRootNode(self, ctxt, context): logger.debug("Got <getRootNode> from %s" % ctxt.client) self._update_current_links(ctxt.client, ctxt.world, READER) scene,_ = self._get_scene_timeline(ctxt) res = gRPC.Node(id=scene.rootnode.id) logger.debug("<getRootNode> completed") return res def getNode(self, nodeInCtxt, context): logger.debug("Got <getNode> from %s" % nodeInCtxt.context.client) self._update_current_links(nodeInCtxt.context.client, nodeInCtxt.context.world, READER) client_id, world = nodeInCtxt.context.client, nodeInCtxt.context.world scene,_ = self._get_scene_timeline(nodeInCtxt.context) self._update_current_links(client_id, world, READER) node = scene.node(nodeInCtxt.node.id) if not node: logger.warning("%s has required an non-existant " "node <%s> in world %s" % (self._clientname(client_id), nodeInCtxt.node.id, world)) context.details("Node <%s> does not exist in world %s" % (nodeInCtxt.node.id, world)) context.code(beta_interfaces.StatusCode.UNKNOWN) else: res = node.serialize(gRPC.Node) logger.debug("<getNode> completed") return res def updateNode(self, nodeInCtxt, context): logger.debug("Got <updateNode> from %s" % nodeInCtxt.context.client) self._update_current_links(nodeInCtxt.context.client, nodeInCtxt.context.world, PROVIDER) client_id, world = nodeInCtxt.context.client, nodeInCtxt.context.world scene,_ = self._get_scene_timeline(nodeInCtxt.context) node = Node.deserialize(nodeInCtxt.node) invalidation_type, parent_has_changed = self._update_node(scene, node) logger.info("<%s> %s node <%s> in world <%s>" % \ (self._clientname(client_id), "updated" if invalidation_type==gRPC.NodeInvalidation.UPDATE else ("created" if invalidation_type==gRPC.NodeInvalidation.NEW else "deleted"), repr(node), world)) logger.debug("Adding invalidation action [" + str(invalidation_type) + "]") self._add_node_invalidation(world, node.id, invalidation_type) ## If necessary, update the node hierarchy if parent_has_changed: parent = scene.node(node.parent) if parent is None: logger.warning("Node %s references a non-exisiting parent" % node) elif node.id not in parent.children: parent.children.append(node.id) # tells everyone about the change to the parent logger.debug("Adding invalidation action [update " + parent.id + "] due to hierarchy update") self._add_node_invalidation(world, parent.id, gRPC.NodeInvalidation.UPDATE) # As a node has only one parent, if the parent has changed we must # remove our node for its previous parent for othernode in scene.nodes: if othernode.id != parent.id and node.id in othernode.children: othernode.children.remove(node.id) # tells everyone about the change to the former parent logger.debug("Adding invalidation action [update " + othernode.id + "] due to hierarchy update") self._add_node_invalidation(world, othernode.id, gRPC.NodeInvalidation.UPDATE) break logger.debug("<updateNode> completed") return gRPC.Empty() def deleteNode(self, nodeInCtxt, context): logger.debug("Got <deleteNode> from %s" % nodeInCtxt.context.client) self._update_current_links(nodeInCtxt.context.client, nodeInCtxt.context.world, PROVIDER) client_id, world = nodeInCtxt.context.client, nodeInCtxt.context.world scene,_ = self._get_scene_timeline(nodeInCtxt.context) node = scene.node(nodeInCtxt.node.id) logger.info("<%s> deleted node <%s> in world <%s>" % \ (self._clientname(client_id), repr(node), world)) action = self._delete_node(scene, nodeInCtxt.node.id) # tells everyone about the change logger.debug("Sent invalidation action [delete]") self._add_node_invalidation(world, nodeInCtxt.node.id, gRPC.NodeInvalidation.DELETE) # Also remove the node for its parent's children parent = scene.node(node.parent) if parent: parent.children.remove(node.id) # tells everyone about the change to the parent logger.debug("Sent invalidation action [update " + parent.id + "] due to hierarchy update") self._add_node_invalidation(world, parent.id, gRPC.NodeInvalidation.UPDATE) logger.debug("<updateNode> completed") return gRPC.Empty() #### Nodes invalidation streams def getNodeInvalidations(self, ctxt, context): """ For each pair (world, client), check if nodes need to be invalidated, and yield accordingly the invalidation messages. """ world, client = ctxt.world, ctxt.client # (if this client is not yet monitoring this world, add it as a side effect of the test) if self._node_invalidations[world].setdefault(client,[]): for invalidation in self._node_invalidations[world][client]: yield invalidation self._node_invalidations[world][client] = [] #try: #except Exception as e: # context.details("Exception in getInvalidations: %s" %repr(e)) # context.code(beta_interfaces.StatusCode.UNKNOWN) ############ TIMELINES def timelineOrigin(self, ctxt, context): logger.debug("Got <timelineOrigin> from %s" % ctxt.client) self._update_current_links(ctxt.client, ctxt.world, READER) _,timeline = self._get_scene_timeline(ctxt) res = gRPC.Time(time=timeline.origin) logger.debug("<timelineOrigin> completed") return res def event(self, sitInCtxt, context): client, world = sitInCtxt.context.client, sitInCtxt.context.world logger.debug("Got <event> from %s" % client) self._update_current_links(client, world, PROVIDER) _, timeline = self._get_scene_timeline(sitInCtxt.context) sit = Situation.deserialize(sitInCtxt.situation) if timeline.situation(sit.id): # the situation already exist. Error! raise Exception("Attempting to add twice the same situation!") timeline.event(sit) self._add_timeline_invalidation(world, sit.id, gRPC.TimelineInvalidation.EVENT) logger.debug("<event> completed") return gRPC.Empty() def startSituation(self, sitInCtxt, context): client, world = sitInCtxt.context.client, sitInCtxt.context.world logger.debug("Got <startSituation> from %s" % client) self._update_current_links(client, world, PROVIDER) _, timeline = self._get_scene_timeline(sitInCtxt.context) sit = Situation.deserialize(sitInCtxt.situation) if timeline.situation(sit.id): # the situation already exist. Error! raise Exception("Attempting to add twice the same situation!") timeline.start(sit) self._add_timeline_invalidation(world, sit.id, gRPC.TimelineInvalidation.START) logger.debug("<startSituation> completed") return gRPC.Empty() def endSituation(self, sitInCtxt, context): client, world = sitInCtxt.context.client, sitInCtxt.context.world logger.debug("Got <endSituation> from %s" % client) self._update_current_links(client, world, PROVIDER) _, timeline = self._get_scene_timeline(sitInCtxt.context) sit = timeline.situation(sitInCtxt.situation.id) if not sit: raise Exception("Attempting to end a non-existant situation!") timeline.end(sit) self._add_timeline_invalidation(world, sit.id, gRPC.TimelineInvalidation.END) logger.debug("<endSituation> completed") return gRPC.Empty() #### Timeline invalidation streams def getTimelineInvalidations(self, ctxt, context): """ For each pair (world, client), check if situations need to be invalidated, and yield accordingly the invalidation messages. """ world, client = ctxt.world, ctxt.client # (if this client is not yet monitoring this world, add it as a side effect of the test) if self._timeline_invalidations[world].setdefault(client,[]): for invalidation in self._timeline_invalidations[world][client]: yield invalidation self._timeline_invalidations[world][client] = [] ############ MESHES def hasMesh(self, meshInCtxt, context): logger.debug("Got <hasMesh> from %s" % meshInCtxt.client.id) res = gRPC.Bool(value=(meshInCtxt.mesh.id in self.meshes)) logger.debug("<hasMesh> completed") return res def getMesh(self, meshInCtxt, context): logger.debug("Got <getMesh> from %s" % meshInCtxt.client.id) logger.debug("<getMesh> completed") return self.meshes[meshInCtxt.mesh.id] def pushMesh(self, meshInCtxt, context): logger.debug("Got <pushMesh> from %s" % meshInCtxt.client.id) mesh_id = meshInCtxt.mesh.id self.meshes[mesh_id] = meshInCtxt.mesh logger.info("<%s> added a new mesh ID %s (%d faces)" % \ (self._clientname(meshInCtxt.client.id),
2, so this verifies that reversed() still turns this into an # iterator. assert isinstance(act_keys_iter, Iterator) act_keys = list(act_keys_iter) assert act_keys == exp_keys TESTCASES_DICTVIEW_GET = [ # Testcases for DictView.get() # Each list item is a testcase tuple with these items: # * desc: Short testcase description. # * kwargs: Keyword arguments for the test function: # * obj: DictView object to be used for the test. # * key: Key to be used for the test. # * default: Default value to be used for the test, or _OMIT_ARG. # * exp_value: Expected value at the key. # * exp_exc_types: Expected exception type(s), or None. # * exp_warn_types: Expected warning type(s), or None. # * condition: Boolean condition for testcase to run, or 'pdb' for debugger # Empty DictView ( "Empty dict, with None key", dict( obj=DictView({}), key=None, default=_OMIT_ARG, exp_value=None, ), None, None, True ), ( "Empty dict, with integer key", dict( obj=DictView({}), key=1234, default=_OMIT_ARG, exp_value=None, ), None, None, True ), ( "Empty dict, with empty string key (defaulted without default)", dict( obj=DictView({}), key='', default=_OMIT_ARG, exp_value=None, ), None, None, True ), ( "Empty dict, with empty string key (defaulted to a value)", dict( obj=DictView({}), key='', default='Newbie', exp_value='Newbie', ), None, None, True ), ( "Empty dict, with non-empty key (defaulted without default)", dict( obj=DictView({}), key='Dog', default=_OMIT_ARG, exp_value=None, ), None, None, True ), ( "Empty dict, with non-empty key (defaulted to a value)", dict( obj=DictView({}), key='Dog', default='Kitten', exp_value='Kitten', ), None, None, True ), # Non-empty DictView ( "Non-empty dict, with None key", dict( obj=DictView(OrderedDict([('Dog', 'Cat'), ('Budgie', 'Fish')])), key=None, default=_OMIT_ARG, exp_value=None, ), None, None, True ), ( "Non-empty dict, with empty string key (defaulted without default)", dict( obj=DictView(OrderedDict([('Dog', 'Cat'), ('Budgie', 'Fish')])), key='', default=_OMIT_ARG, exp_value=None, ), None, None, True ), ( "Non-empty dict, with empty string key (defaulted to a value)", dict( obj=DictView(OrderedDict([('Dog', 'Cat'), ('Budgie', 'Fish')])), key='', default='Newbie', exp_value='Newbie', ), None, None, True ), ( "Non-empty dict, with non-empty non-existing key (defaulted without " "default)", dict( obj=DictView(OrderedDict([('Dog', 'Cat'), ('Budgie', 'Fish')])), key='invalid', default=_OMIT_ARG, exp_value=None, ), None, None, True ), ( "Non-empty dict, with non-empty non-existing key (defaulted to a " "value)", dict( obj=DictView(OrderedDict([('Dog', 'Cat'), ('Budgie', 'Fish')])), key='invalid', default='Newbie', exp_value='Newbie', ), None, None, True ), ( "Non-empty dict, with existing key (no default)", dict( obj=DictView(OrderedDict([('Dog', 'Cat'), ('Budgie', 'Fish')])), key='Dog', default=_OMIT_ARG, exp_value='Cat', ), None, None, True ), ] @pytest.mark.parametrize( "desc, kwargs, exp_exc_types, exp_warn_types, condition", TESTCASES_DICTVIEW_GET) @simplified_test_function def test_DictView_get(testcase, obj, key, default, exp_value): """ Test function for DictView.get() """ # The code to be tested if default is _OMIT_ARG: act_value = obj.get(key) else: act_value = obj.get(key, default) # Ensure that exceptions raised in the remainder of this function # are not mistaken as expected exceptions assert testcase.exp_exc_types is None assert act_value == exp_value, \ "Unexpected value at key {k!r} with default {d}". \ format(k=key, d="omitted" if default is _OMIT_ARG else repr(default)) TESTCASES_DICTVIEW_ITEMS = [ # Testcases for DictView.keys(), values(), items() # Each list item is a testcase tuple with these items: # * desc: Short testcase description. # * kwargs: Keyword arguments for the test function: # * obj: DictView object to be used for the test. # * exp_items: List with expected items (key,value) in expected order. # * exp_exc_types: Expected exception type(s), or None. # * exp_warn_types: Expected warning type(s), or None. # * condition: Boolean condition for testcase to run, or 'pdb' for debugger ( "Empty dict", dict( obj=DictView({}), exp_items=[], ), None, None, True ), ( "Dict with one item", dict( obj=DictView(OrderedDict([('Dog', 'Cat')])), exp_items=[('Dog', 'Cat')], ), None, None, True ), ( "Dict with two items", dict( obj=DictView(OrderedDict([('Dog', 'Cat'), ('Budgie', 'Fish')])), exp_items=[('Dog', 'Cat'), ('Budgie', 'Fish')], ), None, None, True ), ] @pytest.mark.parametrize( "desc, kwargs, exp_exc_types, exp_warn_types, condition", TESTCASES_DICTVIEW_ITEMS) @simplified_test_function def test_DictView_keys(testcase, obj, exp_items): """ Test function for DictView.keys() """ # The code to be tested act_keys = obj.keys() # Also test iterating through the result act_keys_list = list(act_keys) # Test that second iteration is possible act_keys_list2 = list(act_keys) if not PY2: # Test __contained__() of the returned view for key in act_keys_list: assert key in act_keys # Ensure that exceptions raised in the remainder of this function # are not mistaken as expected exceptions assert testcase.exp_exc_types is None if PY2: assert isinstance(act_keys, list) else: assert isinstance(act_keys, KeysView) exp_keys = [item[0] for item in exp_items] assert act_keys_list == exp_keys assert act_keys_list2 == exp_keys @pytest.mark.parametrize( "desc, kwargs, exp_exc_types, exp_warn_types, condition", TESTCASES_DICTVIEW_ITEMS) @simplified_test_function def test_DictView_values(testcase, obj, exp_items): """ Test function for DictView.values() """ # The code to be tested act_values = obj.values() # Also test iterating through the result act_values_list = list(act_values) # Test that second iteration is possible act_values_list2 = list(act_values) if not PY2: # Test __contained__() of the returned view for value in act_values_list: assert value in act_values # Ensure that exceptions raised in the remainder of this function # are not mistaken as expected exceptions assert testcase.exp_exc_types is None if PY2: assert isinstance(act_values, list) else: assert isinstance(act_values, ValuesView) exp_values = [item[1] for item in exp_items] assert act_values_list == exp_values assert act_values_list2 == exp_values @pytest.mark.parametrize( "desc, kwargs, exp_exc_types, exp_warn_types, condition", TESTCASES_DICTVIEW_ITEMS) @simplified_test_function def test_DictView_items(testcase, obj, exp_items): """ Test function for DictView.items() """ # The code to be tested act_items = obj.items() # Also test iterating through the result act_items_list = list(act_items) # Test that second iteration is possible act_items_list2 = list(act_items) if not PY2: # Test __contained__() of the returned view for item in act_items_list: assert item in act_items # Ensure that exceptions raised in the remainder of this function # are not mistaken as expected exceptions assert testcase.exp_exc_types is None if PY2: assert isinstance(act_items, list) else: assert isinstance(act_items, ItemsView) assert act_items_list == exp_items assert act_items_list2 == exp_items @pytest.mark.parametrize( "desc, kwargs, exp_exc_types, exp_warn_types, condition", TESTCASES_DICTVIEW_ITEMS) @simplified_test_function def test_DictView_iterkeys(testcase, obj, exp_items): """ Test function for DictView.iterkeys() """ if not DICT_SUPPORTS_ITER_VIEW: pytest.skip("Test dictionary does not support iterkeys() method") assert PY2 # The code to be tested act_keys = [] for key in obj.iterkeys(): act_keys.append(key) # Ensure that exceptions raised in the remainder of this function # are not mistaken as expected exceptions assert testcase.exp_exc_types is None exp_keys = [item[0] for item in exp_items] assert act_keys == exp_keys @pytest.mark.parametrize( "desc, kwargs, exp_exc_types, exp_warn_types, condition", TESTCASES_DICTVIEW_ITEMS) @simplified_test_function def test_DictView_itervalues(testcase, obj, exp_items): """ Test function for DictView.itervalues() """ if not DICT_SUPPORTS_ITER_VIEW: pytest.skip("Test dictionary does not support itervalues() method") assert PY2 # The code to be tested act_values = [] for value in obj.itervalues(): act_values.append(value) # Ensure that exceptions raised in the remainder of this function # are not mistaken as expected exceptions assert testcase.exp_exc_types is None exp_values = [item[1] for item in exp_items] assert act_values == exp_values @pytest.mark.parametrize( "desc, kwargs, exp_exc_types, exp_warn_types, condition", TESTCASES_DICTVIEW_ITEMS) @simplified_test_function def test_DictView_iteritems(testcase, obj, exp_items): """ Test function for DictView.iteritemss() """ if not DICT_SUPPORTS_ITER_VIEW: pytest.skip("Test dictionary does not support iteritems() method") assert PY2 # The code to be tested act_items = [] for item in obj.iteritems(): act_items.append(item) # Ensure that exceptions raised in the remainder of this function # are not mistaken as expected exceptions assert testcase.exp_exc_types is None assert act_items == exp_items @pytest.mark.parametrize( "desc, kwargs, exp_exc_types, exp_warn_types, condition", TESTCASES_DICTVIEW_ITEMS) @simplified_test_function def test_DictView_viewkeys(testcase, obj, exp_items): """ Test function for DictView.viewkeys() (PY2 only) """ if not DICT_SUPPORTS_ITER_VIEW: pytest.skip("Test dictionary does support viewkeys() method") assert PY2 # The code to be tested act_keys = obj.viewkeys() # Also test iterating through the result act_keys_list = list(act_keys) # Test that second iteration is possible act_keys_list2 = list(act_keys) # Test __contained__() of the returned view for key in act_keys_list: assert key in act_keys # Ensure that exceptions raised in the remainder of this function # are not mistaken as expected exceptions assert testcase.exp_exc_types is None assert isinstance(act_keys, KeysView) exp_keys = [item[0] for item in exp_items] assert act_keys_list == exp_keys assert act_keys_list2 == exp_keys @pytest.mark.parametrize( "desc, kwargs, exp_exc_types, exp_warn_types, condition", TESTCASES_DICTVIEW_ITEMS) @simplified_test_function def test_DictView_viewvalues(testcase, obj, exp_items): """ Test function for DictView.viewvalues() """ if not DICT_SUPPORTS_ITER_VIEW: pytest.skip("Test dictionary does not support viewvalues() method") assert PY2 # The code to be tested act_values = obj.viewvalues() # Also test iterating through the result act_values_list = list(act_values) #
<gh_stars>1-10 """ This Python script calculates HST ACS WFC photometry. The class can be used to run calacs for calibrating the raw data. The class contains also a simple interface for SExtractor that can be used to find locations of stars in the image. :depends: PyRAF :author: <NAME>, for STScI :history: 02/10/09 Initial Version :version: 1.0 """ import os import pyraf from pyraf import iraf as I from pyraf.iraf import stsdas as S __author__ = '<NAME>' __version__ = "1.0" class ACSPhotometry(): """ A class to do ACS photometry. """ #Note: could be cleaned from all useless self declarations. def __init__(self, path, out): #should be expanded to be usable from commandline #for time being, does not use path and output for anything self.path = path self.out = out def omitPhotcorr(self, file): """ This function will change PHOTCORR keyword value to OMIT in the header of given file. The file can contain wildcards i.e. multiple files can be given on one command.. """ I.hedit(file, fields='PHOTCORR', value='omit', verify='no', show='no') def runCalACS(self, file): """ Runs calacs for the given file. Uses the default parameters. """ S.hst() S.hst.acs() S.hst.acs.calacs(file) def gStat(self, file): """ Calculates statistics from given image. Extension must be given on filename e.g. file.fits[1] Returns: All statistics given by IRAF task gstat. """ stat = S.gstat(file, fields='doall', Stdout=1) return stat def hdiff(self, file1, file2): """ Compares headers from two files with hdiff. :returns: The differences found. """ hdiff = S.hdiff(file1, file2, Stdout=1) return hdiff def queryKeywords(self, file, keywords): """ Queries keywords from header. Can be used to get e.g. exposure times from multiple raw files with wildcard in file name. :returns: Queried keywords """ self.file = file self.keywords = keywords keyw = I.hselect(self.file, self.keywords, 'yes', Stdout=1) return keyw def getBandpar(self, configuration): """ """ self.conf = configuration #example configuration = 'acs,wfc1,f435w' #load right packages, output should be supressed if possible S.hst() S.hst.synphot() bands = S.hst.synphot.bandpar(self.conf, Stdout=1) return bands def calculateZeropoint(self, photflam): """ Calculates the zeropoint from a given header keyword photflam value. :returns: the zeropoint value """ import math self.photflam = photflam zp = -21.1 - 2.5 * math.log10(self.photflam) return zp def getSize(self, file): """ This function can be used to get the size of the image. It actually returns a simple information found from the image header, however, when parsed correctly the image size is available. """ self.file = file head = I.imheader(self.file, Stdout=1) return head def doImcalc(self, input, output, operation): """ Simple interface for IRAF task imcalc. Can be used for simple arithmetic operations between images. This could be rewritten with PyFits and NumPy to give broader selection of operations. """ self.input = input self.output = output self.operation = operation I.imcalc(self.input, self.output, self.operation) def displayDS9(self, image, buffer): """ Displays the given image on DS9. The function requires that the DS9 is already running. In the future this should be changed. """ I.display(image, buffer) def markStars(self, data, buffer): """ Can be used to show an overlapping image on DS9 buffer. The data is taken from the a table; containing x and y coordinates. Uses a fixed size for the points. """ I.tvmark(buffer, data, mark='point', nx=0, ny=0, points=0.5, color=204) def interactiveImexam(self, image, frame): """ Can be used to call interactive IRAF task imexam for a given frame. DS9 must be running and a right frame should be given. """ I.imexam(image, frame=frame) def doPhotometryACS(self, file, inputcoords, apertures, zeropoint, bgsigma, skyann, skydann): """ This function can be used to do photometry from a given image. Input parameters can be varied, however, the task assumes that photometry is done from an ACS image and the exposure time is found from the header of the file. Object recentering is done with centroid algorithm and shifts up to 6 pixels are possible. For skyfitting algorithm mode is adopted. """ #load packages, should supress the output I.digiphot() I.apphot() #setting up for ACS I.datapar(sigma=bgsigma, exposure='exptime', gain='ccdgain') I.centerpars(calgorithm='centroid', cbox=10., maxshift=6.) I.fitskypars(salgorithm='mode', annulus=skyann,\ dannulus=skydann, skyvalue=0.) I.photpars(apertures=apertures, zmag=zeropoint) I.phot(file, coords=inputcoords, verify='no', verbose='no') def getMeaningfulColumns(self, input, columns, output): """ Uses IRAF task tdump for parsing columns from a table. """ I.tdump(input, colum=columns, datafil=output) def mergeTables(self, merged, output): """ Can be used to merge multiple tables together. """ I.tmerge(merged, output, option='merge') def changeColumn(self, table, column, name, fmt, unit): """ Changes the column name and format that IRAF supports. Also unit can be set. Verbose output has been supressed. """ I.tchcol(table, column, name, newfmt=fmt, newunit=unit, verbose='no') def calculateac05(self, input, column, operation, outputfmt): """ Can be used to calculate the ac05 (from 3 pix to 10pix) aperture correction. Uses IRAF task tcalc, and adds the calculated values as a new column at the end of the table. """ I.tcalc(input, column, operation, colfmt=outputfmt) def correctMagnitude(self, input, column, operation, outputfmt): """ Essentially the same as calculateac05 function. """ I.tcalc(input, column, operation, colfmt=outputfmt) def useSextractor(input): """ Very simple interface for running sextractor for given image. Does not return anything to the Python program. This function is superseded by the class: 'SexTractor' class written by <NAME> for the Nordic Optical Telescope. """ command = 'sex %s' % input os.system(command) if __name__ == '__main__': import glob as G #import Photometry as P verbose = False doAll = False calibpath = '../../calib/' log = open('output.log', 'w') log.write('#This is outputlog of Photometry.py\n\n') ph = P.ACSPhotometry('path', 'output') #edits PHOTCORR keywords if doAll: ph.omitPhotcorr('*raw.fits[0]') #reduce raw files if doAll: for file in G.glob('*_asn.fit*'): ph.runCalACS(file) #get some statistics stats = [] for file in G.glob('*_crj.fit*'): stats.append(ph.gStat(file + '[1]')) log.write('\n#Image Statistics:\n') for line in stats: for row in line: log.write(row + '\n') if verbose: print row diff = ph.hdiff(calibpath + 'j8c0d1011_crj.fits[1]', 'j8c0d1011_crj.fits[1]') log.write('\n#Header Difference:\n') for line in diff: log.write(line + '\n') if verbose: print line #lets check some header keywords keys = '$l,filter*,exptime,photflam,photzpt' phots = ph.queryKeywords(calibpath + '*drz.fits[1]', keys) log.write('\n#Photometric keyword values\n') for line in phots: log.write(line + '\n') if verbose: print line tmp = line.split() if tmp[1] == 'F606W': expf606w = tmp[3] photflamf606 = tmp[4] if tmp[2] == 'F435W': expf435w = tmp[3] photflamf435 = tmp[4] if tmp[2] == 'F814W': expf814w = tmp[3] photflamf814 = tmp[4] #could be better with a dictionary? info = [['F435W', float(expf435w) * 2., float(photflamf435), 'j8c0a1011_drz.fits[1]'],\ ['F606W', float(expf606w) * 2., float(photflamf606), 'j8c0c1011_drz.fits[1]'],\ ['F814W', float(expf814w) * 2., float(photflamf814), 'j8c0d1011_drz.fits[1]']] #checks bandpar log.write('\n#Bandpar values:\n') for line in info: bands = ph.getBandpar('acs,wfc1,' + line[0]) for l in bands: log.write(l + '\n') if verbose: print l #calculates zeropoints log.write('\n#Zeropoints:\n') for line in info: zp = ph.calculateZeropoint(line[2]) line.append(zp) if verbose: print 'Zeropoint of %s is %8.5f' % (line[0], zp) log.write('Zeropoint of %s is %8.5f\n' % (line[0], zp)) #check image sizes log.write('\n#Image sizes:\n') size = ph.getSize(calibpath + '*_drz.fits[1]') for line in size: if line.find('j8c0a1011_drz.fits') != -1: sizea = line[-18:-9] if line.find('j8c0c1011_drz.fits') != -1: sizec = line[-18:-9] if line.find('j8c0d1011_drz.fits') != -1: sizeb = line[-18:-9] #find the sizes: dim = [sizea.split(','), sizeb.split(','), sizec.split(',')] xdim = [float(d[0]) for d in dim] ydim = [float(d[1]) for d in dim] #Do the imcalc if verbose: print 'Will make all the images of same size...' if doAll: for line in info: ph.doImcalc(calibpath + line[3] + '[1:%s,1:%s]' % (str(int(min(xdim))), str(int(min(ydim)))),\ line[0] + '_drz.fits', 'im1*' + str(line[1])) #make the colour image if verbose: print 'Will combine three images...' weight = info[0][2] / info[1][2] if doAll: ph.doImcalc('F435W_drz.fits,F606W_drz.fits,F814W_drz.fits', 'colour_drz.fits',\ '''"(%s*im1 + im2 + im3)/6."''' % str(weight)) #lets find the stars from the colour image with sextractor if verbose: print 'Will use sextractor to find stars...' useSextractor('colour_drz.fits') #will finally do the photometry #I will use fixed values at this point. These values were manually measured with imexam bgsigma = 4.1 #this could be catched from sextractor, but probably gives wrong values fro drizzled image skyann = 10. skydann = 5. coords = 'output.cat' #from sextractor for line in info: file = line[0] + '_drz.fits[1]' ph.doPhotometryACS(file, coords, '3,10', line[4], bgsigma, skyann, skydann) #lets get the columns we will need for line in info: input = line[0] + '_drz.fits1.mag.1' columns = 'c7,8,15,29,30,31,38,39,40' output = line[0] + '.phota' ph.getMeaningfulColumns(input, columns, output) #lets merge the
""" Broadly applicable NGS processing/analysis functionality """ import os import re import subprocess import errno from attmap import AttMapEcho from yacman import load_yaml from .exceptions import UnsupportedFiletypeException from .utils import is_fastq, is_gzipped_fastq, is_sam_or_bam class NGSTk(AttMapEcho): """ Class to hold functions to build command strings used during pipeline runs. Object can be instantiated with a string of a path to a yaml `pipeline config file`. Since NGSTk inherits from `AttMapEcho`, the passed config file and its elements will be accessible through the NGSTk object as attributes under `config` (e.g. `NGSTk.tools.java`). In case no `config_file` argument is passed, all commands will be returned assuming the tool is in the user's $PATH. :param str config_file: Path to pipeline yaml config file (optional). :param pypiper.PipelineManager pm: A PipelineManager with which to associate this toolkit instance; that is, essentially a source from which to grab paths to tools, resources, etc. :Example: from pypiper.ngstk import NGSTk as tk tk = NGSTk() tk.samtools_index("sample.bam") # returns: samtools index sample.bam # Using a configuration file (custom executable location): from pypiper.ngstk import NGSTk tk = NGSTk("pipeline_config_file.yaml") tk.samtools_index("sample.bam") # returns: /home/.local/samtools/bin/samtools index sample.bam """ def __init__(self, config_file=None, pm=None): # parse yaml into the project's attributes # self.add_entries(**config) super(NGSTk, self).__init__( None if config_file is None else load_yaml(config_file)) # Keep a link to the pipeline manager, if one is provided. # if None is provided, instantiate "tools" and "parameters" with empty AttMaps # this allows the usage of the same code for a command with and without using a pipeline manager if pm is not None: self.pm = pm if hasattr(pm.config, "tools"): self.tools = self.pm.config.tools else: self.tools = AttMapEcho() if hasattr(pm.config, "parameters"): self.parameters = self.pm.config.parameters else: self.parameters = AttMapEcho() else: self.tools = AttMapEcho() self.parameters = AttMapEcho() # If pigz is available, use that. Otherwise, default to gzip. if hasattr(self.pm, "cores") and self.pm.cores > 1 and self.check_command("pigz"): self.ziptool_cmd = "pigz -f -p {}".format(self.pm.cores) else: self.ziptool_cmd = "gzip -f" def _ensure_folders(self, *paths): """ Ensure that paths to folder(s) exist. Some command-line tools will not attempt to create folder(s) needed for output path to exist. They instead assume that they already are present and will fail if that assumption does not hold. :param Iterable[str] paths: Collection of path for which """ for p in paths: # Only provide assurance for absolute paths. if not p or not os.path.isabs(p): continue # See if what we're assuring is file- or folder-like. fpath, fname = os.path.split(p) base, ext = os.path.splitext(fname) # If there's no extension, ensure that we have the whole path. # Otherwise, just ensure that we have path to file's folder. self.make_dir(fpath if ext else p) @property def ziptool(self): """ Returns the command to use for compressing/decompressing. :return str: Either 'gzip' or 'pigz' if installed and multiple cores """ return self.ziptool_cmd def make_dir(self, path): """ Forge path to directory, creating intermediates as needed. :param str path: Path to create. """ try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise def make_sure_path_exists(self, path): """ Alias for make_dir """ self.make_dir(path) # Borrowed from looper def check_command(self, command): """ Check if command can be called. """ # Use `command` to see if command is callable, store exit code code = os.system("command -v {0} >/dev/null 2>&1 || {{ exit 1; }}".format(command)) # If exit code is not 0, report which command failed and return False, else return True if code != 0: print("Command is not callable: {0}".format(command)) return False else: return True def get_file_size(self, filenames): """ Get size of all files in string (space-separated) in megabytes (Mb). :param str filenames: a space-separated string of filenames """ # use (1024 ** 3) for gigabytes # equivalent to: stat -Lc '%s' filename # If given a list, recurse through it. if type(filenames) is list: return sum([self.get_file_size(filename) for filename in filenames]) return round(sum([float(os.stat(f).st_size) for f in filenames.split(" ")]) / (1024 ** 2), 4) def mark_duplicates(self, aligned_file, out_file, metrics_file, remove_duplicates="True"): cmd = self.tools.java if self.pm.javamem: # If a memory restriction exists. cmd += " -Xmx" + self.pm.javamem cmd += " -jar " + self.tools.picard + " MarkDuplicates" cmd += " INPUT=" + aligned_file cmd += " OUTPUT=" + out_file cmd += " METRICS_FILE=" + metrics_file cmd += " REMOVE_DUPLICATES=" + remove_duplicates return cmd def bam2fastq(self, input_bam, output_fastq, output_fastq2=None, unpaired_fastq=None): """ Create command to convert BAM(s) to FASTQ(s). :param str input_bam: Path to sequencing reads file to convert :param output_fastq: Path to FASTQ to write :param output_fastq2: Path to (R2) FASTQ to write :param unpaired_fastq: Path to unpaired FASTQ to write :return str: Command to convert BAM(s) to FASTQ(s) """ self._ensure_folders(output_fastq, output_fastq2, unpaired_fastq) cmd = self.tools.java + " -Xmx" + self.pm.javamem cmd += " -jar " + self.tools.picard + " SamToFastq" cmd += " INPUT={0}".format(input_bam) cmd += " FASTQ={0}".format(output_fastq) if output_fastq2 is not None and unpaired_fastq is not None: cmd += " SECOND_END_FASTQ={0}".format(output_fastq2) cmd += " UNPAIRED_FASTQ={0}".format(unpaired_fastq) return cmd def bam_to_fastq(self, bam_file, out_fastq_pre, paired_end): """ Build command to convert BAM file to FASTQ file(s) (R1/R2). :param str bam_file: path to BAM file with sequencing reads :param str out_fastq_pre: path prefix for output FASTQ file(s) :param bool paired_end: whether the given file contains paired-end or single-end sequencing reads :return str: file conversion command, ready to run """ self.make_sure_path_exists(os.path.dirname(out_fastq_pre)) cmd = self.tools.java + " -Xmx" + self.pm.javamem cmd += " -jar " + self.tools.picard + " SamToFastq" cmd += " I=" + bam_file cmd += " F=" + out_fastq_pre + "_R1.fastq" if paired_end: cmd += " F2=" + out_fastq_pre + "_R2.fastq" cmd += " INCLUDE_NON_PF_READS=true" cmd += " QUIET=true" cmd += " VERBOSITY=ERROR" cmd += " VALIDATION_STRINGENCY=SILENT" return cmd def bam_to_fastq_awk(self, bam_file, out_fastq_pre, paired_end, zipmode=False): """ This converts bam file to fastq files, but using awk. As of 2016, this is much faster than the standard way of doing this using Picard, and also much faster than the bedtools implementation as well; however, it does no sanity checks and assumes the reads (for paired data) are all paired (no singletons), in the correct order. :param bool zipmode: Should the output be zipped? """ self.make_sure_path_exists(os.path.dirname(out_fastq_pre)) fq1 = out_fastq_pre + "_R1.fastq" fq2 = out_fastq_pre + "_R2.fastq" if zipmode: fq1 = fq1 + ".gz" fq2 = fq2 + ".gz" fq1_target = " | \"" + self.ziptool + " -c > " + fq1 + '"' fq2_target = " | \"" + self.ziptool + " -c > " + fq2 + '"' else: fq1_target = ' > "' + fq1 + '"' fq2_target = ' > "' + fq2 + '"' if paired_end: cmd = self.tools.samtools + " view " + bam_file + " | awk '" cmd += r'{ if (NR%2==1) print "@"$1"/1\n"$10"\n+\n"$11' + fq1_target + ';' cmd += r' else print "@"$1"/2\n"$10"\n+\n"$11' + fq2_target + '; }' cmd += "'" # end the awk command else: fq2 = None cmd = self.tools.samtools + " view " + bam_file + " | awk '" cmd += r'{ print "@"$1"\n"$10"\n+\n"$11' + fq1_target + '; }' cmd += "'" return cmd, fq1, fq2 def bam_to_fastq_bedtools(self, bam_file, out_fastq_pre, paired_end): """ Converts bam to fastq; A version using bedtools """ self.make_sure_path_exists(os.path.dirname(out_fastq_pre)) fq1 = out_fastq_pre + "_R1.fastq" fq2 = None cmd = self.tools.bedtools + " bamtofastq -i " + bam_file + " -fq " + fq1 + ".fastq" if paired_end: fq2 = out_fastq_pre + "_R2.fastq" cmd += " -fq2 " + fq2 return cmd, fq1, fq2 def get_input_ext(self, input_file): """ Get the extension of the input_file. Assumes you're using either .bam or .fastq/.fq or .fastq.gz/.fq.gz. """ if input_file.endswith(".bam"): input_ext = ".bam" elif input_file.endswith(".fastq.gz") or input_file.endswith(".fq.gz"): input_ext = ".fastq.gz" elif input_file.endswith(".fastq") or input_file.endswith(".fq"): input_ext = ".fastq" else: errmsg = "'{}'; this pipeline can only deal with .bam, .fastq, " \ "or .fastq.gz files".format(input_file) raise UnsupportedFiletypeException(errmsg) return input_ext def merge_or_link(self, input_args, raw_folder, local_base="sample"): """ Standardizes various input possibilities by converting either .bam, .fastq, or .fastq.gz files into a local file; merging those
<gh_stars>1-10 from __future__ import print_function, division, absolute_import import numpy as np from llvmlite.llvmpy.core import Type, Builder, ICMP_EQ, Constant from numba import types, cgutils, compiler from ..caching import make_library_cache, NullCache def _build_ufunc_loop_body(load, store, context, func, builder, arrays, out, offsets, store_offset, signature, pyapi, env): elems = load() # Compute status, retval = context.call_conv.call_function(builder, func, signature.return_type, signature.args, elems) # Store with builder.if_else(status.is_ok, likely=True) as (if_ok, if_error): with if_ok: store(retval) with if_error: gil = pyapi.gil_ensure() context.call_conv.raise_error(builder, pyapi, status) pyapi.gil_release(gil) # increment indices for off, ary in zip(offsets, arrays): builder.store(builder.add(builder.load(off), ary.step), off) builder.store(builder.add(builder.load(store_offset), out.step), store_offset) return status.code def _build_ufunc_loop_body_objmode(load, store, context, func, builder, arrays, out, offsets, store_offset, signature, env, pyapi): elems = load() # Compute _objargs = [types.pyobject] * len(signature.args) # We need to push the error indicator to avoid it messing with # the ufunc's execution. We restore it unless the ufunc raised # a new error. with pyapi.err_push(keep_new=True): status, retval = context.call_conv.call_function(builder, func, types.pyobject, _objargs, elems) # Release owned reference to arguments for elem in elems: pyapi.decref(elem) # NOTE: if an error occurred, it will be caught by the Numpy machinery # Store store(retval) # increment indices for off, ary in zip(offsets, arrays): builder.store(builder.add(builder.load(off), ary.step), off) builder.store(builder.add(builder.load(store_offset), out.step), store_offset) return status.code def build_slow_loop_body(context, func, builder, arrays, out, offsets, store_offset, signature, pyapi, env): def load(): elems = [ary.load_direct(builder.load(off)) for off, ary in zip(offsets, arrays)] return elems def store(retval): out.store_direct(retval, builder.load(store_offset)) return _build_ufunc_loop_body(load, store, context, func, builder, arrays, out, offsets, store_offset, signature, pyapi, env=env) def build_obj_loop_body(context, func, builder, arrays, out, offsets, store_offset, signature, pyapi, envptr, env): env_body = context.get_env_body(builder, envptr) env_manager = pyapi.get_env_manager(env, env_body, envptr) def load(): # Load elems = [ary.load_direct(builder.load(off)) for off, ary in zip(offsets, arrays)] # Box elems = [pyapi.from_native_value(t, v, env_manager) for v, t in zip(elems, signature.args)] return elems def store(retval): is_ok = cgutils.is_not_null(builder, retval) # If an error is raised by the object mode ufunc, it will # simply get caught by the Numpy ufunc machinery. with builder.if_then(is_ok, likely=True): # Unbox native = pyapi.to_native_value(signature.return_type, retval) assert native.cleanup is None # Store out.store_direct(native.value, builder.load(store_offset)) # Release owned reference pyapi.decref(retval) return _build_ufunc_loop_body_objmode(load, store, context, func, builder, arrays, out, offsets, store_offset, signature, envptr, pyapi) def build_fast_loop_body(context, func, builder, arrays, out, offsets, store_offset, signature, ind, pyapi, env): def load(): elems = [ary.load_aligned(ind) for ary in arrays] return elems def store(retval): out.store_aligned(retval, ind) return _build_ufunc_loop_body(load, store, context, func, builder, arrays, out, offsets, store_offset, signature, pyapi, env=env) def build_ufunc_wrapper(library, context, fname, signature, objmode, cres): """ Wrap the scalar function with a loop that iterates over the arguments """ assert isinstance(fname, str) byte_t = Type.int(8) byte_ptr_t = Type.pointer(byte_t) byte_ptr_ptr_t = Type.pointer(byte_ptr_t) intp_t = context.get_value_type(types.intp) intp_ptr_t = Type.pointer(intp_t) fnty = Type.function(Type.void(), [byte_ptr_ptr_t, intp_ptr_t, intp_ptr_t, byte_ptr_t]) wrapperlib = context.codegen().create_library('ufunc_wrapper') wrapper_module = wrapperlib.create_ir_module('') if objmode: func_type = context.call_conv.get_function_type( types.pyobject, [types.pyobject] * len(signature.args)) else: func_type = context.call_conv.get_function_type( signature.return_type, signature.args) func = wrapper_module.add_function(func_type, name=fname) func.attributes.add("alwaysinline") wrapper = wrapper_module.add_function(fnty, "__ufunc__." + func.name) arg_args, arg_dims, arg_steps, arg_data = wrapper.args arg_args.name = "args" arg_dims.name = "dims" arg_steps.name = "steps" arg_data.name = "data" builder = Builder(wrapper.append_basic_block("entry")) # Prepare Environment envname = context.get_env_name(cres.fndesc) env = cres.environment envptr = builder.load(context.declare_env_global(builder.module, envname)) # Emit loop loopcount = builder.load(arg_dims, name="loopcount") # Prepare inputs arrays = [] for i, typ in enumerate(signature.args): arrays.append(UArrayArg(context, builder, arg_args, arg_steps, i, typ)) # Prepare output out = UArrayArg(context, builder, arg_args, arg_steps, len(arrays), signature.return_type) # Setup indices offsets = [] zero = context.get_constant(types.intp, 0) for _ in arrays: p = cgutils.alloca_once(builder, intp_t) offsets.append(p) builder.store(zero, p) store_offset = cgutils.alloca_once(builder, intp_t) builder.store(zero, store_offset) unit_strided = cgutils.true_bit for ary in arrays: unit_strided = builder.and_(unit_strided, ary.is_unit_strided) pyapi = context.get_python_api(builder) if objmode: # General loop gil = pyapi.gil_ensure() with cgutils.for_range(builder, loopcount, intp=intp_t): slowloop = build_obj_loop_body(context, func, builder, arrays, out, offsets, store_offset, signature, pyapi, envptr, env) pyapi.gil_release(gil) builder.ret_void() else: with builder.if_else(unit_strided) as (is_unit_strided, is_strided): with is_unit_strided: with cgutils.for_range(builder, loopcount, intp=intp_t) as loop: fastloop = build_fast_loop_body(context, func, builder, arrays, out, offsets, store_offset, signature, loop.index, pyapi, env=envptr) with is_strided: # General loop with cgutils.for_range(builder, loopcount, intp=intp_t): slowloop = build_slow_loop_body(context, func, builder, arrays, out, offsets, store_offset, signature, pyapi, env=envptr) builder.ret_void() del builder # Link and finalize wrapperlib.add_ir_module(wrapper_module) wrapperlib.add_linking_library(library) return wrapperlib.get_pointer_to_function(wrapper.name) class UArrayArg(object): def __init__(self, context, builder, args, steps, i, fe_type): self.context = context self.builder = builder self.fe_type = fe_type offset = self.context.get_constant(types.intp, i) offseted_args = self.builder.load(builder.gep(args, [offset])) data_type = context.get_data_type(fe_type) self.dataptr = self.builder.bitcast(offseted_args, data_type.as_pointer()) sizeof = self.context.get_abi_sizeof(data_type) self.abisize = self.context.get_constant(types.intp, sizeof) offseted_step = self.builder.gep(steps, [offset]) self.step = self.builder.load(offseted_step) self.is_unit_strided = builder.icmp(ICMP_EQ, self.abisize, self.step) self.builder = builder def load_direct(self, byteoffset): """ Generic load from the given *byteoffset*. load_aligned() is preferred if possible. """ ptr = cgutils.pointer_add(self.builder, self.dataptr, byteoffset) return self.context.unpack_value(self.builder, self.fe_type, ptr) def load_aligned(self, ind): # Using gep() instead of explicit pointer addition helps LLVM # vectorize the loop. ptr = self.builder.gep(self.dataptr, [ind]) return self.context.unpack_value(self.builder, self.fe_type, ptr) def store_direct(self, value, byteoffset): ptr = cgutils.pointer_add(self.builder, self.dataptr, byteoffset) self.context.pack_value(self.builder, self.fe_type, value, ptr) def store_aligned(self, value, ind): ptr = self.builder.gep(self.dataptr, [ind]) self.context.pack_value(self.builder, self.fe_type, value, ptr) GufWrapperCache = make_library_cache('guf') class _GufuncWrapper(object): def __init__(self, py_func, cres, sin, sout, cache): self.py_func = py_func self.cres = cres self.sin = sin self.sout = sout self.is_objectmode = self.signature.return_type == types.pyobject self.cache = (GufWrapperCache(py_func=self.py_func) if cache else NullCache()) @property def library(self): return self.cres.library @property def context(self): return self.cres.target_context @property def call_conv(self): return self.context.call_conv @property def signature(self): return self.cres.signature @property def fndesc(self): return self.cres.fndesc @property def env(self): return self.cres.environment def _build_wrapper(self, library, name): """ The LLVM IRBuilder code to create the gufunc wrapper. The *library* arg is the CodeLibrary for which the wrapper should be added to. The *name* arg is the name of the wrapper function being created. """ byte_t = Type.int(8) byte_ptr_t = Type.pointer(byte_t) byte_ptr_ptr_t = Type.pointer(byte_ptr_t) intp_t = self.context.get_value_type(types.intp) intp_ptr_t = Type.pointer(intp_t) fnty = Type.function(Type.void(), [byte_ptr_ptr_t, intp_ptr_t, intp_ptr_t, byte_ptr_t]) wrapper_module = library.create_ir_module('_gufunc_wrapper') func_type = self.call_conv.get_function_type(self.fndesc.restype, self.fndesc.argtypes) fname = self.fndesc.llvm_func_name func = wrapper_module.add_function(func_type, name=fname) func.attributes.add("alwaysinline") wrapper = wrapper_module.add_function(fnty, name) arg_args, arg_dims, arg_steps, arg_data = wrapper.args arg_args.name = "args" arg_dims.name = "dims" arg_steps.name = "steps" arg_data.name = "data" builder = Builder(wrapper.append_basic_block("entry")) loopcount = builder.load(arg_dims, name="loopcount") pyapi = self.context.get_python_api(builder) # Unpack shapes unique_syms = set() for grp in (self.sin, self.sout): for syms in grp: unique_syms |= set(syms) sym_map = {} for syms in self.sin: for s in syms: if s not in sym_map: sym_map[s] = len(sym_map) sym_dim = {} for s, i in sym_map.items(): sym_dim[s] = builder.load(builder.gep(arg_dims, [self.context.get_constant( types.intp, i + 1)])) # Prepare inputs arrays = [] step_offset = len(self.sin) + len(self.sout) for i, (typ, sym) in enumerate(zip(self.signature.args, self.sin + self.sout)): ary = GUArrayArg(self.context, builder, arg_args, arg_steps, i, step_offset, typ, sym, sym_dim) step_offset += len(sym) arrays.append(ary) bbreturn = builder.append_basic_block('.return') # Prologue self.gen_prologue(builder, pyapi) # Loop with cgutils.for_range(builder, loopcount, intp=intp_t) as loop: args = [a.get_array_at_offset(loop.index) for a in arrays] innercall, error = self.gen_loop_body(builder, pyapi, func, args) # If error, escape cgutils.cbranch_or_continue(builder, error, bbreturn) builder.branch(bbreturn) builder.position_at_end(bbreturn) # Epilogue self.gen_epilogue(builder, pyapi) builder.ret_void() # Link library.add_ir_module(wrapper_module) library.add_linking_library(self.library) def build(self): # Use cache and compiler in a critical section with compiler.lock_compiler: wrapperlib = self.cache.load_overload(self.cres.signature, self.cres.target_context) wrapper_name = "__gufunc__." + self.fndesc.mangled_name if wrapperlib is None: # Create library and enable caching wrapperlib = self.context.codegen().create_library(str(self)) wrapperlib.enable_object_caching() # Build wrapper self._build_wrapper(wrapperlib, wrapper_name) # Cache self.cache.save_overload(self.cres.signature, wrapperlib) # Finalize and get function pointer ptr = wrapperlib.get_pointer_to_function(wrapper_name) return ptr, self.env, wrapper_name def gen_loop_body(self, builder, pyapi, func, args): status, retval = self.call_conv.call_function( builder, func, self.signature.return_type, self.signature.args, args) with builder.if_then(status.is_error, likely=False): gil = pyapi.gil_ensure() self.context.call_conv.raise_error(builder, pyapi, status) pyapi.gil_release(gil) return status.code, status.is_error def gen_prologue(self, builder, pyapi): pass # Do nothing def gen_epilogue(self, builder, pyapi): pass # Do nothing class _GufuncObjectWrapper(_GufuncWrapper): def gen_loop_body(self, builder, pyapi, func, args): innercall, error = _prepare_call_to_object_mode(self.context, builder, pyapi, func, self.signature, args) return innercall, error def gen_prologue(self, builder, pyapi): # Acquire the GIL self.gil = pyapi.gil_ensure() def gen_epilogue(self, builder, pyapi): # Release GIL pyapi.gil_release(self.gil) def build_gufunc_wrapper(py_func, cres, sin, sout, cache): signature = cres.signature wrapcls = (_GufuncObjectWrapper if signature.return_type == types.pyobject else _GufuncWrapper) return wrapcls(py_func, cres, sin, sout, cache).build() def _prepare_call_to_object_mode(context, builder, pyapi, func, signature, args): mod = builder.module bb_core_return = builder.append_basic_block('ufunc.core.return') # Call to # PyObject* ndarray_new(int nd, # npy_intp *dims, /* shape
<reponame>barentsen/photutils # Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import (absolute_import, division, print_function, unicode_literals) import math import warnings import numpy as np from astropy.coordinates import SkyCoord import astropy.units as u from astropy.wcs.utils import skycoord_to_pixel from astropy.utils.exceptions import AstropyUserWarning from .core import (SkyAperture, PixelAperture, _sanitize_pixel_positions, _make_annulus_path, _get_phot_extents, _calc_aperture_var) from ..utils.wcs_helpers import (skycoord_to_pixel_scale_angle, assert_angle, assert_angle_or_pixel) skycoord_to_pixel_mode = 'all' __all__ = ['SkyEllipticalAperture', 'EllipticalAperture', 'SkyEllipticalAnnulus', 'EllipticalAnnulus'] def do_elliptical_photometry(data, positions, a, b, theta, error, pixelwise_error, method, subpixels, a_in=None): extents = np.zeros((len(positions), 4), dtype=int) # TODO: we can be more efficient in terms of bounding box radius = max(a, b) extents[:, 0] = positions[:, 0] - radius + 0.5 extents[:, 1] = positions[:, 0] + radius + 1.5 extents[:, 2] = positions[:, 1] - radius + 0.5 extents[:, 3] = positions[:, 1] + radius + 1.5 ood_filter, extent, phot_extent = _get_phot_extents(data, positions, extents) flux = u.Quantity(np.zeros(len(positions), dtype=np.float), unit=data.unit) if error is not None: fluxvar = u.Quantity(np.zeros(len(positions), dtype=np.float), unit=error.unit ** 2) # TODO: flag these objects if np.sum(ood_filter): flux[ood_filter] = np.nan warnings.warn("The aperture at position {0} does not have any " "overlap with the data" .format(positions[ood_filter]), AstropyUserWarning) if np.sum(ood_filter) == len(positions): return flux x_min, x_max, y_min, y_max = extent x_pmin, x_pmax, y_pmin, y_pmax = phot_extent if method == 'center': use_exact = 0 subpixels = 1 elif method == 'subpixel': use_exact = 0 else: use_exact = 1 subpixels = 1 from ..geometry import elliptical_overlap_grid for i in range(len(flux)): if not np.isnan(flux[i]): fraction = elliptical_overlap_grid(x_pmin[i], x_pmax[i], y_pmin[i], y_pmax[i], x_max[i] - x_min[i], y_max[i] - y_min[i], a, b, theta, use_exact, subpixels) if a_in is not None: b_in = a_in * b / a fraction -= elliptical_overlap_grid(x_pmin[i], x_pmax[i], y_pmin[i], y_pmax[i], x_max[i] - x_min[i], y_max[i] - y_min[i], a_in, b_in, theta, use_exact, subpixels) flux[i] = np.sum(data[y_min[i]:y_max[i], x_min[i]:x_max[i]] * fraction) if error is not None: fluxvar[i] = _calc_aperture_var( data, fraction, error, flux[i], x_min[i], x_max[i], y_min[i], y_max[i], pixelwise_error) if error is None: return flux else: return flux, np.sqrt(fluxvar) def get_elliptical_fractions(data, positions, a, b, theta, method, subpixels, a_in=None): extents = np.zeros((len(positions), 4), dtype=int) # TODO: we can be more efficient in terms of bounding box radius = max(a, b) extents[:, 0] = positions[:, 0] - radius + 0.5 extents[:, 1] = positions[:, 0] + radius + 1.5 extents[:, 2] = positions[:, 1] - radius + 0.5 extents[:, 3] = positions[:, 1] + radius + 1.5 ood_filter, extent, phot_extent = _get_phot_extents(data, positions, extents) fractions = np.zeros((data.shape[0], data.shape[1], len(positions)), dtype=np.float) # TODO: flag these objects if np.sum(ood_filter): warnings.warn("The aperture at position {0} does not have any " "overlap with the data" .format(positions[ood_filter]), AstropyUserWarning) if np.sum(ood_filter) == len(positions): return np.squeeze(fractions) x_min, x_max, y_min, y_max = extent x_pmin, x_pmax, y_pmin, y_pmax = phot_extent if method == 'center': use_exact = 0 subpixels = 1 elif method == 'subpixel': use_exact = 0 else: use_exact = 1 subpixels = 1 from ..geometry import elliptical_overlap_grid for i in range(len(positions)): if ood_filter[i] is not True: fractions[y_min[i]: y_max[i], x_min[i]: x_max[i], i] = \ elliptical_overlap_grid(x_pmin[i], x_pmax[i], y_pmin[i], y_pmax[i], x_max[i] - x_min[i], y_max[i] - y_min[i], a, b, theta, use_exact, subpixels) if a_in is not None: b_in = a_in * b / a fractions[y_min[i]: y_max[i], x_min[i]: x_max[i], i] -= \ elliptical_overlap_grid(x_pmin[i], x_pmax[i], y_pmin[i], y_pmax[i], x_max[i] - x_min[i], y_max[i] - y_min[i], a_in, b_in, theta, use_exact, subpixels) return np.squeeze(fractions) class SkyEllipticalAperture(SkyAperture): """ Elliptical aperture(s), defined in sky coordinates. Parameters ---------- positions : `~astropy.coordinates.SkyCoord` Celestial coordinates of the aperture center(s). This can be either scalar coordinates or an array of coordinates. a : `~astropy.units.Quantity` The semimajor axis, either in angular or pixel units. b : `~astropy.units.Quantity` The semiminor axis, either in angular or pixel units. theta : `~astropy.units.Quantity` The position angle of the semimajor axis (counterclockwise), either in angular or pixel units. """ def __init__(self, positions, a, b, theta): if isinstance(positions, SkyCoord): self.positions = positions else: raise TypeError("positions should be a SkyCoord instance") assert_angle_or_pixel('a', a) assert_angle_or_pixel('b', b) assert_angle('theta', theta) if a.unit.physical_type != b.unit.physical_type: raise ValueError("a and b should either both be angles " "or in pixels") self.a = a self.b = b self.theta = theta def to_pixel(self, wcs): """ Return a EllipticalAperture instance in pixel coordinates. """ x, y = skycoord_to_pixel(self.positions, wcs, mode=skycoord_to_pixel_mode) central_pos = SkyCoord([wcs.wcs.crval], frame=self.positions.name, unit=wcs.wcs.cunit) xc, yc, scale, angle = skycoord_to_pixel_scale_angle(central_pos, wcs) if self.a.unit.physical_type == 'angle': a = (scale * self.a).to(u.pixel).value b = (scale * self.b).to(u.pixel).value else: # pixel a = self.a.value b = self.b.value theta = (angle + self.theta).to(u.radian).value pixel_positions = np.array([x, y]).transpose() return EllipticalAperture(pixel_positions, a, b, theta) class EllipticalAperture(PixelAperture): """ Elliptical aperture(s), defined in pixel coordinates. Parameters ---------- positions : tuple, list, array, or `~astropy.units.Quantity` Pixel coordinates of the aperture center(s), either as a single ``(x, y)`` tuple, a list of ``(x, y)`` tuples, an ``Nx2`` or ``2xN`` `~numpy.ndarray`, or an ``Nx2`` or ``2xN`` `~astropy.units.Quantity` in units of pixels. A ``2x2`` `~numpy.ndarray` or `~astropy.units.Quantity` is interpreted as ``Nx2``, i.e. two rows of (x, y) coordinates. a : float The semimajor axis. b : float The semiminor axis. theta : float The position angle of the semimajor axis in radians (counterclockwise). Raises ------ ValueError : `ValueError` If either axis (``a`` or ``b``) is negative. """ def __init__(self, positions, a, b, theta): try: self.a = float(a) self.b = float(b) self.theta = float(theta) except TypeError: raise TypeError("'a' and 'b' and 'theta' must be numeric, " "received {0} and {1} and {2}." .format((type(a), type(b), type(theta)))) if a < 0 or b < 0: raise ValueError("'a' and 'b' must be non-negative.") self.positions = _sanitize_pixel_positions(positions) def area(self): return math.pi * self.a * self.b def do_photometry(self, data, error=None, pixelwise_error=True, method='exact', subpixels=5): if method not in ('center', 'subpixel', 'exact'): raise ValueError('{0} method not supported for aperture class ' '{1}'.format(method, self.__class__.__name__)) flux = do_elliptical_photometry(data, self.positions, self.a, self.b, self.theta, error=error, pixelwise_error=pixelwise_error, method=method, subpixels=subpixels) return flux def get_fractions(self, data, method='exact', subpixels=5): if method not in ('center', 'subpixel', 'exact'): raise ValueError('{0} method not supported for aperture class ' '{1}'.format(method, self.__class__.__name__)) fractions = get_elliptical_fractions(data, self.positions, self.a, self.b, self.theta, method=method, subpixels=subpixels) return fractions def plot(self, origin=(0, 0), source_id=None, ax=None, fill=False, **kwargs): import matplotlib.patches as mpatches plot_positions, ax, kwargs = self._prepare_plot( origin, source_id, ax, fill, **kwargs) theta_deg = self.theta * 180. / np.pi for position in plot_positions: patch = mpatches.Ellipse(position, 2.*self.a, 2.*self.b, theta_deg, **kwargs) ax.add_patch(patch) class SkyEllipticalAnnulus(SkyAperture): """ Elliptical annulus aperture(s), defined in sky coordinates. Parameters ---------- positions : `~astropy.coordinates.SkyCoord` Celestial coordinates of the aperture center(s). This can be either scalar coordinates or an array of coordinates. a_in : `~astropy.units.Quantity` The inner semimajor axis, either in angular or pixel units. a_out : `~astropy.units.Quantity` The outer semimajor axis, either in angular or pixel units. b_out : `~astropy.units.Quantity` The outer semiminor axis, either in angular or pixel units. The inner semiminor axis is determined by scaling by a_in/a_out. theta : `~astropy.units.Quantity` The position angle of the semimajor axis (counterclockwise), either in angular or pixel units. """ def __init__(self, positions, a_in, a_out, b_out, theta): if isinstance(positions, SkyCoord): self.positions = positions else: raise TypeError("positions should be a SkyCoord instance") assert_angle_or_pixel('a_in', a_in) assert_angle_or_pixel('a_out', a_out) assert_angle_or_pixel('b_out', b_out) assert_angle('theta', theta) if a_in.unit.physical_type != a_out.unit.physical_type: raise ValueError("a_in and a_out should either both be angles " "or in pixels") if a_out.unit.physical_type != b_out.unit.physical_type: raise ValueError("a_out and b_out should either both be angles " "or in pixels") self.a_in = a_in self.a_out = a_out self.b_out = b_out self.theta = theta def to_pixel(self, wcs): """ Return a EllipticalAnnulus instance in pixel coordinates. """ x, y = skycoord_to_pixel(self.positions, wcs, mode=skycoord_to_pixel_mode) central_pos = SkyCoord([wcs.wcs.crval], frame=self.positions.name, unit=wcs.wcs.cunit) xc, yc, scale, angle = skycoord_to_pixel_scale_angle(central_pos, wcs) if self.a_in.unit.physical_type == 'angle': a_in = (scale * self.a_in).to(u.pixel).value a_out = (scale * self.a_out).to(u.pixel).value b_out = (scale * self.b_out).to(u.pixel).value else: a_in = self.a_in.value a_out = self.a_out.value b_out = self.b_out.value theta = (angle + self.theta).to(u.radian).value pixel_positions = np.array([x, y]).transpose() return EllipticalAnnulus(pixel_positions, a_in, a_out, b_out, theta) class EllipticalAnnulus(PixelAperture): """ Elliptical annulus aperture(s), defined in pixel coordinates. Parameters ---------- positions : tuple, list, array, or `~astropy.units.Quantity` Pixel coordinates of the aperture center(s), either as a single ``(x, y)`` tuple, a list of ``(x, y)`` tuples, an ``Nx2`` or ``2xN`` `~numpy.ndarray`, or
import os import sys import time import json import yaml import socket import string import netaddr import threading import constants as const import subprocess32 as subprocess from node import Node from rest import RestLib from bridge import Bridge from threading import Lock from membership_rule import MembershipRule class Helper(object): # lock to serialize stdout of different threads __print_lock = Lock() @staticmethod def get_setup_node_ip(): """ Get the setup node's eth0 ip """ s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(('bigswitch.com', 0)) return s.getsockname()[0] @staticmethod def run_command_on_local_without_timeout(command): output, error = subprocess.Popen(command, stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell=True).communicate() return output, error @staticmethod def run_command_on_remote_with_key_without_timeout(node_ip, command): """ Run cmd on remote node. """ local_cmd = (r'''ssh -t -oStrictHostKeyChecking=no -o LogLevel=quiet %(hostname)s "%(remote_cmd)s"''' % {'hostname' : node_ip, 'remote_cmd' : command, }) return Helper.run_command_on_local_without_timeout(local_cmd) @staticmethod def run_command_on_local(command, timeout=1800): """ Use subprocess to run a shell command on local node. """ def target(process): process.communicate() try: p = subprocess.Popen( command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True, bufsize=1) except Exception as e: msg = "Error opening process %s: %s\n" % (command, e) Helper.safe_print(msg) return thread = threading.Thread(target=target, args=(p,)) thread.start() thread.join(timeout) if thread.is_alive(): p.terminate() thread.join() msg = "Timed out waiting for command %s to finish." % command Helper.safe_print(msg) @staticmethod def safe_print(message): """ Grab the lock and print to stdout. The lock is to serialize messages from different thread. 'stty sane' is to clean up any hiden space. """ with Helper.__print_lock: subprocess.call('stty sane', shell=True) sys.stdout.write(message) sys.stdout.flush() subprocess.call('stty sane', shell=True) @staticmethod def run_command_on_remote_with_passwd(node, command): """ Run cmd on remote node. """ local_cmd = (r'''sshpass -p %(pwd)s ssh -t -oStrictHostKeyChecking=no -o LogLevel=quiet %(user)s@%(hostname)s >> %(log)s 2>&1 "echo %(pwd)s | sudo -S %(remote_cmd)s"''' % {'user' : node.user, 'hostname' : node.hostname, 'pwd' : <PASSWORD>, 'log' : node.log, 'remote_cmd' : command, }) Helper.run_command_on_local(local_cmd) @staticmethod def run_command_on_remote_with_passwd_without_timeout(hostname, user, passwd, command): local_cmd = (r'''sshpass -p %(pwd)s ssh -t -oStrictHostKeyChecking=no -o LogLevel=quiet %(user)s@%(hostname)s "echo %(pwd)s | sudo -S %(remote_cmd)s"''' % {'user' : user, 'hostname' : hostname, 'pwd' : <PASSWORD>, 'log' : const.LOG_FILE, 'remote_cmd' : command, }) return Helper.run_command_on_local_without_timeout(local_cmd) @staticmethod def copy_file_to_remote_with_passwd(node, src_file, dst_dir, dst_file, mode=777): """ Copy file from local node to remote node, create directory if remote directory doesn't exist, change the file mode as well. """ mkdir_cmd = (r'''mkdir -p %(dst_dir)s''' % {'dst_dir' : dst_dir}) Helper.run_command_on_remote_with_passwd(node, mkdir_cmd) scp_cmd = (r'''sshpass -p %(pwd)s scp -oStrictHostKeyChecking=no -o LogLevel=quiet -r %(src_file)s %(user)s@%(hostname)s:%(dst_dir)s/%(dst_file)s >> %(log)s 2>&1''' % {'user' : node.user, 'hostname' : node.hostname, 'pwd' : <PASSWORD>, 'log' : node.log, 'src_file' : src_file, 'dst_dir' : dst_dir, 'dst_file' : dst_file }) Helper.run_command_on_local(scp_cmd) chmod_cmd = (r'''chmod -R %(mode)d %(dst_dir)s/%(dst_file)s''' % {'mode' : mode, 'dst_dir' : dst_dir, 'dst_file' : dst_file }) Helper.run_command_on_remote_with_passwd(node, chmod_cmd) @staticmethod def copy_file_from_remote_with_passwd(node, src_dir, src_file, dst_dir, mode=777): """ Copy file from remote node to local node, create directory if local directory doesn't exist, change the file mode as well. """ mkdir_cmd = (r'''mkdir -p %(dst_dir)s''' % {'dst_dir' : dst_dir}) Helper.run_command_on_local(mkdir_cmd) scp_cmd = (r'''sshpass -p %(pwd)s scp -oStrictHostKeyChecking=no -o LogLevel=quiet %(user)s@%(hostname)s:%(src_dir)s/%(src_file)s %(dst_dir)s/%(src_file)s >> %(log)s 2>&1''' % {'pwd' : <PASSWORD>, 'user' : node.user, 'hostname' : node.hostname, 'log' : node.log, 'src_dir' : src_dir, 'dst_dir' : dst_dir, 'src_file' : src_file }) Helper.run_command_on_local(scp_cmd) chmod_cmd = (r'''chmod -R %(mode)d %(dst_dir)s/%(src_file)s''' % {'mode' : mode, 'dst_dir' : dst_dir, 'src_file' : src_file }) Helper.run_command_on_local(chmod_cmd) @staticmethod def run_command_on_remote_with_key(node, command): """ Run cmd on remote node. """ local_cmd = (r'''ssh -t -oStrictHostKeyChecking=no -o LogLevel=quiet %(hostname)s >> %(log)s 2>&1 "%(remote_cmd)s"''' % {'hostname' : node.hostname, 'log' : node.log, 'remote_cmd' : command }) Helper.run_command_on_local(local_cmd) @staticmethod def copy_file_to_remote_with_key(node, src_file, dst_dir, dst_file, mode=777): """ Copy file from local node to remote node, create directory if remote directory doesn't exist, change the file mode as well. """ mkdir_cmd = (r'''mkdir -p %(dst_dir)s''' % {'dst_dir' : dst_dir}) Helper.run_command_on_remote_with_key(node, mkdir_cmd) scp_cmd = (r'''scp -oStrictHostKeyChecking=no -o LogLevel=quiet -r %(src_file)s %(hostname)s:%(dst_dir)s/%(dst_file)s >> %(log)s 2>&1''' % {'hostname' : node.hostname, 'log' : node.log, 'src_file' : src_file, 'dst_dir' : dst_dir, 'dst_file' : dst_file }) Helper.run_command_on_local(scp_cmd) chmod_cmd = (r'''chmod -R %(mode)d %(dst_dir)s/%(dst_file)s''' % {'mode' : mode, 'dst_dir' : dst_dir, 'dst_file' : dst_file }) Helper.run_command_on_remote_with_key(node, chmod_cmd) @staticmethod def copy_file_from_remote_with_key(node, src_dir, src_file, dst_dir, mode=777): """ Copy file from remote node to local node, create directory if local directory doesn't exist, change the file mode as well. """ mkdir_cmd = (r'''mkdir -p %(dst_dir)s''' % {'dst_dir' : dst_dir}) Helper.run_command_on_local(mkdir_cmd) scp_cmd = (r'''scp -oStrictHostKeyChecking=no -o LogLevel=quiet %(hostname)s:%(src_dir)s/%(src_file)s %(dst_dir)s/%(src_file)s >> %(log)s 2>&1''' % {'hostname' : node.hostname, 'log' : node.log, 'src_dir' : src_dir, 'dst_dir' : dst_dir, 'src_file' : src_file }) Helper.run_command_on_local(scp_cmd) chmod_cmd = (r'''chmod -R %(mode)d %(dst_dir)s/%(src_file)s''' % {'mode' : mode, 'dst_dir' : dst_dir, 'src_file' : src_file }) Helper.run_command_on_local(chmod_cmd) @staticmethod def generate_scripts_for_ubuntu(node): # generate bash script with open((r'''%(setup_node_dir)s/%(deploy_mode)s/%(bash_template_dir)s/%(bash_template)s_%(os_version)s.sh''' % {'setup_node_dir' : node.setup_node_dir, 'deploy_mode' : node.deploy_mode, 'bash_template_dir' : const.BASH_TEMPLATE_DIR, 'bash_template' : const.UBUNTU, 'os_version' : node.os_version}), "r") as bash_template_file: bash_template = bash_template_file.read() is_controller = False if node.role == const.ROLE_NEUTRON_SERVER: is_controller = True bash = (bash_template % {'install_ivs' : str(node.install_ivs).lower(), 'install_bsnstacklib' : str(node.install_bsnstacklib).lower(), 'install_all' : str(node.install_all).lower(), 'deploy_dhcp_agent' : str(node.deploy_dhcp_agent).lower(), 'is_controller' : str(is_controller).lower(), 'deploy_horizon_patch': str(node.deploy_horizon_patch).lower(), 'ivs_version' : node.ivs_version, 'bsnstacklib_version' : node.bsnstacklib_version, 'dst_dir' : node.dst_dir, 'hostname' : node.hostname, 'ivs_pkg' : node.ivs_pkg, 'horizon_patch' : node.horizon_patch, 'horizon_patch_dir' : node.horizon_patch_dir, 'horizon_base_dir' : node.horizon_base_dir, 'ivs_debug_pkg' : node.ivs_debug_pkg, 'ovs_br' : node.get_all_ovs_brs(), 'bonds' : node.get_all_bonds(), 'br-int' : const.BR_NAME_INT, 'fuel_cluster_id' : str(node.fuel_cluster_id), 'interfaces' : node.get_all_interfaces(), 'br_fw_admin' : node.br_fw_admin, 'pxe_interface' : node.pxe_interface, 'br_fw_admin_address' : node.br_fw_admin_address, 'br_fw_admin_gw' : node.setup_node_ip, 'uplinks' : node.get_all_uplinks()}) bash_script_path = (r'''%(setup_node_dir)s/%(generated_script_dir)s/%(hostname)s.sh''' % {'setup_node_dir' : node.setup_node_dir, 'generated_script_dir' : const.GENERATED_SCRIPT_DIR, 'hostname' : node.hostname}) with open(bash_script_path, "w") as bash_file: bash_file.write(bash) node.set_bash_script_path(bash_script_path) # generate puppet script ivs_daemon_args = (const.IVS_DAEMON_ARGS % {'inband_vlan' : const.INBAND_VLAN, 'internal_ports' : node.get_ivs_internal_ports(), 'uplink_interfaces' : node.get_uplink_intfs_for_ivs()}) with open((r'''%(setup_node_dir)s/%(deploy_mode)s/%(puppet_template_dir)s/%(puppet_template)s_%(role)s.pp''' % {'setup_node_dir' : node.setup_node_dir, 'deploy_mode' : node.deploy_mode, 'puppet_template_dir' : const.PUPPET_TEMPLATE_DIR, 'puppet_template' : const.UBUNTU, 'role' : node.role}), "r") as puppet_template_file: puppet_template = puppet_template_file.read() puppet = (puppet_template % {'ivs_daemon_args' : ivs_daemon_args, 'network_vlan_ranges' : node.get_network_vlan_ranges(), 'bcf_controllers' : node.get_controllers_for_neutron(), 'bcf_controller_user' : node.bcf_controller_user, 'bcf_controller_passwd' : node.bcf_controller_passwd, 'port_ips' : node.get_ivs_internal_port_ips(), 'setup_node_ip' : node.setup_node_ip}) puppet_script_path = (r'''%(setup_node_dir)s/%(generated_script_dir)s/%(hostname)s.pp''' % {'setup_node_dir' : node.setup_node_dir, 'generated_script_dir' : const.GENERATED_SCRIPT_DIR, 'hostname' : node.hostname}) with open(puppet_script_path, "w") as puppet_file: puppet_file.write(puppet) node.set_puppet_script_path(puppet_script_path) # generate ospurge script if node.role != const.ROLE_NEUTRON_SERVER: return openrc = const.MANUAL_OPENRC if node.fuel_cluster_id: openrc = const.FUEL_OPENRC with open((r'''%(setup_node_dir)s/%(deploy_mode)s/%(ospurge_template_dir)s/%(ospurge_template)s.sh''' % {'setup_node_dir' : node.setup_node_dir, 'deploy_mode' : node.deploy_mode, 'ospurge_template_dir' : const.OSPURGE_TEMPLATE_DIR, 'ospurge_template' : "purge_all"}), "r") as ospurge_template_file: ospurge_template = ospurge_template_file.read() ospurge = (ospurge_template % {'openrc' : openrc}) ospurge_script_path = (r'''%(setup_node_dir)s/%(generated_script_dir)s/%(hostname)s_ospurge.sh''' % {'setup_node_dir' : node.setup_node_dir, 'generated_script_dir' : const.GENERATED_SCRIPT_DIR, 'hostname' : node.hostname}) with open(ospurge_script_path, "w") as ospurge_file: ospurge_file.write(ospurge) node.set_ospurge_script_path(ospurge_script_path) @staticmethod def generate_scripts_for_centos(node): # generate bash script with open((r'''%(setup_node_dir)s/%(deploy_mode)s/%(bash_template_dir)s/%(bash_template)s_%(os_version)s.sh''' % {'setup_node_dir' : node.setup_node_dir, 'deploy_mode' : node.deploy_mode, 'bash_template_dir' : const.BASH_TEMPLATE_DIR, 'bash_template' : const.CENTOS, 'os_version' : node.os_version}), "r") as bash_template_file: bash_template = bash_template_file.read() is_controller = False if node.role == const.ROLE_NEUTRON_SERVER: is_controller = True bash = (bash_template % {'install_ivs' : str(node.install_ivs).lower(), 'install_bsnstacklib' : str(node.install_bsnstacklib).lower(), 'install_all' : str(node.install_all).lower(), 'deploy_dhcp_agent' : str(node.deploy_dhcp_agent).lower(), 'is_controller' : str(is_controller).lower(), 'deploy_horizon_patch': str(node.deploy_horizon_patch).lower(), 'ivs_version' : node.ivs_version, 'bsnstacklib_version' : node.bsnstacklib_version, 'dst_dir' : node.dst_dir, 'hostname' : node.hostname, 'ivs_pkg' : node.ivs_pkg, 'horizon_patch' : node.horizon_patch, 'horizon_patch_dir' : node.horizon_patch_dir, 'horizon_base_dir' : node.horizon_base_dir, 'ivs_debug_pkg' : node.ivs_debug_pkg, 'ovs_br' : node.get_all_ovs_brs(), 'bonds' : node.get_all_bonds(), 'br-int' : const.BR_NAME_INT}) bash_script_path = (r'''%(setup_node_dir)s/%(generated_script_dir)s/%(hostname)s.sh''' % {'setup_node_dir' : node.setup_node_dir, 'generated_script_dir' : const.GENERATED_SCRIPT_DIR, 'hostname' : node.hostname}) with open(bash_script_path, "w") as bash_file: bash_file.write(bash) node.set_bash_script_path(bash_script_path) # generate puppet script ivs_daemon_args = (const.IVS_DAEMON_ARGS % {'inband_vlan' : const.INBAND_VLAN, 'internal_ports' : node.get_ivs_internal_ports(), 'uplink_interfaces' : node.get_uplink_intfs_for_ivs()}) with open((r'''%(setup_node_dir)s/%(deploy_mode)s/%(puppet_template_dir)s/%(puppet_template)s_%(role)s.pp''' % {'setup_node_dir' : node.setup_node_dir, 'deploy_mode' : node.deploy_mode, 'puppet_template_dir' : const.PUPPET_TEMPLATE_DIR, 'puppet_template' : const.CENTOS, 'role' : node.role}), "r") as puppet_template_file: puppet_template = puppet_template_file.read() puppet = (puppet_template % {'ivs_daemon_args' : ivs_daemon_args, 'network_vlan_ranges' : node.get_network_vlan_ranges(), 'bcf_controllers' : node.get_controllers_for_neutron(), 'bcf_controller_user' : node.bcf_controller_user, 'bcf_controller_passwd' : node.bcf_controller_passwd, 'selinux_mode' : node.selinux_mode, 'port_ips' : node.get_ivs_internal_port_ips()}) puppet_script_path = (r'''%(setup_node_dir)s/%(generated_script_dir)s/%(hostname)s.pp''' % {'setup_node_dir' : node.setup_node_dir, 'generated_script_dir' : const.GENERATED_SCRIPT_DIR, 'hostname' : node.hostname}) with open(puppet_script_path, "w") as puppet_file: puppet_file.write(puppet) node.set_puppet_script_path(puppet_script_path) # generate selinux script selinux_script_path = (r'''%(setup_node_dir)s/%(generated_script_dir)s/%(hostname)s.te''' % {'setup_node_dir' : node.setup_node_dir, 'generated_script_dir' : const.GENERATED_SCRIPT_DIR, 'hostname' : node.hostname}) subprocess.call(r'''cp %(setup_node_dir)s/%(deploy_mode)s/%(selinux_template_dir)s/%(selinux_template)s.te %(selinux_script_path)s''' % {'setup_node_dir' : node.setup_node_dir, 'deploy_mode' : node.deploy_mode, 'selinux_template_dir' : const.SELINUX_TEMPLATE_DIR, 'selinux_template' : const.CENTOS, 'selinux_script_path' : selinux_script_path}, shell=True) node.set_selinux_script_path(selinux_script_path) # generate ospurge script if node.role != const.ROLE_NEUTRON_SERVER: return openrc = const.PACKSTACK_OPENRC if node.fuel_cluster_id: openrc = const.FUEL_OPENRC with open((r'''%(setup_node_dir)s/%(deploy_mode)s/%(ospurge_template_dir)s/%(ospurge_template)s.sh''' % {'setup_node_dir' : node.setup_node_dir, 'deploy_mode' : node.deploy_mode, 'ospurge_template_dir' : const.OSPURGE_TEMPLATE_DIR, 'ospurge_template' : "purge_all"}), "r")
} ) @signin_required() def get_workflow_logs(workflow_id_or_name, user, **kwargs): # noqa r"""Get workflow logs. --- get: summary: Get workflow logs of a workflow. description: >- This resource reports the status of a workflow. Resource is expecting a workflow UUID. operationId: get_workflow_logs produces: - application/json parameters: - name: access_token in: query description: API access_token of workflow owner. required: false type: string - name: workflow_id_or_name in: path description: Required. Analysis UUID or name. required: true type: string - name: steps in: body description: Steps of a workflow. required: false schema: type: array description: List of step names to get logs for. items: type: string description: step name. - name: page in: query description: Results page number (pagination). required: false type: integer - name: size in: query description: Number of results per page (pagination). required: false type: integer responses: 200: description: >- Request succeeded. Info about a workflow, including the status is returned. schema: type: object properties: workflow_id: type: string workflow_name: type: string logs: type: string user: type: string examples: application/json: { "workflow_id": "256b25f4-4cfb-4684-b7a8-73872ef455a1", "workflow_name": "mytest.1", "logs": "<Workflow engine log output>", "user": "00000000-0000-0000-0000-000000000000" } 400: description: >- Request failed. The incoming data specification seems malformed. examples: application/json: { "message": "Malformed request." } 403: description: >- Request failed. User is not allowed to access workflow. examples: application/json: { "message": "User 00000000-0000-0000-0000-000000000000 is not allowed to access workflow 256b25f4-4cfb-4684-b7a8-73872ef455a1" } 404: description: >- Request failed. User does not exist. examples: application/json: { "message": "Workflow cdcf48b1-c2f3-4693-8230-b066e088c6ac does not exist" } 500: description: >- Request failed. Internal controller error. """ try: steps = request.json or None if not workflow_id_or_name: raise ValueError("workflow_id_or_name is not supplied") response, http_response = current_rwc_api_client.api.get_workflow_logs( user=str(user.id_), steps=steps or None, workflow_id_or_name=workflow_id_or_name, **kwargs, ).result() return jsonify(response), http_response.status_code except HTTPError as e: logging.error(traceback.format_exc()) return jsonify(e.response.json()), e.response.status_code except ValueError as e: logging.error(traceback.format_exc()) return jsonify({"message": str(e)}), 403 except Exception as e: logging.error(traceback.format_exc()) return jsonify({"message": str(e)}), 500 @blueprint.route("/workflows/<workflow_id_or_name>/status", methods=["GET"]) @signin_required() def get_workflow_status(workflow_id_or_name, user): # noqa r"""Get workflow status. --- get: summary: Get status of a workflow. description: >- This resource reports the status of a workflow. Resource is expecting a workflow UUID. operationId: get_workflow_status produces: - application/json parameters: - name: workflow_id_or_name in: path description: Required. Analysis UUID or name. required: true type: string - name: access_token in: query description: The API access_token of workflow owner. required: false type: string responses: 200: description: >- Request succeeded. Info about a workflow, including the status is returned. schema: type: object properties: id: type: string name: type: string created: type: string status: type: string user: type: string progress: type: object logs: type: string examples: application/json: { "created": "2018-10-29T12:50:12", "id": "4e576cf9-a946-4346-9cde-7712f8dcbb3f", "logs": "", "name": "mytest.1", "progress": { "current_command": None, "current_step_name": None, "failed": {"job_ids": [], "total": 0}, "finished": {"job_ids": [], "total": 0}, "run_started_at": "2018-10-29T12:51:04", "running": {"job_ids": [], "total": 0}, "total": {"job_ids": [], "total": 1} }, "status": "running", "user": "00000000-0000-0000-0000-000000000000" } 400: description: >- Request failed. The incoming payload seems malformed. examples: application/json: { "message": "Malformed request." } 403: description: >- Request failed. User is not allowed to access workflow. examples: application/json: { "message": "User 00000000-0000-0000-0000-000000000000 is not allowed to access workflow 256b25f4-4cfb-4684-b7a8-73872ef455a1" } 404: description: >- Request failed. Either User or Analysis does not exist. examples: application/json: { "message": "Analysis 256b25f4-4cfb-4684-b7a8-73872ef455a1 does not exist." } 500: description: >- Request failed. Internal controller error. """ try: if not workflow_id_or_name: raise ValueError("workflow_id_or_name is not supplied") response, http_response = current_rwc_api_client.api.get_workflow_status( user=str(user.id_), workflow_id_or_name=workflow_id_or_name ).result() return jsonify(response), http_response.status_code except HTTPError as e: logging.error(traceback.format_exc()) return jsonify(e.response.json()), e.response.status_code except ValueError as e: logging.error(traceback.format_exc()) return jsonify({"message": str(e)}), 403 except Exception as e: logging.error(traceback.format_exc()) return jsonify({"message": str(e)}), 500 @blueprint.route("/workflows/<workflow_id_or_name>/start", methods=["POST"]) @signin_required() @check_quota def start_workflow(workflow_id_or_name, user): # noqa r"""Start workflow. --- post: summary: Start workflow. description: >- This resource starts the workflow execution process. Resource is expecting a workflow UUID. operationId: start_workflow consumes: - application/json produces: - application/json parameters: - name: workflow_id_or_name in: path description: Required. Analysis UUID or name. required: true type: string - name: access_token in: query description: The API access_token of workflow owner. required: false type: string - name: parameters in: body description: >- Optional. Additional input parameters and operational options. required: false schema: type: object responses: 200: description: >- Request succeeded. Info about a workflow, including the execution status is returned. schema: type: object properties: message: type: string workflow_id: type: string workflow_name: type: string status: type: string user: type: string examples: application/json: { "message": "Workflow submitted", "id": "256b25f4-4cfb-4684-b7a8-73872ef455a1", "workflow_name": "mytest.1", "status": "queued", "user": "00000000-0000-0000-0000-000000000000" } 400: description: >- Request failed. The incoming payload seems malformed. examples: application/json: { "message": "Malformed request." } 403: description: >- Request failed. User is not allowed to access workflow. examples: application/json: { "message": "User 00000000-0000-0000-0000-000000000000 is not allowed to access workflow 256b25f4-4cfb-4684-b7a8-73872ef455a1" } 404: description: >- Request failed. Either User or Workflow does not exist. examples: application/json: { "message": "Workflow 256b25f4-4cfb-4684-b7a8-73872ef455a1 does not exist" } 409: description: >- Request failed. The workflow could not be started due to a conflict. examples: application/json: { "message": "Workflow 256b25f4-4cfb-4684-b7a8-73872ef455a1 could not be started because it is already running." } 500: description: >- Request failed. Internal controller error. 501: description: >- Request failed. The specified status change is not implemented. examples: application/json: { "message": "Status resume is not supported yet." } """ def _load_yadage_spec(workflow, operational_options): """Load and save in DB the Yadage workflow specification.""" operational_options.update({"accept_metadir": True}) toplevel = operational_options.get("toplevel", "") workflow.reana_specification = yadage_load_from_workspace( workflow.workspace_path, workflow.reana_specification, toplevel, ) Session.commit() def _calculate_complexity(workflow): """Place workflow in queue and calculate and set its complexity.""" complexity = estimate_complexity(workflow.type_, workflow.reana_specification) workflow.complexity = complexity workflow.status = RunStatus.queued Session.commit() return complexity try: if not workflow_id_or_name: raise ValueError("workflow_id_or_name is not supplied") parameters = request.json workflow = _get_workflow_with_uuid_or_name(workflow_id_or_name, str(user.id_)) operational_options = parameters.get("operational_options", {}) operational_options = validate_operational_options( workflow.type_, operational_options ) restart_type = None if "restart" in parameters: if workflow.status not in [RunStatus.finished, RunStatus.failed]: raise ValueError("Only finished or failed workflows can be restarted.") restart_type = ( parameters.get("reana_specification", {}) .get("workflow", {}) .get("type", None) ) workflow = clone_workflow( workflow, parameters.get("reana_specification", None), restart_type ) elif workflow.status != RunStatus.created: raise ValueError( "Workflow {} is already {} and cannot be started " "again.".format(workflow.get_full_workflow_name(), workflow.status.name) ) if "yadage" in (workflow.type_, restart_type): _load_yadage_spec(workflow, operational_options) complexity = _calculate_complexity(workflow) total_cluster_memory = NodesStatus().get_total_memory() workflow_priority = workflow.get_priority(total_cluster_memory) workflow_min_job_memory = get_workflow_min_job_memory(complexity) current_workflow_submission_publisher.publish_workflow_submission( user_id=str(user.id_), workflow_id_or_name=workflow.get_full_workflow_name(), parameters=parameters, priority=workflow_priority, min_job_memory=workflow_min_job_memory, ) response = { "message": "Workflow submitted.", "workflow_id": workflow.id_, "workflow_name": workflow.name, "status": RunStatus.queued.name, "run_number": workflow.run_number, "user": str(user.id_), } return jsonify(response), 200 except HTTPError as e: logging.error(traceback.format_exc()) return jsonify(e.response.json()), e.response.status_code except REANAValidationError as e: logging.error(traceback.format_exc()) return jsonify({"message": str(e)}), 400 except ValueError as e: logging.error(traceback.format_exc()) return jsonify({"message": str(e)}), 403 except Exception as e: logging.error(traceback.format_exc()) return jsonify({"message": str(e)}), 500 @blueprint.route("/workflows/<workflow_id_or_name>/status", methods=["PUT"]) @signin_required() def set_workflow_status(workflow_id_or_name, user): # noqa r"""Set workflow status. --- put: summary: Set status of a workflow. description: >- This resource reports the status of a workflow. Resource is expecting a workflow UUID. operationId: set_workflow_status consumes: - application/json produces: - application/json parameters: - name: workflow_id_or_name in: path description: Required. Analysis UUID or name. required: true type: string - name: status in: query description: Required. New workflow status. required: true type: string - name: access_token in: query description: The API access_token of workflow owner. required: false type: string - name: parameters in: body description: >- Optional. Additional input parameters and operational options. required: false schema: type: object responses: 200: description: >- Request succeeded. Info about a workflow, including the status is returned. schema: type: object properties: message: type: string workflow_id: type: string workflow_name: type: string status: type: string user: type: string examples: application/json: { "message": "Workflow successfully launched", "id": "256b25f4-4cfb-4684-b7a8-73872ef455a1", "workflow_name": "mytest.1", "status": "created", "user": "00000000-0000-0000-0000-000000000000" } 400: description: >- Request failed. The incoming payload seems malformed. examples: application/json: { "message": "Malformed request." } 403: description: >- Request failed. User is not allowed to access workflow. examples: application/json: { "message": "User 00000000-0000-0000-0000-000000000000 is not allowed to access workflow 256b25f4-4cfb-4684-b7a8-73872ef455a1" } 404: description: >- Request failed. Either User or Workflow does not exist. examples: application/json: { "message": "Workflow 256b25f4-4cfb-4684-b7a8-73872ef455a1 does not exist" } 409: description: >- Request
import datetime import pytz import requests from unittest.mock import patch from . import TembaClient from .types import Broadcast, Group, FlowDefinition from ..exceptions import TembaException, TembaNoSuchObjectError, TembaMultipleResultsError, TembaBadRequestError from ..exceptions import TembaConnectionError from ..tests import TembaTest, MockResponse @patch("temba_client.clients.request") class TembaClientTest(TembaTest): API_VERSION = 1 def setUp(self): self.client = TembaClient("example.com", "1234567890", user_agent="test/0.1") def test_add_contacts(self, mock_request): mock_request.return_value = MockResponse(204) self.client.add_contacts( contacts=["bfff9984-38f4-4e59-998d-3663ec3c650d", "7a165fe9-575b-4d15-b2ac-58fec913d603"], group="Testers" ) expected_body = { "contacts": ["bfff9984-38f4-4e59-998d-3663ec3c650d", "7a165fe9-575b-4d15-b2ac-58fec913d603"], "action": "add", "group": "Testers", } self.assertRequest(mock_request, "post", "contact_actions", data=expected_body) def test_archive_contacts(self, mock_request): mock_request.return_value = MockResponse(204) self.client.archive_contacts( contacts=["bfff9984-38f4-4e59-998d-3663ec3c650d", "7a165fe9-575b-4d15-b2ac-58fec913d603"] ) expected_body = { "contacts": ["bfff9984-38f4-4e59-998d-3663ec3c650d", "7a165fe9-575b-4d15-b2ac-58fec913d603"], "action": "archive", } self.assertRequest(mock_request, "post", "contact_actions", data=expected_body) def test_archive_messages(self, mock_request): mock_request.return_value = MockResponse(204) self.client.archive_messages(messages=[123, 234, 345]) expected_body = {"messages": [123, 234, 345], "action": "archive"} self.assertRequest(mock_request, "post", "message_actions", data=expected_body) def test_block_contacts(self, mock_request): mock_request.return_value = MockResponse(204) self.client.block_contacts( contacts=["bfff9984-38f4-4e59-998d-3663ec3c650d", "7a165fe9-575b-4d15-b2ac-58fec913d603"] ) expected_body = { "contacts": ["bfff9984-38f4-4e59-998d-3663ec3c650d", "7a165fe9-575b-4d15-b2ac-58fec913d603"], "action": "block", } self.assertRequest(mock_request, "post", "contact_actions", data=expected_body) def test_create_broadcast(self, mock_request): # check by group UUID mock_request.return_value = MockResponse(200, self.read_json("broadcasts_created")) broadcast = self.client.create_broadcast("Howdy", groups=["04a4752b-0f49-480e-ae60-3a3f2bea485c"]) expected_body = {"text": "Howdy", "groups": ["04a4752b-0f49-480e-ae60-3a3f2bea485c"]} self.assertRequest(mock_request, "post", "broadcasts", data=expected_body) self.assertEqual(broadcast.id, 234252) self.assertEqual(broadcast.urns, [1234]) self.assertEqual(broadcast.contacts, []) self.assertEqual(broadcast.groups, ["04a4752b-0f49-480e-ae60-3a3f2bea485c"]) self.assertEqual(broadcast.text, "Howdy") self.assertEqual(broadcast.status, "Q") self.assertEqual(broadcast.created_on, datetime.datetime(2014, 12, 12, 22, 56, 58, 917000, pytz.utc)) def test_create_campaign(self, mock_request): mock_request.return_value = MockResponse(200, self.read_json("campaigns_created")) campaign = self.client.create_campaign("Reminders", group="591de2c3-66bb-471b-9c9a-761b49a5ca69") expected_body = {"name": "Reminders", "group_uuid": "591de2c3-66bb-471b-9c9a-761b49a5ca69"} self.assertRequest(mock_request, "post", "campaigns", data=expected_body) self.assertEqual(campaign.uuid, "9ccae91f-b3f8-4c18-ad92-e795a2332c11") def test_create_contact(self, mock_request): mock_request.return_value = MockResponse(200, self.read_json("contacts_created")) contact = self.client.create_contact( "<NAME>", ["tel:+250700000005"], {"nickname": "Triple A"}, ["04a4752b-0f49-480e-ae60-3a3f2bea485c"], ) expected_body = { "name": "<NAME>", "urns": ["tel:+250700000005"], "fields": {"nickname": "Triple A"}, "group_uuids": ["04a4752b-0f49-480e-ae60-3a3f2bea485c"], } self.assertRequest(mock_request, "post", "contacts", data=expected_body) self.assertEqual(contact.uuid, "bfff9984-38f4-4e59-998d-3663ec3c650d") self.assertEqual(contact.name, "<NAME>") self.assertEqual(contact.urns, ["tel:+250700000005"]) self.assertEqual(contact.groups, ["04a4752b-0f49-480e-ae60-3a3f2bea485c"]) self.assertEqual(contact.fields, {"nickname": "Triple A"}) self.assertEqual(contact.language, None) self.assertEqual(contact.modified_on, datetime.datetime(2014, 10, 1, 6, 54, 9, 817000, pytz.utc)) def test_create_event(self, mock_request): mock_request.return_value = MockResponse(200, self.read_json("events_created")) event = self.client.create_event("9ccae91f-b3f8-4c18-ad92-e795a2332c11", "EDD", 14, "D", -1, "Howdy") expected_body = { "campaign_uuid": "9ccae91f-b3f8-4c18-ad92-e795a2332c11", "relative_to": "EDD", "offset": 14, "unit": "D", "delivery_hour": -1, "message": "Howdy", } self.assertRequest(mock_request, "post", "events", data=expected_body) self.assertEqual(event.uuid, "9e6beda-0ce2-46cd-8810-91157f261cbd") def test_create_field(self, mock_request): mock_request.return_value = MockResponse(200, self.read_json("fields_created")) field = self.client.create_field("Chat Name", "T") expected_body = {"label": "Chat Name", "value_type": "T"} self.assertRequest(mock_request, "post", "fields", data=expected_body) self.assertEqual(field.key, "chat_name") self.assertEqual(field.label, "Chat Name") self.assertEqual(field.value_type, "T") # with key provided field = self.client.create_field("Chat Name", "T", key="chat_name") expected_body = {"label": "Chat Name", "value_type": "T", "key": "chat_name"} self.assertRequest(mock_request, "post", "fields", data=expected_body) self.assertEqual(field.key, "chat_name") self.assertEqual(field.label, "Chat Name") self.assertEqual(field.value_type, "T") def test_create_label(self, mock_request): mock_request.return_value = MockResponse(200, self.read_json("labels_created")) label = self.client.create_label("Really High Priority") expected_body = {"name": "Really High Priority"} self.assertRequest(mock_request, "post", "labels", data=expected_body) self.assertEqual(label.uuid, "affa6685-0725-49c7-a15a-96f301d996e4") self.assertEqual(label.name, "Really High Priority") self.assertEqual(label.count, 0) def test_create_runs(self, mock_request): mock_request.return_value = MockResponse(200, self.read_json("runs_created")) runs = self.client.create_runs( "04a4752b-0f49-480e-ae60-3a3f2bea485c", ["bfff9984-38f4-4e59-998d-3663ec3c650d"], True ) expected_body = { "contacts": ["bfff9984-38f4-4e59-998d-3663ec3c650d"], "restart_participants": 1, "flow_uuid": "04a4752b-0f49-480e-ae60-3a3f2bea485c", } self.assertRequest(mock_request, "post", "runs", data=expected_body) runs = self.client.create_runs( "04a4752b-0f49-480e-ae60-3a3f2bea485c", ["bfff9984-38f4-4e59-998d-3663ec3c650d"], True, extra={"variable": "value"}, ) expected_body = { "contacts": ["bfff9984-38f4-4e59-998d-3663ec3c650d"], "restart_participants": 1, "flow_uuid": "04a4752b-0f49-480e-ae60-3a3f2bea485c", "extra": {"variable": "value"}, } self.assertRequest(mock_request, "post", "runs", data=expected_body) self.assertEqual(len(runs), 2) def test_delete_contact(self, mock_request): # check deleting an existing contact mock_request.return_value = MockResponse(204, "") self.client.delete_contact("bfff9984-38f4-4e59-998d-3663ec3c650d") self.assertRequest(mock_request, "delete", "contacts", params={"uuid": "bfff9984-38f4-4e59-998d-3663ec3c650d"}) # check deleting a non-existent contact mock_request.return_value = MockResponse(404, "NOT FOUND") self.assertRaises(TembaNoSuchObjectError, self.client.delete_contact, "bfff9984-38f4-4e59-998d-3663ec3c650d") def test_delete_contacts(self, mock_request): mock_request.return_value = MockResponse(204) self.client.delete_contacts( contacts=["bfff9984-38f4-4e59-998d-3663ec3c650d", "7a165fe9-575b-4d15-b2ac-58fec913d603"] ) expected_body = { "contacts": ["bfff9984-38f4-4e59-998d-3663ec3c650d", "7a165fe9-575b-4d15-b2ac-58fec913d603"], "action": "delete", } self.assertRequest(mock_request, "post", "contact_actions", data=expected_body) def test_delete_event(self, mock_request): mock_request.return_value = MockResponse(204, "") self.client.delete_event("bfff9984-38f4-4e59-998d-3663ec3c650d") self.assertRequest(mock_request, "delete", "events", params={"uuid": "bfff9984-38f4-4e59-998d-3663ec3c650d"}) def test_delete_messages(self, mock_request): mock_request.return_value = MockResponse(204) self.client.delete_messages(messages=[123, 234, 345]) expected_body = {"messages": [123, 234, 345], "action": "delete"} self.assertRequest(mock_request, "post", "message_actions", data=expected_body) def test_expire_contacts(self, mock_request): mock_request.return_value = MockResponse(204) self.client.expire_contacts( contacts=["bfff9984-38f4-4e59-998d-3663ec3c650d", "7a165fe9-575b-4d15-b2ac-58fec913d603"] ) expected_body = { "contacts": ["bfff9984-38f4-4e59-998d-3663ec3c650d", "7a165fe9-575b-4d15-b2ac-58fec913d603"], "action": "expire", } self.assertRequest(mock_request, "post", "contact_actions", data=expected_body) def test_get_boundaries(self, mock_request): mock_request.return_value = MockResponse(200, self.read_json("boundaries_multiple")) boundaries = self.client.get_boundaries() self.assertRequest(mock_request, "get", "boundaries") self.assertEqual(len(boundaries), 2) boundary1 = boundaries[0] boundary2 = boundaries[1] self.assertEqual(boundary1.boundary, "R195269") self.assertEqual(boundary1.name, "Burundi") self.assertEqual(boundary1.level, 0) self.assertFalse(boundary1.parent) self.assertEqual(boundary1.geometry.type, "MultiPolygon") self.assertIsInstance(boundary1.geometry.coordinates, list) self.assertEqual(boundary2.level, 1) self.assertEqual(boundary2.parent, "R195269") def test_get_broadcast(self, mock_request): # check single item response mock_request.return_value = MockResponse(200, self.read_json("broadcasts_single")) broadcast = self.client.get_broadcast(1234) self.assertRequest(mock_request, "get", "broadcasts", params={"id": 1234}) self.assertEqual(broadcast.id, 1234) self.assertEqual(broadcast.urns, [55454]) self.assertEqual(broadcast.contacts, []) self.assertEqual(broadcast.groups, ["04a4752b-0f49-480e-ae60-3a3f2bea485c"]) self.assertEqual(broadcast.text, "Hello") self.assertEqual(broadcast.created_on, datetime.datetime(2014, 11, 12, 22, 56, 58, 917000, pytz.utc)) self.assertEqual(broadcast.status, "Q") def test_get_broadcasts(self, mock_request): # check no params mock_request.return_value = MockResponse(200, self.read_json("broadcasts_multiple")) broadcasts = self.client.get_broadcasts() self.assertRequest(mock_request, "get", "broadcasts") self.assertEqual(len(broadcasts), 2) self.assertEqual(broadcasts[0].id, 1234) # check all params self.client.get_broadcasts( ids=[1234, 2345], statuses=["P", "Q"], before=datetime.datetime(2014, 12, 12, 22, 34, 36, 123000, pytz.utc), after=datetime.datetime(2014, 12, 12, 22, 34, 36, 234000, pytz.utc), ) self.assertRequest( mock_request, "get", "broadcasts", params={ "id": [1234, 2345], "status": ["P", "Q"], "before": "2014-12-12T22:34:36.123000Z", "after": "2014-12-12T22:34:36.234000Z", }, ) def test_get_campaign(self, mock_request): # check single item response mock_request.return_value = MockResponse(200, self.read_json("campaigns_single")) campaign = self.client.get_campaign("9ccae91f-b3f8-4c18-ad92-e795a2332c11") self.assertRequest(mock_request, "get", "campaigns", params={"uuid": "9ccae91f-b3f8-4c18-ad92-e795a2332c11"}) self.assertEqual(campaign.uuid, "9ccae91f-b3f8-4c18-ad92-e795a2332c11") self.assertEqual(campaign.name, "Mother Reminders") self.assertEqual(campaign.group, "591de2c3-66bb-471b-9c9a-761b49a5ca69") self.assertEqual(campaign.created_on, datetime.datetime(2015, 6, 8, 12, 18, 7, 671000, pytz.utc)) # check empty response mock_request.return_value = MockResponse(200, self.read_json("empty")) self.assertRaises(TembaNoSuchObjectError, self.client.get_campaign, "xyz") # check multiple item response mock_request.return_value = MockResponse(200, self.read_json("campaigns_multiple")) self.assertRaises(TembaMultipleResultsError, self.client.get_campaign, "9ccae91f-b3f8-4c18-ad92-e795a2332c11") def test_get_campaigns(self, mock_request): # check no params mock_request.return_value = MockResponse(200, self.read_json("campaigns_multiple")) campaigns = self.client.get_campaigns() self.assertRequest(mock_request, "get", "campaigns") self.assertEqual(len(campaigns), 2) self.assertEqual(campaigns[0].uuid, "9ccae91f-b3f8-4c18-ad92-e795a2332c11") def test_get_contact(self, mock_request): # check single item response mock_request.return_value = MockResponse(200, self.read_json("contacts_single")) contact = self.client.get_contact("bfff9984-38f4-4e59-998d-3663ec3c650d") self.assertRequest(mock_request, "get", "contacts", params={"uuid": "bfff9984-38f4-4e59-998d-3663ec3c650d"}) self.assertEqual(contact.uuid, "bfff9984-38f4-4e59-998d-3663ec3c650d") self.assertEqual(contact.name, "<NAME>") self.assertEqual(contact.urns, ["tel:+250700000001"]) self.assertEqual(contact.groups, ["04a4752b-0f49-480e-ae60-3a3f2bea485c"]) self.assertEqual(contact.fields, {"nickname": "Hannibal"}) self.assertEqual(contact.language, None) self.assertEqual(contact.blocked, False) self.assertEqual(contact.failed, False) self.assertEqual(contact.modified_on, datetime.datetime(2014, 10, 1, 6, 54, 9, 817000, pytz.utc)) # check empty response mock_request.return_value = MockResponse(200, self.read_json("empty")) self.assertRaises(TembaNoSuchObjectError, self.client.get_contact, "xyz") # check multiple item response mock_request.return_value = MockResponse(200, self.read_json("contacts_multiple")) self.assertRaises(TembaMultipleResultsError, self.client.get_contact, "bfff9984-38f4-4e59-998d-3663ec3c650d") def test_get_contacts(self, mock_request): # check no params mock_request.return_value = MockResponse(200, self.read_json("contacts_multiple")) contacts = self.client.get_contacts() self.assertRequest(mock_request, "get", "contacts") self.assertEqual(len(contacts), 4) self.assertEqual(contacts[0].uuid, "bfff9984-38f4-4e59-998d-3663ec3c650d") # check filtering by group_uuids mock_request.return_value = MockResponse(200, self.read_json("contacts_multiple")) self.client.get_contacts(groups=["abc"]) self.assertRequest(mock_request, "get", "contacts", params={"group_uuids": ["abc"]}) # check filtering by group object group1 = Group.create(name="A-Team", uuid="xyz", size=4) mock_request.return_value = MockResponse(200, self.read_json("contacts_multiple")) self.client.get_contacts(groups=[group1]) self.assertRequest(mock_request, "get", "contacts", params={"group_uuids": ["xyz"]}) # check filtering modified after a date mock_request.return_value = MockResponse(200, self.read_json("contacts_multiple")) self.client.get_contacts(after=datetime.datetime(2014, 12, 12, 22, 34, 36, 123000, pytz.utc)) self.assertRequest(mock_request, "get", "contacts", params={"after": "2014-12-12T22:34:36.123000Z"}) # check filtering modified before a date mock_request.return_value = MockResponse(200, self.read_json("contacts_multiple")) self.client.get_contacts(before=datetime.datetime(2014, 12, 12, 22, 34, 36, 123000, pytz.utc)) self.assertRequest(mock_request, "get", "contacts", params={"before": "2014-12-12T22:34:36.123000Z"}) # check filtering modified between dates mock_request.return_value = MockResponse(200, self.read_json("contacts_multiple")) self.client.get_contacts( after=datetime.datetime(2014, 12, 12, 22, 34, 36, 123000, pytz.utc), before=datetime.datetime(2014, 12, 12, 22, 34, 36, 123000, pytz.utc), ) self.assertRequest( mock_request, "get", "contacts", params={"after": "2014-12-12T22:34:36.123000Z", "before": "2014-12-12T22:34:36.123000Z"}, ) # check multiple pages mock_request.side_effect = ( MockResponse(200, self.read_json("contacts_multipage_1")), MockResponse(200, self.read_json("contacts_multipage_2")), MockResponse(200, self.read_json("contacts_multipage_3")), ) contacts = self.client.get_contacts(after=datetime.datetime(2014, 12, 12, 22, 34, 36, 123000, pytz.utc)) self.assertEqual(len(contacts), 21) self.assertRequestURL( mock_request, "get", "https://example.com/api/v1/contacts.json?page=3&before=2014-12-12T22:34:36.123" ) # test with paging mock_request.side_effect = ( MockResponse(200, self.read_json("contacts_multipage_1")), MockResponse(200, self.read_json("contacts_multipage_2")), MockResponse(200, self.read_json("contacts_multipage_3")), ) pager = self.client.pager() contacts = self.client.get_contacts(pager=pager) self.assertEqual(len(contacts), 10) self.assertEqual(pager.total, 21) self.assertTrue(pager.has_more()) contacts = self.client.get_contacts(pager=pager) self.assertEqual(len(contacts), 10) self.assertEqual(pager.total, 21) self.assertTrue(pager.has_more()) contacts = self.client.get_contacts(pager=pager) self.assertEqual(len(contacts), 1) self.assertEqual(pager.total, 21) self.assertFalse(pager.has_more()) # test asking for explicit page mock_request.return_value = MockResponse(200, self.read_json("contacts_multipage_2")) mock_request.side_effect = None pager = self.client.pager(start_page=2) contacts = self.client.get_contacts(pager=pager) self.assertEqual(len(contacts), 10) self.assertRequest(mock_request, "get", "contacts", params={"page": 2}) # test with connection error mock_request.side_effect = requests.exceptions.ConnectionError self.assertRaises(TembaConnectionError, self.client.get_contacts) def test_get_event(self, mock_request): # check single item response mock_request.return_value = MockResponse(200, self.read_json("events_single")) event = self.client.get_event("9e6beda-0ce2-46cd-8810-91157f261cbd") self.assertRequest(mock_request, "get", "events", params={"uuid": "9e6beda-0ce2-46cd-8810-91157f261cbd"}) self.assertEqual(event.uuid, "9e6beda-0ce2-46cd-8810-91157f261cbd") self.assertEqual(event.campaign, "9ccae91f-b3f8-4c18-ad92-e795a2332c11") self.assertEqual(event.relative_to, "EDD") self.assertEqual(event.offset, 14) self.assertEqual(event.unit, "D") self.assertEqual(event.delivery_hour, -1) self.assertEqual(event.message, "") self.assertEqual(event.flow, "70c38f94-ab42-4666-86fd-3c76139110d3") self.assertEqual(event.created_on, datetime.datetime(2015, 6, 8, 12, 18, 7, 671000, pytz.utc)) # check empty response mock_request.return_value = MockResponse(200, self.read_json("empty")) self.assertRaises(TembaNoSuchObjectError, self.client.get_event, "xyz") # check multiple item response mock_request.return_value = MockResponse(200, self.read_json("events_multiple")) self.assertRaises(TembaMultipleResultsError, self.client.get_event, "9e6beda-0ce2-46cd-8810-91157f261cbd") def test_get_events(self, mock_request): # check no params mock_request.return_value = MockResponse(200, self.read_json("events_multiple")) events = self.client.get_events() self.assertRequest(mock_request, "get", "events") self.assertEqual(len(events), 2) self.assertEqual(events[0].uuid, "9e6beda-0ce2-46cd-8810-91157f261cbd") def test_get_field(self, mock_request): # check single item response mock_request.return_value = MockResponse(200, self.read_json("fields_single")) field = self.client.get_field("chat_name") self.assertRequest(mock_request, "get", "fields", params={"key": "chat_name"}) self.assertEqual(field.label, "Chat Name") self.assertEqual(field.value_type, "T") # check empty response mock_request.return_value = MockResponse(200, self.read_json("empty")) self.assertRaises(TembaNoSuchObjectError, self.client.get_field, "xyz") # check multiple item response mock_request.return_value = MockResponse(200, self.read_json("fields_multiple")) self.assertRaises(TembaMultipleResultsError, self.client.get_flow, "chat_name") def test_get_fields(self, mock_request): # check no params mock_request.return_value = MockResponse(200, self.read_json("fields_multiple")) fields = self.client.get_fields() self.assertRequest(mock_request, "get", "fields") self.assertEqual(len(fields), 2) self.assertEqual(fields[0].key, "chat_name") def test_get_flow(self, mock_request): # check single item response mock_request.return_value = MockResponse(200, self.read_json("flows_single")) flow = self.client.get_flow("a68567fa-ad95-45fc-b5f7-3ce90ebbd46d") self.assertRequest(mock_request, "get", "flows", params={"uuid": "a68567fa-ad95-45fc-b5f7-3ce90ebbd46d"}) self.assertEqual(flow.uuid, "a68567fa-ad95-45fc-b5f7-3ce90ebbd46d") self.assertEqual(flow.name, "Ping") self.assertEqual(flow.archived, False)
<gh_stars>1-10 from pathlib import Path import numpy as np from matplotlib import pyplot as plt from typing import Union, Optional, OrderedDict Array = Union[list, np.ndarray] # ref: https://stackoverflow.com/questions/47074423/how-to-get-default-blue-colour-of-matplotlib-pyplot-scatter/47074742 MY_DEFAULT_BLUE: str = '#1f77b4' # I like this blue but it might change whats default, MDB: str = MY_DEFAULT_BLUE def plot_quick(y: Array, xlabel: str, ylabel: str, linewidth: float = 2.0, show: bool = False, save_plot: bool = False, plot_name: str = 'plot'): """ Plots y against it's indices """ plt.plot(y, lw=linewidth) # lw is linewidth plt.xlabel(xlabel) plt.ylabel(ylabel) plt.grid(True) plt.tight_layout() # note: needs to be done in this order or it will clear the plot. if save_plot: save_to_desktop(plot_name) if show: plt.show() def _plot(x: Array, y: Array, xlabel: str, ylabel: str, linewidth: float = 2.0, show: bool = False, save_plot: bool = False, plot_filename: str = 'plot', title: Optional[str] = None): """ Plots y against x. """ plt.plot(x, y, lw=linewidth) # lw is linewidth plt.xlabel(xlabel) plt.ylabel(ylabel) plt.grid(True) plt.tight_layout() # - optionals plt.title(title) # note: needs to be done in this order or it will clear the plot. if save_plot: save_to_desktop(plot_filename) if show: plt.show() def plot(x: Array, y: Array, xlabel: str, ylabel: str, linewidth: float = 2.0, show: bool = False, save_plot: bool = False, plot_filename: str = 'plot', title: Optional[str] = None, label: Optional[str] = None, y_hline: Optional[float] = None, y_hline_label: Optional[str] = None, x_hline: Optional[float] = None, x_hline_label: Optional[str] = None, new_plot: bool = False, marker: Optional = None, color: Optional = None, tight_layout: bool = False ): """ Nice easy plot function to quickly plot x vs y and labeling the x and y. Nice optional args, like plotting straight (horizontal or vertical lines), saving MI_plots_sl_vs_maml_1st_attempt, showing the plot, adding optional legends etc. Saves png, svg, pdf, to Desktop automatically if save_plot=True. Easiest use: plot(x, y, xlabel, ylabel) Easy recommended use: plost(x, y, xlabel, ylabel, save_plot=True, title=title) """ if new_plot: fig, axs = plt.subplots(nrows=1, ncols=1, sharex=True, tight_layout=True) axs.set_xlabel(xlabel) axs.set_ylabel(ylabel) axs.set_title(title) else: axs = plt plt.xlabel(xlabel) plt.ylabel(ylabel) axs.title(title) axs.plot(x, y, marker=marker, label=label, lw=linewidth, color=color) axs.grid(True) # adds nice grids instead of plot being white if tight_layout: plt.tight_layout() # automatically adjusts subplot params so that the subplot(s) fits in to the figure area. # - optionals if x_hline: # horizontal sets a constant x value axs.axvline(x=x_hline, color='g', linestyle='--', label=x_hline_label) if y_hline: # vertical sets a constant y value axs.axhline(y=y_hline, color='r', linestyle='--', label=y_hline_label) if label or y_hline_label or x_hline_label: axs.legend() # LABEL = LEGEND. A legend is an area describing the elements of the graph. if save_plot: save_to_desktop(plot_filename) if show: plt.show() def plot_with_error_bands(x: np.ndarray, y: np.ndarray, yerr: np.ndarray, xlabel: str, ylabel: str, title: str, curve_label: Optional[str] = None, error_band_label: Optional[str] = None, x_vals_as_symbols: Optional[list[str]] = None, color: Optional[str] = None, ecolor: Optional[str] = None, linewidth: float = 1.0, style: Optional[str] = 'default', capsize: float = 3.0, alpha: float = 0.2, ylim: Optional[tuple[float, float]] = None, show: bool = False ): """ Plot custom error bands given x and y. note: - example values for color and ecolor: color='tab:blue', ecolor='tab:blue' - capsize is the length of the horizontal line for the error bar. Larger number makes it longer horizontally. - alpha value create than 0.2 make the error bands color for filling it too dark. Really consider not changing. - sample values for curves and error_band labels: curve_label: str = 'mean with error bars', error_band_label: str = 'error band', - use x_vals_as_symbols to have strings in the x-axis for each individual points. Warning, it might clutter the x-axis so use just a few. refs: - for making the seaborn and matplot lib look the same see: https://stackoverflow.com/questions/54522709/my-seaborn-and-matplotlib-plots-look-the-same """ if style == 'default': # use the standard matplotlib plt.style.use("default") elif style == 'seaborn' or style == 'sns': # looks idential to seaborn import seaborn as sns sns.set() elif style == 'seaborn-darkgrid': # uses the default colours of matplot but with blue background of seaborn plt.style.use("seaborn-darkgrid") elif style == 'ggplot': # other alternative to something that looks like seaborn plt.style.use('ggplot') # ax = plt.gca() # fig = plt.gcf( # fig, axs = plt.subplots(nrows=1, ncols=1, sharex=True, tight_layout=True) # - if symbols in x axis instead of raw x value if x_vals_as_symbols is not None: # plt.xticks(x, [f'val{v}' for v in x]) to test plt.xticks(x, x_vals_as_symbols) # - plot bands plt.errorbar(x=x, y=y, yerr=yerr, color=color, ecolor=ecolor, capsize=capsize, linewidth=linewidth, label=curve_label) plt.fill_between(x=x, y1=y - yerr, y2=y + yerr, alpha=alpha, label=error_band_label) plt.grid(True) if curve_label or error_band_label: plt.legend() if ylim is not None: plt.ylim(*ylim) plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) if show: plt.show() def save_to_desktop(plot_name: str = 'plot'): """ Assuming you have not called show, saves it to local users desktop as a png, svg & pdf. """ root = Path('~/Desktop').expanduser() plt.savefig(root / f'{plot_name}.png') plt.savefig(root / f'{plot_name}.svg') plt.savefig(root / f'{plot_name}.pdf') def save_to_home(plot_name: str = 'plot'): """ Assuming you have not called show, saves it to local users desktop as a png, svg & pdf. """ root = Path('~/').expanduser() plt.savefig(root / f'{plot_name}.png') plt.savefig(root / f'{plot_name}.svg') plt.savefig(root / f'{plot_name}.pdf') def save_to(root: Path, plot_name: str = 'plot'): """ Assuming there is a plot in display, saves it to local users desktop users desktop as a png, svg & pdf. """ root: Path = root.expanduser() plt.savefig(root / f'{plot_name}.png') plt.savefig(root / f'{plot_name}.svg') plt.savefig(root / f'{plot_name}.pdf') def draw_veritcal_line(at_x_value: float, start: float, stop: float, num: int = 100, linestyle: str = "--"): """ Draws a vertical line at a specific x value for a given range [start, stop]. Note: - num tells us how dense to draw this line. """ plt.plot([at_x_value] * num, np.linspace(start, stop, num), linestyle=linestyle) # - seaborn LayerIdentifier = str def _list_order_dict2data_frame(data: list[OrderedDict[LayerIdentifier, float]], metric: str): """ Converts [B, L] to pandas dataframe (just a table) with the row as: {'layer_name': f'Layer{col}', 'metric': metric, 'sample_val': data[row, col]} so it makes sure it has the metric repeated for all sample values basically in one single table. """ from pandas import DataFrame # - for each data value in [B, L] create a table augmented with the name for that data (which associates all the # values for one curve together in the table) B: int = len(list) # e.g. data.shape[0] number of columns L: int = len(list) # e.g. data.shape[1] number of rows for row in range(B): # b for col in range(L): # l df_row = {'layer_name': f'Layer{col}', 'metric': metric, 'sample_val': data[row, col]} # - make sure you do it like this so that the previous data frame is added to the new one and the assignment # is there to not forget the growing data_frame (really a table) data_df: DataFrame = data_df.append(df_row, ignore_index=True) return data_df def _list_metrics_full_data2data_frame(dist_metric2data: OrderedDict[str, list[OrderedDict[LayerIdentifier, float]]]): """ lst_data should be a list of experiment results for each metric. e.g. dist_metric2data[metric_name] -> [B, L] matrix for the individual sample values for each layer (total B*L sample values). usually you have 4 num_metrics [svcca, pwcca, lincka, opd]. Then the data frame effective has size [4, B, L] values but all flattened into a table where each row has a row value as [row_arbitrary_name, metric, layer_name, val] """ import pandas as pd from pandas import DataFrame column_names = ["layer_name", "metric", "sample_val"] data_df: DataFrame = pd.DataFrame(columns=column_names) for metric, data in dist_metric2data.items(): # assert data is size [B, L] # get [B, L] -> have the metric in the table new_data_df: DataFrame = _list_order_dict2data_frame(data, metric) # - append current data to growing data frame data_df = data_df.join(new_data_df) return data_df def plot_seaborn_table_with_metric(dist_metric2data: OrderedDict[str, list[OrderedDict[LayerIdentifier, float]]]): """ The main idea of this function is that we have a collection of values in [B, L] e.g. B sim/dist values for each layer L organized as a list[OrderedDict[str, float]]. But we have one for each metric type so we have another OrderDict[metric] -> [B, L] data. But we need to append it all into one table and have one column for the metric and each [B, L] has that value appended to it. Each metric essentially will be it's one curve (with error bands). Then the hue
<gh_stars>0 import os import re import sys import logging import warnings import idlib from idlib.utils import log as _ilog from augpathlib.utils import log as _alog from pyontutils.utils import (makeSimpleLogger, python_identifier, # FIXME update imports TZLOCAL, utcnowtz, isoformat, isoformat_safe, timeformat_friendly) from . import exceptions as exc from .config import auth _find_command = 'gfind' if sys.platform == 'darwin' else 'find' log = makeSimpleLogger('sparcur') logd = log.getChild('data') loge = log.getChild('export') # set augpathlib log format to pyontutils (also sets all child logs) _alog.removeHandler(_alog.handlers[0]) _alog.addHandler(log.handlers[0]) # idlib logs TODO move to pyontutils probably? _ilog.removeHandler(_alog.handlers[0]) _ilog.addHandler(log.handlers[0]) # silence known warnings on pypy3 if hasattr(sys, 'pypy_version_info'): warnings.filterwarnings('ignore', module='.+protobuf.+') __type_registry = {None: None} def register_type(cls, type_name): if type_name in __type_registry: if __type_registry[type_name] is cls: # better to do this check here than to force # all callers to check for themselves which # can fail if two separate systems try to # register the same type return raise ValueError(f'Cannot map {cls} to {type_name}. ' 'Type already present! ' f'{type_name} -> {__type_registry[type_name]}') __type_registry[type_name] = cls def register_all_types(): # as a side effect this registers idlib streams and OntTerm # sigh doing anything in the top level of python :/ import sparcur.core import sparcur.paths # also a top level registration # this is not done at top level because it is quite slow from pysercomb.pyr import units as pyru [register_type(c, c.tag) for c in (pyru._Quant, pyru.Range, pyru.Approximately)] class IdentityJsonType: """ use to register types that should not be recursed upon e.g. because they contain external use of type that does not align with our usage """ @classmethod def fromJson(cls, blob): return blob def fromJson(blob): def nitr(value): try: return value not in __type_registry except TypeError as e: log.critical(e) return False if isinstance(blob, dict): if 'type' in blob: t = blob['type'] if t == 'identifier': type_name = blob['system'] elif t in ('quantity', 'range'): type_name = t elif nitr(t): breakpoint() raise NotImplementedError(f'TODO fromJson for type {t} ' f'currently not implemented\n{blob}') else: type_name = t cls = __type_registry[type_name] if cls is not None: return cls.fromJson(blob) return {k: v if k == 'errors' or k.endswith('_errors') else fromJson(v) for k, v in blob.items()} elif isinstance(blob, list): return [fromJson(_) for _ in blob] else: return blob def path_irs(*paths_or_strings): """Given one or more paths pointing to sparcur export json yield the python internal representation.""" # TODO support for urls import json register_all_types() for path_or_string in paths_or_strings: with open(path_or_string) as f: blob = json.load(f) yield fromJson(blob) def path_ir(path_or_string): """Given a path or string return the sparcur python ir.""" return next(path_irs(path_or_string)) def render_manifest(rows): # FIXME checksum cypher return [[filename.as_posix(), isoformat(timestamp), desc, ft, at, checksum.hex() if checksum else checksum,] for filename, timestamp, desc, ft, at, checksum in rows] def write_manifests(*args, parents=None, parents_rows=None, suffix='.csv', include_directories=False,): header = ('filename', 'timestamp', 'description', # FIXME no hardcode 'file type', 'additional types', 'checksum') if parents is None and parents_rows is None: raise TypeError('one of parents or parents_rows is required') elif parents and parents_rows: raise TypeError('at most one of parents or parents_rows is allowed') if parents_rows: parents = [p for p, r in parents_rows] existing = [] for parent in parents: manifest = parent / f'manifest{suffix}' if manifest.exists(): existing.append(manifest) if existing: # TODO overwrite etc. # FIXME TODO relative to some reference point msg = f'Existing manifest files detected not writing!\n{existing}' raise ValueError(msg) if parents_rows is None: parents_rows = [(path, path.generate_manifest()) for path in parents] manifests_rendered = [] if suffix == '.csv': # FIXME deal with different suffixes import csv paths_rendered = [(path, render_manifest(manifest)) for path, manifest in parents_rows] for path, rendered in paths_rendered: manifest = parent / f'manifest{suffix}' manifests_rendered.append((manifest, rendered)) with open(manifest, 'wt') as f: csv.writer(f).writerows([header] + rendered) else: raise NotImplementedError(f"Don't know how to export {suffix}") return manifests_rendered def expand_label_curie(rows_of_terms): return [[value for term in rot for value in (term.label if term is not None else '', term.curie if term is not None else '')] for rot in rows_of_terms] def levenshteinDistance(s1, s2): if len(s1) > len(s2): s1, s2 = s2, s1 distances = range(len(s1) + 1) for i2, c2 in enumerate(s2): distances_ = [i2+1] for i1, c1 in enumerate(s1): if c1 == c2: distances_.append(distances[i1]) else: distances_.append(1 + min((distances[i1], distances[i1 + 1], distances_[-1]))) distances = distances_ return distances[-1] class GetTimeNow: def __init__(self): self._start_time = utcnowtz() self._start_local_tz = TZLOCAL() # usually PST PDT @property def _start_time_local(self): return self._start_time.astimezone(self._start_local_tz) @property def START_TIMESTAMP(self): return isoformat(self._start_time) @property def START_TIMESTAMP_SAFE(self): return isoformat_safe(self._start_time) @property def START_TIMESTAMP_FRIENDLY(self): return timeformat_friendly(self._start_time) @property def START_TIMESTAMP_LOCAL(self): return isoformat(self._start_time_local) @property def START_TIMESTAMP_LOCAL_SAFE(self): return isoformat_safe(self._start_time_local) @property def START_TIMESTAMP_LOCAL_FRIENDLY(self): return timeformat_friendly(self._start_time_local) class SimpleFileHandler: _FIRST = object() def __init__(self, log_file_path, *logs, mimic=_FIRST): self.log_file_handler = logging.FileHandler(log_file_path.as_posix()) if mimic is self._FIRST and logs: self.mimic(logs[0]) elif mimic: self.mimic(mimic) for log in logs: self(log) def __call__(self, *logs_to_handle): for log in logs_to_handle: log.addHandler(self.log_file_handler) def mimic(self, log): self.log_file_handler.setFormatter(log.handlers[0].formatter) def silence_loggers(*logs): for log in logs: parent = log while parent: [parent.removeHandler(h) for h in parent.handlers] parent = parent.parent def bind_file_handler(log_file): # FIXME the this does not work with joblib at the moment from idlib.utils import log as idlog from protcur.core import log as prlog from orthauth.utils import log as oalog from ontquery.utils import log as oqlog from augpathlib.utils import log as alog from pyontutils.utils import log as pylog sfh = SimpleFileHandler(log_file, log) sfh(alog, idlog, oalog, oqlog, prlog, pylog) class _log: """ logging prevents nice ipython recurions error printing so rename this class to log when you need fake logging """ @staticmethod def debug(nothing): pass @staticmethod def info(nothing): pass @staticmethod def warning(nothing): print(nothing) @staticmethod def error(nothing): pass @staticmethod def critical(nothing): pass want_prefixes = ('TEMP', 'FMA', 'UBERON', 'PATO', 'NCBITaxon', 'ilxtr', 'sparc', 'BIRNLEX', 'tech', 'unit', 'ILX', 'lex',) def is_list_or_tuple(obj): return isinstance(obj, list) or isinstance(obj, tuple) def symlink_latest(dump_path, path, relative=True): """ relative to allow moves of the containing folder without breaking links """ if relative: dump_path = dump_path.relative_path_from(path) if path.exists(): if not path.is_symlink(): raise TypeError(f'Why is {path.name} not a symlink? ' f'{path!r}') path.unlink() path.symlink_to(dump_path) def _transitive_(path, command): with path: with os.popen(command) as p: string = p.read() path_strings = string.split('\n') # XXX posix path names can contain newlines # XXXXXXXXXXXXXXXXXXX REMINDER THAT THIS IS NOT SORTED # https://doi.org/10.1021/acs.orglett.9b03216 paths = [path / s for s in path_strings if s][1:] # leave out the parent folder itself return paths def transitive_paths(path, exclude_patterns=tuple()): """Fast list of all child directories using unix find.""" if sys.platform == 'win32': # XXX assumes that rchildren already implements exclude patterns return list(path.rchildren) hrm = ' '.join(['-not -path ' + repr(pat) for pat in exclude_patterns]) if hrm: hrm = ' ' + hrm command = f"""{_find_command} -not -path '.operations*'{hrm}""" # TODO failover to builtin rglob return _transitive_(path, command) def transitive_dirs(path): """Fast list of all child directories using unix find.""" if sys.platform == 'win32': # no findutils gen = os.walk(path) next(gen) # drop path itself to avoid drp == Path('.') return [path / t[0] for t in gen] command = f"""{_find_command} -type d""" # TODO failover to builtin rglob + filter return _transitive_(path, command) def unicode_truncate(string, length): """ Truncate unicode string to at most maximum length. If truncation splits a multibyte charachter then ignore the final truncated bytes. """ return string.encode()[:length].decode(errors='ignore') class ApiWrapper: """ Sometimes you just need one more level of indirection! Abstract base class to wrap Blackfynn and Pennsieve apis. """ _id_class = None _api_class = None _sec_remote = None _dp_class = None @classmethod def _get_connection(cls, project_id):#, retry=10): try: return cls._api_class( api_token=auth.user_config.secrets( cls._sec_remote, project_id, 'key'), api_secret=auth.user_config.secrets( cls._sec_remote, project_id, 'secret')) except KeyError as e: msg = (f'need record in secrets for {cls._sec_remote} ' f'organization {project_id}') raise exc.MissingSecretError(msg) from e #except Exception as e: # was absent dsn caching + rate limits #from time import sleep #if 0 < retry: # exponential falloff with the final wait being 10 seconds #sleep(10 ** (1 / retry)) #cls._get_connection(project_id, retry=retry - 1) #else: #raise e def __init__(self, project_id, anchor=None): # no changing local storage prefix in the middle of things # if you want to do that create a new class if isinstance(project_id, self._id_class): # FIXME make the _id_class version the internal default project_id = project_id.id import requests # SIGH self._requests = requests self.bf = self._get_connection(project_id) self.organization = self.bf.context self.project_name = self.bf.context.name self.root = self.organization.id self._project_id = project_id # keep it around
np.uint64(2) # feature data fd = m.create_group('FeatureData') fd.attrs['AttributeMatrixType'] = np.uint32(7) fd.attrs['TupleDimensions'] = np.uint64(self.grains.nrows) Euler = np.array([Orientation.from_rodrigues(g['orientation']) for g in self.grains], dtype=np.float32) avg_euler = fd.create_dataset('AvgEulerAngles', data=Euler) avg_euler.attrs['ComponentDimensions'] = np.uint64(3) avg_euler.attrs['DataArrayVersion'] = np.int32(2) avg_euler.attrs['ObjectType'] = np.string_('DataArray<float>') avg_euler.attrs['Tuple Axis Dimensions'] = np.string_('x=%d' % self.grains.nrows) avg_euler.attrs['TupleDimensions'] = np.uint64(self.grains.nrows) # geometry geom = m.create_group('_SIMPL_GEOMETRY') geom.attrs['GeometryType'] = np.uint32(999) geom.attrs['GeometryTypeName'] = np.string_('UnkownGeometry') # create the data container bundles group f.create_group('DataContainerBundles') f.close() @staticmethod def from_dream3d(file_path, main_key='DataContainers', data_container='DataContainer', grain_data='FeatureData', grain_orientations='AvgEulerAngles', orientation_type='euler', grain_centroid='Centroids'): """Read a microstructure from a hdf5 file. :param str file_path: the path to the hdf5 file to read. :param str main_key: the string describing the root key. :param str data_container: the string describing the data container group in the hdf5 file. :param str grain_data: the string describing the grain data group in the hdf5 file. :param str grain_orientations: the string describing the average grain orientations in the hdf5 file. :param str orientation_type: the string describing the descriptor used for orientation data. :param str grain_centroid: the string describing the grain centroid in the hdf5 file. :return: a `Microstructure` instance created from the hdf5 file. """ head, tail = os.path.split(file_path) micro = Microstructure(name=tail, file_path=head, overwrite_hdf5=True) with h5py.File(file_path, 'r') as f: grain_data_path = '%s/%s/%s' % (main_key, data_container, grain_data) orientations = f[grain_data_path][grain_orientations].value if grain_centroid: centroids = f[grain_data_path][grain_centroid].value offset = 0 if len(centroids) < len(orientations): offset = 1 # if grain 0 has not a centroid grain = micro.grains.row for i in range(len(orientations)): grain['idnumber'] = i if orientations[i, 0] == 0. and orientations[i, 1] == 0. and \ orientations[i, 2] == 0.: # skip grain 0 which is always (0., 0., 0.) print('skipping (0., 0., 0.)') continue if orientation_type == 'euler': grain['orientation'] = Orientation.from_euler( orientations[i] * 180 / np.pi).rod elif orientation_type == 'rodrigues': grain['orientation'] = Orientation.from_rodrigues( orientations[i]).rod if grain_centroid: grain['center'] = centroids[i - offset] grain.append() micro.grains.flush() return micro @staticmethod def copy_sample(src_micro_file, dst_micro_file, overwrite=False, get_object=False, dst_name=None, autodelete=False): """ Initiate a new SampleData object and files from existing one""" SampleData.copy_sample(src_micro_file, dst_micro_file, overwrite, new_sample_name=dst_name) if get_object: return Microstructure(filename=dst_micro_file, autodelete=autodelete) else: return @staticmethod def from_neper(neper_file_path): """Create a microstructure from a neper tesselation. Neper is an open source program to generate polycristalline microstructure using voronoi tesselations. It is available at https://neper.info :param str neper_file_path: the path to the tesselation file generated by Neper. :return: a pymicro `Microstructure` instance. """ neper_file = neper_file_path.split(os.sep)[-1] neper_dir = os.path.dirname(neper_file_path) print('creating microstructure from Neper tesselation %s' % neper_file) name, ext = os.path.splitext(neper_file) print(name, ext) filename = os.path.join(neper_dir, name) assert ext == '.tesr' # assuming raster tesselation micro = Microstructure(name=name, filename=filename, overwrite_hdf5=True) with open(neper_file_path, 'r', encoding='latin-1') as f: line = f.readline() # ***tesr # look for **general while True: line = f.readline().strip() # get rid of unnecessary spaces if line.startswith('**general'): break dim = f.readline().strip() print(dim) dims = np.array(f.readline().split()).astype(int).tolist() print(dims) voxel_size = np.array(f.readline().split()).astype(float).tolist() print(voxel_size) # look for **cell while True: line = f.readline().strip() if line.startswith('**cell'): break n = int(f.readline().strip()) print('microstructure contains %d grains' % n) f.readline() # *id grain_ids = [] # look for *ori while True: line = f.readline().strip() if line.startswith('*ori'): break else: grain_ids.extend(np.array(line.split()).astype(int).tolist()) print('grain ids are:', grain_ids) oridescriptor = f.readline().strip() # must be euler-bunge:passive if oridescriptor != 'euler-bunge:passive': print('Wrong orientation descriptor: %s, must be ' 'euler-bunge:passive' % oridescriptor) grain = micro.grains.row for i in range(n): euler_angles = np.array(f.readline().split()).astype(float).tolist() print('adding grain %d' % grain_ids[i]) grain['idnumber'] = grain_ids[i] grain['orientation'] = Orientation.from_euler(euler_angles).rod grain.append() micro.grains.flush() # look for **data and handle *group if present phase_ids = None while True: line = f.readline().strip() if line.startswith('*group'): print('multi phase sample') phase_ids = [] while True: line = f.readline().strip() if line.startswith('**data'): break else: phase_ids.extend(np.array(line.split()).astype(int).tolist()) print('phase ids are:', phase_ids) if line.startswith('**data'): break print(f.tell()) print('reading data from byte %d' % f.tell()) data = np.fromfile(f, dtype=np.uint16)[:-4] # leave out the last 4 values print(data.shape) assert np.prod(dims) == data.shape[0] micro.set_grain_map(data.reshape(dims[::-1]).transpose(2, 1, 0), voxel_size=voxel_size[0]) # swap X/Z axes print('updating grain geometry') micro.recompute_grain_bounding_boxes() micro.recompute_grain_centers() micro.recompute_grain_volumes() # if necessary set the phase_map if phase_ids: grain_map = micro.get_grain_map(as_numpy=True) phase_map = np.zeros_like(grain_map) for grain_id, phase_id in zip(grain_ids, phase_ids): # ignore phase id == 1 as this corresponds to phase_map == 0 if phase_id > 1: phase_map[grain_map == grain_id] = phase_id - 1 micro.set_phase_map(phase_map) print('done') return micro @staticmethod def from_labdct(labdct_file, data_dir='.', include_IPF_map=False, include_rodrigues_map=False): """Create a microstructure from a DCT reconstruction. :param str labdct_file: the name of the file containing the labDCT data. :param str data_dir: the path to the folder containing the HDF5 reconstruction file. :param bool include_IPF_map: if True, the IPF maps will be included in the microstructure fields. :param bool include_rodrigues_map: if True, the rodrigues map will be included in the microstructure fields. :return: a `Microstructure` instance created from the labDCT reconstruction file. """ file_path = os.path.join(data_dir, labdct_file) print('creating microstructure for labDCT scan %s' % file_path) name, ext = os.path.splitext(labdct_file) # get the phase data with h5py.File(file_path, 'r') as f: #TODO handle multiple phases phase01 = f['PhaseInfo']['Phase01'] phase_name = phase01['Name'][0].decode('utf-8') parameters = phase01['UnitCell'][()] # length unit is angstrom a, b, c = parameters[:3] / 10 # use nm unit alpha, beta, gamma = parameters[3:] print(parameters) sym = Lattice.guess_symmetry_from_parameters(a, b, c, alpha, beta, gamma) print('found %s symmetry' % sym) lattice = Lattice.from_parameters(a, b, c, alpha, beta, gamma, symmetry=sym) phase = CrystallinePhase(phase_id=1, name=phase_name, lattice=lattice) # create the microstructure with the phase infos micro = Microstructure(name=name, path=data_dir, overwrite_hdf5=True, phase=phase) # load cell data with h5py.File(file_path, 'r') as f: spacing = f['LabDCT']['Spacing'][0] rodrigues_map = f['LabDCT']['Data']['Rodrigues'][()].transpose(2, 1, 0, 3) grain_map = f['LabDCT']['Data']['GrainId'][()].transpose(2, 1, 0) print('adding cell data with shape {}'.format(grain_map.shape)) micro.set_grain_map(grain_map, voxel_size=spacing) mask = f['LabDCT']['Data']['Mask'][()].transpose(2, 1, 0) micro.set_mask(mask, voxel_size=spacing) phase_map = f['LabDCT']['Data']['PhaseId'][()].transpose(2, 1, 0) micro.set_phase_map(phase_map, voxel_size=spacing) if include_IPF_map: IPF001_map = f['LabDCT']['Data']['IPF001'][()].transpose(2, 1, 0, 3) micro.add_field(gridname='CellData', fieldname='IPF001_map', array=IPF001_map) IPF010_map = f['LabDCT']['Data']['IPF010'][()].transpose(2, 1, 0, 3) micro.add_field(gridname='CellData', fieldname='IPF010_map', array=IPF010_map) IPF100_map = f['LabDCT']['Data']['IPF100'][()].transpose(2, 1, 0, 3) micro.add_field(gridname='CellData', fieldname='IPF100_map', array=IPF100_map) if include_rodrigues_map: micro.add_field(gridname='CellData', fieldname='rodrigues_map', array=rodrigues_map) # create grain data table infos grain_ids = np.unique(grain_map) print(grain_ids) micro.build_grain_table_from_grain_map() # now get each grain orientation from the rodrigues map for i, g in enumerate(micro.grains): gid = g['idnumber'] progress = (1 + i) / len(micro.grains) print('adding grains: {0:.2f} %'.format(progress), end='\r') x, y, z = np.where(micro.get_grain_map() == gid) orientation = rodrigues_map[x[0], y[0], z[0]] # assign orientation to this grain g['orientation'] = orientation g.update() micro.grains.flush() return micro @staticmethod def from_dct(data_dir='.', grain_file='index.mat', vol_file='phase_01_vol.mat', mask_file='volume_mask.mat', use_dct_path=True, verbose=True): """Create a microstructure from a DCT reconstruction. DCT reconstructions are stored in several files. The indexed grain informations are stored in a matlab file in the '4_grains/phase_01' folder. Then, the reconstructed volume file (labeled image) is stored in the '5_reconstruction' folder as an hdf5 file, possibly stored alongside a mask file coming from the absorption reconstruction. :param str data_dir: the path to the folder containing the reconstruction data. :param str grain_file: the name of the file containing grains info. :param str vol_file: the name of the volume file. :param str mask_file: the name of the mask file. :param bool use_dct_path: if True, the grain_file should be located in 4_grains/phase_01 folder and the vol_file and mask_file in the 5_reconstruction folder. :param bool verbose: activate verbose mode. :return: a `Microstructure` instance created from the DCT reconstruction. """ if data_dir == '.': data_dir = os.getcwd() if data_dir.endswith(os.sep): data_dir = data_dir[:-1] scan = data_dir.split(os.sep)[-1] print('creating microstructure for DCT scan %s' % scan) filename = os.path.join(data_dir,scan) micro = Microstructure(filename=filename, overwrite_hdf5=True) micro.data_dir = data_dir if use_dct_path: index_path = os.path.join(data_dir, '4_grains', 'phase_01', grain_file) else: index_path = os.path.join(data_dir, grain_file) print(index_path) if not os.path.exists(index_path): raise ValueError('%s not found, please specify a valid path to the' ' grain file.' % index_path) return None from scipy.io import loadmat index = loadmat(index_path) #TODO fetch pixel size from detgeo instead voxel_size = index['cryst'][0][0][25][0][0] # grab the crystal lattice lattice_params = index['cryst'][0][0][3][0] sym = Symmetry.from_string(index['cryst'][0][0][7][0]) print('creating crystal lattice {} ({}) with parameters {}' ''.format(index['cryst'][0][0][0][0], sym, lattice_params)) lattice_params[:3] /= 10 # angstrom to nm lattice = Lattice.from_parameters(*lattice_params, symmetry=sym) micro.set_lattice(lattice) # add all grains to the microstructure grain = micro.grains.row for i in range(len(index['grain'][0])): grain['idnumber'] = index['grain'][0][i][0][0][0][0][0] grain['orientation'] = index['grain'][0][i][0][0][3][0] grain['center'] = index['grain'][0][i][0][0][15][0] grain.append() micro.grains.flush()
we'll leak memory (hold on to objects in the cache that could have been # garbage collected). tracer.log("caller") self.object_engine.run_sql("SET LOCAL synchronous_commit TO off") self._release_objects(required_objects) tracer.log("release_objects") logging.debug("Releasing %s", pluralise("object", len(required_objects))) if table: logging.debug( "Timing stats for %s/%s/%s/%s: \n%s", table.repository.namespace, table.repository.repository, table.image.image_hash, table.table_name, tracer, ) self.object_engine.commit() # Release the metadata tables as well self.metadata_engine.commit() return CallbackList([_f]) def make_objects_external( self, objects: List[str], handler: str, handler_params: Dict[Any, Any] ) -> None: """ Uploads local objects to an external location and marks them as being cached locally (thus making it possible to evict or swap them out). :param objects: Object IDs to upload. Will do nothing for objects that already exist externally. :param handler: Object handler :param handler_params: Extra handler parameters """ # Get objects that haven't been uploaded uploaded_objects = [o[0] for o in self.get_external_object_locations(objects)] new_objects = [o for o in objects if o not in uploaded_objects] logging.debug( "%s of %d haven't been uploaded yet: %r", pluralise("object", len(new_objects)), len(objects), new_objects, ) if not new_objects: return # Similar to claim_objects, make sure we don't deadlock with other uploaders # by keeping a consistent order. new_objects = sorted(new_objects) # Insert the objects into the cache status table (marking them as not ready) now = dt.utcnow() self.object_engine.run_sql_batch( insert("object_cache_status", ("object_id", "ready", "refcount", "last_used")) + SQL("ON CONFLICT (object_id) DO UPDATE SET ready = 'f'"), [(object_id, False, 1, now) for object_id in new_objects], ) # Grab the objects that we're supposed to be uploading. claimed_objects = self.object_engine.run_sql( select("object_cache_status", "object_id", "ready = 'f' FOR UPDATE"), return_shape=ResultShape.MANY_ONE, ) new_objects = [o for o in new_objects if o in claimed_objects] # Perform the actual upload external_handler = get_external_object_handler(handler, handler_params) partial_failure: Optional[IncompleteObjectUploadError] = None try: with switch_engine(self.object_engine): successful = { o: u for o, u in external_handler.upload_objects(new_objects, self.metadata_engine) } except IncompleteObjectUploadError as e: partial_failure = e successful = {o: u for o, u in zip(e.successful_objects, e.successful_object_urls)} locations = [(o, u, handler) for o, u in successful.items()] self.register_object_locations(locations) # Increase the cache occupancy since the objects can now be evicted. self._increase_cache_occupancy(list(successful.keys())) # Mark the objects as ready and decrease their refcounts. self._set_ready_flags(list(successful.keys()), True) self._release_objects(list(successful.keys())) self.object_engine.commit() self.metadata_engine.commit() if partial_failure: if partial_failure.reason: raise partial_failure.reason else: raise ObjectCacheError("Some objects failed to upload!") # Perform eviction in case we've reached the capacity of the cache excess = self.get_cache_occupancy() - self.cache_size if excess > 0: self.run_eviction(keep_objects=[], required_space=excess) def _prepare_fetch_list(self, required_objects: List[str]) -> List[str]: """ Calculates the missing objects and ensures there's enough space in the cache to download them. :param required_objects: Iterable of object IDs that are required to be on the engine. :return: Set of objects to fetch """ to_fetch: List[str] = self.object_engine.run_sql( select("object_cache_status", "object_id", "ready = 'f'"), return_shape=ResultShape.MANY_ONE, ) if to_fetch: # If we need to download anything, take out an exclusive lock on the cache since we might # need to run eviction and don't want multiple managers trying to download the same things. # This used to be more granular (allow multiple managers downloading objects) but was resulting # in fun concurrency bugs and deadlocks that I don't have the willpower to investigate further # right now (e.g. two managers trying to download the same objects at the same time after one of them # runs cache eviction and releases some locks -- or two managers trying to free the same amount # of space in the cache for the same set of objects). # Since we already hold a row-level lock on some objects in the cache, we have to release it first and # lock the full table then -- but this means someone else might start downloading the objects that # we claimed. So, once we acquire the lock, we recalculate the fetch list again to see what # we're supposed to be fetching. self.object_engine.commit() self.object_engine.lock_table(SPLITGRAPH_META_SCHEMA, "object_cache_status") to_fetch = self.object_engine.run_sql( select("object_cache_status", "object_id", "ready = 'f'"), return_shape=ResultShape.MANY_ONE, ) # If someone else downloaded all the objects we need, there's no point in holding the lock. # This is tricky to test with a single process. if not to_fetch: # pragma: no cover self.object_engine.commit() return to_fetch required_space = sum(o.size for o in self.get_object_meta(list(to_fetch)).values()) current_occupied = self.get_cache_occupancy() logging.info( "Need to download %s (%s), cache occupancy: %s/%s", pluralise("object", len(required_objects)), pretty_size(required_space), pretty_size(current_occupied), pretty_size(self.cache_size), ) # If the total cache size isn't large enough, there's nothing we can do without cooperating with the # caller and seeing if they can use the objects one-by-one. if required_space > self.cache_size: raise ObjectCacheError( "Not enough space in the cache to download the required objects!" ) if required_space > self.cache_size - current_occupied: to_free = required_space + current_occupied - self.cache_size logging.info("Need to free %s", pretty_size(to_free)) self.run_eviction(required_objects, to_free) self.object_engine.commit() # Finally, after we're done with eviction, relock the objects that we're supposed to be downloading. to_fetch = self.object_engine.run_sql( select("object_cache_status", "object_id", "ready = 'f' FOR UPDATE"), return_shape=ResultShape.MANY_ONE, ) return to_fetch def _claim_objects(self, objects: List[str]) -> None: """Increases refcounts and bumps the last used timestamp to now for cached objects. For objects that aren't in the cache, checks that they don't already exist locally and then adds them to the cache status table, marking them with ready=False (which must be set to True by the end of the operation).""" if not objects: return now = dt.utcnow() # Objects that were created locally aren't supposed to be claimed here or have an entry in the cache. # So, we first try to update cache entries to bump their refcount, see which ones we updated, # subtract objects that we have locally and insert the remaining entries as new cache entries. claimed = self.object_engine.run_sql( SQL( # nosec "UPDATE {}.object_cache_status SET refcount = refcount + 1, " "last_used = %s WHERE object_id IN (" ).format(Identifier(SPLITGRAPH_META_SCHEMA)) + SQL(",".join(itertools.repeat("%s", len(objects)))) + SQL(") RETURNING object_id"), [now] + objects, # type: ignore return_shape=ResultShape.MANY_ONE, ) claimed = claimed or [] remaining = set(objects).difference(set(claimed)) remaining = remaining.difference(set(self.get_downloaded_objects(limit_to=list(remaining)))) # Since we send multiple queries, each claiming a single remaining object, we can deadlock here # with another object manager instance. Hence, we sort the list of objects so that we claim them # in a consistent order between all instances. remaining = sorted(remaining) # Remaining: objects that are new to the cache and that we'll need to download. However, between us # running the first query and now, somebody else might have started downloading them. Hence, when # we try to insert them, we'll be blocked until the other engine finishes its download and commits # the transaction -- then get an integrity error. So here, we do an update on conflict (again). self.object_engine.run_sql_batch( insert("object_cache_status", ("object_id", "ready", "refcount", "last_used")) + SQL( "ON CONFLICT (object_id) DO UPDATE SET refcount = EXCLUDED.refcount + 1, last_used = %s" ), [(object_id, False, 1, now, now) for object_id in remaining], ) def _set_ready_flags(self, objects: List[str], is_ready: bool = True) -> None: if objects: self.object_engine.run_sql( SQL( # nosec "UPDATE {0}.object_cache_status SET ready = %s WHERE object_id IN (" + ",".join(itertools.repeat("%s", len(objects))) + ")" ).format(Identifier(SPLITGRAPH_META_SCHEMA)), [is_ready] + list(objects), # type: ignore ) def _release_objects(self, objects: List[str]) -> None: """Decreases objects' refcounts.""" if objects: self.object_engine.run_sql( SQL( # nosec "UPDATE {}.{} SET refcount = refcount - 1 WHERE object_id IN (" + ",".join(itertools.repeat("%s", len(objects))) + ")" ).format(Identifier(SPLITGRAPH_META_SCHEMA), Identifier("object_cache_status")), objects, ) def _increase_cache_occupancy(self, objects: List[str]) -> None: """Increase the cache occupancy by objects' total size.""" if not objects: return total_size = sum(o.size for o in self.get_object_meta(objects).values()) self.object_engine.run_sql( SQL("UPDATE {}.object_cache_occupancy SET total_size = total_size + %s").format( Identifier(SPLITGRAPH_META_SCHEMA) ), (total_size,), ) def _decrease_cache_occupancy(self, size_freed: int) -> None: """Decrease the cache occupancy by a given size.""" self.object_engine.run_sql( SQL("UPDATE {}.object_cache_occupancy SET total_size = total_size - %s").format( Identifier(SPLITGRAPH_META_SCHEMA) ), (size_freed,), ) def run_eviction(self, keep_objects: List[str], required_space: Optional[int] = None) -> None: """ Delete enough objects with zero reference count (only those, since we guarantee that whilst refcount is >0, the object stays alive) to free at least `required_space` in the cache. :param
corrector.Execute(inputImage, maskImage) corrected_img = sitk.GetArrayFromImage(corrected_itk_img) ax[ind, 1].imshow(corrected_img[largest, :, :], cmap='gray') if not no_masks: for contour in pancreas_contours: ax[ind, 1].plot(contour[:, 1], contour[:, 0], linewidth=2, color='r', alpha=0.5) ax[ind, 1].set_title('{} N4BiasFieldCorrected'.format(mod_name)) ax[ind, 1].axis('off') print('\tPerforming CurvatureAnisotropicFilter on {} Image.'.format(mod_name)) filtered_itk_img = sitk.CurvatureAnisotropicDiffusion(corrected_itk_img, timeStep=0.015) filtered_img = sitk.GetArrayFromImage(filtered_itk_img) ax[ind, 2].imshow(filtered_img[largest, :, :], cmap='gray') if not no_masks: for contour in pancreas_contours: ax[ind, 2].plot(contour[:, 1], contour[:, 0], linewidth=2, color='r', alpha=0.5) ax[ind, 2].set_title('{} CurvatureAnsiotropicFiltered'.format(mod_name)) ax[ind, 2].axis('off') # # Nyul and Udupa histogram normalization routine with a given set of learned landmarks # print('\tPerforming Nyul and Udupa histogram normalization on {} Images.'.format(mod_name)) # if np.array_equal(standard_scale[ind], np.zeros(len(percs))): # hm_scale(root_path, mod_dirs, exp_name, index=ind, no_masks=True) # # mask = sitk.GetArrayFromImage(maskImage) # masked = filtered_img[mask > 0] # landmarks = np.percentile(masked, percs) # f = interp1d(landmarks, standard_scale[ind], fill_value='extrapolate') # normed_img = f(filtered_img) out_img = np.rollaxis(filtered_img, 0, 3) out_img = out_img.astype(np.float32) # top_ninety = np.percentile(out_img, 99) # bottom_ten = np.percentile(out_img, 1) # out_img[out_img > top_ninety] = top_ninety # out_img[out_img < bottom_ten] = bottom_ten out_img -= np.min(out_img) out_img /= np.max(out_img) h_rem = out_img.shape[0] % 2 ** 5 w_rem = out_img.shape[1] % 2 ** 5 if h_rem != 0 or w_rem != 0: out_img = np.pad(out_img, ((int(np.ceil(h_rem / 2.)), int(np.floor(h_rem / 2.))), (int(np.ceil(w_rem / 2.)), int(np.floor(w_rem / 2.))), (0, 0)), 'symmetric') corrected_imgs.append(out_img) # ax[ind, 3].imshow(out_img[:, :, largest], cmap='gray') # if not no_masks: # for contour in pancreas_contours: # ax[ind, 3].plot(contour[:, 1], contour[:, 0], linewidth=2, color='r', alpha=0.5) # ax[ind, 3].set_title('{} Nyul&Udupa HistNorm'.format(mod_name)) # ax[ind, 3].axis('off') # Performing MIP for plotting only if not no_masks: if out_img.shape[-1] >= 5: try: if mod_name == 'T1': # TODO: don't harcode this, change to args.MIP_choices ax[ind, 3].imshow(np.min(out_img[:, :, largest-2:largest+2], axis=-1), cmap='gray') ax[ind, 3].set_title('{} Min Intensity Projection - 5 slices'.format(mod_name)) elif mod_name == 'T2': # TODO: don't harcode this, change to args.MIP_choices ax[ind, 3].imshow(np.max(out_img[:, :, largest-2:largest+2], axis=-1), cmap='gray') ax[ind, 3].set_title('{} Max Intensity Projection - 5 slices'.format(mod_name)) for contour in pancreas_contours: ax[ind, 3].plot(contour[:, 1], contour[:, 0], linewidth=2, color='r', alpha=0.5) ax[ind, 3].axis('off') except: if mod_name == 'T1': # TODO: don't harcode this, change to args.MIP_choices ax[ind, 3].imshow(np.min(out_img[:, :, 0:5], axis=-1), cmap='gray') ax[ind, 3].set_title('{} Min Intensity Projection - 5 slices'.format(mod_name)) elif mod_name == 'T2': # TODO: don't harcode this, change to args.MIP_choices ax[ind, 3].imshow(np.max(out_img[:, :, 0:5], axis=-1), cmap='gray') ax[ind, 3].set_title('{} Max Intensity Projection - 5 slices'.format(mod_name)) for contour in pancreas_contours: ax[ind, 3].plot(contour[:, 1], contour[:, 0], linewidth=2, color='r', alpha=0.5) ax[ind, 3].axis('off') else: try: if mod_name == 'T1': # TODO: don't harcode this, change to args.MIP_choices ax[ind, 3].imshow(np.min(out_img[:, :, largest-1:largest+1], axis=-1), cmap='gray') ax[ind, 3].set_title('{} Min Intensity Projection - 3 slices'.format(mod_name)) elif mod_name == 'T2': # TODO: don't harcode this, change to args.MIP_choices ax[ind, 3].imshow(np.max(out_img[:, :, largest-1:largest+1], axis=-1), cmap='gray') ax[ind, 3].set_title('{} Max Intensity Projection - 3 slices'.format(mod_name)) for contour in pancreas_contours: ax[ind, 3].plot(contour[:, 1], contour[:, 0], linewidth=2, color='r', alpha=0.5) ax[ind, 3].axis('off') except: if mod_name == 'T1': # TODO: don't harcode this, change to args.MIP_choices ax[ind, 3].imshow(np.min(out_img[:, :, 0:3], axis=-1), cmap='gray') ax[ind, 3].set_title('{} Min Intensity Projection - 3 slices'.format(mod_name)) elif mod_name == 'T2': # TODO: don't harcode this, change to args.MIP_choices ax[ind, 3].imshow(np.max(out_img[:, :, 0:3], axis=-1), cmap='gray') ax[ind, 3].set_title('{} Max Intensity Projection - 3 slices'.format(mod_name)) for contour in pancreas_contours: ax[ind, 3].plot(contour[:, 1], contour[:, 0], linewidth=2, color='r', alpha=0.5) ax[ind, 3].axis('off') fig = plt.gcf() fig.suptitle(t='{}, IPMN Score: {}'.format(fname, img_names[-1]), y=0.94, fontsize=16) plt.savefig(os.path.join(fig_path, fname + '.png'), format='png', bbox_inches='tight') plt.close(fig) # TODO: Make this handle any number of modalities if not no_masks: np.savez_compressed(os.path.join(numpy_path, fname + '.npz'), T1=corrected_imgs[0], T2=corrected_imgs[1], mask=pancreas_mask) else: np.savez_compressed(os.path.join(numpy_path, fname + '.npz'), T1=corrected_imgs[0], T2=corrected_imgs[1]) if not no_masks: return np.stack((corrected_imgs[0], corrected_imgs[1]), axis=-1), pancreas_mask else: return np.stack((corrected_imgs[0], corrected_imgs[1]), axis=-1) except Exception as e: print('\n'+'-'*100) print('Unable to load img or masks for {}'.format(fname)) print(e) print('Skipping file') print('-'*100+'\n') return np.zeros(1), np.zeros(1) def flip_axis(x, axis): x = np.asarray(x).swapaxes(axis, 0) x = x[::-1, ...] x = x.swapaxes(0, axis) return x def augmentImages(batch_of_images, batch_of_masks=None): # Data augmentation for deep learning, pretty standard plus two custom ones. for i in range(len(batch_of_images)): if batch_of_images.ndim == 5: _, h, w, c, m = batch_of_images.shape imgs_reshaped = np.reshape(batch_of_images[i, :, :, :, :], (h, w, c * m)) if batch_of_masks is not None: mask_reshaped = np.reshape(batch_of_masks[i, :, :, :, :], (h, w, c * 1)) else: imgs_reshaped = batch_of_images[i, :, :, :] if batch_of_masks is not None: mask_reshaped = batch_of_masks[i, :, :, :] if batch_of_masks is not None: img_and_mask = np.concatenate((imgs_reshaped, mask_reshaped), axis=2) else: img_and_mask = imgs_reshaped if np.random.randint(0,2): img_and_mask = random_rotation(img_and_mask, rg=30, row_axis=0, col_axis=1, channel_axis=2, fill_mode='constant', cval=0.) if np.random.randint(0, 2): img_and_mask = elastic_transform(img_and_mask, alpha=500, sigma=30, alpha_affine=1) if np.random.randint(0, 2): img_and_mask = random_shift(img_and_mask, wrg=0.1, hrg=0.1, row_axis=0, col_axis=1, channel_axis=2, fill_mode='constant', cval=0.) if np.random.randint(0, 2): img_and_mask = random_shear(img_and_mask, intensity=8, row_axis=0, col_axis=1, channel_axis=2, fill_mode='constant', cval=0.) if np.random.randint(0, 2): img_and_mask = random_zoom(img_and_mask, zoom_range=(0.9, 0.9), row_axis=0, col_axis=1, channel_axis=2, fill_mode='constant', cval=0.) if np.random.randint(0, 2): img_and_mask = flip_axis(img_and_mask, axis=1) if np.random.randint(0, 2): img_and_mask = flip_axis(img_and_mask, axis=0) if np.random.randint(0, 2): salt_pepper_noise(img_and_mask, salt=0.2, amount=0.04) if batch_of_masks is not None: aug_imgs = img_and_mask[:, :, :-c] if batch_of_images.ndim == 5: batch_of_masks[i, :, :, :] = np.reshape(img_and_mask[:, :, -c:], (h, w, c, 1)) else: batch_of_masks[i, :, :, :] = img_and_mask[:, :, -c:] # Ensure the masks did not get any non-binary values. batch_of_masks[batch_of_masks > 0.5] = 1 batch_of_masks[batch_of_masks <= 0.5] = 0 else: aug_imgs = img_and_mask if batch_of_images.ndim == 5: batch_of_images[i, :, :, :, :] = np.reshape(aug_imgs, (h, w, c, m)) else: batch_of_images[i, :, :, :] = aug_imgs return(batch_of_images, batch_of_masks) ''' Make the generators threadsafe in case of multiple threads ''' class threadsafe_iter: """Takes an iterator/generator and makes it thread-safe by serializing call to the `next` method of given iterator/generator. """ def __init__(self, it): self.it = it self.lock = threading.Lock() def __iter__(self): return self def __next__(self): with self.lock: return self.it.__next__() def threadsafe_generator(f): """A decorator that takes a generator function and makes it thread-safe. """ def g(*a, **kw): return threadsafe_iter(f(*a, **kw)) return g def get_one_hot(targets, nb_classes): res = np.eye(nb_classes)[np.array(targets).reshape(-1)] return res.reshape(list(targets.shape)+[nb_classes]) def find_mask_endpoints(mask): first = -1 last = -1 for i in range(mask.shape[-1]): if np.any(mask[:,:,i]) and first == -1: first = i if np.any(mask[:,:,mask.shape[-1]-i-1]) and last == -1: last = mask.shape[-1] - i - 1 if first != -1 and last != -1: break largest = np.argmax(np.count_nonzero(mask, axis=(0,1))) return first, last, largest @threadsafe_generator def generate_train_batches(root_path, train_list, net_shape, mod_dirs, exp_name, net, MIP_choices, n_class=1, batchSize=1, numSlices=1, subSampAmt=-1, stride=1, downSampAmt=1, shuff=1, aug_data=1): if n_class == 2: n_class = 1 # To classes is binary (0,1). # Create placeholders for training if net.find('3d') != -1 or net.find('inflated') != -1: img_batch = np.zeros(((batchSize, net_shape[0], net_shape[1], numSlices, 3*len(list(mod_dirs.split(','))[:-1]))), dtype=np.float32) else: img_batch = np.zeros(((batchSize, net_shape[0], net_shape[1], 3*len(list(mod_dirs.split(','))[:-1]))), dtype=np.float32) gt_batch = np.zeros(((batchSize, n_class)), dtype=np.uint8) try: MIP_choices = MIP_choices.replace(' ', '') mip_list = MIP_choices.split(',') except: raise Exception('Unable to convert MIP_choices to a list of integers. Please check this argument.') while True: if shuff: shuffle(train_list) count = 0 for scan_names in train_list: path_to_np = os.path.join(root_path,'np_files',scan_names[0].split(os.sep)[1]+'.npz') if scan_names[0].split(os.sep)[2].split('_')[0] == 'greece' or scan_names[0].split(os.sep)[2].split('_')[0] == 'irene': path_to_np = path_to_np[:-4] + '_' + scan_names[0].split(os.sep)[2].split('_')[0] + path_to_np[-4:] try: with np.load(path_to_np) as data: imgs = np.stack((data['T1'], data['T2']), axis=-1) # TODO: Find modalities not hardcode mask = data['mask'] except: print('\nPre-made numpy array not found for {}.\n Creating now...'.format(os.path.basename(path_to_np))) imgs, mask = convert_data_to_numpy(root_path=root_path, img_names=scan_names, mod_dirs=mod_dirs, exp_name=exp_name, no_masks=False) if np.array_equal(imgs,np.zeros(1)): continue else: print('\nFinished making npz file.') gt = int(scan_names[-1]) # GT depends on the experiment, do not save/load these, grab from train list. if imgs.shape[-2] < numSlices * (subSampAmt+1): imgs = np.pad(imgs, ((0,0), (0,0), (int(np.floor((numSlices * (subSampAmt+1) - imgs.shape[-2]) / 2)), int(np.ceil((numSlices * (subSampAmt+1) - imgs.shape[-2]) / 2))), (0,0)), mode='symmetric') indicies = [0] else: mask_first_nonzero, mask_last_nonzero, mask_largest = find_mask_endpoints(mask) if mask_first_nonzero == -1 or mask_last_nonzero == -1 or mask_largest == -1: mask_first_nonzero = 0 mask_last_nonzero = imgs.shape[-2] mask_largest = (mask_first_nonzero + mask_last_nonzero) // 2 if numSlices == 1: subSampAmt = 0 elif subSampAmt == -1 and numSlices > 1: np.random.seed(None) subSampAmt = int(rand(1) * (mask_last_nonzero - mask_first_nonzero) * 0.25) while mask_last_nonzero - numSlices * (subSampAmt + 1) + 1 <= mask_first_nonzero: subSampAmt -= 1 if subSampAmt == 0: break indicies = np.arange(mask_first_nonzero, mask_last_nonzero - numSlices
<filename>roombapy/mapping/roomba_mapper.py import io import math import logging import os import time from typing import TYPE_CHECKING, NamedTuple, Tuple import textwrap # Import trickery global HAVE_PIL HAVE_PIL = False try: from PIL import Image, ImageDraw, ImageFont HAVE_PIL = True except ImportError: print("PIL module not found, maps are disabled") if TYPE_CHECKING: from ..roomba import Roomba from ..const import ROOMBA_STATES from .const import ( DEFAULT_BG_COLOR, DEFAULT_ICON_SIZE, DEFAULT_MAP_MAX_ALLOWED_DISTANCE, DEFAULT_MAP_SKIP_POINTS, DEFAULT_PATH_COLOR, DEFAULT_PATH_WIDTH ) from .math_helpers import clamp, rotate, interpolate from .image_helpers import transparent, make_blank_image, center_image from .misc_helpers import get_mapper_asset from .roomba_icon_set import RoombaIconSet from .roomba_map_device import RoombaMapDevice from .roomba_map import RoombaMap class RoombaPosition(NamedTuple): x: int y: int theta: int class MapRenderParameters(NamedTuple): icon_set: str device: str bg_color: Tuple[int,int,int,int] path_color: Tuple[int,int,int,int] path_width: int class RoombaMapper: def __init__(self, roomba: 'Roomba', font: ImageFont.ImageFont = None, assets_path = "{PKG}/assets" ): self.log = logging.getLogger(__name__) self.roomba = roomba self.map_enabled = False self.assets_path = assets_path #initialize the font self.font = font if self.font is None: try: self.font = ImageFont.truetype(get_mapper_asset(assets_path, "monaco.ttf"), 30) except Exception as e: self.log.warning(f"Error loading font, loading default font") self.font = ImageFont.load_default() #generate the default icons self._icons: dict[str,RoombaIconSet] = {} self.add_icon_set("default"), self.add_icon_set("m", roomba_icon="m6_icon.png") self.add_icon_set("j", roomba_icon="j7_icon.png") self.add_icon_set("s", roomba_icon="s9_icon.png") #mapping variables self._map: RoombaMap = None self._device: RoombaMapDevice = None self._render_params: MapRenderParameters = None self._rendered_map: Image.Image = None self._base_rendered_map: Image.Image = None self._points_to_skip = DEFAULT_MAP_SKIP_POINTS self._points_skipped = 0 self._max_distance = DEFAULT_MAP_MAX_ALLOWED_DISTANCE self._history = [] self._history_translated: list[RoombaPosition] = [] #initialize a base map self._initialize_map() @property def roomba_image_pos(self) -> RoombaPosition: try: #roomba sometimes doesn't show the right coords when docked, #override the coordinates just in case if self.roomba.docked: return self._map_coord_to_image_coord(self.roomba.zero_coords()) return self._history_translated[-1] except: return RoombaPosition(None,None,None) @property def origin_image_pos(self) -> RoombaPosition: return self._map_coord_to_image_coord(self.roomba.zero_coords()) @property def min_coords(self) -> Tuple[int,int]: if len(self._history) > 0: return ( min(list(map(lambda p: p["x"], self._history))), min(list(map(lambda p: p["y"], self._history))) ) else: return (0,0) @property def max_coords(self) -> Tuple[int,int]: if len(self._history) > 0: return ( max(list(map(lambda p: p["x"], self._history))), max(list(map(lambda p: p["y"], self._history))) ) else: return (0,0) @property def map_name(self): if self._map and self._map.name: return self._map.name return None def add_icon_set(self, name: str, icon_path: str = "{PKG}/assets", home_icon = None, roomba_icon = None, error_icon = None, cancelled_icon = None, battery_low_icon = None, charging_icon = None, bin_full_icon = None, tank_low_icon = None, icon_size = DEFAULT_ICON_SIZE, show_direction = True ): if not name: self.log.error("Icon sets must have names") return i = RoombaIconSet(size=icon_size, show_direction=show_direction, log=self.log) if roomba_icon: i.roomba = self._get_mapper_asset(icon_path, roomba_icon) if error_icon: i.error = self._get_mapper_asset(icon_path, error_icon) if cancelled_icon: i.cancelled = self._get_mapper_asset(icon_path, cancelled_icon) if battery_low_icon: i.battery_low = self._get_mapper_asset(icon_path, battery_low_icon) if charging_icon: i.charging = self._get_mapper_asset(icon_path, charging_icon) if bin_full_icon: i.bin_full = self._get_mapper_asset(icon_path, bin_full_icon) if tank_low_icon: i.tank_low = self._get_mapper_asset(icon_path, tank_low_icon) if home_icon: i.home = self._get_mapper_asset(icon_path, home_icon) self._icons[name] = i def add_map_device(self, name: str, device: RoombaMapDevice): if not name: self.log.error("Devices must have names") return self._devices[name] = device def _get_mapper_asset(self, icon_path: str, icon): if isinstance(icon, str): return get_mapper_asset(icon_path, icon) if isinstance(icon, Image.Image): return icon else: return None def reset_map(self, map: RoombaMap, device: RoombaMapDevice = None, points_to_skip: int = DEFAULT_MAP_SKIP_POINTS): self.map_enabled = self.roomba.cap.get("pose", False) and HAVE_PIL self._history = [] self._history_translated = [] self._map = map self._device = device self._points_to_skip = points_to_skip self._points_skipped = 0 self._initialize_map() def _initialize_map(self): self._render_params = self._get_render_parameters() #make sure we have a map if not self._map: self._map = RoombaMap("default",None) #generate the base on which other layers will be composed base = self._map_blank_image(color=self._render_params.bg_color) #add the floorplan if available if self._map and self._map.floorplan: base = Image.alpha_composite(base, self._map.floorplan) #set our internal variables so that we can get the default self._base_rendered_map = base self._rendered_map = base def update_map(self, force_redraw = False): """Updates the cleaning map""" #if mapping not enabled, nothing to update if not self.map_enabled: return if (self.roomba.changed('pose') or self.roomba.changed('phase') or force_redraw) and self.map_enabled: #make sure we have phase info before trying to render if self.roomba.current_state is not None: self._update_state() self._render_map() def get_map(self, width: int = None, height: int = None) -> bytes: #get the default map map = self._rendered_map #if we haven't rendered anything, just return if map is None: return None #if we have a requested size, resize it if width and height: map = map.resize((width,height)) pass #save the internal image with io.BytesIO() as stream: map.save(stream, format="PNG") return stream.getvalue() def _update_state(self): position: dict[str,int] = None if self.roomba.changed('pose'): position = self.roomba.co_ords self.log.debug(f"MAP [State Update]: co-ords: {self.roomba.co_ords} \ phase: {self.roomba.phase}, \ state: {self.roomba.current_state}") if self.roomba.current_state == ROOMBA_STATES["charge"]: position = None elif self.roomba.current_state == ROOMBA_STATES["evac"]: position = None elif self.roomba.current_state == ROOMBA_STATES["completed"]: self.log.info("MAP [State Update]: Mission Complete") elif self.roomba.current_state == ROOMBA_STATES["run"]: if self.roomba.co_ords == self.roomba.zero_coords(theta=0): #bogus pose received, can't have 0,0,0 when running, usually happens after recovering from an error condition self.log.warning('MAP [State Update]: received 0,0,0 pose when running - ignoring') position = None #if we have a position update, append to the history if it meets our criteria if position: #there's a few points at the beginning that are usually erroneous, skip them if self._points_skipped < self._points_to_skip: self._points_skipped += 1 return #if we have history, we need to check a couple things if len(self._history) > 0: old = self._history[-1] old_x = old["x"] old_y = old["y"] new_x = position["x"] new_y = position["y"] #if we didn't actually move from the last recorded position, ignore it if (old_x,old_y) == (new_x,new_y): return #at times, roomba reports erroneous points, ignore if too large of a gap #between measurements if self._map_distance((old_x,old_y),(new_x,new_y)) > self._max_distance: return self._history.append(position) self._history_translated.append(self._map_coord_to_image_coord(position)) def _map_coord_to_image_coord(self, coord: dict) -> RoombaPosition: x: float = float(coord["x"]) y: float = float(coord["y"]) theta: float = float(coord["theta"]) #perform rotation: occurs about the map origin, so should #undo any rotation that exists x, y = rotate(x, y, self._map.angle, invert_x = self._map.coords_start[0] > self._map.coords_end[0], invert_y = self._map.coords_start[1] < self._map.coords_end[1] ) #interpolate the x,y coordinates to scale to the appropriate output img_x = interpolate( x, [self._map.coords_start[0], self._map.coords_end[0]], [0, self._map.img_width - 1] ) img_y = interpolate( y, [self._map.coords_start[1], self._map.coords_end[1]], [0, self._map.img_height - 1] ) #make sure we stay within the bounds clamp(img_x, 0, self._map.img_width) clamp(img_y, 0, self._map.img_height) #adjust theta #from what I can see, it looks like the roomba uses a coordinate system: #0 = facing away from the dock, increasing angle counter-clockwise #it looks like past 180, the roomba uses negative angles, but still seems #to be in the counter-clockwise direction #PIL denotes angles in the counterclockwise direction #so, to compute the right angle, we need to: #1) add map angle #2) add 180 degrees (roomba image faces up, but should face away at 0) #2) add theta #3) mod 360, add 360 if negative img_theta = (self._map.angle + theta + 180) % 360 if img_theta < 0: img_theta += 360 #return the tuple return RoombaPosition(int(img_x), int(img_y), int(img_theta)) def _render_map(self): """Renders the map""" #draw in the vacuum path base = self._draw_vacuum_path(self._base_rendered_map) #draw in the map walls (to hide overspray) if self._map.walls: base = Image.alpha_composite(base, self._map.walls) #draw the roomba and any problems base = self._draw_roomba(base) #finally, draw the text #base = self._draw_text(base) #save the map self._rendered_map = base def _get_render_parameters(self) -> MapRenderParameters: if self._map: icon_set = self._map.icon_set bg_color = self._map.bg_color path_color = self._map.path_color path_width = self._map.path_width else: icon_set = self._get_icon_set() bg_color = DEFAULT_BG_COLOR path_color = DEFAULT_PATH_COLOR path_width = DEFAULT_PATH_WIDTH if self.roomba.blid: blid = self.roomba.blid else: blid = None if self._device: if self._device.blid: blid = self._device.blid if self._device.icon_set: icon_set = self._device.icon_set if self._device.bg_color: bg_color = self._device.bg_color if self._device.path_color: path_color = self._device.path_color if self._device.path_width: path_width = self._device.path_width return MapRenderParameters( icon_set, blid, bg_color, path_color, path_width ) def _map_blank_image(self, color=transparent) -> Image.Image: return make_blank_image(self._map.img_width,self._map.img_height,color) def _draw_vacuum_path(self, base: Image.Image) -> Image.Image: if len(self._history_translated) > 1: layer = self._map_blank_image() renderer = ImageDraw.Draw(layer) renderer.line( list(map(lambda p: (p.x,p.y), self._history_translated)), fill=self._render_params.path_color, width=self._render_params.path_width, joint="curve" ) return Image.alpha_composite(base, layer) else: return base def _get_icon_set(self): #get the default (should always exist) icon_set = self._icons["default"] #attempt to get the series specific set if self.roomba and self.roomba.sku: series = self._icons.get(self.roomba.sku[0],None) if series: icon_set = series #override with the map set if needed if self._render_params and self._render_params.icon_set: try: icon_set = self._icons[self._render_params.icon_set] except: self.log.warn(f"Could not load icon set '{self._render_params.icon_set}' for map.") return icon_set def _draw_roomba(self,
"key": "STRING_VARIABLE", "type": "string", "value": "Variation-1 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 456}, ], "isFeatureEnabled": True, }, { "id": "3", "name": "Variation-2", "weight": 30, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Variation-2 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 789}, ], "isFeatureEnabled": True, }, { "id": "4", "name": "Variation-3", "weight": 40, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Variation-3 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 100}, ], "isFeatureEnabled": True, }, ], "id": 22, "name": "Campaign-22", "percentTraffic": 0, "key": "FT_T_0_W_10_20_30_40", "status": "RUNNING", "type": "FEATURE_TEST", } ], "accountId": 123456, "version": 2, }, "FT_T_25_W_10_20_30_40": { "sdkKey": "someuniquestuff1234567", "campaigns": [ { "goals": [{"identifier": "FEATURE_TEST_GOAL", "id": 203, "type": "CUSTOM_GOAL"}], "variations": [ { "id": "1", "name": "Control", "weight": 10, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Control string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 123}, ], "isFeatureEnabled": False, }, { "id": "2", "name": "Variation-1", "weight": 20, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Variation-1 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 456}, ], "isFeatureEnabled": True, }, { "id": "3", "name": "Variation-2", "weight": 30, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Variation-2 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 789}, ], "isFeatureEnabled": True, }, { "id": "4", "name": "Variation-3", "weight": 40, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Variation-3 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 100}, ], "isFeatureEnabled": True, }, ], "id": 22, "name": "Campaign-22", "percentTraffic": 25, "key": "FT_T_25_W_10_20_30_40", "status": "RUNNING", "type": "FEATURE_TEST", } ], "accountId": 123456, "version": 2, }, "FT_T_50_W_10_20_30_40": { "sdkKey": "someuniquestuff1234567", "campaigns": [ { "goals": [{"identifier": "FEATURE_TEST_GOAL", "id": 203, "type": "CUSTOM_GOAL"}], "variations": [ { "id": "1", "name": "Control", "weight": 10, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Control string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 123}, ], "isFeatureEnabled": False, }, { "id": "2", "name": "Variation-1", "weight": 20, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Variation-1 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 456}, ], "isFeatureEnabled": True, }, { "id": "3", "name": "Variation-2", "weight": 30, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Variation-2 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 789}, ], "isFeatureEnabled": True, }, { "id": "4", "name": "Variation-3", "weight": 40, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Variation-3 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 100}, ], "isFeatureEnabled": True, }, ], "id": 22, "name": "Campaign-22", "percentTraffic": 50, "key": "FT_T_50_W_10_20_30_40", "status": "RUNNING", "type": "FEATURE_TEST", } ], "accountId": 123456, "version": 2, }, "FT_T_75_W_10_20_30_40": { "sdkKey": "someuniquestuff1234567", "campaigns": [ { "goals": [{"identifier": "FEATURE_TEST_GOAL", "id": 203, "type": "CUSTOM_GOAL"}], "variations": [ { "id": "1", "name": "Control", "weight": 10, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Control string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 123}, ], "isFeatureEnabled": False, }, { "id": "2", "name": "Variation-1", "weight": 20, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Variation-1 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 456}, ], "isFeatureEnabled": True, }, { "id": "3", "name": "Variation-2", "weight": 30, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Variation-2 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 789}, ], "isFeatureEnabled": True, }, { "id": "4", "name": "Variation-3", "weight": 40, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Variation-3 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 100}, ], "isFeatureEnabled": True, }, ], "id": 22, "name": "Campaign-22", "percentTraffic": 75, "key": "FT_T_75_W_10_20_30_40", "status": "RUNNING", "type": "FEATURE_TEST", } ], "accountId": 123456, "version": 2, }, "FT_T_100_W_10_20_30_40": { "sdkKey": "someuniquestuff1234567", "campaigns": [ { "goals": [{"identifier": "FEATURE_TEST_GOAL", "id": 203, "type": "CUSTOM_GOAL"}], "variations": [ { "id": "1", "name": "Control", "weight": 10, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Control string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 123}, ], "isFeatureEnabled": False, }, { "id": "2", "name": "Variation-1", "weight": 20, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Variation-1 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 456}, ], "isFeatureEnabled": True, }, { "id": "3", "name": "Variation-2", "weight": 30, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Variation-2 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 789}, ], "isFeatureEnabled": True, }, { "id": "4", "name": "Variation-3", "weight": 40, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Variation-3 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 100}, ], "isFeatureEnabled": True, }, ], "id": 22, "name": "Campaign-22", "percentTraffic": 100, "key": "FT_T_100_W_10_20_30_40", "status": "RUNNING", "type": "FEATURE_TEST", } ], "accountId": 123456, "version": 2, }, "FT_T_100_W_10_20_30_40_IFEF": { "sdkKey": "someuniquestuff1234567", "campaigns": [ { "goals": [{"identifier": "FEATURE_TEST_GOAL", "id": 203, "type": "CUSTOM_GOAL"}], "variations": [ { "id": "1", "name": "Control", "weight": 10, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Control string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 123}, ], "isFeatureEnabled": False, }, { "id": "2", "name": "Variation-1", "weight": 20, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Variation-1 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 456}, ], "isFeatureEnabled": False, }, { "id": "3", "name": "Variation-2", "weight": 30, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Variation-2 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 789}, ], "isFeatureEnabled": True, }, { "id": "4", "name": "Variation-3", "weight": 40, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "Variation-3 string"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 100}, ], "isFeatureEnabled": False, }, ], "id": 22, "name": "Campaign-22", "percentTraffic": 100, "key": "FT_T_100_W_10_20_30_40_IFEF", "status": "RUNNING", "type": "FEATURE_TEST", } ], "accountId": 123456, "version": 2, }, "NEW_SETTINGS_FILE": { "campaigns": [ { "goals": [], "variations": [{"id": "1", "name": "Control", "weight": 100}], "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "d1"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 123}, ], "id": 29, "name": "Campaign-29", "percentTraffic": 50, "key": "FEATURE_ROLLOUT_KEY", "status": "RUNNING", "type": "FEATURE_ROLLOUT", }, { "goals": [{"identifier": "FEATURE_TEST_GOAL", "id": 203, "type": "CUSTOM_GOAL"}], "variations": [ { "id": "1", "name": "Control", "weight": 50, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "d2"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 321}, ], "isFeatureEnabled": False, }, { "id": "2", "name": "Variation-1", "weight": 50, "variables": [ {"id": 1, "key": "STRING_VARIABLE", "type": "string", "value": "d1"}, {"id": 2, "key": "INTEGER_VARIABLE", "type": "integer", "value": 123}, ], "isFeatureEnabled": True, }, ], "id": 22, "name": "Campaign-22", "percentTraffic": 50, "key": "FEATURE_TEST", "status": "RUNNING", "type": "FEATURE_TEST", }, { "goals": [{"identifier": "CUSTOM_RECOMMENDATION_AB_GOAL", "id": 203, "type": "CUSTOM_GOAL"}], "variations": [ {"id": "1", "name": "Control", "weight": 40}, {"id": "2", "name": "Variation-1", "weight": 60}, ], "id": 22, "name": "Campaign-22", "percentTraffic": 90, "key": "NEW_RECOMMENDATION_AB_CAMPAIGN", "status": "RUNNING", "type": "VISUAL_AB", }, ], "accountId": 123456, "version": 2, }, "T_75_W_10_TIMES_10": { "campaigns": [ { "goals": [{"identifier": "CUSTOM", "id": 231, "type": "CUSTOM_GOAL"}], "variations": [ {"id": 1, "name": "Control", "changes": {}, "weight": 10}, {"id": 2, "name": "Variation-1", "changes": {}, "weight": 10}, {"id": 3, "name": "Variation-2", "changes": {}, "weight": 10}, {"id": 4, "name": "Variation-3", "changes": {}, "weight": 10}, {"id": 5, "name": "Variation-4", "changes": {}, "weight": 10}, {"id": 6, "name": "Variation-5", "changes": {}, "weight": 10}, {"id": 7, "name": "Variation-6", "changes": {}, "weight": 10}, {"id": 8, "name": "Variation-7", "changes": {}, "weight": 10}, {"id": 9, "name": "Variation-8", "changes": {}, "weight": 10}, {"id": 10, "name": "Variation-9", "changes": {}, "weight": 10}, ], "id": 260, "name": "Campaign-260", "percentTraffic": 75, "key": "T_75_W_10_TIMES_10", "status": "RUNNING", "type": "VISUAL_AB", } ], "accountId": 123456, "version": 2, }, "T_100_W_50_50_WS": { "sdkKey": "some_unique_key", "campaigns": [ { "percentTraffic": 100, "goals": [{"identifier": "ddd", "id": 453, "type": "CUSTOM_GOAL"}], "variations": [ {"id": 1, "name": "Control", "changes": {}, "weight": 50}, {"id": 2, "name": "Variation-1", "changes": {}, "weight": 50}, ], "id": 174, "name": "Campaign-174", "segments": { "and": [ {"or": [{"custom_variable": {"a": "wildcard(*123*)"}}]}, {"or": [{"custom_variable": {"hello": "regex(world)"}}]}, ] }, "key": "<KEY>", "status": "RUNNING", "type": "VISUAL_AB", } ], "accountId": 88888888, "version": 1, }, "T_50_W_50_50_WS": { "sdkKey": "some_unique_key", "campaigns": [ { "percentTraffic": 50, "goals": [{"identifier": "ddd", "id": 453, "type": "CUSTOM_GOAL"}], "variations": [ {"id": 1, "name": "Control", "changes": {}, "weight": 50}, {"id": 2, "name": "Variation-1", "changes": {}, "weight": 50}, ], "id": 174, "name": "Campaign-174", "segments": { "and": [ {"or": [{"custom_variable": {"a": "wildcard(*123*)"}}]}, {"or": [{"custom_variable": {"hello": "regex(world)"}}]},
the network depth. The depth is given by the length of the argument "layers". ''' def __init__(self, channel, layers, kernel_size=3, in_planes=1, out_planes=1): '''Initialization Arguments: channel: the channel number of the first layer, would also used as the base of the following channels. layers: a list of layer numbers. Each number represents the number of convolutional layers of a stage. The stage numer, i.e. the depth of the network is the length of this list. Arguments (optional): kernel_size: the kernel size of each block. in_planes: the channel number of the input data. out_planes: the channel number of the output data. ''' super().__init__(2, channel=channel, layers=layers, kernel_size=kernel_size, in_planes=in_planes, out_planes=out_planes) class AE3d(_AENd): '''3D convolutional auto-encoder. This moule is a built-in model for convolutional auto-encoder. The network would down-sample and up-sample and the input data according to the network depth. The depth is given by the length of the argument "layers". ''' def __init__(self, channel, layers, kernel_size=3, in_planes=1, out_planes=1): '''Initialization Arguments: channel: the channel number of the first layer, would also used as the base of the following channels. layers: a list of layer numbers. Each number represents the number of convolutional layers of a stage. The stage numer, i.e. the depth of the network is the length of this list. Arguments (optional): kernel_size: the kernel size of each block. in_planes: the channel number of the input data. out_planes: the channel number of the output data. ''' super().__init__(3, channel=channel, layers=layers, kernel_size=kernel_size, in_planes=in_planes, out_planes=out_planes) class EncoderNet1d(_EncoderNetNd): '''1D convolutional down-scale (encoder) network. This moule is a built-in model for convolutional network. The network could be used for down-scaling or classification. The network would down-sample and the input data according to the network depth. The depth is given by the length of the argument "layers". ''' def __init__(self, channel, layers, kernel_size=3, in_planes=1, out_length=2): '''Initialization Arguments: channel: the channel number of the first layer, would also used as the base of the following channels. layers: a list of layer numbers. Each number represents the number of convolutional layers of a stage. The stage numer, i.e. the depth of the network is the length of this list. Arguments (optional): kernel_size: the kernel size of each block. in_planes: the channel number of the input data. out_length: the length of the output vector, if not set, the output would not be flattened. ''' super().__init__(1, channel=channel, layers=layers, kernel_size=kernel_size, in_planes=in_planes, out_length=out_length) class EncoderNet2d(_EncoderNetNd): '''2D convolutional down-scale (encoder) network. This moule is a built-in model for convolutional network. The network could be used for down-scaling or classification. The network would down-sample and the input data according to the network depth. The depth is given by the length of the argument "layers". ''' def __init__(self, channel, layers, kernel_size=3, in_planes=1, out_length=2): '''Initialization Arguments: channel: the channel number of the first layer, would also used as the base of the following channels. layers: a list of layer numbers. Each number represents the number of convolutional layers of a stage. The stage numer, i.e. the depth of the network is the length of this list. Arguments (optional): kernel_size: the kernel size of each block. in_planes: the channel number of the input data. out_length: the length of the output vector, if not set, the output would not be flattened. ''' super().__init__(2, channel=channel, layers=layers, kernel_size=kernel_size, in_planes=in_planes, out_length=out_length) class EncoderNet3d(_EncoderNetNd): '''3D convolutional down-scale (encoder) network. This moule is a built-in model for convolutional network. The network could be used for down-scaling or classification. The network would down-sample and the input data according to the network depth. The depth is given by the length of the argument "layers". ''' def __init__(self, channel, layers, kernel_size=3, in_planes=1, out_length=2): '''Initialization Arguments: channel: the channel number of the first layer, would also used as the base of the following channels. layers: a list of layer numbers. Each number represents the number of convolutional layers of a stage. The stage numer, i.e. the depth of the network is the length of this list. Arguments (optional): kernel_size: the kernel size of each block. in_planes: the channel number of the input data. out_length: the length of the output vector, if not set, the output would not be flattened. ''' super().__init__(3, channel=channel, layers=layers, kernel_size=kernel_size, in_planes=in_planes, out_length=out_length) class DecoderNet1d(_DecoderNetNd): '''1D convolutional up-scale (decoder) network. This moule is a built-in model for convolutional network. The network could be used for up-scaling or generating samples. The network would up-sample and the input data according to the network depth. The depth is given by the length of the argument "layers". Different from the encoder network, this module requires the output shape, and the input shape is inferred from the given output shape. ''' def __init__(self, channel, layers, out_size, kernel_size=3, in_length=2, out_planes=1): '''Initialization Arguments: channel: the channel number of the first layer, would also used as the base of the following channels. layers: a list of layer numbers. Each number represents the number of convolutional layers of a stage. The stage numer, i.e. the depth of the network is the length of this list. out_size: the shape of the output data (without the sample and channel dimension). This argument is required, because the shape of the first layer is inferred from it. Arguments (optional): kernel_size: the kernel size of each block. in_length: the length of the input vector, if not set, the input requires to be a specific shape tensor. Use the self.in_shape property to get it. out_planes: the channel number of the output data. ''' super().__init__(1, channel=channel, layers=layers, out_size=out_size, kernel_size=kernel_size, in_length=in_length, out_planes=out_planes) class DecoderNet2d(_DecoderNetNd): '''2D convolutional up-scale (decoder) network. This moule is a built-in model for convolutional network. The network could be used for up-scaling or generating samples. The network would up-sample and the input data according to the network depth. The depth is given by the length of the argument "layers". Different from the encoder network, this module requires the output shape, and the input shape is inferred from the given output shape. ''' def __init__(self, channel, layers, out_size, kernel_size=3, in_length=2, out_planes=1): '''Initialization Arguments: channel: the channel number of the first layer, would also used as the base of the following channels. layers: a list of layer numbers. Each number represents the number of convolutional layers of a stage. The stage numer, i.e. the depth of the network is the length of this list. out_size: the shape of the output data (without the sample and channel dimension). This argument is required, because the shape of the first layer is inferred from it. Arguments (optional): kernel_size: the kernel size of each block. in_length: the length of the input vector, if not set, the input requires to be a specific shape tensor. Use the self.in_shape property to get it. out_planes: the channel number of the output data. ''' super().__init__(2, channel=channel, layers=layers, out_size=out_size, kernel_size=kernel_size, in_length=in_length, out_planes=out_planes) class DecoderNet3d(_DecoderNetNd): '''3D convolutional up-scale (decoder) network. This moule is a built-in model for convolutional network. The network could be used for up-scaling or generating samples. The network would up-sample and the input data according to the network depth. The depth is given by the length of the argument "layers". Different from the encoder network, this module requires the output shape, and the input shape is inferred from the given output shape. ''' def __init__(self, channel, layers, out_size, kernel_size=3, in_length=2, out_planes=1): '''Initialization Arguments: channel: the channel number of the first layer, would also used as the base of the following channels. layers: a list of layer numbers. Each number represents the number of convolutional layers of a stage. The stage numer, i.e. the depth of the network is the length of this list. out_size: the shape of the output data (without the sample and channel dimension). This argument is required, because the shape of the first layer is inferred from it. Arguments (optional): kernel_size: the kernel size of each block. in_length: the length of the input vector, if
<filename>fhir/resources/messageheader.py<gh_stars>1-10 # -*- coding: utf-8 -*- """ Profile: http://hl7.org/fhir/StructureDefinition/MessageHeader Release: R4 Version: 4.0.1 Build ID: 9346c8cc45 Last updated: 2019-11-01T09:29:23.356+11:00 """ from typing import Any, Dict from typing import List as ListType from pydantic import Field, root_validator from . import backboneelement, domainresource, fhirtypes class MessageHeader(domainresource.DomainResource): """Disclaimer: Any field name ends with ``__ext`` does't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. A resource that describes a message that is exchanged between systems. The header for a message exchange that is either requesting or responding to an action. The reference(s) that are the subject of the action as well as other information related to the action are typically transmitted in a bundle in which the MessageHeader resource instance is the first resource in the bundle. """ resource_type = Field("MessageHeader", const=True) author: fhirtypes.ReferenceType = Field( None, alias="author", title="The source of the decision", description=( "The logical author of the message - the person or device that decided " "the described event should happen. When there is more than one " "candidate, pick the most proximal to the MessageHeader. Can provide " "other authors in extensions." ), # if property is element of this resource. element_property=True, # note: Listed Resource Type(s) should be allowed as Reference. enum_reference_types=["Practitioner", "PractitionerRole"], ) definition: fhirtypes.Canonical = Field( None, alias="definition", title="Link to the definition for this message", description="Permanent link to the MessageDefinition for this message.", # if property is element of this resource. element_property=True, # note: Listed Resource Type(s) should be allowed as Reference. enum_reference_types=["MessageDefinition"], ) definition__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_definition", title="Extension field for ``definition``." ) destination: ListType[fhirtypes.MessageHeaderDestinationType] = Field( None, alias="destination", title="Message destination application(s)", description="The destination application which the message is intended for.", # if property is element of this resource. element_property=True, ) enterer: fhirtypes.ReferenceType = Field( None, alias="enterer", title="The source of the data entry", description=( "The person or device that performed the data entry leading to this " "message. When there is more than one candidate, pick the most proximal" " to the message. Can provide other enterers in extensions." ), # if property is element of this resource. element_property=True, # note: Listed Resource Type(s) should be allowed as Reference. enum_reference_types=["Practitioner", "PractitionerRole"], ) eventCoding: fhirtypes.CodingType = Field( None, alias="eventCoding", title="Code for the event this message represents or link to event definition", description=( "Code that identifies the event this message represents and connects it" " with its definition. Events defined as part of the FHIR specification" ' have the system value "http://terminology.hl7.org/CodeSystem/message-' 'events". Alternatively uri to the EventDefinition.' ), # if property is element of this resource. element_property=True, # Choice of Data Types. i.e event[x] one_of_many="event", one_of_many_required=True, ) eventUri: fhirtypes.Uri = Field( None, alias="eventUri", title="Code for the event this message represents or link to event definition", description=( "Code that identifies the event this message represents and connects it" " with its definition. Events defined as part of the FHIR specification" ' have the system value "http://terminology.hl7.org/CodeSystem/message-' 'events". Alternatively uri to the EventDefinition.' ), # if property is element of this resource. element_property=True, # Choice of Data Types. i.e event[x] one_of_many="event", one_of_many_required=True, ) eventUri__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_eventUri", title="Extension field for ``eventUri``." ) focus: ListType[fhirtypes.ReferenceType] = Field( None, alias="focus", title="The actual content of the message", description=( "The actual data of the message - a reference to the root/focus class " "of the event." ), # if property is element of this resource. element_property=True, # note: Listed Resource Type(s) should be allowed as Reference. enum_reference_types=["Resource"], ) reason: fhirtypes.CodeableConceptType = Field( None, alias="reason", title="Cause of event", description=( "Coded indication of the cause for the event - indicates a reason for " "the occurrence of the event that is a focus of this message." ), # if property is element of this resource. element_property=True, ) response: fhirtypes.MessageHeaderResponseType = Field( None, alias="response", title="If this is a reply to prior message", description=( "Information about the message that this message is a response to. " "Only present if this message is a response." ), # if property is element of this resource. element_property=True, ) responsible: fhirtypes.ReferenceType = Field( None, alias="responsible", title="Final responsibility for event", description=( "The person or organization that accepts overall responsibility for the" " contents of the message. The implication is that the message event " "happened under the policies of the responsible party." ), # if property is element of this resource. element_property=True, # note: Listed Resource Type(s) should be allowed as Reference. enum_reference_types=["Practitioner", "PractitionerRole", "Organization"], ) sender: fhirtypes.ReferenceType = Field( None, alias="sender", title="Real world sender of the message", description=( "Identifies the sending system to allow the use of a trust " "relationship." ), # if property is element of this resource. element_property=True, # note: Listed Resource Type(s) should be allowed as Reference. enum_reference_types=["Practitioner", "PractitionerRole", "Organization"], ) source: fhirtypes.MessageHeaderSourceType = Field( ..., alias="source", title="Message source application", description="The source application from which this message originated.", # if property is element of this resource. element_property=True, ) @root_validator(pre=True) def validate_one_of_many(cls, values: Dict[str, Any]) -> Dict[str, Any]: """https://www.hl7.org/fhir/formats.html#choice A few elements have a choice of more than one data type for their content. All such elements have a name that takes the form nnn[x]. The "nnn" part of the name is constant, and the "[x]" is replaced with the title-cased name of the type that is actually used. The table view shows each of these names explicitly. Elements that have a choice of data type cannot repeat - they must have a maximum cardinality of 1. When constructing an instance of an element with a choice of types, the authoring system must create a single element with a data type chosen from among the list of permitted data types. """ one_of_many_fields = {"event": ["eventCoding", "eventUri"]} for prefix, fields in one_of_many_fields.items(): assert cls.__fields__[fields[0]].field_info.extra["one_of_many"] == prefix required = ( cls.__fields__[fields[0]].field_info.extra["one_of_many_required"] is True ) found = False for field in fields: if field in values and values[field] is not None: if found is True: raise ValueError( "Any of one field value is expected from " f"this list {fields}, but got multiple!" ) else: found = True if required is True and found is False: raise ValueError(f"Expect any of field value from this list {fields}.") return values class MessageHeaderDestination(backboneelement.BackboneElement): """Disclaimer: Any field name ends with ``__ext`` does't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. Message destination application(s). The destination application which the message is intended for. """ resource_type = Field("MessageHeaderDestination", const=True) endpoint: fhirtypes.Url = Field( ..., alias="endpoint", title="Actual destination address or id", description="Indicates where the message should be routed to.", # if property is element of this resource. element_property=True, ) endpoint__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_endpoint", title="Extension field for ``endpoint``." ) name: fhirtypes.String = Field( None, alias="name", title="Name of system", description="Human-readable name for the target system.", # if property is element of this resource. element_property=True, ) name__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_name", title="Extension field for ``name``." ) receiver: fhirtypes.ReferenceType = Field( None, alias="receiver", title='Intended "real-world" recipient for the data', description=( "Allows data conveyed by a message to be addressed to a particular " "person or department when routing to a specific application isn't " "sufficient." ), # if property is element of this resource. element_property=True, # note: Listed Resource Type(s) should be allowed as Reference. enum_reference_types=["Practitioner", "PractitionerRole", "Organization"], ) target: fhirtypes.ReferenceType = Field( None, alias="target", title="Particular delivery destination within the destination", description=( "Identifies the target end system in situations where the initial " "message transmission is to an intermediary system." ), # if property is element of this resource. element_property=True, # note: Listed Resource Type(s) should be allowed as Reference. enum_reference_types=["Device"], ) class MessageHeaderResponse(backboneelement.BackboneElement): """Disclaimer: Any field name ends with ``__ext`` does't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. If this is a reply to prior message. Information about the message that this message is a response to. Only present if
will generate a packetSent notification with the calllbackId. The application is responsible for constructing a valid 6LoWPAN packet. The packet is sent to the mote best-effort, so the application should deal with responses and timeouts, if any. # # The sendIP command should be used by applications that require end-to-end IP connectivity. For applications that do not require end-to-end IP connectivity, the sendData command provides a simpler interface without requiring the application to understand 6LoWPAN encapsulation. For a more comprehensive discussion of the distinction, see the SmartMesh IP Network User Guide. # # \param macAddress 8-byte field formatted as a hex.<br/> # There is no restriction on the value of this field. # \param priority 1-byte field formatted as a int.<br/> # This field can only take one of the following values: # - 0: Low # - 1: Medium # - 2: High # \param options 1-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # \param encryptedOffset 1-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # \param data None-byte field formatted as a hex.<br/> # There is no restriction on the value of this field. # # \returns The response to the command, formatted as a #Tuple_dn_sendIP named tuple. # def dn_sendIP(self, macAddress, priority, options, encryptedOffset, data) : res = IpMgrConnectorMuxInternal.send(self, ['sendIP'], {"macAddress" : macAddress, "priority" : priority, "options" : options, "encryptedOffset" : encryptedOffset, "data" : data}) return IpMgrConnectorMux.Tuple_dn_sendIP(**res) ## # The named tuple returned by the dn_restoreFactoryDefaults() function. # # - <tt>RC</tt>: 1-byte field formatted as a int.<br/> # This field can only take one of the following values: # - 0: RC_OK # - 1: RC_INVALID_COMMAND # - 2: RC_INVALID_ARGUMENT # - 11: RC_END_OF_LIST # - 12: RC_NO_RESOURCES # - 13: RC_IN_PROGRESS # - 14: RC_NACK # - 15: RC_WRITE_FAIL # - 16: RC_VALIDATION_ERROR # - 17: RC_INV_STATE # - 18: RC_NOT_FOUND # Tuple_dn_restoreFactoryDefaults = collections.namedtuple("Tuple_dn_restoreFactoryDefaults", ['RC']) ## # The restoreFactoryDefaults command restores the default configuration and clears the ACL. This change is persistent. # # For Manager versions <1.3.0 that required a license, the license used to enable optional features is preserved during a restore. # # # # \returns The response to the command, formatted as a #Tuple_dn_restoreFactoryDefaults named tuple. # def dn_restoreFactoryDefaults(self, ) : res = IpMgrConnectorMuxInternal.send(self, ['restoreFactoryDefaults'], {}) return IpMgrConnectorMux.Tuple_dn_restoreFactoryDefaults(**res) ## # The named tuple returned by the dn_getMoteInfo() function. # # - <tt>RC</tt>: 1-byte field formatted as a int.<br/> # This field can only take one of the following values: # - 0: RC_OK # - 1: RC_INVALID_COMMAND # - 2: RC_INVALID_ARGUMENT # - 11: RC_END_OF_LIST # - 12: RC_NO_RESOURCES # - 13: RC_IN_PROGRESS # - 14: RC_NACK # - 15: RC_WRITE_FAIL # - 16: RC_VALIDATION_ERROR # - 17: RC_INV_STATE # - 18: RC_NOT_FOUND # - <tt>macAddress</tt>: 8-byte field formatted as a hex.<br/> # There is no restriction on the value of this field. # - <tt>state</tt>: 1-byte field formatted as a int.<br/> # This field can only take one of the following values: # - 0: lost # - 1: negotiating # - 4: operational # - <tt>numNbrs</tt>: 1-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # - <tt>numGoodNbrs</tt>: 1-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # - <tt>requestedBw</tt>: 4-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # - <tt>totalNeededBw</tt>: 4-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # - <tt>assignedBw</tt>: 4-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # - <tt>packetsReceived</tt>: 4-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # - <tt>packetsLost</tt>: 4-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # - <tt>avgLatency</tt>: 4-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # Tuple_dn_getMoteInfo = collections.namedtuple("Tuple_dn_getMoteInfo", ['RC', 'macAddress', 'state', 'numNbrs', 'numGoodNbrs', 'requestedBw', 'totalNeededBw', 'assignedBw', 'packetsReceived', 'packetsLost', 'avgLatency']) ## # The getMoteInfo command returns dynamic information for the specified mote. # # \param macAddress 8-byte field formatted as a hex.<br/> # There is no restriction on the value of this field. # # \returns The response to the command, formatted as a #Tuple_dn_getMoteInfo named tuple. # def dn_getMoteInfo(self, macAddress) : res = IpMgrConnectorMuxInternal.send(self, ['getMoteInfo'], {"macAddress" : macAddress}) return IpMgrConnectorMux.Tuple_dn_getMoteInfo(**res) ## # The named tuple returned by the dn_getNetworkConfig() function. # # - <tt>RC</tt>: 1-byte field formatted as a int.<br/> # This field can only take one of the following values: # - 0: RC_OK # - 1: RC_INVALID_COMMAND # - 2: RC_INVALID_ARGUMENT # - 11: RC_END_OF_LIST # - 12: RC_NO_RESOURCES # - 13: RC_IN_PROGRESS # - 14: RC_NACK # - 15: RC_WRITE_FAIL # - 16: RC_VALIDATION_ERROR # - 17: RC_INV_STATE # - 18: RC_NOT_FOUND # - <tt>networkId</tt>: 2-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # - <tt>apTxPower</tt>: 1-byte field formatted as a ints.<br/> # There is no restriction on the value of this field. # - <tt>frameProfile</tt>: 1-byte field formatted as a int.<br/> # This field can only take one of the following values: # - 1: Profile_01 # - <tt>maxMotes</tt>: 2-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # - <tt>baseBandwidth</tt>: 2-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # - <tt>downFrameMultVal</tt>: 1-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # - <tt>numParents</tt>: 1-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # - <tt>ccaMode</tt>: 1-byte field formatted as a int.<br/> # This field can only take one of the following values: # - 0: off # - 1: energy # - 2: carrier # - 3: both # - <tt>channelList</tt>: 2-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # - <tt>autoStartNetwork</tt>: 1-byte field formatted as a bool.<br/> # There is no restriction on the value of this field. # - <tt>locMode</tt>: 1-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # - <tt>bbMode</tt>: 1-byte field formatted as a int.<br/> # This field can only take one of the following values: # - 0: off # - 1: upstream # - 2: bidirectional # - <tt>bbSize</tt>: 1-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # - <tt>isRadioTest</tt>: 1-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # - <tt>bwMult</tt>: 2-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # - <tt>oneChannel</tt>: 1-byte field formatted as a int.<br/> # There is no restriction on the value of this field. # Tuple_dn_getNetworkConfig = collections.namedtuple("Tuple_dn_getNetworkConfig", ['RC', 'networkId', 'apTxPower', 'frameProfile', 'maxMotes', 'baseBandwidth', 'downFrameMultVal', 'numParents', 'ccaMode', 'channelList', 'autoStartNetwork', 'locMode', 'bbMode', 'bbSize', 'isRadioTest', 'bwMult', 'oneChannel']) ## # The getNetworkConfig command returns general network configuration parameters, including the Network ID, bandwidth parameters and number of motes. # # # # \returns The response to the command, formatted as a #Tuple_dn_getNetworkConfig named tuple. # def dn_getNetworkConfig(self, ) : res = IpMgrConnectorMuxInternal.send(self, ['getNetworkConfig'], {}) return IpMgrConnectorMux.Tuple_dn_getNetworkConfig(**res) ## # The named
import numpy as np import sys import scipy.interpolate as interpolate import asdf from .function import * from .basic_func import Basic class Func: ''' The list of (possible) `Func` attributes is given below: Attributes ---------- ''' def __init__(self, MB, dust_model=0): ''' Parameters ---------- dust_model : int 0 for Calzetti. ''' self.ID = MB.ID self.ZZ = MB.Zall self.age = MB.age self.AA = MB.nage self.tau0 = MB.tau0 self.MB = MB self.dust_model = dust_model self.DIR_TMP = MB.DIR_TMP if MB.f_dust: self.Temp = MB.Temp try: self.filts = MB.filts self.DIR_FIL = MB.DIR_FILT except: pass # Already Read or not; self.f_af = False self.f_af0 = False def demo(self): ZZ = self.ZZ AA = self.AA return ZZ, AA ############################# # Load template in obs range. ############################# def open_spec_fits(self, fall=0, orig=False): ''' ''' ID0 = self.MB.ID tau0= self.MB.tau0 #[0.01,0.02,0.03] from astropy.io import fits ZZ = self.ZZ AA = self.AA bfnc = self.MB.bfnc #Basic(ZZ) # ASDF; if fall == 0: app = '' hdu0 = self.MB.af['spec'] elif fall == 1: app = 'all_' hdu0 = self.MB.af['spec_full'] DIR_TMP = self.DIR_TMP for pp in range(len(tau0)): for zz in range(len(ZZ)): Z = ZZ[zz] NZ = bfnc.Z2NZ(Z) if zz == 0 and pp == 0: nr = hdu0['colnum'] xx = hdu0['wavelength'] lib = np.zeros((len(nr), 2+len(AA)*len(ZZ)*len(tau0)), dtype='float') lib[:,0] = nr[:] lib[:,1] = xx[:] for aa in range(len(AA)): coln = int(2 + aa) if orig: colname = 'fspec_orig_' + str(zz) + '_' + str(aa) + '_' + str(pp) else: colname = 'fspec_' + str(zz) + '_' + str(aa) + '_' + str(pp) colnall = int(2 + pp*len(ZZ)*len(AA) + zz*len(AA) + aa) # 2 takes account of wavelength and AV columns. lib[:,colnall] = hdu0[colname] return lib def open_spec_dust_fits(self, fall=0): ''' Loads dust template in obs range. ''' ID0 = self.MB.ID tau0= self.MB.tau0 #[0.01,0.02,0.03] from astropy.io import fits ZZ = self.ZZ AA = self.AA bfnc = self.MB.bfnc #Basic(ZZ) self.MB.af = asdf.open(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf') self.MB.af0 = asdf.open(self.DIR_TMP + 'spec_all.asdf') if fall == 0: app = '' hdu0 = self.MB.af['spec_dust'] elif fall == 1: app = 'all_' hdu0 = self.MB.af['spec_dust_full'] DIR_TMP = self.DIR_TMP nr = hdu0['colnum'] xx = hdu0['wavelength'] lib = np.zeros((len(nr), 2+len(self.Temp)), dtype='float') lib[:,0] = nr[:] lib[:,1] = xx[:] for aa in range(len(self.Temp)): coln = int(2 + aa) colname = 'fspec_' + str(aa) colnall = int(2 + aa) # 2 takes account of wavelength and AV columns. lib[:,colnall] = hdu0[colname] if fall==1 and False: import matplotlib.pyplot as plt plt.close() plt.plot(lib[:,1],lib[:,coln],linestyle='-') plt.show() return lib def open_spec_fits_dir(self, nage, nz, kk, Av00, zgal, A00): ''' Load template in obs range. But for weird template. ''' from astropy.io import fits tau0= self.tau0 #[0.01,0.02,0.03] ZZ = self.ZZ AA = self.AA bfnc = self.MB.bfnc #Basic(ZZ) self.MB.af = asdf.open(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf') self.MB.af0 = asdf.open(self.DIR_TMP + 'spec_all.asdf') app = 'all' hdu0 = self.MB.af['spec_full'] DIR_TMP = self.DIR_TMP #'./templates/' pp = 0 zz = nz # Luminosity mshdu = self.MB.af0['ML'] Ls = mshdu['Ls_%d'%nz] xx = hdu0['wavelength'] # at RF; nr = np.arange(0,len(xx),1) #hdu0.data['colnum'] lib = np.zeros((len(nr), 2+1), dtype='float') lib[:,0] = nr[:] lib[:,1] = xx[:] aa = nage coln = int(2 + aa) colname = 'fspec_' + str(zz) + '_' + str(aa) + '_' + str(pp) yy0 = hdu0[colname]/Ls[aa] yy = flamtonu(xx, yy0) lib[:,2] = yy[:] if self.dust_model == 0: # Calzetti yyd, xxd, nrd = dust_calz(xx, yy, Av00, nr) elif self.dust_model == 1: # MW yyd, xxd, nrd = dust_mw(xx, yy, Av00, nr) elif self.dust_model == 2: # LMC yyd, xxd, nrd = dust_gen(xx, yy, Av00, nr, Rv=4.05, gamma=-0.06, Eb=2.8) elif self.dust_model == 3: # SMC yyd, xxd, nrd = dust_gen(xx, yy, Av00, nr, Rv=4.05, gamma=-0.42, Eb=0.0) elif self.dust_model == 4: # Kriek&Conroy with gamma=-0.2 yyd, xxd, nrd = dust_kc(xx, yy, Av00, nr, Rv=4.05, gamma=-0.2) else: print('No entry. Dust model is set to Calzetti') yyd, xxd, nrd = dust_calz(xx, yy, Av00, nr) xxd *= (1.+zgal) nrd_yyd = np.zeros((len(nrd),3), dtype='float') nrd_yyd[:,0] = nrd[:] nrd_yyd[:,1] = yyd[:] nrd_yyd[:,2] = xxd[:] b = nrd_yyd nrd_yyd_sort = b[np.lexsort(([-1,1]*b[:,[1,0]]).T)] yyd_sort = nrd_yyd_sort[:,1] xxd_sort = nrd_yyd_sort[:,2] return A00 * yyd_sort, xxd_sort def get_template(self, lib, Amp=1.0, T=1.0, Av=0.0, Z=0.0, zgal=1.0, f_bb=False): ''' Gets an element template given a set of parameters. Not necessarily the most efficient way, but easy to use. Parameters: ----------- lib : dict library dictionary. Amp : float Amplitude of the target template. Note that each template has Lbol = 1e10Lsun. T : float Age, in Gyr. Av : float Dust attenuation, in mag. Z : float Metallicity, in log(Z/Zsun). zgal : float Redshift. f_bb: bool If calculate bb photometry for the spectrum requested. Returns flux : float array. Flux in Fnu. wavelength : float array. Wave in AA. lcen, lflux : , if f_bb==True. ''' bfnc = self.MB.bfnc DIR_TMP = self.MB.DIR_TMP NZ = bfnc.Z2NZ(Z) pp0 = np.random.uniform(low=0, high=len(self.tau0), size=(1,)) pp = int(pp0[0]) if pp>=len(self.tau0): pp += -1 nmodel = np.argmin(np.abs(T-self.age[:])) if T - self.age[nmodel] != 0: print('T=%.2f is not found in age library. T=%.2f is used.'%(T,self.age[nmodel])) coln= int(2 + pp*len(self.ZZ)*len(self.AA) + NZ*len(self.AA) + nmodel) nr = lib[:, 0] xx = lib[:, 1] # This is OBSERVED wavelength range at z=zgal yy = lib[:, coln] if self.dust_model == 0: yyd, xxd, nrd = dust_calz(xx/(1.+zgal), yy, Av, nr) elif self.dust_model == 1: yyd, xxd, nrd = dust_mw(xx/(1.+zgal), yy, Av, nr) elif self.dust_model == 2: # LMC yyd, xxd, nrd = dust_gen(xx/(1.+zgal), yy, Av, nr, Rv=4.05, gamma=-0.06, Eb=2.8) elif self.dust_model == 3: # SMC yyd, xxd, nrd = dust_gen(xx/(1.+zgal), yy, Av, nr, Rv=4.05, gamma=-0.42, Eb=0.0) elif self.dust_model == 4: # Kriek&Conroy with gamma=-0.2 yyd, xxd, nrd = dust_kc(xx/(1.+zgal), yy, Av, nr, Rv=4.05, gamma=-0.2) else: yyd, xxd, nrd = dust_calz(xx/(1.+zgal), yy, Av, nr) xxd *= (1.+zgal) nrd_yyd = np.zeros((len(nrd),3), dtype='float') nrd_yyd[:,0] = nrd[:] nrd_yyd[:,1] = yyd[:] nrd_yyd[:,2] = xxd[:] b = nrd_yyd nrd_yyd_sort = b[np.lexsort(([-1,1]*b[:,[1,0]]).T)] yyd_sort = nrd_yyd_sort[:,1] xxd_sort = nrd_yyd_sort[:,2] if f_bb: #fil_cen, fil_flux = filconv(self.filts, xxd_sort, Amp * yyd_sort, self.DIR_FIL) fil_cen, fil_flux = filconv_fast(self.MB, xxd_sort, Amp * yyd_sort) return Amp * yyd_sort, xxd_sort, fil_flux, fil_cen else: return Amp * yyd_sort, xxd_sort def tmp03(self, A00, Av00, nmodel, Z, zgal, lib): ''' ''' tau0= self.tau0 #[0.01,0.02,0.03] ZZ = self.ZZ AA = self.AA bfnc = self.MB.bfnc #Basic(ZZ) DIR_TMP = self.MB.DIR_TMP #'./templates/' NZ = bfnc.Z2NZ(Z) pp0 = np.random.uniform(low=0, high=len(tau0), size=(1,)) pp = int(pp0[0]) if pp>=len(tau0): pp += -1 coln= int(2 + pp*len(ZZ)*len(AA) + NZ*len(AA) + nmodel) nr = lib[:,0] xx = lib[:,1] # This is OBSERVED wavelength range at z=zgal yy = lib[:,coln] if self.dust_model == 0: yyd, xxd, nrd = dust_calz(xx/(1.+zgal), yy, Av00, nr) elif self.dust_model == 1: yyd, xxd, nrd = dust_mw(xx/(1.+zgal), yy, Av00, nr) elif self.dust_model == 2: # LMC yyd, xxd, nrd = dust_gen(xx/(1.+zgal), yy, Av00, nr, Rv=4.05, gamma=-0.06, Eb=2.8) elif self.dust_model == 3: # SMC yyd, xxd, nrd = dust_gen(xx/(1.+zgal), yy, Av00, nr, Rv=4.05, gamma=-0.42, Eb=0.0) elif self.dust_model == 4: # Kriek&Conroy with gamma=-0.2 yyd, xxd, nrd = dust_kc(xx/(1.+zgal), yy, Av00, nr, Rv=4.05, gamma=-0.2) else: yyd, xxd, nrd = dust_calz(xx/(1.+zgal), yy, Av00, nr) xxd *= (1.+zgal) nrd_yyd = np.zeros((len(nrd),3), dtype='float') nrd_yyd[:,0] = nrd[:] nrd_yyd[:,1] = yyd[:] nrd_yyd[:,2] = xxd[:] b = nrd_yyd nrd_yyd_sort = b[np.lexsort(([-1,1]*b[:,[1,0]]).T)] yyd_sort = nrd_yyd_sort[:,1] xxd_sort = nrd_yyd_sort[:,2] return A00 * yyd_sort, xxd_sort def tmp04(self, par, f_Alog=True, nprec=1, f_val=False, lib_all=False, f_nrd=False): ''' Makes model template with a given param set. Also dust attenuation. Parameters ---------- nprec : int Precision when redshift is refined. ''' ZZ = self.ZZ AA = self.AA bfnc = self.MB.bfnc Mtot = 0 if f_val: par = par.params if self.MB.fzmc == 1: try: zmc = par['zmc'].value except: zmc = self.MB.zgal else: zmc = self.MB.zgal pp = 0 # AV limit; if par['Av'] < self.MB.Avmin: par['Av'] = self.MB.Avmin if par['Av'] > self.MB.Avmax: par['Av'] = self.MB.Avmax Av00 = par['Av'] for aa in range(len(AA)): if self.MB.ZEVOL==1 or aa == 0: Z = par['Z'+str(aa)] NZ = bfnc.Z2NZ(Z) else: pass # Check limit; if par['A'+str(aa)] < self.MB.Amin: par['A'+str(aa)] = self.MB.Amin if par['A'+str(aa)] > self.MB.Amax: par['A'+str(aa)] =
sum = "h1:3tMoCCfM7ppqsR0ptz/wi1impNpT7/9wQtMZ8lr1mCQ=", version = "v1.4.0", ) go_repository( name = "com_github_gliderlabs_ssh", importpath = "github.com/gliderlabs/ssh", sum = "h1:6zsha5zo/TWhRhwqCD3+EarCAgZ2yN28ipRnGPnwkI0=", version = "v0.2.2", ) go_repository( name = "com_github_globalsign_mgo", importpath = "github.com/globalsign/mgo", sum = "h1:DujepqpGd1hyOd7aW59XpK7Qymp8iy83xq74fLr21is=", version = "v0.0.0-20181015135952-eeefdecb41b8", ) go_repository( name = "com_github_go_check_check", importpath = "github.com/go-check/check", sum = "h1:0gkP6mzaMqkmpcJYCFOLkIBwI7xFExG03bbkOkCvUPI=", version = "v0.0.0-20180628173108-788fd7840127", ) go_repository( name = "com_github_go_critic_go_critic", importpath = "github.com/go-critic/go-critic", sum = "h1:3RJdgf6u4NZUumoP8nzbqiiNT8e1tC2Oc7jlgqre/IA=", version = "v0.5.2", ) go_repository( name = "com_github_go_errors_errors", importpath = "github.com/go-errors/errors", sum = "h1:LUHzmkK3GUKUrL/1gfBUxAHzcev3apQlezX/+O7ma6w=", version = "v1.0.1", ) go_repository( name = "com_github_go_git_gcfg", importpath = "github.com/go-git/gcfg", sum = "h1:Q5ViNfGF8zFgyJWPqYwA7qGFoMTEiBmdlkcfRmpIMa4=", version = "v1.5.0", ) go_repository( name = "com_github_go_git_go_billy_v5", importpath = "github.com/go-git/go-billy/v5", sum = "h1:7NQHvd9FVid8VL4qVUMm8XifBK+2xCoZ2lSk0agRrHM=", version = "v5.0.0", ) go_repository( name = "com_github_go_git_go_git_fixtures_v4", importpath = "github.com/go-git/go-git-fixtures/v4", sum = "h1:PbKy9zOy4aAKrJ5pibIRpVO2BXnK1Tlcg+caKI7Ox5M=", version = "v4.0.2-0.20200613231340-f56387b50c12", ) go_repository( name = "com_github_go_git_go_git_v5", importpath = "github.com/go-git/go-git/v5", sum = "h1:YPBLG/3UK1we1ohRkncLjaXWLW+HKp5QNM/jTli2JgI=", version = "v5.2.0", ) go_repository( name = "com_github_go_gl_glfw", importpath = "github.com/go-gl/glfw", sum = "h1:QbL/5oDUmRBzO9/Z7Seo6zf912W/a6Sr4Eu0G/3Jho0=", version = "v0.0.0-20190409004039-e6da0acd62b1", ) go_repository( name = "com_github_go_gl_glfw_v3_3_glfw", importpath = "github.com/go-gl/glfw/v3.3/glfw", sum = "h1:WtGNWLvXpe6ZudgnXrq0barxBImvnnJoMEhXAzcbM0I=", version = "v0.0.0-20200222043503-6f7a984d4dc4", ) go_repository( name = "com_github_go_ini_ini", importpath = "github.com/go-ini/ini", sum = "h1:Mujh4R/dH6YL8bxuISne3xX2+qcQ9p0IxKAP6ExWoUo=", version = "v1.25.4", ) go_repository( name = "com_github_go_kit_kit", importpath = "github.com/go-kit/kit", sum = "h1:wDJmvq38kDhkVxi50ni9ykkdUr1PKgqKOoi01fa0Mdk=", version = "v0.9.0", ) go_repository( name = "com_github_go_logfmt_logfmt", importpath = "github.com/go-logfmt/logfmt", sum = "h1:MP4Eh7ZCb31lleYCFuwm0oe4/YGak+5l1vA2NOE80nA=", version = "v0.4.0", ) go_repository( name = "com_github_go_logr_logr", importpath = "github.com/go-logr/logr", sum = "h1:QvGt2nLcHH0WK9orKa+ppBPAxREcH364nPUedEpK0TY=", version = "v0.2.0", ) go_repository( name = "com_github_go_martini_martini", importpath = "github.com/go-martini/martini", sum = "h1:xveKWz2iaueeTaUgdetzel+U7exyigDYBryyVfV/rZk=", version = "v0.0.0-20170121215854-22fa46961aab", ) go_repository( name = "com_github_go_ole_go_ole", importpath = "github.com/go-ole/go-ole", sum = "h1:2lOsA72HgjxAuMlKpFiCbHTvu44PIVkZ5hqm3RSdI/E=", version = "v1.2.1", ) go_repository( name = "com_github_go_openapi_analysis", importpath = "github.com/go-openapi/analysis", sum = "h1:5BHISBAXOc/aJK25irLZnx2D3s6WyYaY9D4gmuz9fdE=", version = "v0.19.10", ) go_repository( name = "com_github_go_openapi_errors", importpath = "github.com/go-openapi/errors", sum = "h1:Sxpo9PjEHDzhs3FbnGNonvDgWcMW2U7wGTcDDSFSceM=", version = "v0.20.0", ) go_repository( name = "com_github_go_openapi_jsonpointer", importpath = "github.com/go-openapi/jsonpointer", sum = "h1:gihV7YNZK1iK6Tgwwsxo2rJbD1GTbdm72325Bq8FI3w=", version = "v0.19.3", ) go_repository( name = "com_github_go_openapi_jsonreference", importpath = "github.com/go-openapi/jsonreference", sum = "h1:5cxNfTy0UVC3X8JL5ymxzyoUZmo8iZb+jeTWn7tUa8o=", version = "v0.19.3", ) go_repository( name = "com_github_go_openapi_loads", importpath = "github.com/go-openapi/loads", sum = "h1:jZVYWawIQiA1NBnHla28ktg6hrcfTHsCE+3QLVRBIls=", version = "v0.19.5", ) go_repository( name = "com_github_go_openapi_runtime", importpath = "github.com/go-openapi/runtime", sum = "h1:K/6PoVNj5WJXUnMk+VEbELeXjtBkCS1UxTDa04tdXE0=", version = "v0.19.26", ) go_repository( name = "com_github_go_openapi_spec", importpath = "github.com/go-openapi/spec", sum = "h1:qAdZLh1r6QF/hI/gTq+TJTvsQUodZsM7KLqkAJdiJNg=", version = "v0.19.8", ) go_repository( name = "com_github_go_openapi_strfmt", importpath = "github.com/go-openapi/strfmt", sum = "h1:FEv6Pt/V4wLwP4vOCZbWlpfmi8kj4UiRip34IDE6SGw=", version = "v0.19.10", ) go_repository( name = "com_github_go_openapi_swag", importpath = "github.com/go-openapi/swag", sum = "h1:gm3vOOXfiuw5i9p5N9xJvfjvuofpyvLA9Wr6QfK5Fng=", version = "v0.19.14", ) go_repository( name = "com_github_go_openapi_validate", importpath = "github.com/go-openapi/validate", sum = "h1:mPLM/bfbd00PGOCJlU0yJL7IulkZ+q9VjPv7U11RMQQ=", version = "v0.19.12", ) go_repository( name = "com_github_go_playground_locales", importpath = "github.com/go-playground/locales", sum = "h1:HyWk6mgj5qFqCT5fjGBuRArbVDfE4hi8+e8ceBS/t7Q=", version = "v0.13.0", ) go_repository( name = "com_github_go_playground_universal_translator", importpath = "github.com/go-playground/universal-translator", sum = "h1:X++omBR/4cE2MNg91AoC3rmGrCjJ8eAeUP/K/EKx4DM=", version = "v0.16.0", ) go_repository( name = "com_github_go_playground_validator", importpath = "github.com/go-playground/validator", sum = "h1:myhdWhx5UHvLXZ7maUcP0uYxyijMT+smaNAhARBVc9s=", version = "v9.30.0+incompatible", ) go_repository( name = "com_github_go_redis_redis", importpath = "github.com/go-redis/redis", sum = "h1:K0pv1D7EQUjfyoMql+r/jZqCLizCGKFlFgcHWWmHQjg=", version = "v6.15.9+incompatible", ) go_repository( name = "com_github_go_redis_redis_extra_rediscmd_v8", importpath = "github.com/go-redis/redis/extra/rediscmd/v8", sum = "h1:kjH+FAEz3G8gq8zDBgoLSCZj19Z1SK4dg/VtD3QE1IE=", version = "v8.8.2", ) go_repository( name = "com_github_go_redis_redis_extra_redisotel_v8", importpath = "github.com/go-redis/redis/extra/redisotel/v8", sum = "h1:0JlrPvtN5SjIe5gTmAsvIAIqn9FEGaVJgGOFg63Djgk=", version = "v8.10.0", ) go_repository( name = "com_github_go_redis_redis_v8", importpath = "github.com/go-redis/redis/v8", sum = "h1:OZwrQKuZqdJ4QIM8wn8rnuz868Li91xA3J2DEq+TPGA=", version = "v8.10.0", ) go_repository( name = "com_github_go_redsync_redsync_v4", importpath = "github.com/go-redsync/redsync/v4", replace = "github.com/bduffany/redsync/v4", sum = "h1:wyBDr+ApDWybbLGMSsepl30KzPAl+HlIQMhJSoLdRKg=", version = "v4.4.1-minimal", ) go_repository( name = "com_github_go_sql_driver_mysql", importpath = "github.com/go-sql-driver/mysql", sum = "h1:BCTh4TKNUYmOmMUcQ3IipzF5prigylS7XXjEkfCHuOE=", version = "v1.6.0", ) go_repository( name = "com_github_go_stack_stack", importpath = "github.com/go-stack/stack", sum = "h1:5SgMzNM5HxrEjV0ww2lTmX6E2Izsfxas4+YHWRs3Lsk=", version = "v1.8.0", ) go_repository( name = "com_github_go_toolsmith_astcast", importpath = "github.com/go-toolsmith/astcast", sum = "h1:JojxlmI6STnFVG9yOImLeGREv8W2ocNUM+iOhR6jE7g=", version = "v1.0.0", ) go_repository( name = "com_github_go_toolsmith_astcopy", importpath = "github.com/go-toolsmith/astcopy", sum = "h1:OMgl1b1MEpjFQ1m5ztEO06rz5CUd3oBv9RF7+DyvdG8=", version = "v1.0.0", ) go_repository( name = "com_github_go_toolsmith_astequal", importpath = "github.com/go-toolsmith/astequal", sum = "h1:4zxD8j3JRFNyLN46lodQuqz3xdKSrur7U/sr0SDS/gQ=", version = "v1.0.0", ) go_repository( name = "com_github_go_toolsmith_astfmt", importpath = "github.com/go-toolsmith/astfmt", sum = "h1:A0vDDXt+vsvLEdbMFJAUBI/uTbRw1ffOPnxsILnFL6k=", version = "v1.0.0", ) go_repository( name = "com_github_go_toolsmith_astinfo", importpath = "github.com/go-toolsmith/astinfo", sum = "h1:wP6mXeB2V/d1P1K7bZ5vDUO3YqEzcvOREOxZPEu3gVI=", version = "v0.0.0-20180906194353-9809ff7efb21", ) go_repository( name = "com_github_go_toolsmith_astp", importpath = "github.com/go-toolsmith/astp", sum = "h1:alXE75TXgcmupDsMK1fRAy0YUzLzqPVvBKoyWV+KPXg=", version = "v1.0.0", ) go_repository( name = "com_github_go_toolsmith_pkgload", importpath = "github.com/go-toolsmith/pkgload", sum = "h1:4DFWWMXVfbcN5So1sBNW9+yeiMqLFGl1wFLTL5R0Tgg=", version = "v1.0.0", ) go_repository( name = "com_github_go_toolsmith_strparse", importpath = "github.com/go-toolsmith/strparse", sum = "h1:Vcw78DnpCAKlM20kSbAyO4mPfJn/lyYA4BJUDxe2Jb4=", version = "v1.0.0", ) go_repository( name = "com_github_go_toolsmith_typep", importpath = "github.com/go-toolsmith/typep", sum = "h1:8xdsa1+FSIH/RhEkgnD1j2CJOy5mNllW1Q9tRiYwvlk=", version = "v1.0.2", ) go_repository( name = "com_github_go_xmlfmt_xmlfmt", importpath = "github.com/go-xmlfmt/xmlfmt", sum = "h1:khEcpUM4yFcxg4/FHQWkvVRmgijNXRfzkIDHh23ggEo=", version = "v0.0.0-20191208150333-d5b6f63a941b", ) go_repository( name = "com_github_gobuffalo_attrs", importpath = "github.com/gobuffalo/attrs", sum = "h1:hSkbZ9XSyjyBirMeqSqUrK+9HboWrweVlzRNqoBi2d4=", version = "v0.0.0-20190224210810-a9411de4debd", ) go_repository( name = "com_github_gobuffalo_depgen", importpath = "github.com/gobuffalo/depgen", sum = "h1:31atYa/UW9V5q8vMJ+W6wd64OaaTHUrCUXER358zLM4=", version = "v0.1.0", ) go_repository( name = "com_github_gobuffalo_envy", importpath = "github.com/gobuffalo/envy", sum = "h1:GlXgaiBkmrYMHco6t4j7SacKO4XUjvh5pwXh0f4uxXU=", version = "v1.7.0", ) go_repository( name = "com_github_gobuffalo_flect", importpath = "github.com/gobuffalo/flect", sum = "h1:3GQ53z7E3o00C/yy7Ko8VXqQXoJGLkrTQCLTF1EjoXU=", version = "v0.1.3", ) go_repository( name = "com_github_gobuffalo_genny", importpath = "github.com/gobuffalo/genny", sum = "h1:iQ0D6SpNXIxu52WESsD+KoQ7af2e3nCfnSBoSF/hKe0=", version = "v0.1.1", ) go_repository( name = "com_github_gobuffalo_gitgen", importpath = "github.com/gobuffalo/gitgen", sum = "h1:mSVZ4vj4khv+oThUfS+SQU3UuFIZ5Zo6UNcvK8E8Mz8=", version = "v0.0.0-20190315122116-cc086187d211", ) go_repository( name = "com_github_gobuffalo_gogen", importpath = "github.com/gobuffalo/gogen", sum = "h1:dLg+zb+uOyd/mKeQUYIbwbNmfRsr9hd/WtYWepmayhI=", version = "v0.1.1", ) go_repository( name = "com_github_gobuffalo_logger", importpath = "github.com/gobuffalo/logger", sum = "h1:8thhT+kUJMTMy3HlX4+y9Da+BNJck+p109tqqKp7WDs=", version = "v0.0.0-20190315122211-86e12af44bc2", ) go_repository( name = "com_github_gobuffalo_mapi", importpath = "github.com/gobuffalo/mapi", sum = "h1:fq9WcL1BYrm36SzK6+aAnZ8hcp+SrmnDyAxhNx8dvJk=", version = "v1.0.2", ) go_repository( name = "com_github_gobuffalo_packd", importpath = "github.com/gobuffalo/packd", sum = "h1:4sGKOD8yaYJ+dek1FDkwcxCHA40M4kfKgFHx8N2kwbU=", version = "v0.1.0", ) go_repository( name = "com_github_gobuffalo_packr_v2", importpath = "github.com/gobuffalo/packr/v2", sum = "h1:Ir9W9XIm9j7bhhkKE9cokvtTl1vBm62A/fene/ZCj6A=", version = "v2.2.0", ) go_repository( name = "com_github_gobuffalo_syncx", importpath = "github.com/gobuffalo/syncx", sum = "h1:tpom+2CJmpzAWj5/VEHync2rJGi+epHNIeRSWjzGA+4=", version = "v0.0.0-20190224160051-33c29581e754", ) go_repository( name = "com_github_gobwas_glob", importpath = "github.com/gobwas/glob", sum = "h1:A4xDbljILXROh+kObIiy5kIaPYD8e96x1tgBhUI5J+Y=", version = "v0.2.3", ) go_repository( name = "com_github_gobwas_httphead", importpath = "github.com/gobwas/httphead", sum = "h1:s+21KNqlpePfkah2I+gwHF8xmJWRjooY+5248k6m4A0=", version = "v0.0.0-20180130184737-2c6c146eadee", ) go_repository( name = "com_github_gobwas_pool", importpath = "github.com/gobwas/pool", sum = "h1:QEmUOlnSjWtnpRGHF3SauEiOsy82Cup83Vf2LcMlnc8=", version = "v0.2.0", ) go_repository( name = "com_github_gobwas_ws", importpath = "github.com/gobwas/ws", sum = "h1:CoAavW/wd/kulfZmSIBt6p24n4j7tHgNVCjsfHVNUbo=", version = "v1.0.2", ) go_repository( name = "com_github_goccy_go_json", importpath = "github.com/goccy/go-json", sum = "h1:ulhbuNe1JqE68nMRXXTJRrUu0uhouf0VevLINxQq4Ec=", version = "v0.7.10", ) go_repository( name = "com_github_godbus_dbus", importpath = "github.com/godbus/dbus", sum = "h1:BWhy2j3IXJhjCbC68FptL43tDKIq8FladmaTs3Xs7Z8=", version = "v0.0.0-20190422162347-ade71ed3457e", ) go_repository( name = "com_github_godbus_dbus_v5", importpath = "github.com/godbus/dbus/v5", sum = "h1:ZqHaoEF7TBzh4jzPmqVhE/5A1z9of6orkAe5uHoAeME=", version = "v5.0.3", ) go_repository( name = "com_github_gofrs_flock", importpath = "github.com/gofrs/flock", sum = "h1:MSdYClljsF3PbENUUEx85nkWfJSGfzYI9yEBZOJz6CY=", version = "v0.8.0", ) go_repository( name = "com_github_gofrs_uuid", importpath = "github.com/gofrs/uuid", sum = "h1:8K4tyRfvU1CYPgJsveYFQMhpFd/wXNM7iK6rR7UHz84=", version = "v3.3.0+incompatible", ) go_repository( name = "com_github_gogo_googleapis", build_file_proto_mode = "disable", importpath = "github.com/gogo/googleapis", sum = "h1:1Yx4Myt7BxzvUr5ldGSbwYiZG6t9wGBZ+8/fX3Wvtq0=", version = "v1.4.1", ) go_repository( name = "com_github_gogo_protobuf", importpath = "github.com/gogo/protobuf", sum = "h1:Ov1cvc58UF3b5XjBnZv7+opcTcQFZebYjWzi34vdm4Q=", version = "v1.3.2", ) go_repository( name = "com_github_gogo_status", importpath = "github.com/gogo/status", sum = "h1:+eIkrewn5q6b30y+g/BJINVVdi2xH7je5MPJ3ZPK3JA=", version = "v1.1.0", ) go_repository( name = "com_github_golang_glog", importpath = "github.com/golang/glog", sum = "h1:VKtxabqXZkF25pY9ekfRL6a582T4P37/31XEstQ5p58=", version = "v0.0.0-20160126235308-23def4e6c14b", ) go_repository( name = "com_github_golang_groupcache", importpath = "github.com/golang/groupcache", sum = "h1:1r7pUrabqp18hOBcwBwiTsbnFeTZHV9eER/QT5JVZxY=", version = "v0.0.0-20200121045136-8c9f03a8e57e", ) go_repository( name = "com_github_golang_jwt_jwt", importpath = "github.com/golang-jwt/jwt", sum = "h1:IfV12K8xAKAnZqdXVzCZ+TOjboZ2keLg81eXfW3O+oY=", version = "v3.2.2+incompatible", ) go_repository( name = "com_github_golang_jwt_jwt_v4", importpath = "github.com/golang-jwt/jwt/v4", sum = "h1:XUgk2Ex5veyVFVeLm0xhusUTQybEbexJXrvPNOKkSY0=", version = "v4.1.0", ) go_repository( name = "com_github_golang_mock", importpath = "github.com/golang/mock", sum = "h1:ErTB+efbowRARo13NNdxyJji2egdxLGQhRaY+DUumQc=", version = "v1.6.0", ) go_repository( name = "com_github_golang_protobuf", importpath = "github.com/golang/protobuf", sum = "h1:ROPKBNFfQgOUMifHyP+KYbvpjbdoFNs+aK7DXlji0Tw=", version = "v1.5.2", ) go_repository( name = "com_github_golang_snappy", importpath = "github.com/golang/snappy", sum = "h1:vsBwDpPr442gOtutTvPdgJ0xhaUI/1uX53JosuHzIRE=", version = "v0.0.4-0.20210502035320-33fc3d5d8d99", ) go_repository( name = "com_github_golangci_check", importpath = "github.com/golangci/check", sum = "h1:23T5iq8rbUYlhpt5DB4XJkc6BU31uODLD1o1gKvZmD0=", version = "v0.0.0-20180506172741-cfe4005ccda2", ) go_repository( name = "com_github_golangci_dupl", importpath = "github.com/golangci/dupl", sum = "h1:w8hkcTqaFpzKqonE9uMCefW1WDie15eSP/4MssdenaM=", version = "v0.0.0-20180902072040-3e9179ac440a", ) go_repository( name = "com_github_golangci_errcheck", importpath = "github.com/golangci/errcheck", sum = "h1:YYWNAGTKWhKpcLLt7aSj/odlKrSrelQwlovBpDuf19w=", version = "v0.0.0-20181223084120-ef45e06d44b6", ) go_repository( name = "com_github_golangci_go_misc", importpath = "github.com/golangci/go-misc", sum = "h1:9kfjN3AdxcbsZBf8NjltjWihK2QfBBBZuv91cMFfDHw=", version = "v0.0.0-20180628070357-927a3d87b613", ) go_repository( name = "com_github_golangci_goconst", importpath = "github.com/golangci/goconst", sum = "h1:pe9JHs3cHHDQgOFXJJdYkK6fLz2PWyYtP4hthoCMvs8=", version = "v0.0.0-20180610141641-041c5f2b40f3", ) go_repository( name = "com_github_golangci_gocyclo", importpath = "github.com/golangci/gocyclo", sum = "h1:pXTK/gkVNs7Zyy7WKgLXmpQ5bHTrq5GDsp8R9Qs67g0=", version = "v0.0.0-20180528144436-0a533e8fa43d", ) go_repository( name = "com_github_golangci_gofmt", importpath = "github.com/golangci/gofmt", sum = "h1:iR3fYXUjHCR97qWS8ch1y9zPNsgXThGwjKPrYfqMPks=", version = "v0.0.0-20190930125516-244bba706f1a", ) go_repository( name = "com_github_golangci_golangci_lint", importpath = "github.com/golangci/golangci-lint", sum = "h1:+m9I3LEmxXLpymkXRPkDQGzOVBmBYm16UtDiXqZxWek=", version = "v1.31.0", ) go_repository( name = "com_github_golangci_ineffassign", importpath = "github.com/golangci/ineffassign", sum = "h1:gLLhTLMk2/SutryVJ6D4VZCU3CUqr8YloG7FPIBWFpI=", version = "v0.0.0-20190609212857-42439a7714cc", ) go_repository( name = "com_github_golangci_lint_1", importpath = "github.com/golangci/lint-1", sum = "h1:MfyDlzVjl1hoaPzPD4Gpb/QgoRfSBR0jdhwGyAWwMSA=", version = "v0.0.0-20191013205115-297bf364a8e0", ) go_repository( name = "com_github_golangci_maligned", importpath = "github.com/golangci/maligned", sum = "h1:kNY3/svz5T29MYHubXix4aDDuE3RWHkPvopM/EDv/MA=", version = "v0.0.0-20180506175553-b1d89398deca", ) go_repository( name = "com_github_golangci_misspell", importpath = "github.com/golangci/misspell", sum = "h1:EL/O5HGrF7Jaq0yNhBLucz9hTuRzj2LdwGBOaENgxIk=", version = "v0.0.0-20180809174111-950f5d19e770", ) go_repository( name = "com_github_golangci_prealloc", importpath = "github.com/golangci/prealloc",
name was incorrect. Theme was not deleted.' ) assert Addon.objects.filter(id=theme.id).exists() self.assert3xx(response, theme.get_dev_url('versions')) class TestHome(TestCase): fixtures = ['base/addon_3615', 'base/users'] def setUp(self): super(TestHome, self).setUp() assert self.client.login(email='<EMAIL>') self.url = reverse('devhub.index') self.addon = Addon.objects.get(pk=3615) def get_pq(self): response = self.client.get(self.url) assert response.status_code == 200 return pq(response.content) def test_basic_logged_out(self): self.client.logout() response = self.client.get(self.url) assert response.status_code == 200 self.assertTemplateUsed(response, 'devhub/index.html') assert b'Customize Firefox' in response.content def test_default_lang_selected(self): self.client.logout() doc = self.get_pq() selected_value = doc('#language option:selected').attr('value') assert selected_value == 'en-us' def test_basic_logged_in(self): response = self.client.get(self.url) assert response.status_code == 200 self.assertTemplateUsed(response, 'devhub/index.html') assert b'My Add-ons' in response.content def test_my_addons_addon_versions_link(self): assert self.client.login(email='<EMAIL>') doc = self.get_pq() addon_list = doc('.DevHub-MyAddons-list') href = addon_list.find('.DevHub-MyAddons-item-versions a').attr('href') assert href == self.addon.get_dev_url('versions') def test_my_addons(self): statuses = [ (amo.STATUS_NOMINATED, amo.STATUS_AWAITING_REVIEW, 'Awaiting Review'), (amo.STATUS_APPROVED, amo.STATUS_AWAITING_REVIEW, 'Approved'), (amo.STATUS_DISABLED, amo.STATUS_APPROVED, 'Disabled by Mozilla'), ] latest_version = self.addon.find_latest_version(amo.RELEASE_CHANNEL_LISTED) latest_file = latest_version.files.all()[0] for addon_status, file_status, status_str in statuses: latest_file.update(status=file_status) self.addon.update(status=addon_status) doc = self.get_pq() addon_item = doc('.DevHub-MyAddons-list .DevHub-MyAddons-item') assert addon_item.length == 1 assert addon_item.find('.DevHub-MyAddons-item-edit').attr( 'href' ) == self.addon.get_dev_url('edit') if self.addon.type != amo.ADDON_STATICTHEME: assert self.addon.get_icon_url(64) in addon_item.html() else: assert self.addon.current_previews[0].thumbnail_url in ( addon_item.html() ) assert ( status_str == addon_item.find('.DevHub-MyAddons-VersionStatus').text() ) Addon.objects.all().delete() assert self.get_pq()('.DevHub-MyAddons-list .DevHub-MyAddons-item').length == 0 def test_my_addons_recommended(self): self.make_addon_promoted(self.addon, RECOMMENDED, approve_version=True) latest_version = self.addon.find_latest_version(amo.RELEASE_CHANNEL_LISTED) latest_file = latest_version.files.all()[0] statuses = [ (amo.STATUS_NOMINATED, amo.STATUS_AWAITING_REVIEW, 'Awaiting Review'), ( amo.STATUS_APPROVED, amo.STATUS_AWAITING_REVIEW, 'Approved and Recommended', ), (amo.STATUS_DISABLED, amo.STATUS_APPROVED, 'Disabled by Mozilla'), ] for addon_status, file_status, status_str in statuses: latest_file.update(status=file_status) self.addon.update(status=addon_status) doc = self.get_pq() addon_item = doc('.DevHub-MyAddons-list .DevHub-MyAddons-item') assert addon_item.length == 1 assert addon_item.find('.DevHub-MyAddons-item-edit').attr( 'href' ) == self.addon.get_dev_url('edit') if self.addon.type != amo.ADDON_STATICTHEME: assert self.addon.get_icon_url(64) in addon_item.html() else: assert self.addon.current_previews[0].thumbnail_url in ( addon_item.html() ) assert ( status_str == addon_item.find('.DevHub-MyAddons-VersionStatus').text() ) Addon.objects.all().delete() assert self.get_pq()('.DevHub-MyAddons-list .DevHub-MyAddons-item').length == 0 def test_my_addons_with_static_theme(self): self.addon.update(type=amo.ADDON_STATICTHEME) VersionPreview.objects.create(version=self.addon.current_version) self.test_my_addons() def test_my_addons_incomplete(self): self.addon.update(status=amo.STATUS_NULL) # Make add-on incomplete AddonCategory.objects.filter(addon=self.addon).delete() doc = self.get_pq() addon_item = doc('.DevHub-MyAddons-list .DevHub-MyAddons-item') assert addon_item.length == 1 assert addon_item.find('.DevHub-MyAddons-item-edit').attr( 'href' ) == self.addon.get_dev_url('edit') def test_my_addons_no_disabled_or_deleted(self): self.addon.update(status=amo.STATUS_APPROVED, disabled_by_user=True) doc = self.get_pq() addon_item = doc('.DevHub-MyAddons-list .DevHub-MyAddons-item') assert addon_item.length == 1 assert addon_item.find('.DevHub-MyAddons-VersionStatus').text() == 'Invisible' class TestActivityFeed(TestCase): fixtures = ('base/users', 'base/addon_3615') def setUp(self): super(TestActivityFeed, self).setUp() assert self.client.login(email='<EMAIL>') self.addon = Addon.objects.get(id=3615) self.version = self.addon.versions.first() self.action_user = UserProfile.objects.get(email='<EMAIL>') ActivityLog.objects.all().delete() def test_feed_for_all(self): response = self.client.get(reverse('devhub.feed_all')) assert response.status_code == 200 doc = pq(response.content) assert doc('header h2').text() == 'Recent Activity for My Add-ons' def test_feed_for_addon(self): response = self.client.get(reverse('devhub.feed', args=[self.addon.slug])) assert response.status_code == 200 doc = pq(response.content) assert doc('header h2').text() == ('Recent Activity for %s' % self.addon.name) def test_feed_disabled(self): self.addon.update(status=amo.STATUS_DISABLED) response = self.client.get(reverse('devhub.feed', args=[self.addon.slug])) assert response.status_code == 200 def test_feed_disabled_anon(self): self.client.logout() response = self.client.get(reverse('devhub.feed', args=[self.addon.slug])) assert response.status_code == 302 def add_log(self, action=amo.LOG.ADD_RATING): core.set_user(self.action_user) ActivityLog.create(action, self.addon, self.version) def add_hidden_log(self, action=amo.LOG.COMMENT_VERSION): self.add_log(action=action) def test_feed_hidden(self): self.add_hidden_log() self.add_hidden_log(amo.LOG.OBJECT_ADDED) res = self.client.get(reverse('devhub.feed', args=[self.addon.slug])) doc = pq(res.content) assert len(doc('#recent-activity li.item')) == 0 def test_addons_hidden(self): self.add_hidden_log() self.add_hidden_log(amo.LOG.OBJECT_ADDED) res = self.client.get(reverse('devhub.addons')) doc = pq(res.content) assert len(doc('.recent-activity li.item')) == 0 def test_unlisted_addons_dashboard(self): """Unlisted addons are displayed in the feed on the dashboard page.""" self.make_addon_unlisted(self.addon) self.add_log() res = self.client.get(reverse('devhub.addons')) doc = pq(res.content) assert len(doc('.recent-activity li.item')) == 2 def test_unlisted_addons_feed_sidebar(self): """Unlisted addons are displayed in the left side in the feed page.""" self.make_addon_unlisted(self.addon) self.add_log() res = self.client.get(reverse('devhub.feed_all')) doc = pq(res.content) # First li is "All My Add-ons". assert len(doc('#refine-addon li')) == 2 def test_unlisted_addons_feed(self): """Unlisted addons are displayed in the feed page.""" self.make_addon_unlisted(self.addon) self.add_log() res = self.client.get(reverse('devhub.feed_all')) doc = pq(res.content) assert len(doc('#recent-activity .item')) == 2 def test_unlisted_addons_feed_filter(self): """Feed page can be filtered on unlisted addon.""" self.make_addon_unlisted(self.addon) self.add_log() res = self.client.get(reverse('devhub.feed', args=[self.addon.slug])) doc = pq(res.content) assert len(doc('#recent-activity .item')) == 2 def test_reviewer_name_is_used_for_reviewer_actions(self): self.action_user.update(display_name='HîdeMe', reviewer_name='ShöwMe') self.add_log(action=amo.LOG.APPROVE_VERSION) response = self.client.get(reverse('devhub.feed', args=[self.addon.slug])) doc = pq(response.content) assert len(doc('#recent-activity .item')) == 1 content = force_str(response.content) assert self.action_user.reviewer_name in content assert self.action_user.name not in content def test_regular_name_is_used_for_non_reviewer_actions(self): # Fields are inverted compared to the test above. self.action_user.update(reviewer_name='HîdeMe', display_name='ShöwMe') self.add_log(action=amo.LOG.ADD_RATING) # not a reviewer action. response = self.client.get(reverse('devhub.feed', args=[self.addon.slug])) doc = pq(response.content) assert len(doc('#recent-activity .item')) == 1 content = force_str(response.content) # Assertions are inverted compared to the test above. assert self.action_user.reviewer_name not in content assert self.action_user.name in content def test_addons_dashboard_name(self): self.add_log() res = self.client.get(reverse('devhub.addons')) doc = pq(res.content) timestamp = doc('.recent-activity li.item span.activity-timestamp') assert len(timestamp) == 1 assert self.action_user.name assert self.action_user.name in timestamp.html() assert '<a href=' not in timestamp.html() def test_addons_dashboard_reviewer_name(self): self.action_user.update(reviewer_name='bob') self.add_log(action=amo.LOG.APPROVE_VERSION) res = self.client.get(reverse('devhub.addons')) doc = pq(res.content) timestamp = doc('.recent-activity li.item span.activity-timestamp') assert len(timestamp) == 1 assert self.action_user.name assert self.action_user.name not in timestamp.html() assert self.action_user.reviewer_name in timestamp.html() assert '<a href=' not in timestamp.html() class TestAPIAgreement(TestCase): fixtures = ['base/addon_3615', 'base/addon_5579', 'base/users'] def setUp(self): super(TestAPIAgreement, self).setUp() assert self.client.login(email='<EMAIL>') self.user = UserProfile.objects.get(email='<EMAIL>') self.user.update(last_login_ip='192.168.1.1') def test_agreement_read(self): self.user.update(read_dev_agreement=self.days_ago(0)) response = self.client.get(reverse('devhub.api_key_agreement')) self.assert3xx(response, reverse('devhub.api_key')) def test_agreement_unread_captcha_inactive(self): self.user.update(read_dev_agreement=None) response = self.client.get(reverse('devhub.api_key_agreement')) assert response.status_code == 200 assert 'agreement_form' in response.context form = response.context['agreement_form'] assert 'recaptcha' not in form.fields doc = pq(response.content) assert doc('.g-recaptcha') == [] @override_switch('developer-agreement-captcha', active=True) def test_agreement_unread_captcha_active(self): self.user.update(read_dev_agreement=None) response = self.client.get(reverse('devhub.api_key_agreement')) assert response.status_code == 200 assert 'agreement_form' in response.context form = response.context['agreement_form'] assert 'recaptcha' in form.fields doc = pq(response.content) assert doc('.g-recaptcha') def test_agreement_submit_success(self): self.user.update(read_dev_agreement=None) response = self.client.post( reverse('devhub.api_key_agreement'), data={ 'distribution_agreement': 'on', 'review_policy': 'on', }, ) assert response.status_code == 302 assert response['Location'] == reverse('devhub.api_key') self.user.reload() self.assertCloseToNow(self.user.read_dev_agreement) @override_switch('developer-agreement-captcha', active=True) def test_agreement_submit_captcha_active_error(self): self.user.update(read_dev_agreement=None) response = self.client.post(reverse('devhub.api_key_agreement')) # Captcha is properly rendered doc = pq(response.content) assert doc('.g-recaptcha') assert 'recaptcha' in response.context['agreement_form'].errors @override_switch('developer-agreement-captcha', active=True) def test_agreement_submit_captcha_active_success(self): self.user.update(read_dev_agreement=None) verify_data = urlencode( { 'secret': '', 'remoteip': '127.0.0.1', 'response': 'test', } ) responses.add( responses.GET, 'https://www.google.com/recaptcha/api/siteverify?' + verify_data, json={'error-codes': [], 'success': True}, ) response = self.client.post( reverse('devhub.api_key_agreement'), data={ 'g-recaptcha-response': 'test', 'distribution_agreement': 'on', 'review_policy': 'on', }, ) assert response.status_code == 302 assert response['Location'] == reverse('devhub.api_key') self.user.reload() self.assertCloseToNow(self.user.read_dev_agreement) def test_agreement_read_but_too_long_ago(self): set_config('last_dev_agreement_change_date', '2018-01-01 12:00') before_agreement_last_changed = datetime(2018, 1, 1, 12, 0) - timedelta(days=1) self.user.update(read_dev_agreement=before_agreement_last_changed) response = self.client.get(reverse('devhub.api_key_agreement')) assert response.status_code == 200 assert 'agreement_form' in response.context @mock.patch('olympia.addons.utils.RestrictionChecker.is_submission_allowed') def test_cant_submit_agreement_if_restricted(self, is_submission_allowed_mock): is_submission_allowed_mock.return_value = False self.user.update(read_dev_agreement=None) response = self.client.post( reverse('devhub.api_key_agreement'), data={ 'distribution_agreement': 'on', 'review_policy': 'on', }, ) assert response.status_code == 200 assert response.context['agreement_form'].is_valid() is False self.user.reload() assert self.user.read_dev_agreement is None assert is_submission_allowed_mock.call_count == 2 # First call is from the form, and it's not checking the agreement, # it's just to see if the user is restricted. assert is_submission_allowed_mock.call_args_list[0] == ( (), {'check_dev_agreement': False}, ) # Second call is from the view itself, no arguments assert is_submission_allowed_mock.call_args_list[1] == ((), {}) def test_cant_submit_agreement_if_restricted_functional(self): # Like test_cant_submit_agreement_if_restricted() but with no mocks, # picking a single restriction and making sure it's working properly. IPNetworkUserRestriction.objects.create(network='127.0.0.1/32') self.user.update(read_dev_agreement=None) response = self.client.post( reverse('devhub.api_key_agreement'), data={ 'distribution_agreement': 'on', 'review_policy': 'on', }, ) assert response.status_code == 200 assert response.context['agreement_form'].is_valid() is False doc = pq(response.content) assert doc('.addon-submission-process').text() == ( 'Multiple add-ons violating our policies have been submitted ' 'from your location. The IP address has been blocked.\n' 'More information on Developer Accounts' ) @mock.patch('olympia.addons.utils.RestrictionChecker.is_submission_allowed') def test_agreement_page_shown_if_restricted(self, is_submission_allowed_mock): # Like test_agreement_read() above, but with a restricted user: they # are shown the agreement page again instead of redirecting to the # api keys page. is_submission_allowed_mock.return_value = False self.user.update(read_dev_agreement=self.days_ago(0)) response = self.client.get(reverse('devhub.api_key_agreement')) assert response.status_code == 200 assert 'agreement_form' in response.context class TestAPIKeyPage(TestCase): fixtures = ['base/addon_3615', 'base/users'] def setUp(self): super(TestAPIKeyPage, self).setUp() self.url = reverse('devhub.api_key') assert self.client.login(email='<EMAIL>') self.user = UserProfile.objects.get(email='<EMAIL>') self.user.update(last_login_ip='192.168.1.1') def test_key_redirect(self): self.user.update(read_dev_agreement=None) response = self.client.get(reverse('devhub.api_key')) self.assert3xx(response, reverse('devhub.api_key_agreement')) def test_redirect_if_restricted(self): IPNetworkUserRestriction.objects.create(network='127.0.0.1/32') response = self.client.get(reverse('devhub.api_key')) self.assert3xx(response, reverse('devhub.api_key_agreement')) def test_view_without_credentials_not_confirmed_yet(self): response = self.client.get(self.url) assert response.status_code == 200 doc = pq(response.content) submit = doc('#generate-key') assert submit.text() == 'Generate new credentials' inputs = doc('.api-input input') assert len(inputs) == 0, 'Inputs should be absent before keys exist' assert not doc('input[name=confirmation_token]') def test_view_with_credentials(self): APIKey.objects.create( user=self.user, type=SYMMETRIC_JWT_TYPE, key='some-jwt-key', secret='some-jwt-secret', ) response = self.client.get(self.url) assert response.status_code == 200 doc = pq(response.content) submit = doc('#generate-key') assert submit.text() == 'Revoke and regenerate credentials' assert doc('#revoke-key').text() == 'Revoke' key_input = doc('.key-input input').val() assert key_input == 'some-jwt-key' def test_view_without_credentials_confirmation_requested_no_token(self): APIKeyConfirmation.objects.create( user=self.user, token='<PASSWORD>', confirmed_once=False ) response = self.client.get(self.url) assert response.status_code == 200 doc = pq(response.content) # Since confirmation has already been requested, there shouldn't be # any buttons on the page if no token was passed in the URL - the user # needs to follow the link in the email to continue. assert not doc('input[name=confirmation_token]') assert not doc('input[name=action]') def test_view_without_credentials_confirmation_requested_with_token(self): APIKeyConfirmation.objects.create( user=self.user, token='<PASSWORD>', confirmed_once=False ) self.url
= None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SCENE_PT_keyframing_settings(SceneKeyingSetsPanel, SceneButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_context = None ''' ''' bl_label = None ''' ''' bl_parent_id = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_keyframing_settings(self, context, layout, ks, ksp): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SCENE_PT_keying_set_paths(SceneKeyingSetsPanel, SceneButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_context = None ''' ''' bl_label = None ''' ''' bl_parent_id = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_keyframing_settings(self, context, layout, ks, ksp): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SCENE_PT_keying_sets(SceneKeyingSetsPanel, SceneButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_context = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def draw_keyframing_settings(self, context, layout, ks, ksp): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SCENE_PT_rigid_body_cache(RigidBodySubPanel, SceneButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_context = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_parent_id = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SCENE_PT_rigid_body_field_weights(RigidBodySubPanel, SceneButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_context = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_parent_id = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def draw(self, context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def get(self): ''' ''' pass def is_extended(self): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def poll(self, context): ''' ''' pass def pop(self): ''' ''' pass def prepend(self, draw_func): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def remove(self, draw_func): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class SCENE_PT_rigid_body_world_settings(RigidBodySubPanel, SceneButtonsPanel, bpy_types.Panel, bpy_types._GenericUI): bl_context = None ''' ''' bl_label = None ''' ''' bl_parent_id = None ''' ''' bl_region_type = None ''' ''' bl_rna = None ''' ''' bl_space_type = None ''' ''' id_data = None ''' ''' def append(self, draw_func): ''' ''' pass def as_pointer(self):
a watershed on the distance-transformed thresholded image. - *{WA_PROPAGATE}:* This method uses a propagation algorithm instead of a watershed. The image is ignored and the pixels are assigned to the objects by repeatedly adding unassigned pixels to the objects that are immediately adjacent to them. This method is suited in cases such as objects with branching extensions, for instance neurites, where the goal is to trace outward from the cell body along the branch, assigning pixels in the branch along the way. See the help for the **IdentifySecondaryObjects** module for more details on this method. - *{WA_NONE}*: If objects are well separated and bright relative to the background, it may be unnecessary to attempt to separate clumped objects. Using the very fast *{WA_NONE}* option, a simple threshold will be used to identify objects. """.format( **{ "WA_INTENSITY": WA_INTENSITY, "WA_SHAPE": WA_SHAPE, "WA_PROPAGATE": WA_PROPAGATE, "WA_NONE": WA_NONE, } ), ) self.automatic_smoothing = Binary( AUTOMATIC_SMOOTHING_SETTING_TEXT, True, doc="""\ *(Used only when distinguishing between clumped objects)* Select "*{YES}*" to automatically calculate the amount of smoothing applied to the image to assist in declumping. Select "*{NO}*" to manually enter the smoothing filter size. This setting, along with the *Minimum allowed distance between local maxima* setting, affects whether objects close to each other are considered a single object or multiple objects. It does not affect the dividing lines between an object and the background. Please note that this smoothing setting is applied after thresholding, and is therefore distinct from the threshold smoothing method setting above, which is applied *before* thresholding. The size of the smoothing filter is automatically calculated based on the *{SIZE_RANGE_SETTING_TEXT}* setting above. If you see too many objects merged that ought to be separate or too many objects split up that ought to be merged, you may want to override the automatically calculated value.""".format( **{ "YES": "Yes", "NO": "No", "SIZE_RANGE_SETTING_TEXT": SIZE_RANGE_SETTING_TEXT, } ), ) self.smoothing_filter_size = Integer( SMOOTHING_FILTER_SIZE_SETTING_TEXT, 10, doc="""\ *(Used only when distinguishing between clumped objects)* If you see too many objects merged that ought to be separated (under-segmentation), this value should be lower. If you see too many objects split up that ought to be merged (over-segmentation), the value should be higher. Note that splitting and merging is also affected by your choice of settings for the setting, *{AUTOMATIC_MAXIMA_SUPPRESSION_SETTING_TEXT}* It is an art to balance these two settings; read the help carefully for both. Reducing the texture of objects by increasing the smoothing increases the chance that each real, distinct object has only one peak of intensity but also increases the chance that two distinct objects will be recognized as only one object. Note that increasing the size of the smoothing filter increases the processing time exponentially. Enter 0 to prevent any image smoothing in certain cases; for example, for low resolution images with small objects ( < ~5 pixels in diameter). """.format( **{ "AUTOMATIC_MAXIMA_SUPPRESSION_SETTING_TEXT": AUTOMATIC_MAXIMA_SUPPRESSION_SETTING_TEXT } ), ) self.automatic_suppression = Binary( AUTOMATIC_MAXIMA_SUPPRESSION_SETTING_TEXT, True, doc="""\ *(Used only when distinguishing between clumped objects)* Select "*{YES}*" to automatically calculate the distance between intensity maxima to assist in declumping. Select "*{NO}*" to manually enter the permissible maxima distance. This setting, along with the *{SMOOTHING_FILTER_SIZE_SETTING_TEXT}* setting, affects whether objects close to each other are considered a single object or multiple objects. It does not affect the dividing lines between an object and the background. Local maxima that are closer together than the minimum allowed distance will be suppressed (the local intensity histogram is smoothed to remove the peaks within that distance). The distance can be automatically calculated based on the minimum entered for the *{SIZE_RANGE_SETTING_TEXT}* setting above, but if you see too many objects merged that ought to be separate, or too many objects split up that ought to be merged, you may want to override the automatically calculated value.""".format( **{ "YES": "Yes", "NO": "No", "SMOOTHING_FILTER_SIZE_SETTING_TEXT": SMOOTHING_FILTER_SIZE_SETTING_TEXT, "SIZE_RANGE_SETTING_TEXT": SIZE_RANGE_SETTING_TEXT, } ), ) self.maxima_suppression_size = Float( "Suppress local maxima that are closer than this minimum allowed distance", 7, minval=0, doc="""\ *(Used only when distinguishing between clumped objects)* Enter a positive integer, in pixel units. If you see too many objects merged that ought to be separated (under-segmentation), the value should be lower. If you see too many objects split up that ought to be merged (over-segmentation), the value should be higher. The maxima suppression distance should be set to be roughly equivalent to the radius of the smallest object of interest that you would expect to see in the experiment. Any distinct “objects” that are found but are within two times this distance from each other will be assumed to be actually two lumpy parts of the same object, and they will be merged. Note that splitting and merging is also affected by your choice of settings for the setting, *{SMOOTHING_FILTER_SIZE_SETTING_TEXT}* It is an art to balance these two settings; read the help carefully for both. """.format( **{ "SMOOTHING_FILTER_SIZE_SETTING_TEXT": SMOOTHING_FILTER_SIZE_SETTING_TEXT } ), ) self.low_res_maxima = Binary( "Speed up by using lower-resolution image to find local maxima?", True, doc="""\ *(Used only when distinguishing between clumped objects)* Select "*{YES}*" to down-sample the image for declumping. This can be helpful for saving processing time on large images. Note that if you have entered a minimum object diameter of 10 or less, checking this box will have no effect.""".format( **{"YES": "Yes"} ), ) self.fill_holes = Choice( "Fill holes in identified objects?", FH_ALL, value=FH_THRESHOLDING, doc="""\ This option controls how holes (regions of background surrounded by one or more objects) are filled in: - *{FH_THRESHOLDING}:* Fill in holes that are smaller than the maximum object size prior to declumping and to fill in any holes after declumping. - *{FH_DECLUMP}:* Fill in holes located within identified objects after declumping. - *{FH_NEVER}:* Leave holes within objects. Please note that if an object is located within a hole and this option is enabled, the object will be lost when the hole is filled in.""".format( **{ "FH_THRESHOLDING": FH_THRESHOLDING, "FH_DECLUMP": FH_DECLUMP, "FH_NEVER": FH_NEVER, } ), ) self.limit_choice = Choice( "Handling of objects if excessive number of objects identified", [LIMIT_NONE, LIMIT_ERASE], doc="""\ This setting deals with images that are segmented into an unreasonable number of objects. This might happen if the module calculates a low threshold or if the image has unusual artifacts. **IdentifyPrimaryObjects** can handle this condition in one of three ways: - *{LIMIT_NONE}*: Continue processing regardless if large numbers of objects are found. - *{LIMIT_ERASE}*: Erase all objects if the number of objects exceeds the maximum. This results in an image with no primary objects. This option is a good choice if a large number of objects indicates that the image should not be processed; it can save a lot of time in subsequent **Measure** modules.""".format( **{"LIMIT_NONE": LIMIT_NONE, "LIMIT_ERASE": LIMIT_ERASE} ), ) self.maximum_object_count = Integer( "Maximum number of objects", value=500, minval=2, doc="""\ *(Used only when handling images with large numbers of objects by erasing)* This setting limits the number of objects in the image. See the documentation for the previous setting for details.""", ) self.want_plot_maxima = Binary( "Display accepted local maxima?", False, doc="""\ *(Used only when distinguishing between clumped objects)* Select "*{YES}*" to display detected local maxima on the object outlines plot. This can be helpful for fine-tuning segmentation parameters. Local maxima are small cluster of pixels from which objects are 'grown' during segmentation. Each object in a declumped segmentation will have a single maxima. For example, for intensity-based declumping, maxima should appear at the brightest points in an object. If obvious intensity peaks are missing they were probably removed by the filters set above.""".format( **{"YES": "Yes"} ), ) self.maxima_color = Color( "Select maxima color", DEFAULT_MAXIMA_COLOR, doc="Maxima will be displayed in this color.", ) self.use_advanced = Binary( "Use advanced settings?", value=False, doc="""\ Select "*{YES}*" to use advanced module settings. If "*{NO}*" is selected, the following settings are used: - *{THRESHOLD_SCOPE_TEXT}*: {THRESHOLD_SCOPE_VALUE} - *{THRESHOLD_METHOD_TEXT}*: {THRESHOLD_METHOD_VALUE} - *{THRESHOLD_SMOOTHING_SCALE_TEXT}*: {THRESHOLD_SMOOTHING_SCALE_VALUE} (sigma = 1) - *{THRESHOLD_CORRECTION_FACTOR_TEXT}*: {THRESHOLD_CORRECTION_FACTOR_VALUE} - *{THRESHOLD_RANGE_TEXT}*: minimum {THRESHOLD_RANGE_MIN}, maximum {THRESHOLD_RANGE_MAX} - *{UNCLUMP_METHOD_TEXT}*: {UNCLUMP_METHOD_VALUE} - *{WATERSHED_METHOD_TEXT}*: {WATERSHED_METHOD_VALUE} - *{AUTOMATIC_SMOOTHING_TEXT}*: *{YES}* - *{AUTOMATIC_SUPPRESSION_TEXT}*: *{YES}* - *{LOW_RES_MAXIMA_TEXT}*: *{YES}* - *{FILL_HOLES_TEXT}*: {FILL_HOLES_VALUE} - *{LIMIT_CHOICE_TEXT}*: {LIMIT_CHOICE_VALUE}""".format( **{ "AUTOMATIC_SMOOTHING_TEXT": self.automatic_smoothing.get_text(), "AUTOMATIC_SUPPRESSION_TEXT": self.automatic_suppression.get_text(), "FILL_HOLES_TEXT": self.fill_holes.get_text(), "FILL_HOLES_VALUE": FH_THRESHOLDING, "LIMIT_CHOICE_TEXT": self.limit_choice.get_text(), "LIMIT_CHOICE_VALUE": LIMIT_NONE, "LOW_RES_MAXIMA_TEXT": self.low_res_maxima.get_text(), "NO": "No", "THRESHOLD_CORRECTION_FACTOR_TEXT": self.threshold.threshold_correction_factor.get_text(), "THRESHOLD_CORRECTION_FACTOR_VALUE": 1.0, "THRESHOLD_METHOD_TEXT": self.threshold.global_operation.get_text(), "THRESHOLD_METHOD_VALUE": threshold.TM_LI, "THRESHOLD_RANGE_MAX": 1.0, "THRESHOLD_RANGE_MIN": 0.0, "THRESHOLD_RANGE_TEXT": self.threshold.threshold_range.get_text(), "THRESHOLD_SCOPE_TEXT": self.threshold.threshold_scope.get_text(), "THRESHOLD_SCOPE_VALUE": threshold.TS_GLOBAL, "THRESHOLD_SMOOTHING_SCALE_TEXT": self.threshold.threshold_smoothing_scale.get_text(), "THRESHOLD_SMOOTHING_SCALE_VALUE": 1.3488, "UNCLUMP_METHOD_TEXT": self.unclump_method.get_text(), "UNCLUMP_METHOD_VALUE": UN_INTENSITY, "WATERSHED_METHOD_TEXT": self.watershed_method.get_text(), "WATERSHED_METHOD_VALUE": WA_INTENSITY, "YES": "Yes", } ), ) self.threshold_setting_version = Integer( "Threshold setting version", value=self.threshold.variable_revision_number ) self.threshold.create_settings() self.threshold.threshold_smoothing_scale.value =
<reponame>vinjn/net-doctor<gh_stars>0 # $Id: dns.py 27 2006-11-21 01:22:52Z dahelder $ # -*- coding: utf-8 -*- """Domain Name System.""" from __future__ import print_function from __future__ import absolute_import import struct import codecs from . import dpkt from .compat import compat_ord DNS_Q = 0 DNS_R = 1 # Opcodes DNS_QUERY = 0 DNS_IQUERY = 1 DNS_STATUS = 2 DNS_NOTIFY = 4 DNS_UPDATE = 5 # Flags DNS_CD = 0x0010 # checking disabled DNS_AD = 0x0020 # authenticated data DNS_Z = 0x0040 # unused DNS_RA = 0x0080 # recursion available DNS_RD = 0x0100 # recursion desired DNS_TC = 0x0200 # truncated DNS_AA = 0x0400 # authoritative answer DNS_QR = 0x8000 # response ( query / response ) # Response codes DNS_RCODE_NOERR = 0 DNS_RCODE_FORMERR = 1 DNS_RCODE_SERVFAIL = 2 DNS_RCODE_NXDOMAIN = 3 DNS_RCODE_NOTIMP = 4 DNS_RCODE_REFUSED = 5 DNS_RCODE_YXDOMAIN = 6 DNS_RCODE_YXRRSET = 7 DNS_RCODE_NXRRSET = 8 DNS_RCODE_NOTAUTH = 9 DNS_RCODE_NOTZONE = 10 # RR types DNS_A = 1 DNS_NS = 2 DNS_CNAME = 5 DNS_SOA = 6 DNS_NULL = 10 DNS_PTR = 12 DNS_HINFO = 13 DNS_MX = 15 DNS_TXT = 16 DNS_AAAA = 28 DNS_SRV = 33 DNS_OPT = 41 # RR classes DNS_IN = 1 DNS_CHAOS = 3 DNS_HESIOD = 4 DNS_ANY = 255 def pack_name(name, off, label_ptrs): name = codecs.encode(name, 'utf-8') if name: labels = name.split(b'.') else: labels = [] labels.append(b'') buf = b'' for i, label in enumerate(labels): key = b'.'.join(labels[i:]).upper() ptr = label_ptrs.get(key) if not ptr: if len(key) > 1: ptr = off + len(buf) if ptr < 0xc000: label_ptrs[key] = ptr i = len(label) buf += struct.pack("B", i) + label else: buf += struct.pack('>H', (0xc000 | ptr)) break return buf def unpack_name(buf, off): name = [] saved_off = 0 start_off = off name_length = 0 while True: if off >= len(buf): raise dpkt.NeedData() n = compat_ord(buf[off]) if n == 0: off += 1 break elif (n & 0xc0) == 0xc0: ptr = struct.unpack('>H', buf[off:off + 2])[0] & 0x3fff if ptr >= start_off: raise dpkt.UnpackError('Invalid label compression pointer') off += 2 if not saved_off: saved_off = off start_off = off = ptr elif (n & 0xc0) == 0x00: off += 1 name.append(buf[off:off + n]) name_length += n + 1 if name_length > 255: raise dpkt.UnpackError('name longer than 255 bytes') off += n else: raise dpkt.UnpackError('Invalid label length %02x' % n) if not saved_off: saved_off = off return codecs.decode(b'.'.join(name), 'utf-8'), saved_off class DNS(dpkt.Packet): """Domain Name System. TODO: Longer class information.... Attributes: __hdr__: Header fields of DNS. TODO. """ __hdr__ = ( ('id', 'H', 0), ('op', 'H', DNS_RD), # recursive query # XXX - lists of query, RR objects ('qd', 'H', []), ('an', 'H', []), ('ns', 'H', []), ('ar', 'H', []) ) @property def qr(self): return int((self.op & DNS_QR) == DNS_QR) @qr.setter def qr(self, v): if v: self.op |= DNS_QR else: self.op &= ~DNS_QR @property def opcode(self): return (self.op >> 11) & 0xf @opcode.setter def opcode(self, v): self.op = (self.op & ~0x7800) | ((v & 0xf) << 11) @property def aa(self): return int((self.op & DNS_AA) == DNS_AA) @aa.setter def aa(self, v): if v: self.op |= DNS_AA else: self.op &= ~DNS_AA @property def tc(self): return int((self.op & DNS_TC) == DNS_TC) @tc.setter def tc(self, v): if v: self.op |= DNS_TC else: self.op &= ~DNS_TC @property def rd(self): return int((self.op & DNS_RD) == DNS_RD) @rd.setter def rd(self, v): if v: self.op |= DNS_RD else: self.op &= ~DNS_RD @property def ra(self): return int((self.op & DNS_RA) == DNS_RA) @ra.setter def ra(self, v): if v: self.op |= DNS_RA else: self.op &= ~DNS_RA @property def zero(self): return int((self.op & DNS_Z) == DNS_Z) @zero.setter def zero(self, v): if v: self.op |= DNS_Z else: self.op &= ~DNS_Z @property def rcode(self): return self.op & 0xf @rcode.setter def rcode(self, v): self.op = (self.op & ~0xf) | (v & 0xf) class Q(dpkt.Packet): """DNS question.""" __hdr__ = ( ('name', '1025s', b''), ('type', 'H', DNS_A), ('cls', 'H', DNS_IN) ) # XXX - suk def __len__(self): raise NotImplementedError __str__ = __len__ def unpack(self, buf): raise NotImplementedError class RR(Q): """DNS resource record.""" __hdr__ = ( ('name', '1025s', b''), ('type', 'H', DNS_A), ('cls', 'H', DNS_IN), ('ttl', 'I', 0), ('rlen', 'H', 4), ('rdata', 's', b'') ) def pack_rdata(self, off, label_ptrs): # XXX - yeah, this sux if self.rdata: return self.rdata if self.type == DNS_A: return self.ip elif self.type == DNS_NS: return pack_name(self.nsname, off, label_ptrs) elif self.type == DNS_CNAME: return pack_name(self.cname, off, label_ptrs) elif self.type == DNS_PTR: return pack_name(self.ptrname, off, label_ptrs) elif self.type == DNS_SOA: l_ = [] l_.append(pack_name(self.mname, off, label_ptrs)) l_.append(pack_name(self.rname, off + len(l_[0]), label_ptrs)) l_.append(struct.pack('>IIIII', self.serial, self.refresh, self.retry, self.expire, self.minimum)) return b''.join(l_) elif self.type == DNS_MX: return struct.pack('>H', self.preference) + \ pack_name(self.mxname, off + 2, label_ptrs) elif self.type == DNS_TXT or self.type == DNS_HINFO: return b''.join(struct.pack('B', len(x)) + x for x in self.text) elif self.type == DNS_AAAA: return self.ip6 elif self.type == DNS_SRV: return struct.pack('>HHH', self.priority, self.weight, self.port) + \ pack_name(self.srvname, off + 6, label_ptrs) elif self.type == DNS_OPT: return b'' # self.rdata else: raise dpkt.PackError('RR type %s is not supported' % self.type) def unpack_rdata(self, buf, off): if self.type == DNS_A: self.ip = self.rdata elif self.type == DNS_NS: self.nsname, off = unpack_name(buf, off) elif self.type == DNS_CNAME: self.cname, off = unpack_name(buf, off) elif self.type == DNS_PTR: self.ptrname, off = unpack_name(buf, off) elif self.type == DNS_SOA: self.mname, off = unpack_name(buf, off) self.rname, off = unpack_name(buf, off) self.serial, self.refresh, self.retry, self.expire, self.minimum = \ struct.unpack('>IIIII', buf[off:off + 20]) elif self.type == DNS_MX: self.preference = struct.unpack('>H', self.rdata[:2]) self.mxname, off = unpack_name(buf, off + 2) elif self.type == DNS_TXT or self.type == DNS_HINFO: self.text = [] buf = self.rdata while buf: n = compat_ord(buf[0]) self.text.append(codecs.decode(buf[1:1 + n], 'utf-8')) buf = buf[1 + n:] elif self.type == DNS_AAAA: self.ip6 = self.rdata elif self.type == DNS_NULL: self.null = codecs.encode(self.rdata, 'hex') elif self.type == DNS_SRV: self.priority, self.weight, self.port = struct.unpack('>HHH', self.rdata[:6]) self.srvname, off = unpack_name(buf, off + 6) elif self.type == DNS_OPT: pass # RFC-6891: OPT is a pseudo-RR not carrying any DNS data else: raise dpkt.UnpackError('RR type %s is not supported' % self.type) def pack_q(self, buf, q): """Append packed DNS question and return buf.""" return buf + pack_name(q.name, len(buf), self.label_ptrs) + struct.pack('>HH', q.type, q.cls) def unpack_q(self, buf, off): """Return DNS question and new offset.""" q = self.Q() q.name, off = unpack_name(buf, off) q.type, q.cls = struct.unpack('>HH', buf[off:off + 4]) off += 4 return q, off def pack_rr(self, buf, rr): """Append packed DNS RR and return buf.""" name = pack_name(rr.name, len(buf), self.label_ptrs) rdata = rr.pack_rdata(len(buf) + len(name) + 10, self.label_ptrs) return buf + name + struct.pack('>HHIH', rr.type, rr.cls, rr.ttl, len(rdata)) + rdata def unpack_rr(self, buf, off): """Return DNS RR and new offset.""" rr = self.RR() rr.name, off = unpack_name(buf, off) rr.type, rr.cls, rr.ttl, rdlen = struct.unpack('>HHIH', buf[off:off + 10]) off += 10 rr.rdata = buf[off:off + rdlen] rr.rlen = rdlen rr.unpack_rdata(buf, off) off += rdlen return rr, off def unpack(self, buf): dpkt.Packet.unpack(self, buf) off = self.__hdr_len__ cnt = self.qd # FIXME: This relies on this being properly set somewhere else self.qd = [] for _ in range(cnt): q, off = self.unpack_q(buf, off) self.qd.append(q) for x in ('an', 'ns', 'ar'): cnt = getattr(self, x, 0) setattr(self, x, []) for _ in range(cnt): rr, off = self.unpack_rr(buf, off) getattr(self, x).append(rr) self.data = b'' def __len__(self): # XXX - cop out return len(bytes(self)) def __bytes__(self): # XXX - compress names on the fly self.label_ptrs = {} buf = struct.pack(self.__hdr_fmt__, self.id, self.op, len(self.qd), len(self.an), len(self.ns), len(self.ar)) for q in self.qd: buf = self.pack_q(buf, q) for x in ('an', 'ns', 'ar'): for rr in getattr(self, x): buf = self.pack_rr(buf, rr) del self.label_ptrs return buf # TESTS def define_testdata(): """ Reference test data is stored in the dynamically defined class. It is created in this way so that we can import unhexlify only during testing, and not during normal use. """ from binascii import unhexlify class TestData(object): a_resp = unhexlify( "059c8180000100010000000106676f6f676c6503636f6d0000010001c00c00010" "0010000012b0004d83ace2e0000290200000000000000" ) aaaa_resp = unhexlify( "7f228180000100010000000005676d61696c03636f6d00001c0001c00c001c000" "10000012b00102a001450400908020000000000002005" ) cname_resp = unhexlify( "a154818000010001000000000377777705676d61696c03636f6d0000010001c00" "c000500010000545f000e046d61696c06676f6f676c65c016" ) invalid_rr = unhexlify( "000001000000000100000000046e616d650000150001000000000000" ) mx_resp = unhexlify( "053b8180000100010000000006676f6f676c6503636f6d00000f0001c00c000f0" "001000002570011001e04616c7432056173706d78016cc00c" ) null_resp = unhexlify( "12b0840000010001000000000b626c6168626c616836363606706972617465037" "3656100000a0001c00c000a00010000000000095641434b4403c5e901" ) opt_resp = unhexlify( "8d6e0110000100000000000104783131310678787878313106616b616d6169036" "e657400000100010000290fa0000080000000" ) ptr_resp = unhexlify( "67028180000100010003000001310131033231310331343107696e2d616464720" "46172706100000c0001c00c000c000100000d3600240764656661756c740a762d" "756d63652d69667305756d6e657405756d6963680365647500c00e00020001000" "00d36000d0673686162627903696673c04fc00e0002000100000d36000f0c6669" "73682d6c6963656e7365c06dc00e0002000100000d36000b04646e73320369746" "4c04f" ) soa_resp = unhexlify( "851f8180000100010000000006676f6f676c6503636f6d0000060001c00c00060" "001000000230026036e7332c00c09646e732d61646d696ec00c0a747447000003" "8400000384000007080000003c" ) srv_resp = unhexlify( "7f2281800001000100000000075f6a6162626572045f746370066a61626265720" "3636f6d0000210001c00c0021000100000e0f001a000a000014950764656e6a61" "6232066a616262657203636f6d00" )
<filename>src/exomole/read_def.py """Module grouping some data-classes and the parser for reading and parsing the ExoMol *.def* files. """ import warnings from pathlib import Path from pyvalem.formula import Formula, FormulaParseError from .exceptions import ( LineValueError, LineCommentError, LineWarning, DefParseError, DefConsistencyError, ) from .utils import ( get_file_raw_text_over_api, parse_exomol_line, get_num_columns, DataClass, ) # noinspection PyUnresolvedReferences class Isotope(DataClass): """A data class representing isotope instances. All the parameters passed are stored as instance attributes. Parameters ---------- number : int element_symbol : str """ def __init__(self, number, element_symbol): super().__init__(number=number, element_symbol=element_symbol) def __repr__(self): return f"Isotope({self.number}{self.element_symbol})" class IrreducibleRepresentation(DataClass): """A data class representing instances of irreducible representations. All the parameters passed are stored as instance attributes. Parameters ---------- ir_id : str ID of the *irreducible representation* label : str nuclear_spin_degeneracy : int """ def __init__(self, ir_id, label, nuclear_spin_degeneracy): super().__init__( id=ir_id, label=label, nuclear_spin_degeneracy=nuclear_spin_degeneracy ) class QuantumCase(DataClass): """A data class representing the quantum case instances. All the parameters passed are stored as instance attributes. Parameters ---------- label : str """ def __init__(self, label): super().__init__(label=label) # noinspection PyUnresolvedReferences class Quantum(DataClass): """A data class representing the quanta instances. All the parameters passed are stored as instance attributes. Parameters ---------- label : str q_format : str The quantum format as specified by the *.def* file description : str """ def __init__(self, label, q_format, description): super().__init__(label=label, format=q_format, description=description) def __repr__(self): return f"Quantum({self.label})" class DefParser: """Class handling parsing of any particular *.def* file. Parses the *.def* file specified either by the `path` argument passed and leading to the *.def* file on the local file system, or by the trio of `molecule_slug`, `isotopologue_slug` and `dataset_name` arguments, in which case the *.def* file is requested via the ExoMol public API. Instantiating the class only saves the `raw_text` attribute, which can be parsed with the `parse` method into all the available info. All the *relevant* attributes are listed in the **Attributes** section. Parameters ---------- path : str or Path, optional The path leading to the *.def* file. If supplied, all the other arguments are simply ignored. molecule_slug : str, optional Only required, if the `path` argument is not passed. isotopologue_slug : str, optional Only required, if the `path` argument is not passed. dataset_name : str, optional Only required, if the `path` argument is not passed. Attributes ---------- raw_text : str file_name : str version : int iso_formula : str iso_slug : str isotopes : list of Isotope lifetime_availability : bool lande_factor_availability : bool quanta : list of Quantum Raises ------ APIError If `path` not passed and the ExoMol API request call results in an unsuccessful response. Notes ----- See the ExoMol file standard as defined in the **ExoMol release paper** [1]_. References ---------- .. [1] <NAME>, et al. The ExoMol database: molecular line lists for exoplanet and other hot atmospheres. J Mol Spectrosc 2016;327:73–94. doi: 10.1016/j.jms.2016.05.002 Examples -------- Instantiate the parser: >>> parser = DefParser( ... path="tests/resources/exomol_data/CaH/40Ca-1H/Yadin/40Ca-1H__Yadin.def" ... ) >>> parser.file_name '40Ca-1H__Yadin.def' >>> parser.raw_text[:10] # first 10 characters of the text 'EXOMOL.def' Parse the .def file: >>> parser.parse(warn_on_comments=True) >>> parser.id 'EXOMOL.def' >>> parser.iso_formula '(40Ca)(1H)' >>> parser.mass 40.970416 >>> parser.isotopes [Isotope(40Ca), Isotope(1H)] >>> quanta = parser.quanta >>> quanta [Quantum(par), Quantum(v), Quantum(N), Quantum(e/f)] >>> quanta[0].description "total parity: '+' or '-'" >>> parser.lifetime_availability, parser.lande_factor_availability (True, False) Additional methods on the parsed data: >>> parser.get_quanta_labels() ['par', 'v', 'N', 'e/f'] >>> # with parser.lifetime_availability, we expect 9 columns in the .states file >>> parser.get_states_header() ['i', 'E', 'g_tot', 'J', 'tau', 'par', 'v', 'N', 'e/f'] """ def __init__( self, path=None, molecule_slug=None, isotopologue_slug=None, dataset_name=None, ): self.local = path is not None self.path = Path(path) if path is not None else None self.raw_text = None self.file_name = None self._save_raw_text(path, molecule_slug, isotopologue_slug, dataset_name) # placeholders to all the attributes self.id = None self.iso_formula = None self.iso_slug = None self.dataset_name = None self.version = None self.inchi_key = None self.isotopes = None self.mass = None self.symmetry_group = None self.irreducible_representations = None self.max_temp = None self.num_pressure_broadeners = None self.dipole_availability = None self.num_cross_sections = None self.num_k_coefficients = None self.lifetime_availability = None self.lande_factor_availability = None self.num_states = None self.quanta_cases = None self.quanta = None self.num_transitions = None self.num_trans_files = None self.max_wavenumber = None self.high_energy_complete = None self.parsed = False def _save_raw_text(self, path, molecule_slug, isotopologue_slug, dataset_name): """Save the raw text of a *.def* file as an instance attribute The *.def* file is either read from the local file system, or requested over the ExoMol public API, based on the attributes values. Parameters ---------- path : str or Path, optional Path leading to the *.def* file. If supplied, all the other arguments are ignored. molecule_slug : str, optional Ignored if `path` is passed. isotopologue_slug : str or None Ignored if `path` is passed. dataset_name : str, optional Ignored if `path` is passed. """ if path is None: self.raw_text = get_file_raw_text_over_api( "def", molecule_slug, isotopologue_slug, dataset_name ) self.file_name = f"{isotopologue_slug}__{dataset_name}.def" else: with open(path, "r") as fp: self.raw_text = fp.read() self.file_name = Path(path).name def parse(self, warn_on_comments=True): """Parse the *.def* file text from the `raw_text` attribute. Populates all the instance attributes incrementally, util it hits the end of the file, or one of the exceptions is raised, signaling inconsistent *.def* file. Parameters ---------- warn_on_comments : bool If ``True``, the comments behind the ``#`` symbol on each line are checked against some expected comments (hard-coded in the method) and the `LineWarning` is raised if they do not match. Raises ------- DefParseError Raised if value on any line cannot be cast to the expected ``type``, or if the parser runs out of lines. This error signals an inconsistent *.def* file. Also raised when any other inconsistencies are detected, such as formula not supported by the `PyValem` package, etc. Warns ----- LineWarning Raised if `warns_on_comments` is ``True`` and if the comment on any line does not match the expected text hard-coded in this method. Also raised if any empty line is present in the .def file, or of the number of isotope sections does not match the number of atoms in the isotopologue. Warnings -------- Currently the parser stops after the *High Energy Complete* line and does not parse the rest of the *.def* file, as the info beyond this point in the *.def* file was not needed for the data product application which served as my motivation to write this package. """ lines = self.raw_text.split("\n") n_orig = len(lines) def parse_line(expected_comment, val_type=None, local_lines=lines): return parse_exomol_line( local_lines, n_orig, expected_comment=expected_comment, file_name=self.file_name, val_type=val_type, warn_on_comments=warn_on_comments, ) # catch all the parse_line-originated errors and wrap them in a higher-level # error: try: self.id = parse_line("ID") if self.id != "EXOMOL.def": raise DefParseError(f"Unexpected ID in {self.file_name}") self.iso_formula = parse_line("IsoFormula") self.iso_slug = parse_line("Iso-slug") self.dataset_name = parse_line("Isotopologue dataset name") self.version = parse_line("Version number with format YYYYMMDD", int) self.inchi_key = parse_line("Inchi key of molecule") self.isotopes = [] num_atoms = parse_line("Number of atoms", int) try: formula = Formula(self.iso_formula) except FormulaParseError as e: raise DefParseError(f"{str(e)} (raised in {self.file_name})") if formula.natoms != num_atoms: raise DefParseError(f"Incorrect number of atoms in {self.file_name}") # many (probably all) .def files for polyatomic datasets actually do not # list all isotopes, but rather only all *distinct* isotopes.from # I'll handle this with a Warning. num_distinct_atoms = len(formula.atoms) def add_isotope(num, el_symbol): try: Formula(f"({num}{el_symbol})") except FormulaParseError as exc: raise DefParseError(f"{str(exc)} (raised in {self.file_name})") isotope = Isotope(number=num, element_symbol=el_symbol) self.isotopes.append(isotope) i = 0 for i in range(num_distinct_atoms): number = parse_line(f"Isotope number {i + 1}", int) element_symbol = parse_line(f"Element symbol {i + 1}") add_isotope(number, element_symbol) if num_distinct_atoms < num_atoms: num_additional_isotopes_expected = num_atoms - num_distinct_atoms lines_clone = lines.copy() try: for j in range(i + 1, i + 1 + num_additional_isotopes_expected): number = parse_line( f"Isotope number {j + 1}", int, local_lines=lines_clone ) element_symbol = parse_line( f"Element symbol {j + 1}", local_lines=lines_clone ) add_isotope(number, element_symbol) except (LineValueError, LineCommentError): # This means that the .def file lists only distinct isotopes, not # all isotopes, as it should. Handle with Warning and continue with # the original lines warnings.warn( f"Incorrect number of isotopes listed in {self.file_name}", LineWarning, ) else: # This means that the try clause did not raise anything,
#!/bin/env python # Automatically translated python version of # OpenSceneGraph example program "osgthreadedterrain" # !!! This program will need manual tuning before it will work. !!! import sys from osgpypp import OpenThreads from osgpypp import osg from osgpypp import osgDB from osgpypp import osgGA from osgpypp import osgTerrain from osgpypp import osgText from osgpypp import osgUtil from osgpypp import osgViewer # Translated from file 'osgthreadedterrain.cpp' # OpenSceneGraph example, osgterrain. #* #* Permission is hereby granted, free of charge, to any person obtaining a copy #* of this software and associated documentation files (the "Software"), to deal #* in the Software without restriction, including without limitation the rights #* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #* copies of the Software, and to permit persons to whom the Software is #* furnished to do so, subject to the following conditions: #* #* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN #* THE SOFTWARE. # #include <OpenThreads/Block> #include <osg/Group> #include <osg/Geode> #include <osg/ShapeDrawable> #include <osg/Texture2D> #include <osg/PositionAttitudeTransform> #include <osg/MatrixTransform> #include <osg/CoordinateSystemNode> #include <osg/ClusterCullingCallback> #include <osg/ArgumentParser> #include <osgDB/FileUtils> #include <osgDB/fstream> #include <osgDB/ReadFile> #include <osgUtil/IncrementalCompileOperation> #include <osgText/FadeText> #include <osgViewer/Viewer> #include <osgViewer/ViewerEventHandlers> #include <osgGA/TrackballManipulator> #include <osgGA/FlightManipulator> #include <osgGA/DriveManipulator> #include <osgGA/KeySwitchMatrixManipulator> #include <osgGA/StateSetManipulator> #include <osgGA/AnimationPathManipulator> #include <osgGA/TerrainManipulator> #include <osgTerrain/TerrainTile> #include <osgTerrain/GeometryTechnique> #include <osgTerrain/Layer> #include <iostream> typedef std.vector< osg.GraphicsThread > GraphicsThreads class ReleaseBlockOnCompileCompleted (osgUtil.IncrementalCompileOperation.CompileCompletedCallback) : ReleaseBlockOnCompileCompleted(osg.RefBlockCount* block): _block(block) def compileCompleted(compileSet): if _block.valid() : _block.completed() # tell IncrementalCompileOperation that it's now safe to remove the compileSet osg.notify(osg.NOTICE), "compileCompleted(", compileSet, ")" return True _block = osg.RefBlockCount() class LoadAndCompileOperation (osg.Operation) : LoadAndCompileOperation( str filename, osgUtil.IncrementalCompileOperation* ico , osg.RefBlockCount* block): Operation("Load and compile Operation", False), _filename(filename), _incrementalCompileOperation(ico), _block(block) virtual void operator () (osg.Object* object) # osg.notify(osg.NOTICE), "LoadAndCompileOperation ", _filename _loadedModel = osgDB.readNodeFile(_filename) if _loadedModel.valid() and _incrementalCompileOperation.valid() : compileSet = osgUtil.IncrementalCompileOperation.CompileSet(_loadedModel) compileSet._compileCompletedCallback = ReleaseBlockOnCompileCompleted(_block) _incrementalCompileOperation.add(compileSet) else: if _block.valid() : _block.completed() # osg.notify(osg.NOTICE), "done LoadAndCompileOperation ", _filename _filename = str() _loadedModel = osg.Node() _incrementalCompileOperation = osgUtil.IncrementalCompileOperation() _block = osg.RefBlockCount() class MasterOperation (osg.Operation) : typedef std.set<str> Files typedef std.map<str, osg.Node > FilenameNodeMap typedef std.vector< osg.Node > Nodes MasterOperation( str filename, osgUtil.IncrementalCompileOperation* ico): Operation("Master reading operation",True), _filename(filename), _incrementalCompileOperation(ico) #* Set the OperationQueue that the MasterOperation can use to place tasks like file loading on for other processes to handle. def setOperationQueue(oq): _operationQueue = oq def getOperationQueue(): return _operationQueue def readMasterFile(files): fin = osgDB.ifstream(_filename.c_str()) if fin : fr = osgDB.Input() fr.attach(fin) readFilename = False while not fr.eof() : itrAdvanced = False if fr.matchSequence("file %s") or fr.matchSequence("file %w") : files.insert(fr[1].getStr()) fr += 2 itrAdvanced = True readFilename = True if not itrAdvanced : ++fr return readFilename return False def open(group): files = Files() readMasterFile(files) for(Files.iterator itr = files.begin() not = files.end() ++itr) model = osgDB.readNodeFile(*itr) if model : osg.notify(osg.NOTICE), "open: Loaded file ", *itr group.addChild(model) _existingFilenameNodeMap[*itr] = model return True virtual void operator () (osg.Object* callingObject) # decided which method to call according to whole has called me. viewer = dynamic_cast<osgViewer.Viewer*>(callingObject) if viewer : update(viewer.getSceneData()) load = else() def load(): #osg.notify(osg.NOTICE), "void load(Object)" filesA = Files() filesB = Files() readMasterFile(filesB) # osg.notify(osg.NOTICE), "First read ", filesA.size() # itererate until the master file is stable do OpenThreads.Thread.microSleep(100000) filesB.swap(filesA) filesB.clear() readMasterFile(filesB) # osg.notify(osg.NOTICE), "second read ", filesB.size() while filesA not =filesB : files = Files() files.swap(filesB) # osg.notify(osg.NOTICE), "Now equal ", files.size() newFiles = Files() removedFiles = Files() # find out which files are , and which ones have been removed. lock = OpenThreads.ScopedLock<OpenThreads.Mutex>(_mutex) for(Files.iterator fitr = files.begin() not = files.end() ++fitr) if _existingFilenameNodeMap.count(*fitr)==0 : newFiles.insert(*fitr) for(FilenameNodeMap.iterator litr = _existingFilenameNodeMap.begin() not = _existingFilenameNodeMap.end() ++litr) if files.count(litr.first)==0 : removedFiles.insert(litr.first) #if 0 if not newFiles.empty() or not removedFiles.empty() : osg.notify(osg.NOTICE), "void operator () files.size()=", files.size() #endif # first load the files. nodesToAdd = FilenameNodeMap() if not newFiles.empty() : typedef std.vector< osg.GraphicsThread > GraphicsThreads threads = GraphicsThreads() for(unsigned int i=0 i<= osg.GraphicsContext.getMaxContextID() ++i) gc = osg.GraphicsContext.getCompileContext(i) gt = gc.getGraphicsThread() if (gc) else 0 if gt : threads.push_back(gt) if _operationQueue.valid() : # osg.notify(osg.NOTICE), "Using OperationQueue" _endOfLoadBlock = osg.RefBlockCount(newFiles.size()) _endOfLoadBlock.reset() typedef std.list< LoadAndCompileOperation > LoadAndCompileList loadAndCompileList = LoadAndCompileList() for(Files.iterator nitr = newFiles.begin() not = newFiles.end() ++nitr) # osg.notify(osg.NOTICE), "Adding LoadAndCompileOperation ", *nitr loadAndCompile = LoadAndCompileOperation( *nitr, _incrementalCompileOperation, _endOfLoadBlock ) loadAndCompileList.push_back(loadAndCompile) _operationQueue.add( loadAndCompile ) #if 1 operation = osg.Operation() while operation=_operationQueue.getNextOperation() :.valid() : # osg.notify(osg.NOTICE), "Local running of operation" (*operation)(0) #endif # osg.notify(osg.NOTICE), "Waiting for completion of LoadAndCompile operations" _endOfLoadBlock.block() # osg.notify(osg.NOTICE), "done ... Waiting for completion of LoadAndCompile operations" for(LoadAndCompileList.iterator litr = loadAndCompileList.begin() not = loadAndCompileList.end() ++litr) if *litr :._loadedModel.valid() : nodesToAdd[(*litr)._filename] = (*litr)._loadedModel else: _endOfLoadBlock = osg.RefBlockCount(newFiles.size()) _endOfLoadBlock.reset() for(Files.iterator nitr = newFiles.begin() not = newFiles.end() ++nitr) loadedModel = osgDB.readNodeFile(*nitr) if loadedModel : nodesToAdd[*nitr] = loadedModel if _incrementalCompileOperation.valid() : compileSet = osgUtil.IncrementalCompileOperation.CompileSet(loadedModel) compileSet._compileCompletedCallback = ReleaseBlockOnCompileCompleted(_endOfLoadBlock) _incrementalCompileOperation.add(compileSet) else: _endOfLoadBlock.completed() else: _endOfLoadBlock.completed() _endOfLoadBlock.block() requiresBlock = False # pass the locally peppared data to MasterOperations shared data # so that updated thread can merge these changes with the main scene # graph. This merge is carried out via the update(..) method. if not removedFiles.empty() or not nodesToAdd.empty() : lock = OpenThreads.ScopedLock<OpenThreads.Mutex>(_mutex) _nodesToRemove.swap(removedFiles) _nodesToAdd.swap(nodesToAdd) requiresBlock = True # now block so we don't try to load anything till the data has been merged # otherwise _existingFilenameNodeMap will get out of sync. if requiresBlock : _updatesMergedBlock.block() else: OpenThreads.Thread.YieldCurrentThread() # merge the changes with the main scene graph. def update(scene): # osg.notify(osg.NOTICE), "void update(Node*)" group = dynamic_cast<osg.Group*>(scene) if not group : osg.notify(osg.NOTICE), "Error, MasterOperation.update(Node*) can only work with a Group as Viewer.getSceneData()." return lock = OpenThreads.ScopedLock<OpenThreads.Mutex>(_mutex) if not _nodesToRemove.empty() or not _nodesToAdd.empty() : osg.notify(osg.NOTICE), "update().................. " if not _nodesToRemove.empty() : for(Files.iterator itr = _nodesToRemove.begin() not = _nodesToRemove.end() ++itr) fnmItr = _existingFilenameNodeMap.find(*itr) if fnmItr not = _existingFilenameNodeMap.end() : osg.notify(osg.NOTICE), " update():removing ", *itr group.removeChild(fnmItr.second) _existingFilenameNodeMap.erase(fnmItr) _nodesToRemove.clear() if not _nodesToAdd.empty() : for(FilenameNodeMap.iterator itr = _nodesToAdd.begin() not = _nodesToAdd.end() ++itr) osg.notify(osg.NOTICE), " update():inserting ", itr.first group.addChild(itr.second) _existingFilenameNodeMap[itr.first] = itr.second _nodesToAdd.clear() _updatesMergedBlock.release() # add release implementation so that any thread cancellation can # work even when blocks and barriers are used. def release(): if _operationQueue.valid() : _operationQueue.removeAllOperations() _updatesMergedBlock.release() if _endOfCompilebarrier.valid() : _endOfCompilebarrier.release() if _endOfLoadBlock.valid() : _endOfLoadBlock.release() _filename = str() _mutex = OpenThreads.Mutex() _existingFilenameNodeMap = FilenameNodeMap() _nodesToRemove = Files() _nodesToAdd = FilenameNodeMap() _updatesMergedBlock = OpenThreads.Block() _incrementalCompileOperation = osgUtil.IncrementalCompileOperation() _endOfCompilebarrier = osg.BarrierOperation() _endOfLoadBlock = osg.RefBlockCount() _operationQueue = osg.OperationQueue() class FilterHandler (osgGA.GUIEventHandler) : FilterHandler(osgTerrain.GeometryTechnique* gt): _gt(gt) def handle(ea, aa): if not _gt : return False switch(ea.getEventType()) case(osgGA.GUIEventAdapter.KEYDOWN): if ea.getKey() == ord("g") : osg.notify(osg.NOTICE), "Gaussian" _gt.setFilterMatrixAs(osgTerrain.GeometryTechnique.GAUSSIAN) return True elif ea.getKey() == ord("s") : osg.notify(osg.NOTICE), "Smooth" _gt.setFilterMatrixAs(osgTerrain.GeometryTechnique.SMOOTH) return True elif ea.getKey() == ord("S") : osg.notify(osg.NOTICE), "Sharpen" _gt.setFilterMatrixAs(osgTerrain.GeometryTechnique.SHARPEN) return True elif ea.getKey() == ord("+") : _gt.setFilterWidth(_gt.getFilterWidth()*1.1) osg.notify(osg.NOTICE), "Filter width = ", _gt.getFilterWidth() return True elif ea.getKey() == ord("-") : _gt.setFilterWidth(_gt.getFilterWidth()/1.1) osg.notify(osg.NOTICE), "Filter width = ", _gt.getFilterWidth() return True elif ea.getKey() == ord(">") : _gt.setFilterBias(_gt.getFilterBias()+0.1) osg.notify(osg.NOTICE), "Filter bias = ", _gt.getFilterBias() return True elif ea.getKey() == ord("<") : _gt.setFilterBias(_gt.getFilterBias()-0.1) osg.notify(osg.NOTICE), "Filter bias = ", _gt.getFilterBias() return True break default: break return False _gt = osg.observer_ptr<osgTerrain.GeometryTechnique>() class LayerHandler (osgGA.GUIEventHandler) : LayerHandler(osgTerrain.Layer* layer): _layer(layer) def handle(ea, aa): if not _layer : return False scale = 1.2 switch(ea.getEventType()) case(osgGA.GUIEventAdapter.KEYDOWN): if ea.getKey() == ord("q") : _layer.transform(0.0, scale) return True elif ea.getKey() == ord("a") : _layer.transform(0.0, 1.0/scale) return True break default: break return False _layer = osg.observer_ptr<osgTerrain.Layer>() def main(argv): arguments = osg.ArgumentParser(argv) # construct the viewer. viewer = osgViewer.Viewer(arguments) # set up the camera manipulators. keyswitchManipulator = osgGA.KeySwitchMatrixManipulator() keyswitchManipulator.addMatrixManipulator( ord("1"), "Trackball", osgGA.TrackballManipulator() ) keyswitchManipulator.addMatrixManipulator( ord("2"), "Flight", osgGA.FlightManipulator() ) keyswitchManipulator.addMatrixManipulator( ord("3"), "Drive", osgGA.DriveManipulator() ) keyswitchManipulator.addMatrixManipulator( ord("4"), "Terrain", osgGA.TerrainManipulator() ) pathfile = str() keyForAnimationPath =
<reponame>lebarsfa/vpython-wx from __future__ import division from .cvisual import vector from .primitives import (label, curve, faces, points, distant_light) from .create_display import display from . import crayola color = crayola from numpy import (array, arange, ndarray, zeros, sort, searchsorted, concatenate) from math import modf, log10 import time # A graph package for plotting a curve, with labeled axes and autoscaling # <NAME>, begun April 2000 # Added crosshairs March 2011; added log-log and semilog plots April 2011 gdisplays = [] def checkGraphMouse(evt, gd): try: gd.mouse(evt) except: pass # minmax[xaxis][negaxis], minmax[yaxis][negaxis] are minimum values; # minmax[xaxis][posaxis], minmax[yaxis][posaxis] are maximum values. grey = (0.7,0.7,0.7) # color of axes tmajor = 10. # length of major tick marks in pixels tminor = 5. # length of minor tick marks in pixels border = 10. # border around graph frac = 0.02 # fraction of range required before remaking axes minorticks = 5 # number of minor tick intervals between major ticks maxmajorticks = 3 # max number of major ticks (not including 0) maxminorticks = (maxmajorticks+1)*minorticks # max number of minor ticks (4 between major ticks) lastgdisplay = None # the most recently created gdisplay gdotsize = 6.0 # diameter of gdot in pixels dz = 0.01 # offset for plots relative to axes and labels xaxis = 0 yaxis = 1 negaxis = 0 posaxis = 1 graphfont = "sans" fontheight = 13 # font point size charwidth = 9 # approximate character width znormal = [0,0,1] # for faces logticks = [] for i in range(4): logticks.append(log10(2*i+2)) # for displaying minor tick marks with log graphs def loglabelnum(x): # determine what log labels to show, in what format number = abs(int(x)) if number <= 1.01: marks = [1] elif number <= 2.01: marks = [1, 2] elif number <= 3.01: marks = [1, 2, 3] else: if not (number % 3): # is divisible by 3 marks = [int(number/3), int((2*number/3)), int(number)] elif not (number % 2): # is divisible by 2 marks = [int(number/2), int(number)] else: marks = [int((number+1)/2), int(number+1)] form = '1E{0}' return marks, form def labelnum(x, loglabel): # determine what labels to show, in what format if loglabel: return loglabelnum(x) mantissa, exponent = modf(log10(x)) number = 10**mantissa if number < 1: number = 10*number exponent = exponent-1 if number >= 7.49: number = 7.5 marks = [2.5, 5.0, 7.5] extra = 1 elif number >= 4.99: number = 5 marks = [2.5, 5.0] extra = 1 elif number >= 3.99: number = 4 marks = [2.0, 4.0] extra = 0 elif number >= 2.99: number = 3 marks = [1.0, 2.0, 3.0] extra = 0 elif number >= 1.99: number = 3 marks = [1.0, 2.0] extra = 0 elif number >= 1.49: number = 1.5 marks = [0.5, 1.0, 1.5] extra = 1 else: number = 1 marks = [0.5, 1.0] extra = 1 if exponent > 0: digits = 0 else: digits = int(-exponent)+extra if digits < 3 and exponent <= 3: form = '{0:0.'+'{0:s}'.format(str(digits))+'f}' else: form = '{0:0.1E}' return (array(marks)*10**exponent).tolist(), form def cleaneformat(string): # convert 2.5E-006 to 2.5E-6; 2.5E+006 to 2.5E6 index = string.find('E') if index == -1: return string # not E format index = index+1 if string[index] == '-': index = index+1 elif string[index] == '+': string = string[:index]+string[index+1:] while index < len(string) and string[index] == '0': string = string[:index]+string[index+1:] if string[-1] == '-': string = string[:-1] if string[-1] == 'E': string = string[:-1] return string class gdisplay: def __init__(self, window=None, x=0, y=0, width=800, height=400, title=None, xtitle=None, ytitle=None, xmax=None, xmin=None, ymax=None, ymin=None, logx=False, logy=False, visible=True, foreground=None, background=None): global lastgdisplay lastgdisplay = self currentdisplay = display.get_selected() if title is None: title = 'Graph' self.width = width self.height = height if foreground is not None: self.foreground = foreground else: self.foreground = color.white if background is not None: self.background = background else: self.background = color.black self.visible = visible self.active = False if window: self.display = display(window=window,title=title, x=x, y=y, width=self.width, height=self.height, foreground=self.foreground, background=self.background, fov=0.01, userspin=False, uniform=False, autoscale=False, lights=[], ambient=color.gray(0)) else: self.display = display(title=title, x=x, y=y, visible=self.visible, width=self.width, height=self.height, foreground=self.foreground, background=self.background, fov=0.01, userspin=False, uniform=False, autoscale=False, lights=[], ambient=color.gray(0)) distant_light(direction=(0,0,1), color=color.white) self.autoscale = [1, 1] self.logx = logx self.logy = logy self.xtitle = xtitle self.ytitle = ytitle self.Lxtitle = label(display=self.display, visible=False, text="", font=graphfont, height=fontheight, border=2, xoffset=tminor, opacity=0, box=False, line=False) self.Lytitle = label(display=self.display, visible=False, text="", font=graphfont, height=fontheight, border=2, xoffset=tminor, opacity=0, box=False, line=False) if xtitle is not None: self.Lxtitle.text = xtitle self.xtitlewidth = len(self.Lxtitle.text)*charwidth if ytitle is not None: self.Lytitle.text = ytitle self.ytitlewidth = len(self.Lytitle.text)*charwidth self.mousepos = None self.showxy = label(display=self.display, color=self.foreground, background=self.background, xoffset=10, yoffset=8, border=0, opacity=0, box=False, line=False, visible=False) gray = color.gray(0.5) self.horline = curve(display=self.display, color=gray, visible=False) self.vertline = curve(display=self.display, color=gray, visible=False) # For all axis-related quantities: [x axis 0 or y axis 1][neg axis 0 or pos axis 1] zerotextx = zerotexty = '0' if self.logx: zerotextx = '1' if self.logy: zerotexty = '1' self.zero = [label(display=self.display, pos=(0,0,0), text=zerotextx, color=self.foreground, visible=False, font=graphfont, height=fontheight, border=0, yoffset=-tmajor, linecolor=grey, box=0, opacity=0), label(display=self.display, pos=(0,0,0), text=zerotexty, color=self.foreground, visible=False, font=graphfont, height=fontheight, border=2, xoffset=-tmajor, linecolor=grey, box=0, opacity=0)] self.axis = [[None, None], [None, None]] self.makeaxis = [[True, True], [True, True]] self.lastlabel = [[0., 0.], [0., 0.]] self.format = [None, None] self.majormarks = [[None, None], [None, None]] self.lastminmax = [[0., 0.], [0., 0.]] self.minmax = [[0., 0.], [0., 0.]] # [x or y][negative 0 or positive 1] if self.logx: if xmax is not None: if xmax <= 0: raise AttributeError("For a log scale, xmax must greater than zero") else: xmax = log10(float(xmax)) if xmin is not None: if xmin <= 0: raise AttributeError("For a log scale, xmin must be greater than zero") else: xmin = log10(float(xmin)) if self.logy: if ymax is not None: if ymax <= 0: raise AttributeError("For a log scale, ymax must greater than zero") else: ymax = log10(float(ymax)) if ymin is not None: if ymin <= 0: raise AttributeError("For a log scale, ymin must be greater than zero") else: ymin = log10(float(ymin)) x0 = y0 = 0 if xmax is not None: self.minmax[xaxis][posaxis] = xmax self.autoscale[xaxis] = False if xmax < 0: marks, form = labelnum(-xmax, self.logx) self.zero[xaxis].text = cleaneformat(form.format(xmax)) self.makeaxis[xaxis][posaxis] = False if (xmin is None): raise AttributeError("xmin must be specified to be less than xmax") x0 = xmax if (xmin is not None) and (xmin >= xmax): raise AttributeError("xmax must be greater than xmin") if xmin is not None: self.minmax[xaxis][negaxis] = xmin self.autoscale[xaxis] = False if xmin > 0: marks, form = labelnum(xmin, self.logx) self.zero[xaxis].text = cleaneformat(form.format(xmin)) self.makeaxis[xaxis][negaxis] = False if (xmax is None): raise AttributeError("xmax must be specified to be greater than xmin") x0 = xmin if (xmax is not None) and (xmin >= xmax): raise AttributeError("xmax must be greater than xmin") if ymax is not None: self.minmax[yaxis][posaxis] = ymax self.autoscale[yaxis] = False if ymax < 0: marks, form = labelnum(-ymax, self.logy) self.zero[yaxis].text = cleaneformat(form.format(ymax)) self.makeaxis[yaxis][posaxis] = False if (ymin is None): raise AttributeError("ymin must be specified to be less than ymax") y0 = ymax if (ymin is not None) and (ymin >= ymax): raise AttributeError("ymax must be greater than ymin") if ymin is not None: self.minmax[yaxis][negaxis] = ymin self.autoscale[yaxis] = False if ymin > 0: marks, form = labelnum(ymin, self.logy) self.zero[yaxis].text = cleaneformat(form.format(ymin)) self.makeaxis[yaxis][negaxis] = False if (ymax is None): raise AttributeError("ymax must be specified to be greater than ymin") y0 = ymin if (ymax is not None) and (ymin >= ymax): raise AttributeError("ymax must be greater than ymin") self.zero[0].pos = (x0, y0, 0) self.zero[1].pos = (x0, y0, 0) self.display.range = 1e-300 self.minorticks = [ [ [], [] ], [ [],[] ] ] # all the minor ticks we'll ever use for axis in range(2): for axissign in range(2): for nn in range(maxminorticks): if axis == xaxis: self.minorticks[axis][axissign].append(label(display=self.display, yoffset=-tminor, font=graphfont, height=fontheight, border=0, linecolor=grey, visible=False, box=False, opacity=0)) else: self.minorticks[axis][axissign].append(label(display=self.display, xoffset=-tminor, font=graphfont, height=fontheight, border=0, linecolor=grey, visible=False, box=False, opacity=0)) self.majorticks = [ [ [], [] ], [ [],[] ] ] # all the major ticks we'll ever use for axis in range(2): for axissign in range(2): for nn
"", "chat": "", "facebook": "", "forum": "", "github": "", "gitter": "", "instagram": "", "linkedin": "", "reddit": "", "slack": "", "telegram": "", "twitter": "", "youtube": "" } }, "PRON": { "symbol": "PRON", "address": "0xA3149E0fA0061A9007fAf307074cdCd290f0e2Fd", "decimals": 8, "name": "PronCoin", "ens_address": "", "website": "https://proncoin.io", "logo": { "src": "https://pbs.twimg.com/profile_images/943518409899302912/_qB2ilhB_400x400.jpg", "width": "400", "height": "400", "ipfs_hash": "" }, "support": { "email": "<EMAIL>", "url": "https://proncoin.io" }, "social": { "blog": "", "chat": "", "facebook": "https://www.facebook.com/PronCoin-914325038734407", "forum": "", "github": "", "gitter": "", "instagram": "", "linkedin": "", "reddit": "", "slack": "", "telegram": "", "twitter": "https://twitter.com/PronCoin", "youtube": "" } }, "IFT": { "symbol": "IFT", "address": "0x7654915A1b82D6D2D0AFc37c52Af556eA8983c7E", "decimals": 18, "name": "InvestFeed", "ens_address": "", "website": "https://investfeed.com", "logo": { "src": "", "width": "", "height": "", "ipfs_hash": "" }, "support": { "email": "", "url": "" }, "social": { "blog": "https://medium.com/@investFeed", "chat": "", "facebook": "", "forum": "", "github": "", "gitter": "", "instagram": "", "linkedin": "", "reddit": "https://reddit.com/r/investFeedOfficial", "slack": "", "telegram": "https://t.me/investfeed", "twitter": "https://twitter.com/investFeed", "youtube": "" } }, "SALT": { "symbol": "SALT", "address": "0x4156D3342D5c385a87D264F90653733592000581", "decimals": 8, "name": "<NAME>", "ens_address": "", "website": "https://saltlending.com", "logo": { "src": "", "width": "", "height": "", "ipfs_hash": "" }, "support": { "email": "", "url": "" }, "social": { "blog": "", "chat": "", "facebook": "", "forum": "", "github": "", "gitter": "", "instagram": "", "linkedin": "", "reddit": "", "slack": "saltcommunity.slack.com", "telegram": "", "twitter": "https://twitter.com/SaltLending", "youtube": "" } }, "LINK Platform": { "symbol": "LINK Platform", "address": "0xE2E6D4BE086c6938B53B22144855eef674281639", "decimals": 18, "name": "Link Platform", "ens_address": "", "website": "https://ethereum.link", "logo": { "src": "https://etherscan.io/token/images/linkplatform28.png", "width": 28, "height": 28, "ipfs_hash": "" }, "support": { "email": "<EMAIL>", "url": "" }, "social": { "blog": "https://www.medium.com/@ethlink", "chat": "", "facebook": "https://www.facebook.com/ethereumlink", "forum": "", "github": "https://github.com/ethlink", "gitter": "", "instagram": "", "linkedin": "", "reddit": "", "slack": "https://ethereum.link/invite.php", "telegram": "", "twitter": "https://www.twitter.com/linkplatform", "youtube": "" } }, "ENC": { "symbol": "ENC", "address": "0x039F5050dE4908f9b5ddF40A4F3Aa3f329086387", "decimals": 18, "name": "Ethernet.Cash", "ens_address": "", "website": "https://ethernet.cash", "logo": { "src": "https://ethernet.cash/images/logo28x28.png", "width": "28", "height": "28", "ipfs_hash": "" }, "support": { "email": "<EMAIL>", "url": "" }, "social": { "blog": "https://medium.com/@ethernetcash", "chat": "", "facebook": "https://fb.me/ethernetcash.official", "forum": "", "github": "https://github.com/ethernetcash", "gitter": "", "instagram": "", "linkedin": "", "reddit": "", "slack": "", "telegram": "https://t.me/ethernetcash", "twitter": "https://twitter.com/ethernetcash", "youtube": "" } }, "GRID": { "symbol": "GRID", "address": "0x12B19D3e2ccc14Da04FAe33e63652ce469b3F2FD", "decimals": 12, "name": "Grid+", "ens_address": "", "website": "http://gridplus.io", "logo": { "src": "", "width": "", "height": "", "ipfs_hash": "" }, "support": { "email": "<EMAIL>", "url": "" }, "social": { "blog": "https://blog.gridplus.io", "chat": "", "facebook": "", "forum": "", "github": "", "gitter": "", "instagram": "", "linkedin": "", "reddit": "", "slack": "", "telegram": "", "twitter": "https://twitter.com/gridplus", "youtube": "" } }, "WPC": { "symbol": "WPC", "address": "0x62087245087125d3DB5B9A3D713d78E7BBc31e54", "decimals": 18, "name": "WorldPeaceCoin", "ens_address": "", "website": "http://www.worldpeacecoin.io", "logo": { "src": "", "width": "", "height": "", "ipfs_hash": "" }, "support": { "email": "<EMAIL>", "url": "" }, "social": { "blog": "", "chat": "", "facebook": "https://www.facebook.com/worldpeacecoin", "forum": "", "github": "", "gitter": "", "instagram": "", "linkedin": "", "reddit": "", "slack": "", "telegram": "", "twitter": "https://twitter.com/WorldPeaceCoin1", "youtube": "" } }, "SMS": { "symbol": "SMS", "name": "Speed Mining Service", "type": "ERC20", "address": "0x39013F961c378f02C2b82A6E1d31E9812786FD9D", "ens_address": "", "decimals": 3, "website": "https://smscoin.jp/en", "logo": { "src": "", "width": "", "height": "", "ipfs_hash": "" }, "support": { "email": "", "url": "" }, "social": { "blog": "", "chat": "", "facebook": "", "forum": "", "github": "", "gitter": "", "instagram": "", "linkedin": "", "reddit": "", "slack": "", "telegram": "", "twitter": "https://twitter.com/Speed_Mining", "youtube": "" } }, "IST34": { "symbol": "IST34", "address": "0x0cF713b11C9b986EC40D65bD4F7fbd50F6ff2d64", "decimals": 18, "name": "<NAME>", "ens_address": "", "website": "https://hiperteknoloji.org", "logo": { "src": "https://hiperteknoloji.org/ht/ist34-token-28.png", "width": "28", "height": "28", "ipfs_hash": "" }, "support": { "email": "<EMAIL>", "url": "" }, "social": { "blog": "https://hiperteknoloji.org/2018/05/10/ist34token/", "chat": "", "facebook": "https://www.facebook.com/ist34token", "forum": "https://bitcoingarden.org/forum/index.php?topic=33783", "github": "https://github.com/IST34Token", "gitter": "https://gitter.im/IST34-Token", "instagram": "https://www.instagram.com/ist34_token/", "linkedin": "https://www.linkedin.com/in/ist34-token", "reddit": "https://www.reddit.com/user/IST34_Token", "slack": "https://ist34token.slack.com", "telegram": "https://t.me/IST34Token", "twitter": "https://twitter.com/IST34_Token", "youtube": "https://www.youtube.com/channel/UCwEbCIn8VkPMBXuyyg8Ia8w" } }, "ICO": { "symbol": "ICO", "address": "0xa33e729bf4fdeb868B534e1f20523463D9C46bEe", "decimals": 10, "name": "ICO", "ens_address": "", "website": "http://icocoin.org", "logo": { "src": "https://etherscan.io/token/images/icocoin_28.png", "width": 28, "height": 28, "ipfs_hash": "" }, "support": { "email": "<EMAIL>", "url": "" }, "social": { "blog": "", "chat": "https://u.wechat.com/EM6Tgldvr3Wn9eprwIszuSo", "facebook": "https://www.facebook.com/coin.ico.7", "forum": "", "github": "", "gitter": "", "instagram": "", "linkedin": "", "reddit": "", "slack": "", "telegram": "", "twitter": "https://twitter.com/icocoin1", "youtube": "" } }, "DOR": { "symbol": "DOR", "name": "Dorado", "type": "ERC20", "address": "0x906b3f8b7845840188Eab53c3f5AD348A787752f", "ens_address": "", "decimals": 15, "website": "https://www.dorado.tech", "logo": { "src": "", "width": "", "height": "", "ipfs_hash": "" }, "support": { "email": "", "url": "" }, "social": { "blog": "https://medium.com/@doradoico/latest", "chat": "", "facebook": "", "forum": "", "github": "", "gitter": "", "instagram": "", "linkedin": "", "reddit": "https://www.reddit.com/r/DoradoICO", "slack": "", "telegram": "", "twitter": "https://twitter.com/Dorado_ICO", "youtube": "" } }, "HBT": { "symbol": "HBT", "name": "Hubii Network", "type": "ERC20", "address": "0xDd6C68bb32462e01705011a4e2Ad1a60740f217F", "ens_address": "", "decimals": 15, "website": "https://www.hubii.network", "logo": { "src": "", "width": "", "height": "", "ipfs_hash": "" }, "support": { "email": "", "url": "" }, "social": { "blog": "https://medium.com/@jacobotoll", "chat": "", "facebook": "", "forum": "", "github": "", "gitter": "", "instagram": "", "linkedin": "", "reddit": "https://www.reddit.com/r/hubiinetwork", "slack": "", "telegram": "", "twitter": "https://twitter.com/hubiinetwork", "youtube": "" } }, "BDG": { "symbol": "BDG", "address": "0x1961B3331969eD52770751fC718ef530838b6dEE", "decimals": 18, "name": "BitDegree Token", "ens_address": "", "website": "https://bitdegree.org", "logo": { "src": "https://raw.githubusercontent.com/bitdegree/banners/master/logos/2515x3285_letter_black.png", "width": 28, "height": 28, "ipfs_hash": "" }, "support": { "email": "<EMAIL>", "url": "" }, "social": { "blog": "blog.bitdegree.org", "chat": "", "facebook": "www.facebook.com/bitdegree.org", "forum": "", "github": "https://github.com/bitdegree", "gitter": "", "instagram": "https://www.instagram.com/bitdegree", "linkedin": "https://www.linkedin.com/company/bitdegree", "reddit": "reddit.com/r/bitdegree", "slack": "", "telegram": "t.me/bitdegree", "twitter": "https://twitter.com/bitdegree_org", "youtube": "https://www.youtube.com/channel/UCuiGDksOmsM8y-_txG3wPYg" } }, "COB": { "symbol": "COB", "address": "0xb2F7EB1f2c37645bE61d73953035360e768D81E6", "decimals": 18, "name": "<NAME>", "ens_address": "", "website": "https://cobinhood.com", "logo": { "src": "", "width": "", "height": "", "ipfs_hash": "" }, "support": { "email": "<EMAIL>", "url": "" }, "social": { "blog": "https://medium.com/@cobinhood", "chat": "", "facebook": "", "forum": "", "github": "https://github.com/cobinhood", "gitter": "", "instagram": "", "linkedin": "", "reddit": "", "slack": "http://slack.cobinhood.com", "telegram": "https://t.me/cobinhood", "twitter": "https://twitter.com/cobinhood", "youtube": "" } }, "CPY": { "symbol": "CPY", "address": "0xf44745fBd41F6A1ba151df190db0564c5fCc4410", "decimals": 18, "name": "COPYTRACK", "ens_address": "", "website": "https://copytrack.io", "logo": { "src": "https://cdn.copytrack.io/media/cpy.png?auto=compress&w=200", "width": 200, "height": 200, "ipfs_hash": "" }, "support": { "email": "<EMAIL>", "url": "https://copytrack.io" }, "social": { "blog": "https://medium.com/aditusnetwork", "chat": "", "facebook": "https://www.facebook.com/COPYTRACK", "forum": "", "github": "https://github.com/aditus", "gitter": "", "instagram": "https://www.instagram.com/copytrack", "linkedin": "https://www.linkedin.com/company/10840600", "reddit": "", "slack": "", "telegram": "https://t.me/copytrackhq", "twitter": "https://twitter.com/CopytrackHQ", "youtube": "" } }, "BTL (Battle)": { "symbol": "BTL (Battle)", "address": "0x2accaB9cb7a48c3E82286F0b2f8798D201F4eC3f", "decimals": 18, "name": "BTL (Battle)", "ens_address": "", "website": "http://persians.network", "logo": { "src": "", "width": "", "height": "", "ipfs_hash": "" }, "support": { "email": "<EMAIL>", "url": "" }, "social": { "blog": "", "chat": "", "facebook": "", "forum": "", "github": "https://github.com/Neurone/persians", "gitter": "", "instagram": "", "linkedin": "", "reddit": "", "slack": "https://battlesmartcontract.slack.com", "telegram": "", "twitter": "https://twitter.com/persian_token", "youtube": "" } }, "RNT": { "symbol": "RNT", "name": "OneRoot Network", "type": "ERC20", "address": "0xFF603F43946A3A28DF5E6A73172555D8C8b02386", "ens_address": "", "decimals": 18, "website": "https://www.oneroot.io/en", "logo": { "src": "", "width": "", "height": "", "ipfs_hash": "" }, "support": { "email": "", "url": "" }, "social": { "blog": "", "chat": "", "facebook": "", "forum": "", "github": "", "gitter": "", "instagram": "", "linkedin": "", "reddit": "", "slack": "", "telegram": "", "twitter": "https://twitter.com/OneRootNetwork", "youtube": "" } }, "NxC": { "symbol": "NxC", "address": "0x45e42D659D9f9466cD5DF622506033145a9b89Bc", "decimals": 3, "name": "Nexium", "ens_address": "", "website": "https://beyond-the-void.net", "logo": { "src": "https://www.beyond-the-void.net/nxc.png", "width": 300, "height": 300, "ipfs_hash": "" }, "support": { "email": "<EMAIL>", "url": "" }, "social": { "blog": "https://www.beyond-the-void.net/wiki/posts", "chat": "https://discordapp.com/invite/C7TqmaQ", "facebook": "https://www.facebook.com/beyondvoid", "forum": "https://bitcointalk.org/index.php?topic=1630816.0", "github": "", "gitter": "", "instagram": "", "linkedin": "", "reddit": "https://www.reddit.com/r/BeyondTheVoidGame", "slack": "http://beyond-the-void.slack.com", "telegram": "", "twitter": "https://twitter.com/BeyondVoidGame", "youtube": "https://www.youtube.com/channel/UCD1IdjsnzXFdOarY20gMPQQ" } }, "SLT": { "symbol": "SLT", "address": "0x7A5fF295Dc8239d5C2374E4D894202aAF029Cab6", "decimals": 3, "name": "Smartlands", "ens_address": "", "website": "http://smartlands.io", "logo": { "src": "", "width": "", "height": "", "ipfs_hash": "" }, "support": { "email": "", "url": "<EMAIL>" }, "social": { "blog": "", "chat": "", "facebook": "", "forum": "", "github": "", "gitter": "", "instagram": "", "linkedin": "", "reddit": "", "slack": "", "telegram": "", "twitter": "", "youtube": "" } }, "TUSD": { "symbol": "TUSD", "name": "TrueUSD", "type": "ERC20", "address": "0x0000000000085d4780B73119b644AE5ecd22b376", "ens_address": "", "decimals": 18, "website": "https://www.trusttoken.com", "logo": { "src": "", "width": "", "height": "", "ipfs_hash": "" }, "support": { "email": "<EMAIL>", "url": "" }, "social": { "blog": "https://blog.trusttoken.com", "chat": "", "facebook": "", "forum": "", "github": "https://github.com/trusttoken", "gitter": "", "instagram": "", "linkedin": "", "reddit": "https://www.reddit.com/r/TrustToken/", "slack": "",
<gh_stars>10-100 # Copyright (c) 2013. Librato, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of Librato, Inc. nor the names of project contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL LIBRATO, INC. BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import re import six import platform import time import logging import os from six.moves import http_client from six.moves import map from six import string_types import urllib import base64 import json import email.message from librato import exceptions from librato.queue import Queue from librato.metrics import Gauge, Counter, Metric from librato.alerts import Alert, Service from librato.annotations import Annotation from librato.spaces import Space, Chart __version__ = "3.1.0" # Defaults HOSTNAME = "metrics-api.librato.com" BASE_PATH = "/v1/" DEFAULT_TIMEOUT = 10 log = logging.getLogger("librato") # Alias HTTPSConnection so the tests can mock it out. HTTPSConnection = http_client.HTTPSConnection HTTPConnection = http_client.HTTPConnection # Alias urlencode, it moved between py2 and py3. try: urlencode = urllib.parse.urlencode # py3 except AttributeError: urlencode = urllib.urlencode # py2 def sanitize_metric_name(metric_name): disallowed_character_pattern = r"(([^A-Za-z0-9.:\-_]|[\[\]]|\s)+)" max_metric_name_length = 255 return re.sub(disallowed_character_pattern, '-', metric_name)[:max_metric_name_length] def sanitize_no_op(metric_name): """ Default behavior, some people want the error """ return metric_name class LibratoConnection(object): """Librato API Connection. Usage: >>> conn = LibratoConnection(username, api_key) >>> conn.list_metrics() [...] """ def __init__(self, username, api_key, hostname=HOSTNAME, base_path=BASE_PATH, sanitizer=sanitize_no_op, protocol="https", tags={}): """Create a new connection to Librato Metrics. Doesn't actually connect yet or validate until you make a request. :param username: The username (email address) of the user to connect as :type username: str :param api_key: The API Key (token) to use to authenticate :type api_key: str """ try: self.username = username.encode('ascii') self.api_key = api_key.encode('ascii') except: raise TypeError("Librato only supports ascii for the credentials") if protocol not in ["http", "https"]: raise ValueError("Unsupported protocol: {}".format(protocol)) self.custom_ua = None self.protocol = protocol self.hostname = hostname self.base_path = base_path # these two attributes ared used to control fake server errors when doing # unit testing. self.fake_n_errors = 0 self.backoff_logic = lambda backoff: backoff * 2 self.sanitize = sanitizer self.timeout = DEFAULT_TIMEOUT self.tags = dict(tags) def _compute_ua(self): if self.custom_ua: return self.custom_ua else: # http://en.wikipedia.org/wiki/User_agent#Format # librato-metrics/1.0.3 (ruby; 1.9.3p385; x86_64-darwin11.4.2) direct-faraday/0.8.4 ua_chunks = [] # Set user agent ua_chunks.append("python-librato/" + __version__) p = platform system_info = (p.python_version(), p.machine(), p.system(), p.release()) ua_chunks.append("(python; %s; %s-%s%s)" % system_info) return ' '.join(ua_chunks) def __getattr__(self, attr): def handle_undefined_method(*args): if re.search('dashboard|instrument', attr): print("We have deprecated support for instruments and dashboards.") print("https://github.com/librato/python-librato") print("") raise NotImplementedError() return handle_undefined_method def _set_headers(self, headers): """ set headers for request """ if headers is None: headers = {} headers['Authorization'] = b"Basic " + base64.b64encode(self.username + b":" + self.api_key).strip() headers['User-Agent'] = self._compute_ua() return headers def _url_encode_params(self, params={}): if not isinstance(params, dict): raise Exception("You must pass in a dictionary!") params_list = [] for k, v in params.items(): if isinstance(v, list): params_list.extend([(k + '[]', x) for x in v]) else: params_list.append((k, v)) return urlencode(params_list) def _make_request(self, conn, path, headers, query_props, method): """ Perform the an https request to the server """ uri = self.base_path + path body = None if query_props: if method == "POST" or method == "DELETE" or method == "PUT": body = json.dumps(query_props) headers['Content-Type'] = "application/json" else: uri += "?" + self._url_encode_params(query_props) log.info("method=%s uri=%s" % (method, uri)) log.info("body(->): %s" % body) conn.request(method, uri, body=body, headers=headers) return conn.getresponse() def _process_response(self, resp, backoff): """ Process the response from the server """ success = True resp_data = None not_a_server_error = resp.status < 500 if not_a_server_error: resp_data = _decode_body(resp) a_client_error = resp.status >= 400 if a_client_error: raise exceptions.get(resp.status, resp_data) return resp_data, success, backoff else: # A server error, wait and retry backoff = self.backoff_logic(backoff) log.info("%s: waiting %s before re-trying" % (resp.status, backoff)) time.sleep(backoff) return None, not success, backoff def _parse_tags_params(self, tags): result = {} for k, v in tags.items(): result["tags[%s]" % k] = v return result def _mexe(self, path, method="GET", query_props=None, p_headers=None): """Internal method for executing a command. If we get server errors we exponentially wait before retrying """ conn = self._setup_connection() headers = self._set_headers(p_headers) success = False backoff = 1 resp_data = None while not success: resp = self._make_request(conn, path, headers, query_props, method) try: resp_data, success, backoff = self._process_response(resp, backoff) except http_client.ResponseNotReady: conn.close() conn = self._setup_connection() conn.close() return resp_data def _do_we_want_to_fake_server_errors(self): return self.fake_n_errors > 0 def _setup_connection(self): connection_class = HTTPSConnection if self.protocol == "https" else HTTPConnection if self._do_we_want_to_fake_server_errors(): return connection_class(self.hostname, fake_n_errors=self.fake_n_errors) else: return connection_class(self.hostname, timeout=self.timeout) def _parse(self, resp, name, cls): """Parse to an object""" if name in resp: return [cls.from_dict(self, m) for m in resp[name]] else: return resp # Get a shallow copy of the top-level tag set def get_tags(self): return dict(self.tags) # Define the top-level tag set for posting measurements def set_tags(self, d): self.tags = dict(d) # Create a copy # Add to the top-level tag set def add_tags(self, d): self.tags.update(d) # Return all items for a "list" request def _get_paginated_results(self, entity, klass, **query_props): resp = self._mexe(entity, query_props=query_props) results = self._parse(resp, entity, klass) for result in results: yield result length = resp.get('query', {}).get('length', 0) offset = query_props.get('offset', 0) + length total = resp.get('query', {}).get('total', length) if offset < total and length > 0: query_props.update({'offset': offset}) for result in self._get_paginated_results(entity, klass, **query_props): yield result # # Metrics # def list_metrics(self, **query_props): """List a page of metrics""" resp = self._mexe("metrics", query_props=query_props) return self._parse(resp, "metrics", Metric) def list_all_metrics(self, **query_props): return self._get_paginated_results("metrics", Metric, **query_props) def submit(self, name, value, type="gauge", **query_props): if 'tags' in query_props or self.get_tags(): self.submit_tagged(name, value, **query_props) else: payload = {'gauges': [], 'counters': []} metric = {'name': self.sanitize(name), 'value': value} for k, v in query_props.items(): metric[k] = v payload[type + 's'].append(metric) self._mexe("metrics", method="POST", query_props=payload) def submit_tagged(self, name, value, **query_props): payload = {'measurements': []} payload['measurements'].append(self.create_tagged_payload(name, value, **query_props)) self._mexe("measurements", method="POST", query_props=payload) def create_tagged_payload(self, name, value, **query_props): """Create the measurement for forwarding to Librato""" measurement = { 'name': self.sanitize(name), 'value': value } if 'tags' in query_props: inherit_tags = query_props.pop('inherit_tags', False) if inherit_tags: tags = query_props.pop('tags', {}) measurement['tags'] = dict(self.get_tags(), **tags) elif self.tags: measurement['tags'] = self.tags for k, v in query_props.items(): measurement[k] = v return measurement def get(self, name, **query_props): resp = self._mexe("metrics/%s" % self.sanitize(name), method="GET", query_props=query_props) if resp['type'] == 'gauge': return Gauge.from_dict(self, resp) elif resp['type'] == 'counter': return Counter.from_dict(self, resp) else: raise Exception('The server sent me something that is not a Gauge nor a Counter.') def get_tagged(self, name, **query_props): """Fetches multi-dimensional metrics""" if 'resolution' not in query_props: # Default to raw resolution query_props['resolution'] = 1 if 'start_time' not in query_props and 'duration' not in query_props: raise Exception("You must provide 'start_time' or 'duration'") if 'start_time' in query_props and 'end_time' in query_props and 'duration' in query_props: raise Exception("It is an error to set 'start_time', 'end_time' and 'duration'") if 'tags' in query_props: parsed_tags = self._parse_tags_params(query_props.pop('tags')) query_props.update(parsed_tags) return self._mexe("measurements/%s" % self.sanitize(name), method="GET", query_props=query_props) def get_measurements(self, name, **query_props): return self.get_tagged(name, **query_props) def get_composite(self, compose, **query_props): if self.get_tags(): return self.get_composite_tagged(compose, **query_props) else: if 'resolution' not in query_props: # Default to raw resolution query_props['resolution'] = 1 if 'start_time' not in query_props: raise Exception("You must provide a 'start_time'") query_props['compose'] = compose return self._mexe('metrics', method="GET", query_props=query_props) def get_composite_tagged(self, compose, **query_props): if 'resolution' not in query_props: # Default to raw resolution query_props['resolution'] = 1 if 'start_time' not in query_props: raise Exception("You must provide
<filename>xformer/transformer.py import tensorflow as tf class BaseModel: def on_train_start(self): pass def on_epoch_end(self): pass def on_fit_end(self): pass def on_epoch_start(self): pass def fit(self, dl, n_epochs=1, callbacks=None): self.dl = dl self.n_epochs = n_epochs self.on_train_start() if callbacks is not None: for cb in callbacks: cb.on_train_start(self) for epoch in range(n_epochs): self.on_epoch_start() if callbacks is not None: for cb in callbacks: cb.on_epoch_start(self) self.epoch = epoch self.n_batches = len(dl) print(f'Epoch {epoch+1}/{n_epochs}') pbar = tf.keras.utils.Progbar(target=self.n_batches) for idx, batch in enumerate(dl): self.batch_idx = idx loss_dict = self.train_step(epoch, idx, batch) pbar.update(idx, values=list(loss_dict.items())) pbar.update(self.n_batches, values=None) self.on_epoch_end() if callbacks is not None: for cb in callbacks: cb.on_epoch_end(self) self.on_fit_end() if callbacks is not None: for cb in callbacks: cb.on_fit_end(self) import torch import torch.nn as nn class Encoder(nn.Module): def __init__( self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device, max_length = 100, token_embedding=True, ): super().__init__() self.token_embedding = token_embedding self.device = device if token_embedding: self.tok_embedding = nn.Embedding(input_dim, hid_dim) else: self.tok_embedding = nn.Linear(input_dim, hid_dim) self.pos_embedding = nn.Embedding(max_length, hid_dim) self.layers = nn.ModuleList([EncoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers)]) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device) def forward(self, src, src_mask): #src = One of: [batch size, src len], [batch size, src len, input dim] #src_mask = [batch size, 1, 1, src len] batch_size = src.shape[0] src_len = src.shape[1] pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(self.device) #pos = [batch size, src len] src_emb = self.tok_embedding(src) src = self.dropout((src_emb * self.scale) + self.pos_embedding(pos)) #src = [batch size, src len, hid dim] for layer in self.layers: src = layer(src, src_mask) #src = [batch size, src len, hid dim] return src class EncoderLayer(nn.Module): def __init__(self, hid_dim, n_heads, pf_dim, dropout, device): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(hid_dim) self.ff_layer_norm = nn.LayerNorm(hid_dim) self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout) self.dropout = nn.Dropout(dropout) def forward(self, src, src_mask): #src = [batch size, src len, hid dim] #src_mask = [batch size, 1, 1, src len] #self attention _src, _ = self.self_attention(src, src, src, src_mask) #dropout, residual connection and layer norm src = self.self_attn_layer_norm(src + self.dropout(_src)) #src = [batch size, src len, hid dim] #positionwise feedforward _src = self.positionwise_feedforward(src) #dropout, residual and layer norm src = self.ff_layer_norm(src + self.dropout(_src)) #src = [batch size, src len, hid dim] return src class MultiHeadAttentionLayer(nn.Module): def __init__(self, hid_dim, n_heads, dropout, device): super().__init__() assert hid_dim % n_heads == 0 self.hid_dim = hid_dim self.n_heads = n_heads self.head_dim = hid_dim // n_heads self.fc_q = nn.Linear(hid_dim, hid_dim) self.fc_k = nn.Linear(hid_dim, hid_dim) self.fc_v = nn.Linear(hid_dim, hid_dim) self.fc_o = nn.Linear(hid_dim, hid_dim) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device) def forward(self, query, key, value, mask = None): batch_size = query.shape[0] #query = [batch size, query len, hid dim] #key = [batch size, key len, hid dim] #value = [batch size, value len, hid dim] Q = self.fc_q(query) K = self.fc_k(key) V = self.fc_v(value) #Q = [batch size, query len, hid dim] #K = [batch size, key len, hid dim] #V = [batch size, value len, hid dim] Q = Q.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) K = K.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) V = V.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) #Q = [batch size, n heads, query len, head dim] #K = [batch size, n heads, key len, head dim] #V = [batch size, n heads, value len, head dim] energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale #energy = [batch size, n heads, query len, key len] if mask is not None: energy = energy.masked_fill(mask == 0, -1e10) attention = torch.softmax(energy, dim = -1) #attention = [batch size, n heads, query len, key len] x = torch.matmul(self.dropout(attention), V) #x = [batch size, n heads, query len, head dim] x = x.permute(0, 2, 1, 3).contiguous() #x = [batch size, query len, n heads, head dim] x = x.view(batch_size, -1, self.hid_dim) #x = [batch size, query len, hid dim] x = self.fc_o(x) #x = [batch size, query len, hid dim] return x, attention class PositionwiseFeedforwardLayer(nn.Module): def __init__(self, hid_dim, pf_dim, dropout): super().__init__() self.fc_1 = nn.Linear(hid_dim, pf_dim) self.fc_2 = nn.Linear(pf_dim, hid_dim) self.dropout = nn.Dropout(dropout) def forward(self, x): #x = [batch size, seq len, hid dim] x = self.dropout(torch.relu(self.fc_1(x))) #x = [batch size, seq len, pf dim] x = self.fc_2(x) #x = [batch size, seq len, hid dim] return x class Decoder(nn.Module): def __init__(self, output_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device, max_length = 100): super().__init__() self.device = device self.tok_embedding = nn.Embedding(output_dim, hid_dim) self.pos_embedding = nn.Embedding(max_length, hid_dim) self.layers = nn.ModuleList([DecoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers)]) self.fc_out = nn.Linear(hid_dim, output_dim) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device) def forward(self, trg, enc_src, trg_mask, src_mask): #trg = [batch size, trg len] #enc_src = [batch size, src len, hid dim] #trg_mask = [batch size, 1, trg len, trg len] #src_mask = [batch size, 1, 1, src len] batch_size = trg.shape[0] trg_len = trg.shape[1] pos = torch.arange(0, trg_len).unsqueeze(0).repeat(batch_size, 1).to(self.device) #pos = [batch size, trg len] trg = self.dropout((self.tok_embedding(trg) * self.scale) + self.pos_embedding(pos)) #trg = [batch size, trg len, hid dim] for layer in self.layers: trg, attention = layer(trg, enc_src, trg_mask, src_mask) #trg = [batch size, trg len, hid dim] #attention = [batch size, n heads, trg len, src len] output = self.fc_out(trg) #output = [batch size, trg len, output dim] return output, attention class DecoderLayer(nn.Module): def __init__(self, hid_dim, n_heads, pf_dim, dropout, device): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(hid_dim) self.enc_attn_layer_norm = nn.LayerNorm(hid_dim) self.ff_layer_norm = nn.LayerNorm(hid_dim) self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.encoder_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout) self.dropout = nn.Dropout(dropout) def forward(self, trg, enc_src, trg_mask, src_mask): #trg = [batch size, trg len, hid dim] #enc_src = [batch size, src len, hid dim] #trg_mask = [batch size, 1, trg len, trg len] #src_mask = [batch size, 1, 1, src len] #self attention _trg, _ = self.self_attention(trg, trg, trg, trg_mask) #dropout, residual connection and layer norm trg = self.self_attn_layer_norm(trg + self.dropout(_trg)) #trg = [batch size, trg len, hid dim] #encoder attention _trg, attention = self.encoder_attention(trg, enc_src, enc_src, src_mask) #dropout, residual connection and layer norm trg = self.enc_attn_layer_norm(trg + self.dropout(_trg)) #trg = [batch size, trg len, hid dim] #positionwise feedforward _trg = self.positionwise_feedforward(trg) #dropout, residual and layer norm trg = self.ff_layer_norm(trg + self.dropout(_trg)) #trg = [batch size, trg len, hid dim] #attention = [batch size, n heads, trg len, src len] return trg, attention class Seq2Seq(nn.Module): def __init__(self, encoder, decoder, src_pad_idx, trg_pad_idx, device): super().__init__() self.encoder = encoder self.decoder = decoder self.src_pad_idx = src_pad_idx self.trg_pad_idx = trg_pad_idx self.device = device def make_src_mask(self, src): #src = One of : [batch size, src len], [batch size, src len, input dim] if len(src.shape) == 2: src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2) elif len(src.shape) == 3: src_mask = (src[:,:,0] != self.src_pad_idx).unsqueeze(1).unsqueeze(2) else: raise ValueError(f'src has {len(src.shape)} dims') return src_mask #src_mask = [batch size, 1, 1, src len] def make_trg_mask(self, trg): #trg = [batch size, trg len] trg_pad_mask = (trg != self.trg_pad_idx).unsqueeze(1).unsqueeze(2) #trg_pad_mask = [batch size, 1, 1, trg len] trg_len = trg.shape[1] trg_sub_mask = torch.tril(torch.ones((trg_len, trg_len), device = self.device)).bool() #trg_sub_mask = [trg len, trg len] trg_mask = trg_pad_mask & trg_sub_mask #trg_mask = [batch size, 1, trg len, trg len]
<reponame>Crunch-io/crunch-cube # encoding: utf-8 """Provides the Dimension class.""" import copy from collections.abc import Sequence from typing import Dict, Iterator, List, Optional, Tuple, Union import numpy as np from cr.cube.enums import ( COLLATION_METHOD as CM, DIMENSION_TYPE as DT, MARGINAL, MEASURE, _DimensionType, ) from cr.cube.util import lazyproperty class _BaseDimensions(Sequence): """Base class for dimension collections.""" def __getitem__(self, idx_or_slice): """Implements indexed access.""" return self._dimensions[idx_or_slice] def __iter__(self): """Implements (efficient) iterability.""" return iter(self._dimensions) def __len__(self): """Implements len(elements).""" return len(self._dimensions) @lazyproperty def _dimensions(self) -> Tuple["Dimension", ...]: """tuple of dimension objects in this collection. This composed tuple is the source for the dimension objects in this collection. """ raise NotImplementedError( "must be implemented by each subclass" ) # pragma: no cover class AllDimensions(_BaseDimensions): """Collection containing every dimension defined in cube response.""" def __init__(self, dimension_dicts): self._dimension_dicts = dimension_dicts @lazyproperty def apparent_dimensions(self) -> "_ApparentDimensions": """_ApparentDimensions collection of the "visible" dimensions. The two dimensions for a multiple-response (MR) variable are conflated into a single dimensions in this collection. """ return _ApparentDimensions(all_dimensions=self._dimensions) @lazyproperty def dimension_order(self) -> Tuple[int, ...]: """Tuple of int representing the dimension order. The dimension order depends on the presence of numeric array in the dimensions and the number of the cube dimensions. In case of 3 dimensions e.g. NUM_ARR_X_MR_SUBVAR_X_MR_CAT the order should be (1,2,0) that is basically swapping the MR (2 dimensions) with the NUM_ARRAY dimension. In case of 2 dimensions the dimension order correspond simpy to the reverse of the original dimension order. """ # NOTE: this is a temporary hack that goes away when we introduce the dim_order # concept. We should receive the actual order directly in the cube_response. # So, all this logic will be deleted. dimension_types = tuple(d.dimension_type for d in self._dimensions) dim_order = tuple(range(len(self._dimensions))) if len(self._dimensions) >= 2 and DT.NUM_ARRAY in dimension_types: return ( dim_order[-2:] + (dim_order[0],) if len(self._dimensions) == 3 else dim_order[::-1] ) return dim_order @lazyproperty def shape(self) -> Tuple[int, ...]: """Tuple of int element count for each dimension. This corresponds to the shape of the ndarray representing the raw cube response values (raw meaning including missing and prunable elements and any MR_CAT dimensions). """ dimensions = [self._dimensions[i] for i in self.dimension_order] return tuple(d.shape for d in dimensions) @lazyproperty def _dimensions(self) -> Tuple["Dimension", ...]: """tuple of dimension objects in this collection. This composed tuple is the internal source for the dimension objects in this collection. """ return tuple(_DimensionFactory.iter_dimensions(self._dimension_dicts)) class _ApparentDimensions(_BaseDimensions): """Collection containing only "user" dimensions of a cube.""" def __init__(self, all_dimensions): self._all_dimensions = all_dimensions @lazyproperty def _dimensions(self) -> Tuple["Dimension", ...]: """tuple of dimension objects in this collection. This composed tuple is the source for the dimension objects in this collection. """ return tuple(d for d in self._all_dimensions if d.dimension_type != DT.MR_CAT) class _DimensionFactory: """Produce Dimension objects of correct type from dimension-dicts. "type" here is primarily the `.dimension_type` value of the dimension, although if `Dimension` becomes an object hierarchy, this factory would make dimension class choices as well. """ def __init__(self, dimension_dicts): self._dimension_dicts = dimension_dicts @classmethod def iter_dimensions(cls, dimension_dicts) -> Iterator["Dimension"]: """Generate Dimension object for each of *dimension_dicts*.""" return cls(dimension_dicts)._iter_dimensions() def _iter_dimensions(self) -> Iterator["Dimension"]: """Generate Dimension object for each dimension dict.""" return ( Dimension(raw_dimension.dimension_dict, raw_dimension.dimension_type) for raw_dimension in self._raw_dimensions ) @lazyproperty def _raw_dimensions(self) -> Tuple["_RawDimension", ...]: """Sequence of _RawDimension objects wrapping each dimension dict.""" return tuple( _RawDimension(dimension_dict, self._dimension_dicts) for dimension_dict in self._dimension_dicts ) class _RawDimension: """Thin wrapper around dimension-dict to support dimension-type discovery. Determining dimension-type is pretty complex and requires repeated partial parsing of both the dimension dict and its siblings. This class abstracts that access for clarity. """ def __init__(self, dimension_dict, dimension_dicts): self._dimension_dict = dimension_dict self._dimension_dicts = dimension_dicts @lazyproperty def dimension_dict(self) -> Dict: """dict defining this dimension in cube response.""" return self._dimension_dict @lazyproperty def dimension_type(self) -> _DimensionType: """_DimensionType (member of DIMENSION_TYPE) appropriate to dimension_dict.""" base_type = self._base_type if base_type == "categorical": return self._resolve_categorical() if base_type == "enum.variable": return self._resolve_array_type() if base_type == "enum.datetime": return DT.DATETIME if base_type == "enum.numeric": return DT.BINNED_NUMERIC if base_type == "enum.text": return DT.TEXT if base_type == "enum.num_arr": return DT.NUM_ARRAY raise NotImplementedError(f"unrecognized dimension type {base_type}") @lazyproperty def _alias(self) -> str: """Return str key for variable behind *dimension_dict*.""" return self._dimension_dict["references"]["alias"] @lazyproperty def _base_type(self) -> str: """Return str like 'enum.numeric' representing dimension type. This string is a 'type.subclass' concatenation of the str keys used to identify the dimension type in the cube response JSON. The '.subclass' suffix only appears where a subtype is present. """ type_class = self._dimension_dict["type"]["class"] if type_class == "categorical": return "categorical" if type_class == "enum": subclass = self._dimension_dict["type"]["subtype"]["class"] return f"enum.{subclass}" raise NotImplementedError(f"unexpected dimension type class '{type_class}'") @lazyproperty def _categories(self) -> List[Dict]: return self._dimension_dict["type"].get("categories", []) @lazyproperty def _has_selected_category(self) -> bool: """True if dimension-dict includes one or more selected categories. A "selected" category-dict is one having `'selected': True`. This property is only meaningful for a categorical dimension dict. """ return any(category.get("selected") for category in self._categories) @lazyproperty def _is_logical_type(self) -> bool: """True if dimension-dict has the categories equal to those of the logical type. Logical type has exactly three categories with IDs [-1, 0, 1]. This type is used to define the selections dimension of the multiple response type, when it follows the subvariables dimension. """ return [category.get("id") for category in self._categories] == [1, 0, -1] @lazyproperty def _is_array_cat(self) -> bool: """True if a categorical dimension_dict belongs to an array pair. Returns True for a CA_CAT or MR_CAT dimension. Only meaningful when the dimension is known to be categorical (has base-type 'categorical'). """ return "subreferences" in self._dimension_dict["references"] @lazyproperty def _is_cat_date(self) -> bool: """True if dimension is a categorical date, False otherwise. A dimension is a categorical date, if it has all the properties of a "normal" categorical dimension, but also a `"date"` field in any of its categories. """ if self._dimension_dict["type"]["class"] != "categorical": return False return any("date" in cat for cat in self._categories) @lazyproperty def _next_raw_dimension(self) -> Optional["_RawDimension"]: """_RawDimension for next *dimension_dict* in sequence or None for last. Returns None if this dimension is the last in sequence for this cube. """ dimension_dicts = self._dimension_dicts this_idx = dimension_dicts.index(self._dimension_dict) if this_idx > len(dimension_dicts) - 2: return None return _RawDimension(dimension_dicts[this_idx + 1], self._dimension_dicts) def _resolve_array_type(self) -> _DimensionType: """Return one of the ARRAY_TYPES members of DIMENSION_TYPE. This method distinguishes between CA and MR dimensions. The return value is only meaningful if the dimension is known to be of array type (i.e. either CA or MR, base-type 'enum.variable'). """ next_raw_dimension = self._next_raw_dimension if next_raw_dimension is None: return DT.CA is_mr_subvar = ( next_raw_dimension._base_type == "categorical" and next_raw_dimension._has_selected_category and next_raw_dimension._alias == self._alias and next_raw_dimension._is_logical_type ) return DT.MR if is_mr_subvar else DT.CA def _resolve_categorical(self) -> _DimensionType: """Return one of the categorical members of DIMENSION_TYPE. This method distinguishes between CAT, CA_CAT, MR_CAT, and LOGICAL dimension types, all of which have the base type 'categorical'. The return value is only meaningful if the dimension is known to be one of the categorical types (has base-type 'categorical'). """ # ---an array categorical is either CA_CAT or MR_CAT--- if self._is_array_cat: return ( DT.MR_CAT if self._has_selected_category and self._is_logical_type else DT.CA_CAT ) # ---what's left is three different versions of categorical dimension--- # ---first the logical--- if self._has_selected_category and self._is_logical_type: return DT.LOGICAL # ---or a categorical date--- if self._is_cat_date: return DT.CAT_DATE # ---or the plain-old categorical--- return DT.CAT class Dimension: """Represents one dimension of a cube response. Each dimension represents one of the variables in a cube response. For example, a query to cross-tabulate snack-food preference against region will have two variables (snack-food preference and region) and will produce a two-dimensional (2D) cube response. That cube will have two of these dimension objects, which are accessed using :attr:`.CrunchCube.dimensions`. """ def __init__(self, dimension_dict, dimension_type, dimension_transforms=None): self._unshimmed_dimension_dict = dimension_dict self._dimension_type = dimension_type self._unshimmed_dimension_transforms_dict = dimension_transforms or {} @lazyproperty def alias(self) -> Optional[str]: """Return the alias for the dimension if it exists, None otherwise.""" return self._dimension_dict["references"].get("alias") @lazyproperty def all_elements(self) -> "_AllElements": """_AllElements object providing cats or subvars of this dimension. Elements in this sequence appear in cube-result order. """ return _AllElements( self._dimension_dict["type"],
from django.shortcuts import render,redirect from django.http import JsonResponse from .models import * from django.views import View from django.db.models import Q from django.forms import model_to_dict from django.contrib.auth import get_user_model # Create your views here. from .models import * from .forms import * from ajax_datatable.views import AjaxDatatableView def home_page(request): return render(request, 'home.html') #region ########### Indent ########### class indent_table(AjaxDatatableView): model = indent title = 'Indent' length_menu = [[-1,25, 50, 100], ['all',25, 50, 100]] initial_order = [["recived","asc"]] search_values_separator = " " column_defs = [ AjaxDatatableView.render_row_tools_column_def(), { 'name': 'pk', 'visible': True, 'searchable': False, 'orderable': True, 'title': 'Indt.', }, # pk { 'name': 'material_shape', 'visible': True, 'searchable': True, 'orderable': True, 'title': 'Shape', }, # material_shape { 'name': 'Description', 'foreign_field': 'item_description__description', 'visible': True, 'searchable': True, 'placeholder':'description', 'title':'Item Description', }, # Item Description { 'name': 'description', 'visible': True, 'orderable': False, 'searchable': False, 'title': 'Description', }, # value { 'name': 'weight', 'visible': True, 'searchable': False, 'orderable': False, 'title': 'Weight', }, # weight { 'name': 'size', 'visible': True, 'searchable': False, 'orderable': False, 'title': 'Size', }, # size { 'name': 'thickness', 'visible': True, 'searchable': False, 'orderable': False, 'title': 'THK', }, # thickness { 'name': 'quantity', 'visible': True, 'searchable': False, 'orderable': False, 'title': 'Qut', }, # quantity { 'name': 'value', 'visible': True, 'orderable': False, 'searchable': False, 'title': 'Value', 'className': 'currency', }, # value { 'name': 'net_value', 'visible': True, 'orderable': False, 'searchable': False, 'title': 'Total Value', 'className': 'currency', }, # net_value { 'name': 'recived', 'visible': True, 'orderable': True, 'searchable': False, 'title': 'Recived', 'className':"is_completed", }, # recived {'name': 'Add GRN', 'visible': True,'searchable': False, 'orderable': False}, {'name': 'Edit', 'visible': True,'searchable': False, 'orderable': False}, { 'name':'Delete', 'visible': True, 'searchable': False, 'orderable': False, "title":"DEL" }, # delete field ] def get_initial_queryset(self, request=None): wo_id=request.REQUEST.get('wo_id') queryset = self.model.objects.all() queryset = queryset.filter(WO__id=wo_id) # queryset = self.model.objects.all() return queryset def customize_row(self, row, obj): # 'row' is a dictionary representing the current row, and 'obj' is the current object. get_str = lambda x: x if x else "--" row['net_value'] = f''' {obj.net_value()}''' row['size'] = get_str(obj.size) row['thickness'] = get_str(obj.thickness) row['weight'] = f''' {obj.get_weight()}''' # row['recived'] = f'''<td class="is_completed" data="{obj.recived}"> # </td>''' # print(row['recived']) row['Add GRN'] = f'''<td class=""> <a href="/indent/{obj.pk}/grn/form/" target="_blank"> <img src="../../../../static/Images/enter.png" style="width:17px;height:17px" alt="enter"> </a> </td>''' if obj.locked: row['Edit'] = f'''<td class="border-0"> <a data-id="{obj.pk}" onclick="edit_locked('/wo/{obj.WO.pk}/indent/form/{obj.pk}')"><img src="../../../../../static/Images/lock.png" style="width:17px;height:17px" alt="edit"></a> </td>''' else: row['Edit'] = f'''<td class="border-0"> <a href="/wo/{obj.WO.pk}/indent/form/{obj.pk}"><img src="../../../../../static/Images/editing.png" style="width:17px;height:17px" alt="edit"></a> </td>''' row['Delete'] =f'''<div class="form-check" onclick="checkSelected()"> <input class="form-check-input del_input" type="checkbox" name="del" value="{obj.pk}" input_name="{obj}"> </div>''' return def render_row_details(self, pk, request=None): obj = self.model.objects.get(pk=pk) # fields = [f for f in self.model._meta.get_fields() if f.concrete] fields = { "Recived": obj.recived_quantity, 'Material Type':obj.material_type, "Size":obj.size, "Thickness":obj.thickness, "Width":obj.width, "Internal Diameter":obj.internal_diameter, 'Tax':str(obj.tax)+"%", "Comment":obj.comment, "Has PO": True if obj.PO else False, } currency={ 'Discount':obj.discount, 'Other Expanses':obj.other_expanses, } fields = {k: v for k, v in fields.items() if v != None} fields = {k: v for k, v in fields.items() if v != ""} # print(student_details.Division_id.Semester_id) html = '<table class="table-bordered" style="width:60%">' if obj.PO: html += '<tr><td class="">PO Number</td><td class=""><a href = "/po/table/">%s</a></td></tr>' % (obj.PO) for key in fields: html += '<tr><td class="">%s</td><td class="">%s</td></tr>' % (key, fields[key]) for key in currency: html += '<tr><td class="">%s</td><td class="currency">%s</td></tr>' % (key, currency[key]) html += '</table>' return html class indent_table_page(View): template_name = "indent/indent_table.html" def get(self, request,wo_id): wo = work_order.objects.filter(pk=wo_id).first() context= { "update":[], 'all_indents': indent.objects.all().filter(WO__id=wo_id), 'wo':wo, 'wo_id':wo_id, } return render(request,self.template_name,context) def post(self, request,wo_id): pks = request.POST.getlist("pks[]") for i in pks: obj = indent.objects.filter(pk=i).first() # obj.quantity=3 # obj.save() obj.delete() return JsonResponse({"deleted":True}) class indent_form(View): template_name = "indent/indent_form.html" def get(self, request,wo_id=None,indent_id=None): self.context= { "update":[], 'all_indents': indent.objects.all(), "all_item_description":item_description.objects.all(), 'wo':work_order.objects.get(pk=wo_id), } if indent_id: instance = indent.objects.get(pk=indent_id) print(indent_id,"here in Update") self.context['update'] = instance self.context['success'] = False return render(request,self.template_name,self.context) else: self.context['update'] = [] print(self.context['update'],"here in add") return render(request,self.template_name,self.context) def post(self, request,wo_id=None,indent_id=None): wo = work_order.objects.filter(pk=wo_id).first() self.context= { "update":[], 'all_indents': indent.objects.all(), "all_item_description":item_description.objects.all(), 'wo':wo, } tempdict = self.request.POST.copy() tempdict['value'] = tempdict['value'].replace(',', '').replace("₹","") if indent_id: instance = indent.objects.get(pk=indent_id) form = add_indent(tempdict,instance=instance) if not wo: wo = instance.WO else: form = add_indent(tempdict) if form.is_valid(): temp = form.save(commit=False) temp.WO = wo item_desc,_=item_description.objects.get_or_create( description=tempdict.get("item_description") ) print(item_desc,_) temp.item_description = item_desc self.context['update'] = form.instance self.context['success'] = True print(temp.item_description) temp.save() else: self.context['errors'] = form.errors.as_ul() print(form.errors) # self.context['update'] = form.instance return render(request,self.template_name,self.context) class all_indents_datatable(AjaxDatatableView): model = indent title = 'Indent' length_menu = [[-1,25, 50, 100], ['all',25, 50, 100]] initial_order = [["WO","asc"]] search_values_separator = " " column_defs = [ AjaxDatatableView.render_row_tools_column_def(), { 'name': 'pk', 'visible': True, 'searchable': False, 'orderable': True, 'title': 'Indent No.', }, # pk { 'name': 'WO', 'foreign_field': 'WO__wo_number', 'visible': True, 'searchable': True, 'placeholder':'WO' }, # WO { 'name': 'PO', 'foreign_field': 'PO__po_number', 'visible': True, 'searchable': True, 'placeholder':'WO' }, # PO { 'name': 'material_shape', 'visible': True, 'searchable': True, 'orderable': True, 'title': 'Shape', }, # material_shape { 'name': 'Description', 'foreign_field': 'item_description__description', 'visible': True, 'searchable': True, 'placeholder':'description' }, # Description { 'name': 'weight', 'visible': True, 'searchable': False, 'orderable': False, 'title': 'Weight', }, # weight { 'name': 'size', 'visible': True, 'searchable': False, 'orderable': False, 'title': 'Size', }, # size { 'name': 'thickness', 'visible': True, 'searchable': False, 'orderable': False, 'title': 'THK', }, # thickness { 'name': 'quantity', 'visible': True, 'searchable': False, 'orderable': False, 'title': 'Qut', }, # quantity { 'name': 'net_value', 'visible': True, 'orderable': False, 'searchable': False, 'title': 'Net Val', 'className': 'currency', }, # net_value {'name': 'Edit', 'visible': True,'searchable': False, 'orderable': False}, ] def get_initial_queryset(self, request=None): wo_id=request.REQUEST.get('wo_id') queryset = self.model.objects.all() queryset = queryset.filter(recived=False) # queryset = self.model.objects.all() return queryset def customize_row(self, row, obj): # 'row' is a dictionary representing the current row, and 'obj' is the current object. get_str = lambda x: x if x else "--" row['net_value'] = f''' {obj.net_value()}''' row['size'] = get_str(obj.size) row['PO'] = get_str(obj.PO.po_number) if obj.PO else "----" row['thickness'] = get_str(obj.thickness) row['WO'] = f'<a href="/wo/{obj.WO.pk}/indent/table/">{obj.WO}</a>' row['weight'] = f''' {obj.get_weight()}''' if obj.locked: row['Edit'] = f'''<td class="border-0"> <a data-id="{obj.pk}" onclick="edit_locked('/wo/{obj.WO.pk}/indent/form/{obj.pk}')"><img src="../../../../../static/Images/lock.png" style="width:17px;height:17px" alt="edit"></a> </td>''' else: row['Edit'] = f'''<td class="border-0"> <a href="/wo/{obj.WO.pk}/indent/form/{obj.pk}"><img src="../../../../../static/Images/editing.png" style="width:17px;height:17px" alt="edit"></a> </td>''' return def render_row_details(self, pk, request=None): obj = self.model.objects.get(pk=pk) # fields = [f for f in self.model._meta.get_fields() if f.concrete] fields = { "Recived": obj.recived_quantity, 'Material Type':obj.material_type, 'Item Description':obj.item_description, "Size":obj.size, "Thickness":obj.thickness, "Width":obj.width, "Internal Diameter":obj.internal_diameter, 'Description':obj.description, 'Tax':str(obj.tax)+"%", "Comment":obj.comment, "Has PO": True if obj.PO else False, } currency={ 'Value':obj.value, 'Discount':obj.discount, 'Other Expanses':obj.other_expanses, } fields = {k: v for k, v in fields.items() if v != None} fields = {k: v for k, v in fields.items() if v != ""} # print(student_details.Division_id.Semester_id) html = '<table class="table-bordered" style="width:60%">' if obj.PO: html += '<tr><td class="">PO Number</td><td class=""><a href = "/po/table/">%s</a></td></tr>' % (obj.PO) for key in fields: html += '<tr><td class="">%s</td><td class="">%s</td></tr>' % (key, fields[key]) for key in currency: html += '<tr><td class="">%s</td><td class="currency">%s</td></tr>' % (key, currency[key]) html += '</table>' return html class all_indent_table(View): template_name = 'indent/all_indent.html' def get(self, request): return render(request,self.template_name) #endregion #region ########### Purchase Order ########### class PO_datatable(AjaxDatatableView): model = purchase_order title = 'Purchase Order' length_menu = [[-1,25, 50, 100], ['all',25, 50, 100]] initial_order = [["po_number","asc"]] search_values_separator = " " column_defs = [ AjaxDatatableView.render_row_tools_column_def(), { 'name': 'id', 'visible': False, 'searchable': False, }, { 'name': 'po_number', 'visible': True, 'searchable': True, 'orderable': True, 'title': 'PO Number', }, # po number { 'name': 'Vendor', 'foreign_field': 'vendor_id__vendor_name', 'visible': True, 'searchable': True, 'placeholder':'Vendor' }, # vendor { 'name': 'remaining_quantity', 'visible': True, 'orderable': True, 'searchable': False, 'title': 'Remaining Quantity', }, # quantity { 'name': 'po_date', 'visible': True, 'searchable': False, 'orderable': True, 'title': 'PO Date', }, # po date { 'name': 'net_value', 'visible': True, 'orderable': False, 'searchable': False, 'title': 'Net Value', 'className': 'currency', },# net_value { 'name': 'is_complete', 'visible': True, 'orderable': True, 'searchable': False, 'title': 'Completed', 'className':"is_completed", }, {'name': 'Print', 'visible': True,'searchable': False, 'orderable': False}, {'name': 'Edit', 'visible': True,'searchable': False, 'orderable': False}, { 'name':'Delete', 'visible': True, 'searchable': False, 'orderable': False }, # delete field ] def customize_row(self, row, obj): # 'row' is a dictionary representing the current row, and 'obj' is the current object. net_value = 0 total_quantity,remaining_quantity = 0,0 for indent in obj.indent_set.all(): net_value += indent.net_value() remaining_quantity += indent.get_remaining_quantity() total_quantity += indent.quantity row['po_date'] = obj.get_date() row['net_value'] = f'{round(net_value,2)}' row["remaining_quantity"] = f'{int(remaining_quantity)} out of {int(total_quantity)}' row['Print'] = f'''<td class=""> <a href="../report_input/{obj.pk}" > <img src="../../../static/Images/print.png" style="width:17px;height:17px" alt="print"></a> </td>''' row['Edit'] = f'''<td class=""> <a href="../form/{obj.pk}" > <img src="../../../static/Images/editing.png" style="width:17px;height:17px" alt="edit"></a> </td>''' row['Indent List'] = f'''<td class=""> <a href="indent/table/{obj.pk}" > <img src="../../static/Images/enter.png" style="width:17px;height:17px" alt="enter"> </a> </td>''' row['Delete'] =f'''<div class="form-check" onclick="checkSelected()"> <input class="form-check-input del_input" type="checkbox" name="del" value="{obj.pk}" input_name="{obj}"> </div>''' return def render_row_details(self, pk, request=None): obj = self.model.objects.get(pk=pk) # fields = [f for f in self.model._meta.get_fields() if f.concrete] fields = { } fields = {k: v for k, v in fields.items() if v != None} fields = {k: v for k, v in fields.items() if v != ""} indent_list_html = '<table class="table-bordered" style="width:100%">' indent_list_html += f'<tr><th class="d-flex justify-content-center">Indent</td><td class="">Balance</td></tr>' for indent in obj.indent_set.all(): dimentions = f"{indent.size} X {indent.thickness} X {indent.width} X {indent.internal_diameter}".replace(" X None","").replace("None","") indent_list_html += f'<tr><td class="d-flex justify-content-left">{indent.pk} --&nbsp<a href="/wo/{indent.WO.pk}/indent/table" >{indent.WO}</a>&nbsp[{indent.item_description} ({dimentions})]</td><td class="">&nbsp&nbsp{indent.get_remaining_quantity()} out of {int(indent.quantity)}</td></tr>' indent_list_html += '</table>' # print(student_details.Division_id.Semester_id) html = '<table class="table-bordered" style="width:80%">' for key in fields: html += '<tr><td class="">%s</td><td class="">%s</td></tr>' % (key, fields[key]) html += '<tr><td class="">Indent List</td><td class="m-0 p-0">%s</td></tr>' % (indent_list_html) html += '</table>' return html def update_indent_PO(indent_list,PO): 'adds the PO to all the indents' my_indents = PO.indent_set.all() new_indents = set(indent.objects.all().filter(pk__in = indent_list)) old_indents = set(my_indents) to_be_deleted = old_indents.difference(new_indents) to_be_saved = new_indents.difference(old_indents) for i in to_be_deleted: i.PO = None i.save() for i in to_be_saved: i.PO = PO i.save() class PO_form(View): template_name = "po/PO_form.html" def get(self, request,po_id=None): self.context= { "update":[], 'all_vendors':vendor_details.objects.all(), 'all_indent':list(indent.objects.all().filter(PO=None).order_by("WO")), } if po_id: instance = purchase_order.objects.get(pk=po_id) my_indents = instance.indent_set.all() self.context['update'] = instance self.context['indent_list'] = my_indents self.context['all_indent'] += list(my_indents) self.context['success'] = False return render(request,self.template_name,self.context) def post(self, request,po_id=None): self.context= { "update":[], 'all_vendors':vendor_details.objects.all(), 'all_indent':list(indent.objects.all().filter(PO=None).order_by("WO")), } if po_id: instance = purchase_order.objects.get(pk=po_id) form = update_PO(request.POST,instance=instance) else: form = add_PO(request.POST) if form.is_valid(): a = form.save() print(a) indent_list = request.POST.getlist('indent_list') update_indent_PO(indent_list,a) my_indents = a.indent_set.all() self.context['update'] = form.instance self.context['indent_list'] = my_indents self.context['all_indent'] += list(my_indents) self.context['all_indent'] = set(self.context['all_indent']) self.context['success'] = True else: self.context['errors'] = form.errors.as_ul() print(form.errors) # self.context['update'] = form.instance return render(request,self.template_name,self.context) class PO_table(View): template_name = "po/PO_table.html" def get(self, request): context= { "update":[], 'all_PO': purchase_order.objects.all() } return render(request,self.template_name,context) def post(self, request): pass def po_print_inputs(request,po_id): my_po = purchase_order.objects.get(pk=po_id) context = {'my_po':my_po} return render(request,"po/po_print_input.html",context) def print_report(request,po_id): my_po = purchase_order.objects.get(pk=po_id) my_indents = indent.objects.all().filter(PO=my_po) total_gross_value,total_net_value,total_quantity,total_tax_value,total_weight = 0,0,0,0,0 for my_indent in my_indents: total_net_value += my_indent.net_value() total_quantity += my_indent.quantity total_tax_value += my_indent.tax_amount() total_weight += my_indent.get_weight() total_gross_value += my_indent.gross_value() delivery_day = request.GET['delivery_day'] payment_term = request.GET['payment_term'] freight_charges = request.GET['freight_charges'] com_name = request.GET['com_name'] # print( request.GET) context = { "my_po":my_po, "all_indents":my_indents, "total_net_value":round(total_net_value,2), "total_quantity":round(total_quantity,2), "total_tax_value":round(total_tax_value,2), "total_weight":round(total_weight,3), "total_gross_value":round(total_gross_value,2), "delivery_day":delivery_day, "payment_term":payment_term, "freight_charges":freight_charges, "com_name":com_name, } # print(context['total_net_value']) # total_quantity = indent.objects.all() return render(request,"po/report.html",context) def lock_po_indent(request,po_id): my_po = purchase_order.objects.get(pk=po_id) my_indents = indent.objects.all().filter(PO=my_po) for my_indent in my_indents: my_indent.locked = True # print(my_indent.locked) my_indent.save() return JsonResponse({"done":True}) #endregion #region ########### Work-Order ########### def show_stock(request): stock_wo = work_order.objects.all().get(wo_number="STOCK") return redirect(f"/wo/{stock_wo.pk}/indent/table/") class WO_datatable(AjaxDatatableView): model = work_order title = 'work_order' length_menu = [[-1,25, 50, 100], ['all',25, 50, 100]] initial_order = [["is_complete","asc"]] search_values_separator = " " column_defs = [ AjaxDatatableView.render_row_tools_column_def(), { 'name': 'id', 'visible': False, 'searchable': False, }, { 'name': 'wo_number', 'visible': True, 'searchable': True, 'orderable': True, 'title': 'WO Number', }, # wo_number { 'name': 'description', 'visible': True, 'searchable': True, 'orderable': True, 'title': 'Description', }, # description { 'name': 'quantity', 'visible': True, 'orderable': True, 'searchable': False, 'title': 'Quantity', }, # quantity { 'name': 'net_value', 'visible': True, 'orderable': False, 'searchable': False, 'title': 'Net Value', 'className': 'currency', }, # net_value { 'name': 'is_complete', 'visible': True, 'orderable': True, 'searchable': False, 'title': 'Completed', 'className':"is_completed", }, # is_complete {'name': 'Indent List', 'visible': True,'searchable': False, 'orderable': False}, {'name': 'Print', 'visible': True,'searchable': False, 'orderable': False}, {'name': 'Edit', 'visible': True,'searchable': False, 'orderable': False}, { 'name':'Delete', 'visible': True, 'searchable': False, 'orderable': False }, # delete field ] def get_initial_queryset(self, request=None): # po_id=request.REQUEST.get('po_id') queryset = self.model.objects.all().exclude(wo_number="STOCK") # queryset = queryset.filter(PO__id=po_id) # queryset = self.model.objects.all() return queryset def customize_row(self, row, obj): # 'row' is a dictionary representing the current row, and 'obj' is the current object. row['net_value'] = f''' {obj.net_value()}''' row['Print'] = f'''<td class=""> <a href="../../wo/print_indents/{obj.pk}/" > <img src="../../../static/Images/print.png" style="width:17px;height:17px" alt="print"></a> </td>''' row['Edit'] = f'''<td class=""> <a href="../form/{obj.pk}" > <img src="../../../static/Images/editing.png" style="width:17px;height:17px" alt="edit"></a> </td>''' row['Indent List'] = f'''<td class=""> <a href="/wo/{obj.pk}/indent/table/" > <img src="../../static/Images/enter.png" style="width:17px;height:17px" alt="enter"> </a> </td>''' row['Delete'] =f'''<div class="form-check" onclick="checkSelected()"> <input class="form-check-input del_input" type="checkbox" name="del" value="{obj.pk}" input_name="{obj}"> </div>''' return def render_row_details(self, pk, request=None): obj = self.model.objects.get(pk=pk) # fields = [f
""" Routines to load a corpus and perform the necessary pre processing on the audio files and labels. Contains helper methods to load audio files, too. """ import csv import os import random import numpy as np import python_speech_features as psf import tensorflow as tf from scipy.io import wavfile from asr.dataset.config import CORPUS_DIR from asr.dataset.config import CSV_DELIMITER, CSV_FIELDNAMES, CSV_HEADER_LABEL, CSV_HEADER_PATH from asr.dataset.csv_helper import get_bucket_boundaries from asr.labels import ctoi from asr.params import NP_FLOAT, WIN_LENGTH, WIN_STEP, NUM_FEATURES, FLAGS def input_fn_generator(target): """ Generate the `input_fn` for the TensorFlow estimator. Args: target (str): The type of input, this affects the used CSV file, batching method and epochs. Supported targets are: * 'train_bucket': Creates 1 epoch of training data, using bucketing. Examples are shuffled. * 'train_batch': Creates 1 epoch of training data, using batches. Examples are in the order of the `train.csv` file. * 'dev': Creates 1 epoch of evaluation data from the `dev.csv` file. Uses buckets. Examples are shuffled. * 'test': Creates 1 epoch of evaluation data from the `test.csv` file. Uses buckets. Examples are shuffled. Returns: function: Input function pointer. """ if target == 'train_bucket': csv_path = FLAGS.train_csv use_buckets = True epochs = 1 elif target == 'train_batch': csv_path = FLAGS.train_csv use_buckets = False epochs = 1 elif target == 'dev': csv_path = FLAGS.dev_csv use_buckets = True epochs = 1 elif target == 'test': csv_path = FLAGS.test_csv use_buckets = True epochs = 1 else: raise ValueError('Invalid target: "{}"'.format(target)) # Read bucket boundaries from CSV file. if use_buckets: bucket_boundaries = get_bucket_boundaries(csv_path, FLAGS.num_buckets) tf.logging.info('Using {} buckets for the {} set.'.format(len(bucket_boundaries), target)) def input_fn(): # L8ER: Try out the following two (not working as of TF v1.12): # https://www.tensorflow.org/api_docs/python/tf/data/experimental/latency_stats # https://www.tensorflow.org/api_docs/python/tf/data/experimental/StatsAggregator def element_length_fn(_spectrogram, _spectrogram_length, _label_encoded, _label_plaintext): del _spectrogram del _label_encoded del _label_plaintext return _spectrogram_length assert os.path.exists(csv_path) and os.path.isfile(csv_path) with tf.device('/cpu:0'): dataset = tf.data.Dataset.from_generator( __input_generator, (tf.float32, tf.int32, tf.int32, tf.string), (tf.TensorShape([None, 80]), tf.TensorShape([]), tf.TensorShape([None]), tf.TensorShape([])), args=[csv_path, use_buckets]) if use_buckets: # Set shuffle buffer to an arbitrary size to ensure good enough shuffling. # At the moment, most shuffling is done by the `__input_generator` function. # Also see: https://stackoverflow.com/a/47025850/2785397 dataset = dataset.shuffle(FLAGS.shuffle_buffer_size) dataset = dataset.apply( tf.data.experimental.bucket_by_sequence_length( element_length_func=element_length_fn, bucket_boundaries=bucket_boundaries, bucket_batch_sizes=[FLAGS.batch_size] * (len(bucket_boundaries) + 1), pad_to_bucket_boundary=False, # False => pad to longest example in batch no_padding=False ) ) else: dataset = dataset.padded_batch(batch_size=FLAGS.batch_size, padded_shapes=([None, 80], [], [None], []), drop_remainder=True) # dataset.cache() dataset = dataset.prefetch(64) # Number of epochs. dataset = dataset.repeat(epochs) iterator = dataset.make_one_shot_iterator() spectrogram, spectrogram_length, label_encoded, label_plaintext = iterator.get_next() features = { 'spectrogram': spectrogram, 'spectrogram_length': spectrogram_length, 'label_plaintext': label_plaintext } return features, label_encoded return input_fn def __input_generator(*args): assert len(args) == 2, '__input_generator() arguments are a path and shuffle boolean.' assert isinstance(args[0], bytes) assert isinstance(args[1], np.bool_) csv_path = str(args[0], 'utf-8') shuffle = bool(args[1]) with open(csv_path, 'r', encoding='utf-8') as file_handle: reader = csv.DictReader(file_handle, delimiter=CSV_DELIMITER, fieldnames=CSV_FIELDNAMES) lines = list(reader)[1: -1] # Remove CSV header and final blank line. # Shuffle the CSV lines. if shuffle: random.shuffle(lines) # Read the CSV lines and extract spectrogram and label for each line. for line in lines: path = line[CSV_HEADER_PATH] label = line[CSV_HEADER_LABEL] path = os.path.join(CORPUS_DIR, path) # Convert the WAV file into spectrogram, spectrogram_length = load_sample(path) # Convert character sequence label to integer sequence. label_encoded = [ctoi(c) for c in label] yield spectrogram, spectrogram_length, label_encoded, label def load_sample(file_path, feature_type=None, feature_normalization=None): """ Loads the wave file and converts it into feature vectors. Args: file_path (str or bytes): A TensorFlow queue of file names to read from. `tf.py_func` converts the provided Tensor into `np.ndarray`s bytes. feature_type (str): Optional. If `None` is provided, use `FLAGS.feature_type`. Type of features to generate. Options are 'mel' and 'mfcc'. feature_normalization (str): Optional. If `None` is provided, use `FLAGS.feature_normalization`. Whether to normalize the generated features with the stated method or not. Please consult `sample_normalization` for a complete list of normalization methods. 'local': Use local (in sample) mean and standard deviation values, and apply the normalization element wise, like in `global`. 'local_scalar': Uses only the mean and standard deviation of the current sample. The normalization is being applied by ([sample] - mean_scalar) / std_scalar 'none': No normalization is being applied. Returns: Tuple[np.ndarray. np.ndarray]: 2D array with [time, num_features] shape, containing `NP_FLOAT`. Array containing a single int32. """ __supported_feature_types = ['mel', 'mfcc'] __supported_feature_normalizations = ['none', 'local', 'local_scalar'] feature_type = feature_type if feature_type is not None else FLAGS.feature_type feature_normalization = feature_normalization if feature_normalization is not None \ else FLAGS.feature_normalization if feature_type not in __supported_feature_types: raise ValueError('Requested feature type of {} isn\'t supported.' .format(feature_type)) if feature_normalization not in __supported_feature_normalizations: raise ValueError('Requested feature normalization method {} is invalid.' .format(feature_normalization)) if type(file_path) is not str: file_path = str(file_path, 'utf-8') if not os.path.isfile(file_path): raise ValueError('"{}" does not exist.'.format(file_path)) # Load the audio files sample rate and data. (sampling_rate, audio_data) = wavfile.read(file_path) if len(audio_data) < 401: raise RuntimeError('Sample length {:,d} to short: {}'.format(len(audio_data), file_path)) if not sampling_rate == FLAGS.sampling_rate: raise RuntimeError('Sampling rate is {:,d}, expected {:,d}.' .format(sampling_rate, FLAGS.sampling_rate)) # At 16000 Hz, 512 samples ~= 32ms. At 16000 Hz, 200 samples = 12ms. 16 samples = 1ms @ 16kHz. f_max = sampling_rate / 2. # Maximum frequency (Nyquist rate). f_min = 64. # Minimum frequency. n_fft = 1024 # Number of samples in a frame. if feature_type == 'mfcc': sample = __mfcc( audio_data, sampling_rate, WIN_LENGTH, WIN_STEP, NUM_FEATURES, n_fft, f_min, f_max ) elif feature_type == 'mel': sample = __mel( audio_data, sampling_rate, WIN_LENGTH, WIN_STEP, NUM_FEATURES, n_fft, f_min, f_max ) else: raise ValueError('Unsupported feature type') # Make sure that data type matches TensorFlow type. sample = sample.astype(NP_FLOAT) # Drop every 2nd time frame, if requested. if FLAGS.features_drop_every_second_frame: # [time, NUM_FEATURES] => [time // 2, NUM_FEATURES] sample = sample[:: 2, :] # Get length of the sample. sample_len = np.array(sample.shape[0], dtype=np.int32) # Apply feature normalization. sample = __feature_normalization(sample, feature_normalization) # sample = [time, NUM_FEATURES], sample_len: scalar return sample, sample_len def __mfcc(audio_data, sampling_rate, win_len, win_step, num_features, n_fft, f_min, f_max): """ Convert a wav signal into Mel Frequency Cepstral Coefficients (MFCC). Args: audio_data (np.ndarray): Wav signal. sampling_rate (int): Sampling rate. win_len (float): Window length in seconds. win_step (float): Window stride in seconds. num_features (int): Number of features to generate. n_fft (int): Number of Fast Fourier Transforms. f_min (float): Minimum frequency to consider. f_max (float): Maximum frequency to consider. Returns: np.ndarray: MFCC feature vectors. Shape: [time, num_features] """ if num_features % 2 != 0: raise ValueError('num_features is not a multiple of 2.') # Compute MFCC features. mfcc = psf.mfcc(signal=audio_data, samplerate=sampling_rate, winlen=win_len, winstep=win_step, numcep=num_features // 2, nfilt=num_features, nfft=n_fft, lowfreq=f_min, highfreq=f_max, preemph=0.97, ceplifter=22, appendEnergy=True) # And the first-order differences (delta features). mfcc_delta = psf.delta(mfcc, 2) # Combine MFCC with MFCC_delta return np.concatenate([mfcc, mfcc_delta], axis=1) def __mel(audio_data, sampling_rate, win_len, win_step, num_features, n_fft, f_min, f_max): """ Convert a wav signal into a logarithmically scaled mel filterbank. Args: audio_data (np.ndarray): Wav signal. sampling_rate (int): Sampling rate. win_len (float): Window length in seconds. win_step (float): Window stride in seconds. num_features (int): Number of features to generate. n_fft (int): Number of Fast Fourier Transforms. f_min (float): Minimum frequency to consider. f_max (float): Maximum frequency to consider. Returns: np.ndarray: Mel-filterbank. Shape: [time, num_features] """ mel = psf.logfbank(signal=audio_data, samplerate=sampling_rate, winlen=win_len, winstep=win_step, nfilt=num_features, nfft=n_fft, lowfreq=f_min, highfreq=f_max, preemph=0.97) return mel def __feature_normalization(features, method): """ Normalize the given feature vector `y`, with the stated normalization `method`. Args: features (np.ndarray): The signal array method (str): Normalization method: 'local': Use local (in sample) mean and standard deviation values, and apply the normalization element wise, like in `global`. 'local_scalar': Uses only the mean and standard deviation of the current sample. The normalization is being applied by ([sample] - mean_scalar) / std_scalar 'none': No normalization is being applied. Returns: np.ndarray: The normalized feature vector. """ if method == 'none': return features if method == 'local': return (features - np.mean(features, axis=0)) / np.std(features, axis=0) if method == 'local_scalar': # Option 'local' uses scalar values. return (features - np.mean(features)) / np.std(features) raise ValueError('Invalid normalization method.') # Create a dataset for testing purposes. if __name__ == '__main__': __NEXT_ELEMENT = input_fn_generator('train_bucket') with tf.Session() as session: # for example in range(FLAGS.num_examples_train): for example in range(5):
<reponame>sthagen/thombashi-pytablewriter """ .. codeauthor:: <NAME> <<EMAIL>> """ import abc import copy import math import warnings from typing import Any, Dict, List, Mapping, Optional, Sequence, Union, cast import typepy from dataproperty import ( ColumnDataProperty, DataProperty, DataPropertyExtractor, Format, MatrixFormatting, Preprocessor, ) from dataproperty.typing import TransFunc from tabledata import TableData, convert_idx_to_alphabet, to_value_matrix from typepy import String, Typecode, extract_typepy_from_dtype from .._logger import WriterLogger from ..error import EmptyTableDataError, EmptyTableNameError, EmptyValueError, NotSupportedError from ..style import Align, Cell, NullStyler, Style, StylerInterface, ThousandSeparator from ..style._theme import ColSeparatorStyleFilterFunc, StyleFilterFunc, fetch_theme from ..typehint import Integer, TypeHint from ._interface import TableWriterInterface from ._msgfy import to_error_message _ts_to_flag = { ThousandSeparator.NONE: Format.NONE, ThousandSeparator.COMMA: Format.THOUSAND_SEPARATOR, ThousandSeparator.SPACE: Format.THOUSAND_SEPARATOR, ThousandSeparator.UNDERSCORE: Format.THOUSAND_SEPARATOR, } class AbstractTableWriter(TableWriterInterface, metaclass=abc.ABCMeta): """ An abstract base class of table writer classes. Args: max_precision (int): Maximum decimal places for real number values. dequote (bool): If |True|, dequote values in :py:attr:`~.value_matrix`. .. py:attribute:: stream Stream to write tables. You can use arbitrary stream which supported ``write`` method such as ``sys.stdout``, file stream, ``StringIO``, and so forth. Defaults to ``sys.stdout``. :Example: :ref:`example-configure-stream` .. py:attribute:: is_write_header :type: bool Write headers of a table if the value is |True|. .. py:attribute:: is_padding :type: bool Padding for each item in the table if the value is |True|. .. py:attribute:: iteration_length :type: int The number of iterations to write a table. This value used in :py:meth:`.write_table_iter` method. (defaults to ``-1`` which means number of iterations is indefinite) .. py:attribute:: style_filter_kwargs :type: Dict[str, Any] Extra keyword arguments for style filter functions. These arguments will passing to filter functions added by :py:meth:`.add_style_filter` or :py:meth:`.add_col_separator_style_filter` .. py:attribute:: colorize_terminal :type: bool :value: True [Only for text format writers] [experimental] If |True|, colorize text outputs with |Style|. .. py:attribute:: enable_ansi_escape :type: bool :value: True [Only for text format writers] If |True|, applies ANSI escape sequences to terminal's text outputs with |Style|. .. py:attribute:: write_callback The value expected to a function. The function called when for each of the iteration of writing a table completed. (defaults to |None|) Example, callback function definition is as follows: .. code:: python def callback_example(iter_count, iter_length): print("{:d}/{:d}".format(iter_count, iter_length)) Arguments that passed to the callback is: - first argument: current iteration number (start from ``1``) - second argument: a total number of iteration """ @property def margin(self) -> int: raise NotImplementedError() @margin.setter def margin(self, value: int) -> None: raise NotImplementedError() @property def header_list(self): warnings.warn("'header_list' has moved to 'headers'", DeprecationWarning) return self.headers @header_list.setter def header_list(self, value): warnings.warn("'header_list' has moved to 'headers'", DeprecationWarning) self.headers = value @property def value_matrix(self) -> Sequence: """Data of a table to be outputted.""" return self.__value_matrix_org @value_matrix.setter def value_matrix(self, value_matrix: Sequence) -> None: self.__set_value_matrix(value_matrix) self.__clear_preprocess() @property def table_format(self): """Get the format of the writer. Returns: TableFormat: """ from .._table_format import TableFormat return TableFormat.from_name(self.format_name) @property def type_hint_list(self): warnings.warn("'type_hint_list' has moved to 'type_hints'", DeprecationWarning) return self.type_hints @type_hint_list.setter def type_hint_list(self, value): warnings.warn("'type_hint_list' has moved to 'type_hints'", DeprecationWarning) self.type_hints = value @property def styles(self): warnings.warn("'styles' has moved to 'column_styles'", DeprecationWarning) return self.column_styles @styles.setter def styles(self, value): warnings.warn("'styles' has moved to 'column_styles'", DeprecationWarning) self.column_styles = value @property def style_list(self): warnings.warn("'style_list' has moved to 'column_styles'", DeprecationWarning) return self.column_styles @style_list.setter def style_list(self, value): warnings.warn("'style_list' has moved to 'column_styles'", DeprecationWarning) self.column_styles = value @property def value_preprocessor(self): return self._dp_extractor.preprocessor @value_preprocessor.setter def value_preprocessor(self, value): warnings.warn( "this setter will be deleted in the future. use update_preprocessor instead", DeprecationWarning, ) if self._dp_extractor.preprocessor == value: return self._dp_extractor.preprocessor = value self.__clear_preprocess() @property def stream(self): return self._stream @stream.setter def stream(self, value) -> None: self._stream = value @abc.abstractmethod def _write_table(self, **kwargs) -> None: pass def __init__(self, **kwargs) -> None: self._logger = WriterLogger(self) self.table_name = kwargs.get("table_name", "") self.value_matrix = kwargs.get("value_matrix", []) self.is_write_header = kwargs.get("is_write_header", True) self.is_write_header_separator_row = kwargs.get("is_write_header_separator_row", True) self.is_write_value_separator_row = kwargs.get("is_write_value_separator_row", False) self.is_write_opening_row = kwargs.get("is_write_opening_row", False) self.is_write_closing_row = kwargs.get("is_write_closing_row", False) self._use_default_header = False self._dp_extractor = DataPropertyExtractor(max_precision=kwargs.get("max_precision")) self._dp_extractor.min_column_width = 1 self._dp_extractor.strip_str_header = '"' self._dp_extractor.preprocessor = Preprocessor(dequote=kwargs.get("dequote", True)) self._dp_extractor.type_value_map[Typecode.NONE] = "" self._dp_extractor.matrix_formatting = MatrixFormatting.HEADER_ALIGNED self._dp_extractor.update_strict_level_map({Typecode.BOOL: 1}) self.is_formatting_float = kwargs.get("is_formatting_float", True) self.is_padding = kwargs.get("is_padding", True) self.headers = kwargs.get("headers", []) self.type_hints = kwargs.get("type_hints", []) self._quoting_flags = { Typecode.BOOL: False, Typecode.DATETIME: True, Typecode.DICTIONARY: False, Typecode.INFINITY: False, Typecode.INTEGER: False, Typecode.IP_ADDRESS: True, Typecode.LIST: False, Typecode.NAN: False, Typecode.NONE: False, Typecode.NULL_STRING: True, Typecode.REAL_NUMBER: False, Typecode.STRING: True, } self._is_require_table_name = False self._is_require_header = False self.iteration_length = kwargs.get("iteration_length", -1) self.write_callback = kwargs.get( "write_callback", lambda _iter_count, _iter_length: None # defaults to NOP callback ) self._iter_count: Optional[int] = None self.__default_style: Style self.default_style = kwargs.get("default_style", Style()) self.__col_style_list: List[Optional[Style]] = [] self.column_styles = kwargs.get("column_styles", []) self._style_filters: List[StyleFilterFunc] = [] self._styler = self._create_styler(self) self.style_filter_kwargs: Dict[str, Any] = kwargs.get("style_filter_kwargs", {}) self.__colorize_terminal = kwargs.get("colorize_terminal", True) self.__enable_ansi_escape = kwargs.get("enable_ansi_escape", True) self.max_workers = kwargs.get("max_workers", 1) if "dataframe" in kwargs: self.from_dataframe(kwargs["dataframe"]) self.__clear_preprocess() def _repr_html_(self) -> str: from .text._html import HtmlTableWriter writer = HtmlTableWriter( table_name=self.table_name, headers=self.headers, value_matrix=self.value_matrix, column_styles=self.column_styles, colorize_terminal=self.colorize_terminal, enable_ansi_escape=self.enable_ansi_escape, ) writer._dp_extractor = self._dp_extractor return writer.dumps() def __clear_preprocess_status(self) -> None: self._is_complete_table_dp_preprocess = False self._is_complete_table_property_preprocess = False self._is_complete_header_preprocess = False self._is_complete_value_matrix_preprocess = False def __clear_preprocess_data(self) -> None: self._column_dp_list: List[ColumnDataProperty] = [] self._table_headers: List[str] = [] self._table_value_matrix: List[Union[List[str], Dict]] = [] self._table_value_dp_matrix: Sequence[Sequence[DataProperty]] = [] @property def headers(self) -> Sequence[str]: """Headers of a table to be outputted.""" return self._dp_extractor.headers @headers.setter def headers(self, value: Sequence[str]) -> None: self._dp_extractor.headers = value @property def is_formatting_float(self) -> bool: return self._dp_extractor.is_formatting_float @is_formatting_float.setter def is_formatting_float(self, value: bool) -> None: if self._dp_extractor.is_formatting_float == value: return self._dp_extractor.is_formatting_float = value self.__clear_preprocess() @property def max_workers(self) -> int: return self._dp_extractor.max_workers @max_workers.setter def max_workers(self, value: Optional[int]) -> None: self._dp_extractor.max_workers = value @property def tabledata(self) -> TableData: """Get tabular data of the writer. Returns: tabledata.TableData: """ return TableData( self.table_name, self.headers, self.value_matrix, max_workers=self.max_workers, max_precision=self._dp_extractor.max_precision, ) @property def table_name(self) -> str: """Name of a table.""" return self._table_name @table_name.setter def table_name(self, value: str) -> None: self._table_name = value @property def type_hints(self) -> List[TypeHint]: """ Type hints for each column of the tabular data. Writers convert data for each column using the type hints information before writing tables when you call ``write_xxx`` methods. Acceptable values are as follows: - |None| (automatically detect column type from values in the column) - :py:class:`pytablewriter.typehint.Bool` or ``"bool"`` - :py:class:`pytablewriter.typehint.DateTime` or ``"datetime"`` - :py:class:`pytablewriter.typehint.Dictionary` or ``"dict"`` - :py:class:`pytablewriter.typehint.Infinity` or ``"inf"`` - :py:class:`pytablewriter.typehint.Integer` or ``"int"`` - :py:class:`pytablewriter.typehint.IpAddress` or ``"ipaddr"`` - :py:class:`pytablewriter.typehint.List` or ``"list"`` - :py:class:`pytablewriter.typehint.Nan` or ``"nan"`` - :py:class:`pytablewriter.typehint.NoneType` or ``"none"`` - :py:class:`pytablewriter.typehint.NullString` or ``"nullstr"`` - :py:class:`pytablewriter.typehint.RealNumber` or ``"realnumber"`` or ``"float"`` - :py:class:`pytablewriter.typehint.String` or ``"str"`` If a type-hint value is not |None|, the writer tries to convert data for each data in a column to type-hint class. If the type-hint value is |None| or failed to convert data, the writer automatically detect column data type from the column data. If ``type_hints`` is |None|, the writer detects data types for all of the columns automatically and writes a table by using detected column types. Defaults to |None|. :Examples: - :ref:`example-type-hint-js` - :ref:`example-type-hint-python` """ return self._dp_extractor.column_type_hints @type_hints.setter def type_hints(self, value: Sequence[Union[str, TypeHint]]) -> None: hints = list(value) if self.type_hints == hints: return self.__set_type_hints(hints) self.__clear_preprocess() @property def default_style(self) -> Style: """Default |Style| of table cells.""" return self.__default_style @default_style.setter def default_style(self, style: Optional[Style]) -> None: if style is None: style = Style() if not isinstance(style, Style): raise TypeError("default_style must be a Style instance") try: if self.__default_style == style: return except AttributeError: # not yet initialized pass self.__default_style = style self._dp_extractor.default_format_flags = _ts_to_flag[ self.__default_style.thousand_separator ] self.__clear_preprocess() @property def column_styles(self) -> List[Optional[Style]]: """Output |Style| for each column. Returns: list of |Style|: """ return self.__col_style_list @column_styles.setter def column_styles(self, value: Sequence[Optional[Style]]) -> None: if self.__col_style_list == value: return self.__col_style_list = list(value) if self.__col_style_list: self._dp_extractor.format_flags_list = [ _ts_to_flag[self._get_col_style(col_idx).thousand_separator] for col_idx in range(len(self.__col_style_list)) ] else: self._dp_extractor.format_flags_list = [] self.__clear_preprocess() @property def colorize_terminal(self) -> bool: return self.__colorize_terminal @colorize_terminal.setter def colorize_terminal(self, value: bool) -> None: if self.__colorize_terminal == value: return self.__colorize_terminal = value self.__clear_preprocess() @property def enable_ansi_escape(self) -> bool: return self.__enable_ansi_escape @enable_ansi_escape.setter def enable_ansi_escape(self, value: bool) -> None: if self.__enable_ansi_escape == value: return self.__enable_ansi_escape = value self.__clear_preprocess() @property def _quoting_flags(self) -> Dict[Typecode, bool]: return self._dp_extractor.quoting_flags @_quoting_flags.setter def _quoting_flags(self, value: Mapping[Typecode, bool]) -> None: self._dp_extractor.quoting_flags = value self.__clear_preprocess() def add_style_filter(self, style_filter: StyleFilterFunc) -> None: """Add a style filter function to the writer. Args: style_filter: A function that called for each
from .BaseStep import BaseStep from ..data.Posts import Posts import tomotopy as tp import pandas as pd import numpy as np import json import csv import random import statistics from collections import Iterable from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import seaborn as sns sns.set_style('whitegrid') import warnings warnings.filterwarnings("ignore") class PostProcessing(BaseStep): def __init__(self): super().__init__('Post-processing') self.__modelFile = 'results/model.bin' self.__model = None self.__experimentsFile = 'results/experiments.csv' self.__experiments = None self.__posts = Posts(preProcessed=True, memory=False, splitted=True) self.__topicsFile = 'results/topics.csv' self.__labeledTopicsFile = 'results/labeled-topics.csv' self.__topicsFields = ['topic', 'label', 'words'] self.__labels = None self.__generalPopularityFile = 'results/general-popularity.csv' self.__generalPopularityFields = ['topic', 'semester', 'popularity'] self.__generalDriftFile = 'results/general-drift.csv' self.__generalDriftFields = ['topic', 'mean', 'variance', 'drift'] self.__generalTrendsFile = 'results/general-trends.csv' self.__generalTrendsFields = ['topic', 'popularity'] self.__userPopularityFile = 'results/user-popularity.csv' self.__userPopularityFields = ['user'] + self.__generalPopularityFields self.__userDriftFile = 'results/user-drift.csv' self.__userDriftFields = ['user'] + self.__generalDriftFields self.__userTrendsFile = 'results/user-trends.csv' self.__userTrendsFields = ['user'] + self.__generalTrendsFields def __createCSV(self, csvName, fields): with open(csvName, 'w', newline='') as csvFile: writer = csv.DictWriter(csvFile, fieldnames=fields) writer.writeheader() def __appendToCSV(self, csvName, data): with open(csvName, 'a', newline='') as csvFile: writer = csv.DictWriter(csvFile, fieldnames=data.keys()) writer.writerow(data) def __extractTopics(self): print(' Extracting topics') # Create CSV self.__createCSV(self.__topicsFile, self.__topicsFields) for topic in range(self.__model.k): self.__appendToCSV( self.__topicsFile, { 'topic': topic, 'label': 'unknown', 'words': ' '.join([ t[0] for t in self.__model.get_topic_words(topic) ]), } ) def __loadLabeledTopics(self): try: df = pd.read_csv(self.__labeledTopicsFile, header=0) self.__labels = df.label.tolist() except: pass def __createCoherenceChart(self): print(' Creating coherence chart') months = self.__experiments['num_topics'].tolist() popularities = self.__experiments['iterations'].tolist() Z = self.__experiments['coherence'].tolist() Z_max = max(Z) index = Z.index(Z_max) X_max = months[index] Y_max = popularities[index] fig = plt.figure(figsize=(8,5)) ax = fig.gca(projection='3d') surface = ax.plot_trisurf(months, popularities, Z, cmap=cm.coolwarm, linewidth=0) ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) ax.yaxis.set_major_formatter(FormatStrFormatter('%d')) fig.colorbar(surface, shrink=0.5, aspect=5) fig.suptitle('Best experiment: iterations={} topics={} coherence={:.4f}'.format(Y_max, X_max, Z_max)) fig.tight_layout() ax.set_xlabel('Number of topics') ax.set_ylabel('Iterations') ax.set_zlabel('Coherence') plt.savefig('results/Coherence-Chart.png', dpi=600) plt.clf() def __normalizeTopics(self, topics): if len(topics) == 0: return [] normalizer = 1 / float( sum([ weight for _, weight in topics ]) ) return [ (topic, weight*normalizer) for topic, weight in topics ] def __getTopics(self, topicDistribution, threshold=0.1): # Map topics topics = list(zip(range(len(topicDistribution)), topicDistribution)) topics.sort(key=lambda value: value[1], reverse=True) # Remove topics below threshold and normalize return self.__normalizeTopics([ (topic, weight) for topic, weight in topics if weight >= threshold ]) def __initCalculator(self): return {'count': 0, 'weightSum': [0]*self.__model.k} def __saveDrift(self, semesterCount, popularities, csvName, user=None): for topic in popularities.keys(): lengthDifference = semesterCount - len(popularities[topic]) if lengthDifference > 0: popularities[topic] = [0]*lengthDifference + popularities[topic] mean = statistics.mean(popularities[topic]) variance = statistics.pvariance(popularities[topic], mu=mean) drift = variance**0.5 if not user: self.__appendToCSV( csvName, { 'topic': topic, 'mean': mean, 'variance': variance, 'drift': drift, } ) else: self.__appendToCSV( csvName, { 'user': user, 'topic': topic, 'mean': mean, 'variance': variance, 'drift': drift, } ) def __computeUserPopularity(self): print(' Computing user popularity') self.__countEmpty = 0 numPosts = len(self.__model.docs) calculation = {} index = -1 for post in self.__posts: # Stop when reach the last post in the model if index+1 == numPosts: break # Compute the metrics if content is not empty elif len(post['content']) > 0: # Get topics index += 1 content = self.__model.docs[index] topics = self.__getTopics(content.get_topic_dist()) # Check if post has topics if len(topics) == 0: self.__countEmpty += 1 continue # Get data user = post['user'] year, month, day = post['date'].split('-') semester = f'{year}.{1 if int(month) < 7 else 2}' # Adjust dict of users and semesters if not user in calculation.keys(): calculation[user] = {semester: self.__initCalculator()} elif not semester in calculation[user].keys(): calculation[user][semester] = self.__initCalculator() # Increment posts counter calculation[user][semester]['count'] += 1 # Sum weight for each topic for topic, weight in topics: calculation[user][semester]['weightSum'][topic] += weight # Print some results print(' Number of users:', len(calculation.keys())) print(' Posts with empty topics:', self.__countEmpty) # Initialize CSVs self.__createCSV(self.__userPopularityFile, self.__userPopularityFields) self.__createCSV(self.__userDriftFile, self.__userDriftFields) self.__createCSV(self.__userTrendsFile, self.__userTrendsFields) # Finish relative popularity calculation computedCount = 0 for user in calculation.keys(): popularities = {} trendPopularityCalculation = self.__initCalculator() for semester in calculation[user].keys(): trendPopularityCalculation['count'] += calculation[user][semester]['count'] for topic in range(self.__model.k): # Check if metric must be computed if calculation[user][semester]['weightSum'][topic] == 0: if topic in popularities.keys(): popularities[topic].append(0) continue # Compute populatities trendPopularityCalculation['weightSum'][topic] += calculation[user][semester]['weightSum'][topic] popularity = calculation[user][semester]['weightSum'][topic] / calculation[user][semester]['count'] computedCount += 1 # Append relative popularity to compute variance if topic not in popularities.keys(): popularities[topic] = [] popularities[topic].append(popularity) # Insert popularity to csv self.__appendToCSV( self.__userPopularityFile, { 'user': user, 'topic': topic, 'semester': semester, 'popularity': popularity, } ) # Insert trend popularity to csv trendPopularities = [ trendPopularityCalculation['weightSum'][topic] / trendPopularityCalculation['count'] for topic in range(self.__model.k) ] for topic in range(self.__model.k): if trendPopularityCalculation['weightSum'][topic] > 0: computedCount += 1 popularity = trendPopularityCalculation['weightSum'][topic] / trendPopularityCalculation['count'] self.__appendToCSV( self.__userTrendsFile, { 'user': user, 'topic': topic, 'popularity': popularity, } ) # Compute drift popularities = { topic: popularities[topic] for topic in sorted(popularities.keys()) } self.__saveDrift(len(calculation[user].keys()), popularities, self.__userDriftFile, user) computedCount += 4 print(' Computed metrics:', computedCount) def __computeGeneralPopularity(self): print(' Computing general popularity') self.__countEmpty = 0 numPosts = len(self.__model.docs) calculation = {} index = -1 for post in self.__posts: # Stop when reach the last post in the model if index+1 == numPosts: break # Compute the metrics if content is not empty elif len(post['content']) > 0: # Get topics index += 1 content = self.__model.docs[index] topics = self.__getTopics(content.get_topic_dist()) # Check if post has topics if len(topics) == 0: self.__countEmpty += 1 continue # Get semester year, month, day = post['date'].split('-') semester = f'{year}.{1 if int(month) < 7 else 2}' # Adjust dict of semesters if not semester in calculation.keys(): calculation[semester] = self.__initCalculator() # Increment posts counter calculation[semester]['count'] += 1 # Sum weight for each topic for topic, weight in topics: calculation[semester]['weightSum'][topic] += weight # Print some results print(' Posts with empty topics:', self.__countEmpty) # Initialize CSVs self.__createCSV(self.__generalPopularityFile, self.__generalPopularityFields) self.__createCSV(self.__generalDriftFile, self.__generalDriftFields) self.__createCSV(self.__generalTrendsFile, self.__generalTrendsFields) # Finish relative popularity calculation popularities = {} trendPopularityCalculation = self.__initCalculator() computedCount = 0 for semester in calculation.keys(): trendPopularityCalculation['count'] += calculation[semester]['count'] for topic in range(self.__model.k): # Check if metric must be computed if calculation[semester]['weightSum'][topic] == 0: if topic in popularities.keys(): popularities[topic].append(0) continue # Compute populatities trendPopularityCalculation['weightSum'][topic] += calculation[semester]['weightSum'][topic] popularity = calculation[semester]['weightSum'][topic] / calculation[semester]['count'] computedCount += 1 # Append relative popularity to compute variance if topic not in popularities.keys(): popularities[topic] = [] popularities[topic].append(popularity) # Insert popularity to csv self.__appendToCSV( self.__generalPopularityFile, { 'topic': topic, 'semester': semester, 'popularity': popularity, } ) # Insert trend popularity to csv trendPopularities = [ trendPopularityCalculation['weightSum'][topic] / trendPopularityCalculation['count'] for topic in range(self.__model.k) ] for topic in range(self.__model.k): if trendPopularityCalculation['weightSum'][topic] > 0: computedCount += 1 popularity = trendPopularityCalculation['weightSum'][topic] / trendPopularityCalculation['count'] self.__appendToCSV( self.__generalTrendsFile, { 'topic': topic, 'popularity': popularity, } ) # Compute drift popularities = { topic: popularities[topic] for topic in sorted(popularities.keys()) } self.__saveDrift(len(calculation.keys()), popularities, self.__generalDriftFile) computedCount += 4 print(' Computed metrics:', computedCount) def __saveChart(self, yLabel, xTicks, path, legends=True): if isinstance(yLabel, str): plt.ylabel(yLabel) if legends: plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05), ncol=4, fontsize='small', borderaxespad=0, labelspacing=0.8) if isinstance(xTicks, Iterable): plt.xticks(xTicks, rotation=45, ha='left') plt.tight_layout() plt.savefig(path, dpi=600) plt.clf() def __createUserCharts(self): print(' Creating user popularity charts') originalPopularityDf = pd.read_csv(self.__userPopularityFile, header=0) originaldriftDf = pd.read_csv(self.__userDriftFile, header=0) originalTrendsDf = pd.read_csv(self.__userTrendsFile, header=0) users = originaldriftDf.user.unique() count = 0 random.seed(0) random.shuffle(users) for user in users: # Stop 10 users was analyzed if count == 10: break # Skip user if his contribution ir lower than one year popularityDf = originalPopularityDf.loc[originalPopularityDf.user == user] if len(popularityDf.semester.unique()) < 12: continue count += 1 driftDf = originaldriftDf.loc[originaldriftDf.user == user] trendsDf = originalTrendsDf.loc[originalTrendsDf.user == user] semesters = popularityDf.semester.unique() popularitiesByMonth = [] drifts = [] trendPopularities = [] topics = [] for topic in range(int(self.__experiment.num_topics)): popularities = [] for i in range(len(semesters)): semester = semesters[i] popularitiesRows = popularityDf.loc[(popularityDf.semester == semester) & (popularityDf.topic == topic)] if len(popularitiesRows) == 0: popularities.append(0) else: popularities.append(popularitiesRows.iloc[-1].popularity) if (any([ value for value in popularities if value != 0 ])): popularitiesByMonth.append(popularities) topics.append(topic) if topic in topics: driftRows = driftDf.loc[driftDf.topic == topic] drifts.append(driftRows.iloc[-1].drift) trendsRows = trendsDf.loc[trendsDf.topic == topic] trendPopularities.append(trendsRows.iloc[-1].popularity) # Create palette palette = sns.color_palette('muted', 10) + sns.color_palette('colorblind', 10) + sns.color_palette('dark', 10) # Load topic labels if possible labels = [ self.__labels[i] for i in topics ] if isinstance(self.__labels, list) else topics enum = [x for x,
ensure_trailing_sep(start, sep) if path.startswith(start_with_sep): return path[len(start_with_sep) :] raise ValueError(path, start) def which(cmd): which_cmd = "where" if get_platform() == "Windows" else "which" devnull = open(os.devnull, "w") try: out = subprocess.check_output([which_cmd, cmd], stderr=devnull) except subprocess.CalledProcessError: return None else: assert out, cmd return out.decode("utf-8").split(os.linesep)[0] def symlink(target, link): if get_platform() == "Windows": _windows_symlink(target, link) else: os.symlink(target, link) def copyfile(src, dest): shutil.copyfile(src, dest) shutil.copymode(src, dest) def _windows_symlink(target, link): if os.path.isdir(target): args = ["mklink", "/D", link, target] else: args = ["mklink", link, target] try: subprocess.check_output(args, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as e: err_msg = e.output.decode(errors="ignore").strip() _maybe_symlink_error(err_msg, e.returncode) raise OSError(e.returncode, err_msg) def _maybe_symlink_error(err_msg, err_code): if "You do not have sufficient privilege to perform this operation" in err_msg: raise SystemExit( "You do not have sufficient privilege to perform this operation\n\n" "For help, see " "https://my.guild.ai/docs/windows#symbolic-links-privileges-in-windows", err_code, ) _text_ext = set( [ ".csv", ".md", ".py", ".sh", ".txt", ] ) _binary_ext = set( [ ".ai", ".bmp", ".gif", ".ico", ".jpeg", ".jpg", ".png", ".ps", ".psd", ".svg", ".tif", ".tiff", ".aif", ".mid", ".midi", ".mpa", ".mp3", ".ogg", ".wav", ".wma", ".avi", ".mov", ".mp4", ".mpeg", ".swf", ".wmv", ".7z", ".deb", ".gz", ".pkg", ".rar", ".rpm", ".tar", ".xz", ".z", ".zip", ".doc", ".docx", ".key", ".pdf", ".ppt", ".pptx", ".xlr", ".xls", ".xlsx", ".bin", ".pickle", ".pkl", ".pyc", ] ) _control_chars = b'\n\r\t\f\b' if bytes is str: _printable_ascii = _control_chars + b"".join([chr(x) for x in range(32, 127)]) _printable_high_ascii = b"".join([chr(x) for x in range(127, 256)]) else: _printable_ascii = _control_chars + bytes(range(32, 127)) _printable_high_ascii = bytes(range(127, 256)) def is_text_file(path, ignore_ext=False): import chardet # Adapted from https://github.com/audreyr/binaryornot under the # BSD 3-clause License if not os.path.exists(path): raise OSError("%s does not exist" % path) if not os.path.isfile(path): return False if not ignore_ext: ext = os.path.splitext(path)[1].lower() if ext in _text_ext: return True if ext in _binary_ext: return False try: with open(path, 'rb') as f: sample = f.read(1024) except IOError: return False if not sample: return True low_chars = sample.translate(None, _printable_ascii) nontext_ratio1 = float(len(low_chars)) / float(len(sample)) high_chars = sample.translate(None, _printable_high_ascii) nontext_ratio2 = float(len(high_chars)) / float(len(sample)) likely_binary = (nontext_ratio1 > 0.3 and nontext_ratio2 < 0.05) or ( nontext_ratio1 > 0.8 and nontext_ratio2 > 0.8 ) detected_encoding = chardet.detect(sample) decodable_as_unicode = False if ( detected_encoding["confidence"] > 0.9 and detected_encoding["encoding"] != "ascii" ): try: try: sample.decode(encoding=detected_encoding["encoding"]) except TypeError: # pylint: disable=undefined-variable unicode(sample, encoding=detected_encoding["encoding"]) decodable_as_unicode = True except LookupError: pass except UnicodeDecodeError: pass if likely_binary: return decodable_as_unicode else: if decodable_as_unicode: return True else: if b'\x00' in sample or b'\xff' in sample: return False return True def safe_is_text_file(path, ignore_ext=False): try: return is_text_file(path, ignore_ext) except OSError as e: log.warning("could not check for text file %s: %s", path, e) return False def touch(filename): open(filename, "ab").close() now = time.time() os.utime(filename, (now, now)) def ensure_file(filename): if not os.path.exists(filename): touch(filename) def getmtime(filename): try: return os.path.getmtime(filename) except OSError: return None def kill_process_tree(pid, force=False, timeout=None, child_term_timeout=None): import psutil import signal if force: sig = signal.SIGKILL else: sig = signal.SIGTERM root = psutil.Process(pid) children = root.children(recursive=True) all_procs = [root] + children _safe_send_signal(root, sig) if child_term_timeout is not None: psutil.wait_procs(children, timeout=child_term_timeout) for child in children: _safe_send_signal(child, sig) return psutil.wait_procs(all_procs, timeout=timeout) def _safe_send_signal(proc, sig): import psutil try: proc.send_signal(sig) except psutil.NoSuchProcess: pass def safe_filesize(path): try: return os.path.getsize(path) except OSError: return None def safe_mtime(path): try: return os.path.getmtime(path) except OSError: return None def safe_list_remove(x, l): safe_list_remove_all([x], l) def safe_list_remove_all(xs, l): for x in xs: try: l.remove(x) except ValueError: pass def local_server_url(host, port): import socket if not host or host == "0.0.0.0": host = socket.gethostname() try: # Verify that configured hostname is valid socket.gethostbyname(host) except socket.gaierror: host = "localhost" return "http://{}:{}".format(host, port) def format_duration(start_time, end_time=None): if start_time is None: return None if end_time is None: end_time = time.time() * 1000000 seconds = (end_time - start_time) // 1000000 m, s = divmod(seconds, 60) h, m = divmod(m, 60) return "%d:%02d:%02d" % (h, m, s) def format_dir(dir): return format_user_dir(os.path.abspath(dir)) def format_user_dir(s): if get_platform() == "Windows": return s user_dir = os.path.expanduser("~") if s.startswith(user_dir): return os.path.join("~", s[len(user_dir) + 1 :]) return s def apply_env(target, source, names): for name in names: try: target[name] = source[name] except KeyError: pass def safe_filename(s): if get_platform() == "Windows": s = re.sub(r"[:<>?]", "_", s) return re.sub(r"[/\\]+", "_", s) def wait_forever(sleep_interval=0.1): while True: time.sleep(sleep_interval) class RunOutputReader(object): def __init__(self, run_dir): self.run_dir = run_dir self._lines = [] self._output = None self._index = None def read(self, start=0, end=None): """Read run output from start to end. Both start and end are zero-based indexes to run output lines and are both inclusive. Note this is different from the Python slice function where end is exclusive. """ self._read_next(end) if end is None: slice_end = None else: slice_end = end + 1 return self._lines[start:slice_end] def _read_next(self, end): if end is not None and end < len(self._lines): return try: output, index = self._ensure_open() except IOError as e: if e.errno != errno.EEXIST: raise else: lines = self._lines while True: line = output.readline().rstrip().decode() if not line: break header = index.read(9) if len(header) < 9: break time, stream = struct.unpack("!QB", header) lines.append((time, stream, line)) if end is not None and end < len(self._lines): break def _ensure_open(self): if self._output is None: guild_path = os.path.join(self.run_dir, ".guild") output = open(os.path.join(guild_path, "output"), "rb") index = open(os.path.join(guild_path, "output.index"), "rb") self._output, self._index = output, index assert self._output is not None assert self._index is not None return self._output, self._index def close(self): self._try_close(self._output) self._try_close(self._index) @staticmethod def _try_close(f): if f is None: return try: f.close() except IOError: pass def gpu_available(): import ctypes if "linux" in sys.platform: lib = "libcublas.so" elif sys.platform == "darwin": lib = "libcublas.dylib" elif sys.platform == "win32": lib = "cublas.dll" else: log.warning("unable to detect GPU for platform '%s'", sys.platform) lib = None if lib: log.debug("checking for GPU by loading %s", lib) try: ctypes.CDLL(lib) except OSError as e: log.debug("error loading '%s': %s", lib, e) else: log.debug("%s loaded", lib) return True return False def get_env(name, type, default=None): try: val = os.environ[name] except KeyError: return default else: try: return type(val) except Exception as e: log.warning("error converting env %s to %s: %s", name, type, e) return None def del_env(names): for name in names: try: del os.environ[name] except KeyError: pass def python_interpreters(): import glob from guild import config bin_dir = os.path.dirname(config.python_exe()) ret = [] for path in glob.glob(os.path.join(bin_dir, "python*")): m = re.match(r"python([0-9\.]+)$", os.path.basename(path)) if m: ret.append((path, m.group(1))) return ret def find_python_interpreter(version_spec): import pkg_resources try: # Requirement.parse wants a package name, so we use 'python' # here, but anything would do. req = pkg_resources.Requirement.parse("python%s" % version_spec) except pkg_resources.RequirementParseError: raise ValueError(version_spec) python_interps = {ver: path for path, ver in python_interpreters()} matching = list(req.specifier.filter(sorted(python_interps))) if not matching: return None matching_ver = matching[0] return python_interps[matching_ver], matching_ver def is_executable_file(path): return os.path.isfile(path) and os.access(path, os.X_OK) def copytree(src, dest, preserve_links=True): from distutils import dir_util dir_util.copy_tree(src, dest, preserve_symlinks=preserve_links) def select_copytree(src, dest, config, copy_filter=None): if not isinstance(config, list): raise ValueError("invalid config: expected list got %r" % config) log.debug("copying files from %s to %s", src, dest) to_copy = _select_files_to_copy(src, config, copy_filter) if not to_copy: log.debug("no files to copy") return for file_src, file_src_rel_path in to_copy: file_dest = os.path.join(dest, file_src_rel_path) log.debug("copying file %s to %s", file_src, file_dest) ensure_dir(os.path.dirname(file_dest)) _try_copy_file(file_src, file_dest) def _select_files_to_copy(src_dir, config, copy_filter): to_copy = [] seen_dirs = set() log.debug("generating file list from %s", src_dir) for root, dirs, files in os.walk(src_dir, followlinks=True): seen_dirs.add(realpath(root)) _del_excluded_select_copy_dirs( dirs, src_dir, root, seen_dirs, config, copy_filter ) for name in files: path = os.path.join(root, name) if not os.path.isfile(path): continue rel_path = os.path.relpath(path, src_dir) log.debug("considering file to copy %s", path) if _select_to_copy(path, rel_path, config, copy_filter): log.debug("seleted file to copy %s", path) to_copy.append((path, rel_path)) # Sort before notifying copy_filter to have deterministic result. to_copy.sort() if copy_filter: copy_filter.pre_copy(to_copy) return to_copy def _del_excluded_select_copy_dirs(dirs, src_dir, root, seen_dirs, config, copy_filter): _del_seen_dirs(dirs, root, seen_dirs) _del_config_excluded_dirs(dirs, src_dir, root, config) if copy_filter: copy_filter.delete_excluded_dirs(root, dirs) def _del_seen_dirs(dirs, root, seen): for dir_name in dirs: real_path = realpath(os.path.join(root, dir_name)) if real_path in seen: dirs.remove(dir_name) def _del_config_excluded_dirs(dirs, src_dir, root, config): for name in list(dirs): path = os.path.join(root, name) rel_path = os.path.relpath(path, src_dir) if not _select_to_copy(path, rel_path, config): dirs.remove(name) def _select_to_copy(path, rel_path, config, copy_filter=None): assert isinstance(config, list) last_match = None for config_item in config: for spec in config_item.specs: if _select_file_match(rel_path, spec): last_match = spec if last_match: return _select_to_copy_for_spec(last_match) if copy_filter: return copy_filter.default_select_path(path) return True def _select_file_match(rel_path, spec): return any((fnmatch.fnmatch(rel_path, p) for p in spec.patterns)) def _select_to_copy_for_spec(spec): return spec.type == "include" def _try_copy_file(src, dest): try: shutil.copyfile(src, dest) except (IOError, OSError) as e:
"oso goiz"], "arratsaldea": ["arratsa", "bazkalostea", "arratsalde", "arrats"], "gaua": ["iluntzea", "berandu", "gau", "gaba"]} for syn in synonyms: for word in synonyms[syn]: s = s.replace(" " + word + " ", " " + syn + " ") # relevant plurals wordlist = ["goizak", "arratsaldeak", "gauak", "egunak", "asteak", "urteak", "minutuak", "segunduak", "hurrengoak", "datozenak", "orduak", "hilabeteak"] for _, word in enumerate(wordlist): s = s.replace(word, word.rstrip('ak')) # s = s.replace("meses", "mes").replace("anteriores", "anterior") return s def date_found(): return found or \ ( datestr != "" or yearOffset != 0 or monthOffset != 0 or dayOffset is True or hrOffset != 0 or hrAbs or minOffset != 0 or minAbs or secOffset != 0 ) if input_str == "": return None if anchorDate is None: anchorDate = datetime.now() found = False daySpecified = False dayOffset = False monthOffset = 0 yearOffset = 0 dateNow = anchorDate today = dateNow.strftime("%w") currentYear = dateNow.strftime("%Y") fromFlag = False datestr = "" hasYear = False timeQualifier = "" words = clean_string(input_str).split(" ") timeQualifiersList = ['goiza', 'arratsaldea', 'gaua'] time_indicators = ["en", "la", "al", "por", "pasados", "pasadas", "día", "hora"] days = ['astelehena', 'asteartea', 'asteazkena', 'osteguna', 'ostirala', 'larunbata', 'igandea'] months = ['urtarrila', 'otsaila', 'martxoa', 'apirila', 'maiatza', 'ekaina', 'uztaila', 'abuztua', 'iraila', 'urria', 'azaroa', 'abendua'] monthsShort = ['urt', 'ots', 'mar', 'api', 'mai', 'eka', 'uzt', 'abu', 'ira', 'urr', 'aza', 'abe'] nexts = ["hurrengo", "datorren", "ondorengo"] suffix_nexts = ["barru"] lasts = ["azken", "duela"] suffix_lasts = ["aurreko"] nxts = ["ondorengo", "hurrengo", "datorren"] prevs = ["aurreko", "duela", "previo", "anterior"] # TODO froms = ["desde", "en", "para", "después de", "por", "próximo", "próxima", "de"] thises = ["hau"] froms += thises lists = nxts + prevs + froms + time_indicators for idx, word in enumerate(words): if word == "": continue wordPrevPrev = words[idx - 2] if idx > 1 else "" wordPrev = words[idx - 1] if idx > 0 else "" wordNext = words[idx + 1] if idx + 1 < len(words) else "" wordNextNext = words[idx + 2] if idx + 2 < len(words) else "" wordNextNextNext = words[idx + 3] if idx + 3 < len(words) else "" start = idx used = 0 # save timequalifier for later if word in timeQualifiersList: timeQualifier = word # parse today, tomorrow, yesterday elif (word == "gaur" or word == "gaurko") and not fromFlag: dayOffset = 0 used += 1 elif (word == "bihar" or word == "biharko") and not fromFlag: dayOffset = 1 used += 1 elif (word == "atzo" or word == "atzoko") and not fromFlag: dayOffset -= 1 used += 1 # before yesterday elif (word == "herenegun" or word == "herenegungo") and not fromFlag: dayOffset -= 2 used += 1 # if wordNext == "ayer": # used += 1 # elif word == "ante" and wordNext == "ante" and wordNextNext == \ # "ayer" and not fromFlag: # dayOffset -= 3 # used += 3 # elif word == "ante anteayer" and not fromFlag: # dayOffset -= 3 # used += 1 # day after tomorrow elif (word == "etzi" or word == "etziko") and not fromFlag: dayOffset += 2 used = 1 elif (word == "etzidamu" or word == "etzidamuko") and not fromFlag: dayOffset += 3 used = 1 # parse 5 days, 10 weeks, last week, next week, week after elif word == "egun" or word == "eguna" or word == "eguneko": if wordPrevPrev and wordPrevPrev == "duela": used += 1 if wordPrev and wordPrev[0].isdigit(): dayOffset -= int(wordPrev) start -= 1 used += 1 elif (wordPrev and wordPrev[0].isdigit() and wordNext not in months and wordNext not in monthsShort): dayOffset += int(wordPrev) start -= 1 used += 2 elif wordNext and wordNext[0].isdigit() and wordNextNext not in \ months and wordNextNext not in monthsShort: dayOffset += int(wordNext) start -= 1 used += 2 elif word == "aste" or word == "astea" or word == "asteko" and not fromFlag: if wordPrev[0].isdigit(): dayOffset += int(wordPrev) * 7 start -= 1 used = 2 for w in nexts: if wordPrev == w: dayOffset = 7 start -= 1 used = 2 for w in lasts: if wordPrev == w: dayOffset = -7 start -= 1 used = 2 for w in suffix_nexts: if wordNext == w: dayOffset = 7 start -= 1 used = 2 for w in suffix_lasts: if wordNext == w: dayOffset = -7 start -= 1 used = 2 # parse 10 months, next month, last month elif word == "hilabete" or word == "hilabetea" or word == "hilabeteko" and not fromFlag: if wordPrev[0].isdigit(): monthOffset = int(wordPrev) start -= 1 used = 2 for w in nexts: if wordPrev == w: monthOffset = 7 start -= 1 used = 2 for w in lasts: if wordPrev == w: monthOffset = -7 start -= 1 used = 2 for w in suffix_nexts: if wordNext == w: monthOffset = 7 start -= 1 used = 2 for w in suffix_lasts: if wordNext == w: monthOffset = -7 start -= 1 used = 2 # parse 5 years, next year, last year elif word == "urte" or word == "urtea" or word == "urteko" and not fromFlag: if wordPrev[0].isdigit(): yearOffset = int(wordPrev) start -= 1 used = 2 for w in nexts: if wordPrev == w: yearOffset = 1 start -= 1 used = 2 for w in lasts: if wordPrev == w: yearOffset = -1 start -= 1 used = 2 for w in suffix_nexts: if wordNext == w: yearOffset = 1 start -= 1 used = 2 for w in suffix_lasts: if wordNext == w: yearOffset = -1 start -= 1 used = 2 # parse Monday, Tuesday, etc., and next Monday, # last Tuesday, etc. elif word in days and not fromFlag: d = days.index(word) dayOffset = (d + 1) - int(today) used = 1 if dayOffset < 0: dayOffset += 7 if wordPrev == "hurrengo": dayOffset += 7 used += 1 start -= 1 elif wordPrev == "aurreko": dayOffset -= 7 used += 1 start -= 1 if wordNext == "hurrengo": # dayOffset += 7 used += 1 elif wordNext == "aurreko": # dayOffset -= 7 used += 1 # parse 15 of July, June 20th, Feb 18, 19 of February elif word in months or word in monthsShort: try: m = months.index(word) except ValueError: m = monthsShort.index(word) used += 1 datestr = months[m] if wordPrev and wordPrev[0].isdigit(): # 13 mayo datestr += " " + wordPrev start -= 1 used += 1 if wordNext and wordNext[0].isdigit(): datestr += " " + wordNext used += 1 hasYear = True else: hasYear = False elif wordNext and wordNext[0].isdigit(): # mayo 13 datestr += " " + wordNext used += 1 if wordNextNext and wordNextNext[0].isdigit(): datestr += " " + wordNextNext used += 1 hasYear = True else: hasYear = False elif wordPrevPrev and wordPrevPrev[0].isdigit(): # 13 dia mayo datestr += " " + wordPrevPrev start -= 2 used += 2 if wordNext and word[0].isdigit(): datestr += " " + wordNext used += 1 hasYear = True else: hasYear = False elif wordNextNext and wordNextNext[0].isdigit(): # mayo dia 13 datestr += " " + wordNextNext used += 2 if wordNextNextNext and wordNextNextNext[0].isdigit(): datestr += " " + wordNextNextNext used += 1 hasYear = True else: hasYear = False if datestr in months: datestr = "" # parse 5 days from tomorrow, 10 weeks from next thursday, # 2 months from July validFollowups = days + months + monthsShort validFollowups.append("gaur") validFollowups.append("bihar") validFollowups.append("atzo") # validFollowups.append("atzoko") validFollowups.append("herenegun") validFollowups.append("orain") validFollowups.append("oraintxe") # validFollowups.append("ante") # TODO if word in froms and wordNext in validFollowups: if not (word == "bihar" or word == "herenegun" or word == "atzo"): used = 1 fromFlag = True if wordNext == "bihar": dayOffset += 1 elif wordNext == "atzo" or wordNext == "atzoko": dayOffset -= 1 elif wordNext ==
""" Unit tests for EDD's REST API. Note that tests here purposefully hard-code simple object serialization that's also coded seperately in EDD's REST API. This should help to detect when REST API code changes in EDD accidentally affect client code. """ import codecs import csv import logging from django.contrib.auth import get_user_model from django.contrib.auth.models import Permission from django.contrib.contenttypes.models import ContentType from requests import codes from rest_framework import status from rest_framework.reverse import reverse from rest_framework.test import APITestCase from threadlocals.threadlocals import set_thread_variable from edd.profile.factory import GroupFactory, UserFactory from main import models from main.tests import factory logger = logging.getLogger(__name__) def load_permissions(model, *codenames): ct = ContentType.objects.get_for_model(model) return list(Permission.objects.filter(content_type=ct, codename__in=codenames)) class EddApiTestCaseMixin: """ Provides helper methods that improve test error messages and simplify repetitive test code. Helper methods also enforce consistency in return codes across EDD's REST API. """ @classmethod def setUpClass(cls): """ Overrides the default Django TestCase to clear out the threadlocal request variable during class setUp and tearDown. """ super().setUpClass() set_thread_variable("request", None) @classmethod def tearDownClass(cls): """ Overrides the default Django TestCase to clear out the threadlocal request variable during class setUp and tearDown. """ super().tearDownClass() set_thread_variable("request", None) def setUp(self): """ Overrides the default Django TestCase to clear out the threadlocal request variable during test setUp and tearDown. """ super().setUp() set_thread_variable("request", None) def tearDown(self): """ Overrides the default Django TestCase to clear out the threadlocal request variable during test setUp and tearDown. """ super().tearDown() set_thread_variable("request", None) def _check_status(self, response, expected_code): wsgi = response.wsgi_request self.assertEqual( response.status_code, expected_code, f"Received {response.status_code} instead of {expected_code} for " f"{wsgi.method} {wsgi.path} for user {wsgi.user}. " f"Response: {response.content}", ) return response class StudiesTests(EddApiTestCaseMixin, APITestCase): """ Tests access controls and HTTP return codes for queries to REST API resources related to studies. Studies should only be accessible by: 1) Superusers 2) Users who have explicit class-level mutator permissions on Studies via a django.contrib.auth permission. Any user with a class-level mutator permission has implied read permission on the study. 3) Users who have explicit StudyPermission granted via their individual account or via user group membership. """ @classmethod def setUpTestData(cls): super().setUpTestData() cls.read_only_group = GroupFactory() cls.write_only_group = GroupFactory() cls.superuser = UserFactory(is_superuser=True) cls.unprivileged_user = UserFactory() cls.readonly_user = UserFactory() cls.write_user = UserFactory() cls.group_readonly_user = UserFactory() cls.group_readonly_user.groups.add(cls.read_only_group) cls.group_write_user = UserFactory() cls.group_write_user.groups.add(cls.write_only_group) cls.staff_user = UserFactory(is_staff=True) cls.staff_user.user_permissions.add( *load_permissions(models.Study, "add_study", "change_study", "delete_study") ) cls.study = factory.StudyFactory() cls.study.userpermission_set.create( user=cls.readonly_user, permission_type=models.StudyPermission.READ ) cls.study.userpermission_set.create( user=cls.write_user, permission_type=models.StudyPermission.WRITE ) cls.study.grouppermission_set.create( group=cls.read_only_group, permission_type=models.StudyPermission.READ ) cls.study.grouppermission_set.create( group=cls.write_only_group, permission_type=models.StudyPermission.WRITE ) def test_study_get_with_anonymous(self): url = reverse("rest:studies-detail", args=[self.study.pk]) self.client.logout() self._check_status(self.client.get(url), status.HTTP_403_FORBIDDEN) def test_study_get_with_unprivleged(self): url = reverse("rest:studies-detail", args=[self.study.pk]) self.client.force_login(self.unprivileged_user) self._check_status(self.client.get(url), status.HTTP_404_NOT_FOUND) def test_study_get_with_readonly(self): url = reverse("rest:studies-detail", args=[self.study.pk]) self.client.force_login(self.readonly_user) self._check_status(self.client.get(url), status.HTTP_200_OK) def test_study_get_with_superuser(self): url = reverse("rest:studies-detail", args=[self.study.pk]) self.client.force_login(self.superuser) self._check_status(self.client.get(url), status.HTTP_200_OK) def test_study_get_using_uuid(self): url = reverse("rest:studies-detail", args=[self.study.uuid]) self.client.force_login(self.superuser) self._check_status(self.client.get(url), status.HTTP_200_OK) def test_study_delete_with_anonymous(self): url = reverse("rest:studies-detail", args=[self.study.pk]) self.client.logout() self._check_status(self.client.delete(url), status.HTTP_403_FORBIDDEN) def test_study_delete_with_unprivleged(self): url = reverse("rest:studies-detail", args=[self.study.pk]) self.client.force_login(self.unprivileged_user) self._check_status(self.client.delete(url), status.HTTP_405_METHOD_NOT_ALLOWED) def test_study_delete_with_staff(self): url = reverse("rest:studies-detail", args=[self.study.pk]) self.client.force_login(self.staff_user) self._check_status(self.client.delete(url), status.HTTP_405_METHOD_NOT_ALLOWED) def test_study_delete_with_superuser(self): url = reverse("rest:studies-detail", args=[self.study.pk]) self.client.force_login(self.superuser) self._check_status(self.client.delete(url), status.HTTP_405_METHOD_NOT_ALLOWED) def _post_payload_new_study(self): return { "name": "new study 1", "description": "description goes here", "contact_id": self.write_user.pk, } def test_study_add_with_anonymous(self): url = reverse("rest:studies-list") self.client.logout() self._check_status( self.client.post(url, self._post_payload_new_study()), status.HTTP_403_FORBIDDEN, ) def test_study_add_only_superuser_setting_off(self): url = reverse("rest:studies-list") with self.settings(EDD_ONLY_SUPERUSER_CREATE=False): # with normal settings, verify all users can create studies, # regardless of privileges self.client.force_login(self.unprivileged_user) self._check_status( self.client.post(url, self._post_payload_new_study()), status.HTTP_201_CREATED, ) def test_study_add_without_contact(self): url = reverse("rest:studies-list") with self.settings(EDD_ONLY_SUPERUSER_CREATE=False): self.client.force_login(self.unprivileged_user) self._check_status( self.client.post(url, {"name": "contactless study", "description": ""}), status.HTTP_400_BAD_REQUEST, ) def test_study_add_with_unprivledged_only_superuser_setting_on(self): url = reverse("rest:studies-list") with self.settings(EDD_ONLY_SUPERUSER_CREATE=True): self.client.force_login(self.unprivileged_user) self._check_status( self.client.post(url, self._post_payload_new_study()), status.HTTP_403_FORBIDDEN, ) def test_study_add_with_staff_only_superuser_setting_on(self): url = reverse("rest:studies-list") with self.settings(EDD_ONLY_SUPERUSER_CREATE=True): # staff with main.add_study cannot create with this setting self.client.force_login(self.staff_user) self._check_status( self.client.post(url, self._post_payload_new_study()), status.HTTP_403_FORBIDDEN, ) def test_study_add_with_superuser_only_superuser_setting_on(self): url = reverse("rest:studies-list") with self.settings(EDD_ONLY_SUPERUSER_CREATE=True): # verify that an administrator can create a study self.client.force_login(self.superuser) self._check_status( self.client.post(url, self._post_payload_new_study()), status.HTTP_201_CREATED, ) def test_study_add_with_unprivledged_only_superuser_setting_permission(self): url = reverse("rest:studies-list") with self.settings(EDD_ONLY_SUPERUSER_CREATE="permission"): self.client.force_login(self.unprivileged_user) self._check_status( self.client.post(url, self._post_payload_new_study()), status.HTTP_403_FORBIDDEN, ) def test_study_add_with_staff_only_superuser_setting_permission(self): url = reverse("rest:studies-list") with self.settings(EDD_ONLY_SUPERUSER_CREATE="permission"): # staff with main.add_study can create with this setting self.client.force_login(self.staff_user) self._check_status( self.client.post(url, self._post_payload_new_study()), status.HTTP_201_CREATED, ) def test_study_add_with_superuser_only_superuser_setting_permission(self): url = reverse("rest:studies-list") with self.settings(EDD_ONLY_SUPERUSER_CREATE="permission"): # verify that an administrator can create a study self.client.force_login(self.superuser) self._check_status( self.client.post(url, self._post_payload_new_study()), status.HTTP_201_CREATED, ) def _put_payload_change_study(self): return {"name": "Test study", "description": "Description goes here"} def _put_payload_change_study_contact(self): return { "name": "Updated study name", "description": "Updated study description", "contact_id": self.write_user.pk, } def test_study_change_with_anonymous(self): url = reverse("rest:studies-detail", args=[self.study.pk]) self.client.logout() self._check_status( self.client.put(url, self._put_payload_change_study()), status.HTTP_403_FORBIDDEN, ) def test_study_change_with_unprivledged(self): url = reverse("rest:studies-detail", args=[self.study.pk]) self.client.force_login(self.unprivileged_user) self._check_status( self.client.put(url, self._put_payload_change_study()), status.HTTP_404_NOT_FOUND, ) def test_study_change_with_readonly(self): url = reverse("rest:studies-detail", args=[self.study.pk]) self.client.force_login(self.readonly_user) self._check_status( self.client.put(url, self._put_payload_change_study()), status.HTTP_403_FORBIDDEN, ) def test_study_change_with_write(self): url = reverse("rest:studies-detail", args=[self.study.pk]) self.client.force_login(self.write_user) self._check_status( self.client.put(url, self._put_payload_change_study_contact()), status.HTTP_200_OK, ) def test_study_change_with_readonly_group(self): url = reverse("rest:studies-detail", args=[self.study.pk]) self.client.force_login(self.group_readonly_user) self._check_status( self.client.put(url, self._put_payload_change_study()), status.HTTP_403_FORBIDDEN, ) def test_study_change_with_write_group(self): url = reverse("rest:studies-detail", args=[self.study.pk]) self.client.force_login(self.group_write_user) self._check_status( self.client.put(url, self._put_payload_change_study_contact()), status.HTTP_200_OK, ) def test_study_change_with_staff(self): url = reverse("rest:studies-detail", args=[self.study.pk]) self.client.force_login(self.staff_user) self._check_status( self.client.put(url, self._put_payload_change_study_contact()), status.HTTP_404_NOT_FOUND, ) def test_study_change_with_superuser(self): url = reverse("rest:studies-detail", args=[self.study.pk]) # verify that an administrator can update self.client.force_login(self.superuser) self._check_status( self.client.put(url, self._put_payload_change_study_contact()), status.HTTP_200_OK, ) def test_study_list_read_access_anonymous(self): url = reverse("rest:studies-list") self.client.logout() self._check_status(self.client.get(url), status.HTTP_403_FORBIDDEN) def test_study_list_read_access_unprivledged(self): url = reverse("rest:studies-list") self.client.force_login(self.unprivileged_user) self._check_status(self.client.get(url), status.HTTP_200_OK) class ExportTests(EddApiTestCaseMixin, APITestCase): """ Tests for expected outputs from /rest/export/ and /rest/stream-export/, with additional tests for basic functioning of /rest/assays, /rest/measurements, and /rest/values, since the data is already set up for handling the export. """ @classmethod def setUpTestData(cls): super().setUpTestData() User = get_user_model() cls.admin = User.objects.get(username="system") # create study and line with 30 assays # each assay with one measurement having one value cls.study = factory.StudyFactory() cls.line = factory.LineFactory(study=cls.study) for _i in range(30): assay = factory.AssayFactory(line=cls.line) measurement = factory.MeasurementFactory(assay=assay) factory.ValueFactory(measurement=measurement) def _assert_row_is_header_row(self, row): # TODO update based on output config? self.assertListEqual( row, [ "Study ID", "Study Name", "Line ID", "Replicate Key", "Line Name", "Line Description", "Protocol", "Assay ID", "Assay Name", "Formal Type", "Measurement Type", "Compartment", "Units", "Value", "Hours", ], ) def _read_normal_response(self, response): # read the CSV output reader = csv.reader(codecs.iterdecode(response.content.split(b"\n"), "utf8")) # return as a list return list(reader) def _read_streaming_response(self, response): # read the CSV output from streaming_content (not response.content) reader = csv.reader(codecs.iterdecode(response.streaming_content, "utf8")) # return as a list return list(reader) def _setup_study_with_data_for_export(self): # create study and line with 30 assays # each assay with one measurement having one value self.study = factory.StudyFactory() self.line = factory.LineFactory(study=self.study) for _i in range(30): assay = factory.AssayFactory(line=self.line) measurement = factory.MeasurementFactory(assay=assay) factory.ValueFactory(measurement=measurement) def test_export_login_required(self): url = reverse("rest:export-list") response = self.client.get(url, {"line_id": 8}) self.assertEqual(response.status_code, codes.forbidden) def test_export_as_normal_user(self): url = reverse("rest:export-list") readonly_user = UserFactory() self.study.userpermission_set.create( user=readonly_user, permission_type=models.StudyPermission.READ ) self.client.force_authenticate(user=readonly_user) # request using slug instead of ID response = self.client.get(url, {"in_study": self.study.slug}) # validate table = self._read_normal_response(response) self.assertEqual(response.status_code, codes.ok) self.assertEqual(response.get("Content-Type"), "text/csv; charset=utf-8") self._assert_row_is_header_row(table[0]) def test_export_as_normal_user_with_no_bound_data(self): url = reverse("rest:export-list") readonly_user = UserFactory() self.study.userpermission_set.create( user=readonly_user, permission_type=models.StudyPermission.READ ) self.client.force_authenticate(user=readonly_user) # request using slug instead of ID response = self.client.get(url) # validate table = self._read_normal_response(response) self.assertEqual(response.status_code, codes.ok) self.assertEqual(response.get("Content-Type"), "text/csv; charset=utf-8") self._assert_row_is_header_row(table[0]) def test_export_using_in_study_slug(self): url = reverse("rest:export-list") self.client.force_authenticate(user=self.admin) # request using slug instead of ID response = self.client.get(url, {"in_study": self.study.slug}) # validate table = self._read_normal_response(response) self.assertEqual(response.status_code, codes.ok) self.assertEqual(response.get("Content-Type"), "text/csv; charset=utf-8") self._assert_row_is_header_row(table[0]) def test_export_using_in_study_pk(self): url = reverse("rest:export-list") self.client.force_authenticate(user=self.admin) # request using slug instead of ID response = self.client.get(url, {"in_study": self.study.pk}) # validate table = self._read_normal_response(response) self.assertEqual(response.status_code, codes.ok) self.assertEqual(response.get("Content-Type"), "text/csv; charset=utf-8") self._assert_row_is_header_row(table[0]) def test_export_using_in_study_uuid(self): url = reverse("rest:export-list") self.client.force_authenticate(user=self.admin) # request using slug instead of ID response = self.client.get(url, {"in_study": self.study.uuid}) # validate table = self._read_normal_response(response) self.assertEqual(response.status_code, codes.ok) self.assertEqual(response.get("Content-Type"), "text/csv; charset=utf-8") self._assert_row_is_header_row(table[0]) def test_export_output_all(self): url = reverse("rest:export-list") self.client.force_authenticate(user=self.admin) # force request with big page size to get all in one response response = self.client.get(url, {"line_id": self.line.pk, "page_size": 50}) # validate table = self._read_normal_response(response) self.assertEqual(response.status_code, codes.ok) self.assertIsNone(response.get("Link")) self.assertEqual(response.get("Content-Type"), "text/csv; charset=utf-8") self._assert_row_is_header_row(table[0]) # one row for header, plus 30 assays/measurements self.assertEqual(len(table), 31) def test_export_output_first_page(self): url = reverse("rest:export-list") self.client.force_authenticate(user=self.admin) # force request with small page_size to see paging of results response = self.client.get(url, {"line_id": self.line.pk, "page_size": 5}) # validate table = self._read_normal_response(response) self.assertEqual(response.status_code, codes.ok) self.assertRegex( response.get("Link"), r'<https?://.*/rest/export/\?.*>; rel="next"' ) self.assertEqual(response.get("Content-Type"), "text/csv; charset=utf-8") self._assert_row_is_header_row(table[0]) # one row for header, plus page_size==5 rows self.assertEqual(len(table), 6) def test_export_output_last_page(self): url = reverse("rest:export-list") self.client.force_authenticate(user=self.admin) # force request with small page_size to see paging of results response = self.client.get( url, {"line_id": self.line.pk, "page_size": 5, "page": 6} ) # validate table = self._read_normal_response(response) self.assertEqual(response.status_code, codes.ok) self.assertRegex( response.get("Link"), r'<https?://.*/rest/export/\?.*>; rel="prev"' ) self.assertEqual(response.get("Content-Type"),
# Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations import json import shlex import unittest.mock from contextlib import contextmanager from enum import Enum from functools import partial from textwrap import dedent from typing import Any, Callable, Dict, cast import pytest import toml import yaml from packaging.version import Version from pants.base.deprecated import CodeRemovedError, warn_or_error from pants.base.hash_utils import CoercingEncoder from pants.engine.fs import FileContent from pants.option.config import Config from pants.option.custom_types import UnsetBool, file_option, shell_str, target_option from pants.option.errors import ( BooleanConversionError, BooleanOptionNameWithNo, DefaultValueType, FromfileError, HelpType, ImplicitValIsNone, InvalidKwarg, InvalidMemberType, MemberTypeNotAllowed, MutuallyExclusiveOptionError, NoOptionNames, OptionAlreadyRegistered, OptionNameDash, OptionNameDoubleDash, ParseError, ) from pants.option.global_options import GlobalOptions from pants.option.option_types import StrOption from pants.option.options import Options from pants.option.options_bootstrapper import OptionsBootstrapper from pants.option.parser import Parser from pants.option.ranked_value import Rank, RankedValue from pants.option.scope import GLOBAL_SCOPE, ScopeInfo from pants.option.subsystem import Subsystem from pants.util.contextutil import temporary_file, temporary_file_path _FAKE_CUR_VERSION = "1.0.0.dev0" def global_scope() -> ScopeInfo: return ScopeInfo(GLOBAL_SCOPE, GlobalOptions) def task(scope: str) -> ScopeInfo: return ScopeInfo(scope, is_goal=True) def intermediate(scope: str) -> ScopeInfo: return ScopeInfo(scope) def subsystem(scope: str) -> ScopeInfo: return ScopeInfo(scope) def create_options( scopes: list[str], register_fn: Callable[[Options], None], args: list[str] | None = None, *, env: dict[str, str] | None = None, config: dict[str, dict[str, Any]] | None = None, extra_scope_infos: list[ScopeInfo] | None = None, ) -> Options: options = Options.create( env=env or {}, config=Config.load([FileContent("pants.toml", toml.dumps(config or {}).encode())]), known_scope_infos=[*(ScopeInfo(scope) for scope in scopes), *(extra_scope_infos or ())], args=["./pants", *(args or ())], ) register_fn(options) return options # ---------------------------------------------------------------------------------------- # Boolean handling. # ---------------------------------------------------------------------------------------- def register_bool_opts(opts: Options) -> None: opts.register(GLOBAL_SCOPE, "--default-missing", type=bool) opts.register(GLOBAL_SCOPE, "--default-true", type=bool, default=True) opts.register(GLOBAL_SCOPE, "--default-false", type=bool, default=False) opts.register(GLOBAL_SCOPE, "--unset", type=bool, default=UnsetBool) opts.register(GLOBAL_SCOPE, "--implicit-true", type=bool, implicit_value=True) opts.register(GLOBAL_SCOPE, "--implicit-false", type=bool, implicit_value=False) opts.register( GLOBAL_SCOPE, "--implicit-false-default-false", type=bool, implicit_value=False, default=False, ) opts.register( GLOBAL_SCOPE, "--implicit-false-default-true", type=bool, implicit_value=False, default=True ) def test_bool_explicit_values() -> None: def register(opt: Options) -> None: opt.register(GLOBAL_SCOPE, "--opt", type=bool) def assert_val(arg: str, expected: bool) -> None: global_options = create_options( [GLOBAL_SCOPE], register, [f"--opt={arg}"] ).for_global_scope() assert global_options.opt is expected assert_val("false", False) assert_val("False", False) assert_val("true", True) assert_val("True", True) def test_bool_defaults() -> None: opts = create_options([GLOBAL_SCOPE], register_bool_opts).for_global_scope() assert opts.default_missing is False assert opts.default_true is True assert opts.default_false is False assert opts.unset is None assert opts.implicit_true is False assert opts.implicit_false is True assert opts.implicit_false_default_false is False assert opts.implicit_false_default_true is True def test_bool_args() -> None: opts = create_options( [GLOBAL_SCOPE], register_bool_opts, [ "--default-missing", "--default-true", "--default-false", "--unset", "--implicit-true", "--implicit-false", "--implicit-false-default-false", "--implicit-false-default-true", ], ).for_global_scope() assert opts.default_missing is True assert opts.default_true is True assert opts.default_false is True assert opts.unset is True assert opts.implicit_true is True assert opts.implicit_false is False assert opts.implicit_false_default_false is False assert opts.implicit_false_default_true is False def test_bool_negate() -> None: opts = create_options( [GLOBAL_SCOPE], register_bool_opts, [ "--no-default-missing", "--no-default-true", "--no-default-false", "--no-unset", "--no-implicit-true", "--no-implicit-false", "--no-implicit-false-default-false", "--no-implicit-false-default-true", ], ).for_global_scope() assert opts.default_missing is False assert opts.default_true is False assert opts.default_false is False assert opts.unset is False assert opts.implicit_true is False assert opts.implicit_false is True assert opts.implicit_false_default_false is True assert opts.implicit_false_default_true is True @pytest.mark.parametrize("val", [False, True]) def test_bool_config(val: bool) -> None: opt_names = ( "default_missing", "default_true", "default_false", "implicit_true", "implicit_false", "implicit_false_default_false", "implicit_false_default_true", ) opts = create_options( [GLOBAL_SCOPE], register_bool_opts, config={"GLOBAL": {opt: val for opt in opt_names}} ).for_global_scope() for opt in opt_names: assert opts[opt] is val, f"option {opt} has value {opts[opt]} but expected {val}" @pytest.mark.parametrize("val", (11, "AlmostTrue")) def test_bool_invalid_value(val: Any) -> None: def register(opts: Options) -> None: opts.register(GLOBAL_SCOPE, "--opt", type=bool) with pytest.raises(BooleanConversionError): create_options([GLOBAL_SCOPE], register, config={"GLOBAL": {"opt": val}}).for_global_scope() # ---------------------------------------------------------------------------------------- # Type checks # ---------------------------------------------------------------------------------------- @contextmanager def no_exception(): """use in tests as placeholder for a pytest.raises, when no exception is expected.""" yield None @pytest.mark.parametrize( "option_kwargs, assert_expected", [ ( dict(type=str, default=""), no_exception(), ), ( dict(type=str, default=42), pytest.raises( DefaultValueType, match=r"Default value int\(42\) does not match option type str\." ), ), ( dict(type=bool, default="True"), no_exception(), ), ( dict(type=bool, default=True), no_exception(), ), ( dict(type=bool, default="not a bool"), pytest.raises( BooleanConversionError, match=r'Got "not a bool"\. Expected "True" or "False"\.' ), ), ( dict(type=int, default=1.0), pytest.raises( DefaultValueType, match=r"Default value float\(1\.0\) does not match option type int\. \[option --opt in global scope\]\.", ), ), ( dict(type=list, member_type=int, default="[1, 2, 3]"), no_exception(), ), ( dict(type=list, member_type=int, default="[1, 2.1, 3]"), pytest.raises( DefaultValueType, match=r"Default member value type mismatch\.\n\n Member value float\(2\.1\) does not match list option type int\.", ), ), ( dict(type=list, member_type=float, default="[1.1, 2.0, 3.3]"), no_exception(), ), ( dict(type=list, member_type=float, default="[1.1, 2.2, '3.3']"), pytest.raises( DefaultValueType, match=r"Member value str\('3\.3'\) does not match list option type float\.", ), ), ( dict(type=dict, default="{'foo': 'bar'}"), no_exception(), ), ( dict(type=dict, default="['foo', 'bar']"), pytest.raises(ParseError, match=r"Invalid dict value: \['foo', 'bar'\]"), ), ], ) def test_default_value_type_assert(option_kwargs, assert_expected): def register(opts: Options) -> None: opts.register(GLOBAL_SCOPE, "--opt", **option_kwargs) with assert_expected: create_options([GLOBAL_SCOPE], register).for_scope(GLOBAL_SCOPE) # ---------------------------------------------------------------------------------------- # Deprecations. # ---------------------------------------------------------------------------------------- def test_deprecated_options(caplog) -> None: def register(opts: Options) -> None: opts.register( GLOBAL_SCOPE, "--old1", removal_version="999.99.9.dev0", removal_hint="Stop it." ) opts.register( GLOBAL_SCOPE, "--bool1", type=bool, removal_version="999.99.9.dev0", removal_hint="¡Basta!", ) opts.register("scope", "--valid") opts.register( "scope", "--old2", removal_version="999.99.9.dev0", removal_hint="Stop with the scope." ) opts.register( "scope", "--bool2", type=bool, removal_version="999.99.9.dev0", removal_hint="¡Basta but scoped!", ) def assert_deprecated( scope: str, opt: str, args: list[str], *, expected: str | bool, env: dict[str, str] | None = None, config: dict[str, dict[str, str]] | None = None, ) -> None: caplog.clear() warn_or_error.clear() # type: ignore[attr-defined] opts = create_options([GLOBAL_SCOPE, "scope"], register, args, env=env, config=config) assert opts.for_scope(scope)[opt] == expected assert len(caplog.records) == 1 assert "will be removed in version" in caplog.text assert opt in caplog.text assert_deprecated(GLOBAL_SCOPE, "old1", ["--old1=x"], expected="x") assert_deprecated(GLOBAL_SCOPE, "bool1", ["--bool1"], expected=True) assert_deprecated(GLOBAL_SCOPE, "bool1", ["--no-bool1"], expected=False) assert_deprecated("scope", "old2", ["scope", "--old2=x"], expected="x") assert_deprecated("scope", "old2", ["--scope-old2=x"], expected="x") assert_deprecated("scope", "bool2", ["scope", "--bool2"], expected=True) assert_deprecated("scope", "bool2", ["scope", "--no-bool2"], expected=False) assert_deprecated("scope", "bool2", ["--scope-bool2"], expected=True) assert_deprecated("scope", "bool2", ["--no-scope-bool2"], expected=False) assert_deprecated(GLOBAL_SCOPE, "old1", [], env={"PANTS_GLOBAL_OLD1": "x"}, expected="x") assert_deprecated("scope", "old2", [], env={"PANTS_SCOPE_OLD2": "x"}, expected="x") assert_deprecated(GLOBAL_SCOPE, "old1", [], config={"GLOBAL": {"old1": "x"}}, expected="x") assert_deprecated("scope", "old2", [], config={"scope": {"old2": "x"}}, expected="x") # Make sure the warnings don't come out for regular options. caplog.clear() warn_or_error.clear() # type: ignore[attr-defined] assert ( create_options([GLOBAL_SCOPE, "scope"], register, ["--scope-valid=x"]) .for_scope("scope") .valid == "x" ) assert not caplog.records def test_deprecated_options_error() -> None: def register(opts: Options) -> None: opts.register(GLOBAL_SCOPE, "--expired", removal_version="0.0.1.dev0") with pytest.raises(CodeRemovedError): create_options([GLOBAL_SCOPE], register, []) @unittest.mock.patch("pants.base.deprecated.PANTS_SEMVER", Version(_FAKE_CUR_VERSION)) def test_deprecated_options_start_version(caplog) -> None: def register(opts: Options) -> None: opts.register( GLOBAL_SCOPE, "--delayed", removal_version="999.99.9.dev0", deprecation_start_version="500.0.0.dev0", ) opts.register( GLOBAL_SCOPE, "--past-start", removal_version="999.99.9.dev0", deprecation_start_version=_FAKE_CUR_VERSION, ) caplog.clear() assert ( create_options([GLOBAL_SCOPE], register, ["--delayed=x"]).for_global_scope().delayed == "x" ) assert not caplog.records assert ( create_options([GLOBAL_SCOPE], register, ["--past-start=x"]).for_global_scope().past_start == "x" ) assert len(caplog.records) == 1 assert "will be removed in version" in caplog.text assert "past_start" in caplog.text def test_scope_deprecation(caplog) -> None: # This test demonstrates that two different new scopes can deprecate the same # old scope. I.e., it's possible to split an old scope's options among multiple new scopes. class Subsystem1(Subsystem): options_scope = "new1" deprecated_options_scope = "deprecated" deprecated_options_scope_removal_version = "9999.9.9.dev0" foo = StrOption("--foo", help="") bar = StrOption("--bar", help="") baz = StrOption("--baz", help="") class Subsystem2(Subsystem): options_scope = "new2" deprecated_options_scope = "deprecated" deprecated_options_scope_removal_version = "9999.9.9.dev0" qux = StrOption("--qux", help="") def register(opts: Options) -> None: opts.register(Subsystem1.options_scope, "--foo") opts.register(Subsystem1.options_scope, "--bar") opts.register(Subsystem1.options_scope, "--baz") opts.register(Subsystem2.options_scope, "--qux") opts = create_options( [GLOBAL_SCOPE], register, ["--new1-baz=vv"], extra_scope_infos=[Subsystem1.get_scope_info(), Subsystem2.get_scope_info()], config={ Subsystem1.options_scope: {"foo": "xx"}, Subsystem1.deprecated_options_scope: { "foo": "yy", "bar": "zz", "baz": "ww", "qux": "uu", }, }, ) caplog.clear() vals1 = opts.for_scope(Subsystem1.options_scope) assert len(caplog.records) == 1 assert Subsystem1.deprecated_options_scope in caplog.text assert "foo" in caplog.text # Deprecated scope takes precedence at equal rank, but new scope takes precedence at higher # rank. assert vals1.foo == "yy" assert vals1.bar == "zz" assert vals1.baz == "vv" caplog.clear() vals2 = opts.for_scope(Subsystem2.options_scope) assert len(caplog.records) == 1 assert Subsystem1.deprecated_options_scope in caplog.text assert "qux" in caplog.text assert vals2.qux == "uu" def test_scope_deprecation_default_config_section(caplog) -> None: # Confirms that a DEFAULT option does not trigger deprecation warnings for a deprecated scope. class Subsystem1(Subsystem): options_scope = "new" deprecated_options_scope = "deprecated" deprecated_options_scope_removal_version = "9999.9.9.dev0" def register(opts: Options) -> None: opts.register(Subsystem1.options_scope, "--foo") opts = create_options( [GLOBAL_SCOPE], register, [], extra_scope_infos=[Subsystem1.get_scope_info()], config={"DEFAULT": {"foo": "aa"}, Subsystem1.options_scope: {"foo": "xx"}}, ) caplog.clear() assert opts.for_scope(Subsystem1.options_scope).foo == "xx" assert not caplog.records # ---------------------------------------------------------------------------------------- # Legacy Unittest TestCase. # ---------------------------------------------------------------------------------------- class OptionsTest(unittest.TestCase): @staticmethod def _create_config(config: dict[str, dict[str, str]] | None = None) -> Config: return Config.load([FileContent("test_config.toml", toml.dumps(config or {}).encode())]) def _parse( self, *, flags: str = "", env: dict[str, str] | None = None, config: dict[str, dict[str, Any]] | None = None, bootstrap_option_values=None, ) -> Options: args = ["./pants", *shlex.split(flags)] options = Options.create( env=env or {}, config=self._create_config(config), known_scope_infos=OptionsTest._known_scope_infos, args=args, bootstrap_option_values=bootstrap_option_values, ) self._register(options) return options _known_scope_infos = [ ScopeInfo(scope) for scope in ( GLOBAL_SCOPE, "anotherscope", "compile", "compile.java", "stale", "test", "test.junit", "passconsumer", "simple", "simple-dashed", "scoped.a.bit", "scoped.and-dashed", "fromfile", "fingerprinting", "enum-opt", "separate-enum-opt-scope", "other-enum-scope", )
""" qzone.items ~~~~~~~~~~~ This module implements the items for qzone scraping. :copyright: (c) 2017 by <NAME>. :date: 2017/10/27. :license: MIT License, see LICENSE.txt for more details. """ from lib.basis import SocialMediaItem class QzoneItem(SocialMediaItem): pass class QzoneUserItem(QzoneItem): def __init__(self): self._qq = 0 # QQ号 self._name = '' # 昵称 def __str__(self): return 'QQ: ' + str(self.qq) + '; Name: ' + str(self.name) def __hash__(self): return hash(self.qq) @property def qq(self): return self._qq @qq.setter def qq(self, value): if not isinstance(value, int): raise TypeError('Attribute \'qq\' should be an instance of type \'int\'. ' 'Found: %s.' % type(value)) if value < 0: raise ValueError("Attribute \'qq\' should be positive.") self._time = value @property def name(self): return self._name @name.setter def name(self, value): if not isinstance(value, str): raise TypeError('Attribute \'name\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._name = value class QzoneEmotionItem(QzoneItem): def __init__(self): self._id = '' # 说说ID self._owner = QzoneUserItem() # 主人 self._time = '' # 时间 self._content = '' # 内容 self.pictures = [] # 图片列表 self._source = '' # 设备名称 self._location = '' # 位置 self.visitors = [] # 浏览者列表 self.likers = [] # 点赞者列表 self.comments = [] # 评论列表 def __str__(self): string = '' string += 'ID: ' + self._id + '\n' string += 'Owner: ' + str(self._owner) + '\n' string += 'Time: ' + self._time + '\n' string += 'Content: ' + str(self._content) + '\n' string += 'Pictures: ' + '; '.join([str(pic) for pic in self.pictures]) + '\n' string += 'Source: ' + str(self._source) + '\n' string += 'Location: ' + str(self._location) + '\n' string += 'Visitor Count: ' + str(len(self.visitors)) + '\n' string += 'Liker Count: ' + str(len(self.likers)) + '\n' string += 'Comment Count: ' + str(len(self.comments)) + '\n' return string def __hash__(self): return hash(self.id) @property def id(self): return self._id @id.setter def id(self, value): if not isinstance(value, str): raise TypeError('Attribute \'id\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._id = value @property def owner(self): return self._owner @owner.setter def owner(self, value): if not isinstance(value, QzoneUserItem): raise TypeError('Attribute \'owner\' should be an instance of type \'QzoneUserItem\'. ' 'Found: %s.' % type(value)) self._owner = value @property def time(self): return self._time @time.setter def time(self, value): if not isinstance(value, str): raise TypeError('Attribute \'time\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._time = value @property def content(self): return self._content @content.setter def content(self, value): if not isinstance(value, str): raise TypeError('Attribute \'content\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._content = value @property def source(self): return self._source @source.setter def source(self, value): if not isinstance(value, str): raise TypeError('Attribute \'source\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._source = value @property def location(self): return self._location @location.setter def location(self, value): if not isinstance(value, str): raise TypeError('Attribute \'location\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._location = value class QzoneRepostEmotionItem(QzoneEmotionItem): def __init__(self): QzoneEmotionItem.__init__(self) self._repost_source = QzoneUserItem() # 转发来源 self._repost_reason = '' # 转发理由 def __str__(self): string = QzoneEmotionItem.__str__(self) string += 'Repost Source: ' + str(self._repost_source) + '\n' string += 'Repost Reason: ' + self._repost_reason + '\n' return string def __hash__(self): return hash(self.id) @property def repost_source(self): return self._repost_source @repost_source.setter def repost_source(self, value): if not isinstance(value, QzoneUserItem): raise TypeError('Attribute \'repost_source\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._repost_source = value @property def repost_reason(self): return self._repost_reason @repost_reason.setter def repost_reason(self, value): if not isinstance(value, str): raise TypeError('Attribute \'repost_reason\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._repost_reason = value class QzoneCommentItem(QzoneItem): def __init__(self): self._commenter = QzoneUserItem() # 评论者 self._time = '' # 评论时间 self._content = '' # 评论内容 self.pictures = [] # 评论图片列表 self.replies = [] # 评论回复列表 def __str__(self): string = '' string += 'Commenter: ' + str(self._commenter) + '\n' string += 'Time: ' + self._time + '\n' string += 'Content: ' + str(self._content) + '\n' string += 'Pictures: ' + '; '.join([str(pic) for pic in self.pictures]) + '\n' string += 'Reply Number: ' + str(len(self.replies)) + '\n' return string def __hash__(self): return hash(self._content) @property def commenter(self): return self._commenter @commenter.setter def commenter(self, value): if not isinstance(value, str): raise TypeError('Attribute \'commenter\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._commenter = value @property def time(self): return self._time @time.setter def time(self, value): if not isinstance(value, str): raise TypeError('Attribute \'time\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._time = value @property def content(self): return self._content @content.setter def content(self, value): if not isinstance(value, str): raise TypeError('Attribute \'content\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._content = value class QzoneCommentReplyItem(QzoneItem): def __init__(self): self._replier = QzoneUserItem() # 回复者 self._replyto = QzoneUserItem() # 回复对象 self._time = '' # 回复时间 self._content = '' # 回复内容 def __str__(self): return self._time + ' ' + self._replier.name + ' reply to ' + self._replyto.name + ': ' + self._content def __hash__(self): return hash(self._content) @property def replier(self): return self._replier @replier.setter def replier(self, value): if not isinstance(value, str): raise TypeError('Attribute \'replier\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._replier = value @property def replyto(self): return self._replyto @replyto.setter def replyto(self, value): if not isinstance(value, str): raise TypeError('Attribute \'replyto\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._replyto = value @property def time(self): return self._time @time.setter def time(self, value): if not isinstance(value, str): raise TypeError('Attribute \'time\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._time = value @property def content(self): return self._content @content.setter def content(self, value): if not isinstance(value, str): raise TypeError('Attribute \'content\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._content = value class QzoneMessageItem(QzoneItem): def __init__(self): self._id = '' # 留言ID self._owner = QzoneUserItem() # 主人 self._poster = QzoneUserItem() # 留言者 self._time = '' # 留言时间 self._content = '' # 留言内容 self.replies = [] # 留言回复列表 def __str__(self): string = '' string += 'Owner: ' + str(self._owner) + '\n' string += 'Poster: ' + str(self._poster) + '\n' string += 'Time: ' + self._time + '\n' string += 'Content: ' + self._content + '\n' string += 'Replies: ' + '; '.join([str(reply) for reply in self.replies]) + '\n' return string def __hash__(self): return hash(self._id) @property def id(self): return self._id @id.setter def id(self, value): if not isinstance(value, str): raise TypeError('Attribute \'id\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._id = value @property def owner(self): return self._owner @owner.setter def owner(self, value): if not isinstance(value, QzoneUserItem): raise TypeError('Attribute \'owner\' should be an instance of type \'QzoneUserItem\'. ' 'Found: %s.' % type(value)) self._owner = value @property def poster(self): return self._poster @poster.setter def poster(self, value): if not isinstance(value, QzoneUserItem): raise TypeError('Attribute \'poster\' should be an instance of type \'QzoneUserItem\'. ' 'Found: %s.' % type(value)) self._poster = value @property def time(self): return self._time @time.setter def time(self, value): if not isinstance(value, str): raise TypeError('Attribute \'time\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._time = value @property def content(self): return self._content @content.setter def content(self, value): if not isinstance(value, str): raise TypeError('Attribute \'content\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._content = value class QzoneMessageReplyItem(QzoneItem): def __init__(self): self._replier = QzoneUserItem() # 回复者 self._time = '' # 回复时间 self._content = '' # 回复内容 def __str__(self): return self._time + ' ' + self._replier.name + ' replied: ' + self._content def __hash__(self): return hash(self.content) @property def replier(self): return self._replier @replier.setter def replier(self, value): if not isinstance(value, str): raise TypeError('Attribute \'replier\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._replier = value @property def time(self): return self._time @time.setter def time(self, value): if not isinstance(value, str): raise TypeError('Attribute \'time\' should be an instance of type \'str\'. ' 'Found: %s.' % type(value)) self._time = value @property def content(self): return self._content @content.setter def content(self, value): if not isinstance(value, str): raise TypeError('Attribute \'content\' should
# Copyright 2021 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for creating PipelineSpec proto objects.""" import collections import json import re from typing import Any, Dict, List, Mapping, Optional, Tuple, Union import kfp from google.protobuf import json_format from google.protobuf import struct_pb2 from kfp import dsl from kfp.compiler import pipeline_spec_builder as builder from kfp.components import for_loop from kfp.components import pipeline_channel from kfp.components import pipeline_task from kfp.components import placeholders from kfp.components import structures from kfp.components import tasks_group from kfp.components import utils from kfp.components import utils as component_utils from kfp.components.types import artifact_types from kfp.components.types import type_utils from kfp.pipeline_spec import pipeline_spec_pb2 GroupOrTaskType = Union[tasks_group.TasksGroup, pipeline_task.PipelineTask] def _additional_input_name_for_pipeline_channel( channel_or_name: Union[pipeline_channel.PipelineChannel, str]) -> str: """Gets the name for an additional (compiler-injected) input.""" # Adding a prefix to avoid (reduce chance of) name collision between the # original component inputs and the injected input. return 'pipelinechannel--' + ( channel_or_name.full_name if isinstance( channel_or_name, pipeline_channel.PipelineChannel) else channel_or_name) def _to_protobuf_value(value: type_utils.PARAMETER_TYPES) -> struct_pb2.Value: """Creates a google.protobuf.struct_pb2.Value message out of a provide value. Args: value: The value to be converted to Value message. Returns: A google.protobuf.struct_pb2.Value message. Raises: ValueError if the given value is not one of the parameter types. """ if isinstance(value, str): return struct_pb2.Value(string_value=value) elif isinstance(value, (int, float)): return struct_pb2.Value(number_value=value) elif isinstance(value, bool): return struct_pb2.Value(bool_value=value) elif isinstance(value, dict): return struct_pb2.Value( struct_value=struct_pb2.Struct( fields={k: _to_protobuf_value(v) for k, v in value.items()})) elif isinstance(value, list): return struct_pb2.Value( list_value=struct_pb2.ListValue( values=[_to_protobuf_value(v) for v in value])) else: raise ValueError('Value must be one of the following types: ' 'str, int, float, bool, dict, and list. Got: ' f'"{value}" of type "{type(value)}".') def build_task_spec_for_task( task: pipeline_task.PipelineTask, parent_component_inputs: pipeline_spec_pb2.ComponentInputsSpec, tasks_in_current_dag: List[str], input_parameters_in_current_dag: List[str], input_artifacts_in_current_dag: List[str], ) -> pipeline_spec_pb2.PipelineTaskSpec: """Builds PipelineTaskSpec for a pipeline task. A task input may reference an output outside its immediate DAG. For instance:: random_num = random_num_op(...) with dsl.Condition(random_num.output > 5): print_op('%s > 5' % random_num.output) In this example, `dsl.Condition` forms a subDAG with one task from `print_op` inside the subDAG. The task of `print_op` references output from `random_num` task, which is outside the sub-DAG. When compiling to IR, such cross DAG reference is disallowed. So we need to "punch a hole" in the sub-DAG to make the input available in the subDAG component inputs if it's not already there, Next, we can call this method to fix the tasks inside the subDAG to make them reference the component inputs instead of directly referencing the original producer task. Args: task: The task to build a PipelineTaskSpec for. parent_component_inputs: The task's parent component's input specs. tasks_in_current_dag: The list of tasks names for tasks in the same dag. input_parameters_in_current_dag: The list of input parameters in the DAG component. input_artifacts_in_current_dag: The list of input artifacts in the DAG component. Returns: A PipelineTaskSpec object representing the task. """ pipeline_task_spec = pipeline_spec_pb2.PipelineTaskSpec() pipeline_task_spec.task_info.name = ( task.task_spec.display_name or task.name) # Use task.name for component_ref.name because we may customize component # spec for individual tasks to work around the lack of optional inputs # support in IR. pipeline_task_spec.component_ref.name = ( component_utils.sanitize_component_name(task.name)) pipeline_task_spec.caching_options.enable_cache = ( task.task_spec.enable_caching) for input_name, input_value in task.inputs.items(): if isinstance(input_value, pipeline_channel.PipelineArtifactChannel): if input_value.task_name: # Value is produced by an upstream task. if input_value.task_name in tasks_in_current_dag: # Dependent task within the same DAG. pipeline_task_spec.inputs.artifacts[ input_name].task_output_artifact.producer_task = ( component_utils.sanitize_task_name( input_value.task_name)) pipeline_task_spec.inputs.artifacts[ input_name].task_output_artifact.output_artifact_key = ( input_value.name) else: # Dependent task not from the same DAG. component_input_artifact = ( _additional_input_name_for_pipeline_channel(input_value) ) assert component_input_artifact in parent_component_inputs.artifacts, \ 'component_input_artifact: {} not found. All inputs: {}'.format( component_input_artifact, parent_component_inputs) pipeline_task_spec.inputs.artifacts[ input_name].component_input_artifact = ( component_input_artifact) else: raise RuntimeError( f'Artifacts must be produced by a task. Got {input_value}.') elif isinstance(input_value, pipeline_channel.PipelineParameterChannel): if input_value.task_name: # Value is produced by an upstream task. if input_value.task_name in tasks_in_current_dag: # Dependent task within the same DAG. pipeline_task_spec.inputs.parameters[ input_name].task_output_parameter.producer_task = ( component_utils.sanitize_task_name( input_value.task_name)) pipeline_task_spec.inputs.parameters[ input_name].task_output_parameter.output_parameter_key = ( input_value.name) else: # Dependent task not from the same DAG. component_input_parameter = ( _additional_input_name_for_pipeline_channel(input_value) ) assert component_input_parameter in parent_component_inputs.parameters, \ 'component_input_parameter: {} not found. All inputs: {}'.format( component_input_parameter, parent_component_inputs) pipeline_task_spec.inputs.parameters[ input_name].component_input_parameter = ( component_input_parameter) else: # Value is from pipeline input. component_input_parameter = input_value.full_name if component_input_parameter not in parent_component_inputs.parameters: component_input_parameter = ( _additional_input_name_for_pipeline_channel(input_value) ) pipeline_task_spec.inputs.parameters[ input_name].component_input_parameter = ( component_input_parameter) elif isinstance(input_value, for_loop.LoopArgument): component_input_parameter = ( _additional_input_name_for_pipeline_channel(input_value)) assert component_input_parameter in parent_component_inputs.parameters, \ 'component_input_parameter: {} not found. All inputs: {}'.format( component_input_parameter, parent_component_inputs) pipeline_task_spec.inputs.parameters[ input_name].component_input_parameter = ( component_input_parameter) elif isinstance(input_value, for_loop.LoopArgumentVariable): component_input_parameter = ( _additional_input_name_for_pipeline_channel( input_value.loop_argument)) assert component_input_parameter in parent_component_inputs.parameters, \ 'component_input_parameter: {} not found. All inputs: {}'.format( component_input_parameter, parent_component_inputs) pipeline_task_spec.inputs.parameters[ input_name].component_input_parameter = ( component_input_parameter) pipeline_task_spec.inputs.parameters[ input_name].parameter_expression_selector = ( 'parseJson(string_value)["{}"]'.format( input_value.subvar_name)) elif isinstance(input_value, str): # Handle extra input due to string concat pipeline_channels = ( pipeline_channel.extract_pipeline_channels_from_any(input_value) ) for channel in pipeline_channels: # value contains PipelineChannel placeholders which needs to be # replaced. And the input needs to be added to the task spec. # Form the name for the compiler injected input, and make sure it # doesn't collide with any existing input names. additional_input_name = ( _additional_input_name_for_pipeline_channel(channel)) # We don't expect collision to happen because we prefix the name # of additional input with 'pipelinechannel--'. But just in case # collision did happend, throw a RuntimeError so that we don't # get surprise at runtime. for existing_input_name, _ in task.inputs.items(): if existing_input_name == additional_input_name: raise RuntimeError( 'Name collision between existing input name ' '{} and compiler injected input name {}'.format( existing_input_name, additional_input_name)) additional_input_placeholder = ( placeholders.input_parameter_placeholder( additional_input_name)) input_value = input_value.replace(channel.pattern, additional_input_placeholder) if channel.task_name: # Value is produced by an upstream task. if channel.task_name in tasks_in_current_dag: # Dependent task within the same DAG. pipeline_task_spec.inputs.parameters[ additional_input_name].task_output_parameter.producer_task = ( component_utils.sanitize_task_name( channel.task_name)) pipeline_task_spec.inputs.parameters[ input_name].task_output_parameter.output_parameter_key = ( channel.name) else: # Dependent task not from the same DAG. component_input_parameter = ( _additional_input_name_for_pipeline_channel(channel) ) assert component_input_parameter in parent_component_inputs.parameters, \ 'component_input_parameter: {} not found. All inputs: {}'.format( component_input_parameter, parent_component_inputs) pipeline_task_spec.inputs.parameters[ additional_input_name].component_input_parameter = ( component_input_parameter) else: # Value is from pipeline input. (or loop?) component_input_parameter = channel.full_name if component_input_parameter not in parent_component_inputs.parameters: component_input_parameter = ( _additional_input_name_for_pipeline_channel(channel) ) pipeline_task_spec.inputs.parameters[ additional_input_name].component_input_parameter = ( component_input_parameter) pipeline_task_spec.inputs.parameters[ input_name].runtime_value.constant.string_value = input_value elif isinstance(input_value, (str, int, float, bool, dict, list)): pipeline_task_spec.inputs.parameters[ input_name].runtime_value.constant.CopyFrom( _to_protobuf_value(input_value)) else: raise ValueError( 'Input argument supports only the following types: ' 'str, int, float, bool, dict, and list.' f'Got {input_value} of type {type(input_value)}.') return pipeline_task_spec def build_component_spec_for_exit_task( task: pipeline_task.PipelineTask,) -> pipeline_spec_pb2.ComponentSpec: """Builds ComponentSpec for an exit task. Args: task: The task to build a ComponentSpec for. Returns: A ComponentSpec object for the exit task. """ return build_component_spec_for_task(task=task, is_exit_task=True) def build_component_spec_for_task( task: pipeline_task.PipelineTask, is_exit_task: bool = False, ) -> pipeline_spec_pb2.ComponentSpec: """Builds ComponentSpec for a pipeline task. Args: task: The task to build a ComponentSpec for. is_exit_task: Whether the task is used as exit task in Exit Handler. Returns: A ComponentSpec object for the task. """ component_spec = pipeline_spec_pb2.ComponentSpec() component_spec.executor_label = component_utils.sanitize_executor_label( task.name) for input_name, input_spec in (task.component_spec.inputs or {}).items(): # Special handling for PipelineTaskFinalStatus first. if type_utils.is_task_final_status_type(input_spec.type): if not is_exit_task: raise ValueError( 'PipelineTaskFinalStatus can only be used in an exit task.') component_spec.input_definitions.parameters[ input_name].parameter_type = pipeline_spec_pb2.ParameterType.STRUCT continue # skip inputs not present, as a workaround to support optional inputs. if input_name not in task.inputs and input_spec.default is None: continue if type_utils.is_parameter_type(input_spec.type): component_spec.input_definitions.parameters[ input_name].parameter_type = type_utils.get_parameter_type( input_spec.type) if input_spec.default is not None: component_spec.input_definitions.parameters[ input_name].default_value.CopyFrom( _to_protobuf_value(input_spec.default)) else: component_spec.input_definitions.artifacts[ input_name].artifact_type.CopyFrom( type_utils.get_artifact_type_schema(input_spec.type)) for output_name, output_spec in (task.component_spec.outputs or {}).items(): if type_utils.is_parameter_type(output_spec.type): component_spec.output_definitions.parameters[ output_name].parameter_type = type_utils.get_parameter_type( output_spec.type) else: component_spec.output_definitions.artifacts[ output_name].artifact_type.CopyFrom( type_utils.get_artifact_type_schema(output_spec.type)) return component_spec def build_importer_spec_for_task( task: pipeline_task.PipelineTask ) -> pipeline_spec_pb2.PipelineDeploymentConfig.ImporterSpec: """Builds ImporterSpec for a pipeline task. Args: task: The task to build a ComponentSpec for. Returns: A ImporterSpec object for the task. """ type_schema = type_utils.get_artifact_type_schema( task.importer_spec.type_schema) importer_spec = pipeline_spec_pb2.PipelineDeploymentConfig.ImporterSpec( type_schema=type_schema, reimport=task.importer_spec.reimport) if task.importer_spec.metadata: metadata_protobuf_struct = struct_pb2.Struct() metadata_protobuf_struct.update(task.importer_spec.metadata) importer_spec.metadata.CopyFrom(metadata_protobuf_struct) if isinstance(task.importer_spec.artifact_uri, pipeline_channel.PipelineParameterChannel): importer_spec.artifact_uri.runtime_parameter = 'uri' elif
<reponame>zhjpqq/scaledensenet # -*- coding: utf-8 -*- __author__ = 'ooo' __date__ = '2019/6/9 12:17' """ Multi-Resolution Net 2019-6-20 20:58 """ from collections import OrderedDict import math import torch from torch import nn from torch.nn import functional as F from xmodules.classifier import AdaPoolView, ReturnX import xtils from xtils import GCU class HSigmoid(nn.Module): def __init__(self, inplace=True): super(HSigmoid, self).__init__() self.inplace = inplace def forward(self, x): out = F.relu6(x + 3, self.inplace) / 6 return out def hsigmoid(x): out = F.relu6(x + 3, inplace=True) / 6 return out class SeModule(nn.Module): _ActiveFuc = {'relu': nn.ReLU, 'hsig': HSigmoid, 'relu6': nn.ReLU6} def __init__(self, indepth, reduction=4, active='hsig'): super(SeModule, self).__init__() """ Squeeze-> x ->Expand, x => [batch, channels, 1, 1] """ assert active in self._ActiveFuc.keys() Active = self._ActiveFuc[active] self.se = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(indepth, indepth // reduction, 1, 1, 0, bias=False), nn.ReLU(inplace=True), nn.Conv2d(indepth // reduction, indepth, 1, 1, 0, bias=False), Active(inplace=True) ) def forward(self, x): return x * self.se(x) class BranchDownsize(nn.Module): def __init__(self, factor=None, size=None, mode='nearest', align_corners=False): super(BranchDownsize, self).__init__() self.downsize = nn.Upsample(size, factor, mode, align_corners) def forward(self, x): if isinstance(x, (tuple, list)): x3, x2, x1 = x x3 = self.downsize(x3) x2 = self.downsize(x2) x1 = self.downsize(x1) x = (x3, x2, x1) else: x = self.downsize(x) # print('---->', x[0].size()) return x def drop_connect(inputs, p, training): """ Drop connect. """ if not training or p == 0: return inputs batch_size = inputs.shape[0] keep_prob = 1 - p random_tensor = keep_prob random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype) # uniform [0,1) binary_tensor = torch.floor(random_tensor) output = inputs / keep_prob * binary_tensor return output class PreProc(nn.Module): def __init__(self, indepth=3, outdepth=16, outnums=1, stride_dilate='1/4-1'): super(PreProc, self).__init__() assert outnums in [1, 2, 3] assert stride_dilate in ['1/2-1', '1/2-2', '1/4-1', '1/4-2'] stride, dilate = stride_dilate.split('-') self.stride = stride self.outnums = outnums # stride = 1/2 if dilate == '1': self.conv1 = nn.Conv2d(indepth, outdepth, 3, 2, 1, dilation=1, bias=False) else: self.conv1 = nn.Conv2d(indepth, outdepth, 3, 2, 2, dilation=2, bias=False) self.bn1 = nn.BatchNorm2d(outdepth) self.act1 = nn.ReLU() if stride == '1/4': if dilate == '1': self.conv2 = nn.Conv2d(outdepth, outdepth, 3, 2, 1, dilation=1, bias=False) else: self.conv2 = nn.Conv2d(outdepth, outdepth, 3, 2, 2, dilation=2, bias=False) self.bn2 = nn.BatchNorm2d(outdepth) self.act2 = nn.ReLU() def forward(self, x): # stride = '1/2' x = self.conv1(x) x = self.bn1(x) x = self.act1(x) if self.stride == '1/4': x = self.conv2(x) x = self.bn2(x) x = self.act2(x) if self.outnums == 1: return x elif self.outnums == 2: return x, None elif self.outnums == 3: return x, None, None class MoBlock(nn.Module): _ActiveFuc = {'relu': nn.ReLU, 'hsig': HSigmoid, 'relu6': nn.ReLU6} def __init__(self, indepth, outdepth, growth, pre_ind_grow, ksp='3.1.1', pre_ksp_half=False, groups='auto', skgroups='gcu', active='relu', dropout=0.0, isse=1, seactive='hsig', first=False, idx=1): """ - indepth: 当前block的输入通道数. - outdepth: 当前block的输出通道数. - growth: 当前block的通道增长数. - pre_ind_grow: 上一个block内, 输入通道数indepth + 通道增长数growth 的值. - ksp: kernel_size, stride, padding in Depth-Wise Convolution. cur_ksp_half, 当前block内是否将特征图尺寸减半. - pre_ksp_half: 上一个block内, 是否对特征图进行了尺寸减半. - groups: groups 值 in Depth-Wise Convolution. - skgroups: 所有 skip 连接的groups值, skip-groups - active: - dropout: - isse: 是否包含SeModule. =1: no-SeModule ; >1: has-SeModule(reduction=isse) 默认值4 - first: - idx: """ super(MoBlock, self).__init__() Active = self._ActiveFuc[active] ksp = [int(x) for x in ksp.split(sep='.')] assert len(ksp) == 3 cur_ksp_half = bool(ksp[1] == 2) self.ksp = ksp assert dropout * (0.5 - dropout) >= 0, '<dropout> must be in [0, 0.5], but get %s .' % dropout self.dropout = dropout assert isse >= 1 and isinstance(isse, int), '<isse> must be a int >=1, but get %s .' % isse self.isse = isse self.first = first self.idx = idx if groups == '1x': groups = 1 elif groups == 'auto': groups = indepth + growth curr_ind_grow = indepth + growth self.conv1 = nn.Conv2d(indepth, curr_ind_grow, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(curr_ind_grow, eps=1e-05, momentum=0.1) self.act1 = Active(inplace=True) # depth-wise conv self.conv2 = nn.Conv2d(curr_ind_grow, curr_ind_grow, ksp[0], ksp[1], ksp[2], groups=groups, bias=False) self.bn2 = nn.BatchNorm2d(curr_ind_grow, eps=1e-05, momentum=0.1) self.act2 = Active(inplace=True) self.segate2 = [nn.Sequential(), SeModule(curr_ind_grow, isse, active=seactive)][isse != 1] # 计算 skip1 & skip2 if self.first: self.skip1 = nn.Sequential() self.skip2 = nn.Sequential() else: if curr_ind_grow == pre_ind_grow: skip_group = GCU(pre_ind_grow, curr_ind_grow) if skgroups == 'gcu' else 1 if not pre_ksp_half: # print('init---> idx %s .' % idx) self.skip1 = nn.Sequential() else: skip1_ksp = (2, 2, 0) self.skip1 = nn.Sequential( nn.Conv2d(pre_ind_grow, curr_ind_grow, skip1_ksp[0], skip1_ksp[1], skip1_ksp[2], bias=False, groups=skip_group), nn.BatchNorm2d(curr_ind_grow, eps=1e-05, momentum=0.1)) if not cur_ksp_half: self.skip2 = nn.Sequential() else: skip2_ksp = (2, 2, 0) self.skip2 = nn.Sequential( nn.Conv2d(pre_ind_grow, curr_ind_grow, skip2_ksp[0], skip2_ksp[1], skip2_ksp[2], bias=False, groups=skip_group), nn.BatchNorm2d(curr_ind_grow, eps=1e-05, momentum=0.1)) elif curr_ind_grow != pre_ind_grow: skip_group = GCU(pre_ind_grow, curr_ind_grow) if skgroups == 'gcu' else 1 skip1_ksp = (2, 2, 0) if pre_ksp_half else (1, 1, 0) skip2_ksp = (2, 2, 0) if cur_ksp_half else (1, 1, 0) self.skip1 = nn.Sequential( nn.Conv2d(pre_ind_grow, curr_ind_grow, skip1_ksp[0], skip1_ksp[1], skip1_ksp[2], bias=False, groups=skip_group), nn.BatchNorm2d(curr_ind_grow, eps=1e-05, momentum=0.1)) self.skip2 = nn.Sequential(nn.Conv2d(pre_ind_grow, curr_ind_grow, skip2_ksp[0], skip2_ksp[1], skip2_ksp[2], bias=False, groups=skip_group), nn.BatchNorm2d(curr_ind_grow, eps=1e-05, momentum=0.1)) # 计算skip3 if outdepth == indepth and not cur_ksp_half: self.skip3 = nn.Sequential() else: skip3_ksp = (2, 2, 0) if cur_ksp_half else (1, 1, 0) skip_group = GCU(indepth, outdepth) if skgroups == 'gcu' else 1 self.skip3 = nn.Sequential(nn.Conv2d(indepth, outdepth, skip3_ksp[0], skip3_ksp[1], skip3_ksp[2], bias=False, groups=skip_group), nn.BatchNorm2d(outdepth, eps=1e-05, momentum=0.1)) # point-wise conv self.conv3 = nn.Conv2d(curr_ind_grow, outdepth, kernel_size=1, stride=1, padding=0, groups=1, bias=False) self.bn3 = nn.BatchNorm2d(outdepth, eps=1e-05, momentum=0.1) self.act3 = Active(inplace=True) self.drop3 = nn.Dropout2d(p=dropout, inplace=False) def forward(self, x): # print('\n-----> %s' % self.idx) assert isinstance(x, (list, tuple)) and len(x) == 3 x3, x2, x1 = x # c3, c2, c1 if self.first: c1 = self.act1(self.bn1(self.conv1(x3))) c2 = self.act2(self.bn2(self.conv2(c1))) c2 = self.segate2(c2) c3 = self.act3(self.bn3(self.conv3(c2))) c3 = self.drop3(c3) c3 = c3 + self.skip3(x3) # return c3, c2, c1 else: c1 = self.act1(self.bn1(self.conv1(x3))) c2 = self.act2(self.bn2(self.conv2(c1 + self.skip1(x1)))) c2 = self.segate2(c2) c3 = self.act3(self.bn3(self.conv3(c2 + self.skip2(x2)))) c3 = self.drop3(c3) c3 = c3 + self.skip3(x3) # return c3, c2, c1 # xtils.print_size(c3) return c3, c2, c1 class Clssifier(nn.Module): _ActiveFuc = {'relu': nn.ReLU, 'hsig': HSigmoid, 'relu6': nn.ReLU6} def __init__(self, indepth, middepth=0, outdepth=1000, dropout=(0,), active='relu'): super(Clssifier, self).__init__() assert isinstance(dropout, (list, tuple)) self.dropout = dropout self.middepth = middepth if middepth == 0: assert len(self.dropout) >= 1 self.drop = nn.Dropout(p=self.dropout[0], inplace=False) self.fc = nn.Linear(indepth, outdepth) elif middepth > 0: assert len(self.dropout) == 2 self.drop1 = nn.Dropout(p=self.dropout[0], inplace=False) self.fc1 = nn.Linear(indepth, middepth) self.drop2 = nn.Dropout(p=self.dropout[1], inplace=False) self.fc2 = nn.Linear(middepth, outdepth) def forward(self, x): if self.middepth == 0: x = self.drop(x) x = self.fc(x) elif self.middepth > 0: x = self.drop1(x) x = self.fc1(x) x = self.drop2(x) x = self.fc2(x) return x class ConcatSummary(nn.Module): """ 汇总多个xfc的输出到一个fc; 或 汇总多个squeeze的输出到一个fc. """ def __init__(self, indepth, middepth=0, outdepth=1000, dropout=(0, 0), active='relu', with_fc=True): """ - indepth: 对所有输入x, 进行拼接后的输入通道数 - middepth: fc 层的中间隐藏层,=0 则无隐藏层 - outdepth: 输出通道数 => nlabels - dropout: fc 层的辍学率 - active: fc 层的激活函数 - withfc: when indepth==outdepth, False => 不添加fc层,直接输出拼接向量进行分类. """ super(ConcatSummary, self).__init__() if not with_fc: assert indepth == outdepth, '<withfc> can be False only under <indepth>==<outdepth>.' self.classifier = nn.Sequential() else: self.classifier = Clssifier(indepth, middepth, outdepth, dropout, active) def forward(self, x): # assert isinstance(x, (tuple, list)) x = torch.cat(x, dim=1) x = self.classifier(x) return x def __repr__(self): strme = '(\n (concat): torch.cat(dim=1)()\n' + \ ' (classifier): ' + self.classifier.__repr__() + '\n)' return strme class PollSummary(nn.Module): """ 汇总多个xfc的输出, 进行投票 ==> 平均投票法 & 最大投票法. 投票前可选择是否先进行归一化 F.softmax() or F.normalize(). """ def __init__(self, method='avg', isnorm='none'): super(PollSummary, self).__init__() assert isnorm in ['none', 'softmax', 'normal', 'minmax'] self.isnorm = isnorm self.method = method if isnorm == 'none': self.normalize = None elif isnorm == 'softmax': self.normalize = F.softmax elif isnorm == 'normal': self.normalize = F.normalize elif isnorm == 'minmax': self.normalize = self.minmax else: raise NotImplementedError if method == 'avg': self.reduce = torch.mean elif method == 'max': self.reduce = torch.max elif method == 'sum': self.reduce = torch.sum else: raise NotImplementedError def minmax(self, x, dim=-1): assert x.ndimension() == 2 min_x, max_x = x.min(dim)[0], x.max(dim)[0] factor = (max_x - min_x).unsqueeze(dim) x = (x - min_x.unsqueeze(dim)) / factor return x def forward(self, x): assert isinstance(x, (tuple, list)) if self.isnorm != 'none': x = [self.normalize(z, dim=-1) for z in x] x = [z.unsqueeze_(dim=-1) for z in x] x = torch.cat(x, dim=-1) x = self.reduce(x, dim=-1) return x def __repr__(self): string = self.__class__.__name__ + \ '(method={}, isnorm={})'.format(self.method, self.isnorm) return string class MultiScaleNet(nn.Module): def
import os import requests import time import json import io import numpy as np import pandas as pd import paavo_queries as paavo_queries from sklearn.linear_model import LinearRegression import statsmodels.api as sm ## NOTE: Table 9_koko access is forbidden from the API for some reasons. # url to the API MAIN_PAAVO_URL = 'http://pxnet2.stat.fi/PXWeb/api/v1/en/Postinumeroalueittainen_avoin_tieto/' def paavo_url(level, table): """Helper to make url to the paavo API""" return MAIN_PAAVO_URL + str(level) + '/' + table def fetch_csv(url, destination_directory, file_name, query={"query": [], "response": {"format": "csv"}}): """Fetch a single file from PXweb API. File name should end with '.csv'""" response = requests.post(url, json=query, stream=True, allow_redirects=True) if not os.path.exists(destination_directory): os.makedirs(destination_directory) destination_file = os.path.join(destination_directory, file_name) if response.status_code == 200: open(destination_file, 'wb').write(response.content) print('Downloaded ' + file_name + ' from ' + url) else: print('Could not download ' + file_name + ' from ' + url) print('HTTP/1.1 ' + str(response.status_code)) time.sleep(1) def fetch_paavo(destination_directory): """Fetch the whole Paavo directory""" # Getting levels from Paavo database levels = [] response = requests.post('http://pxnet2.stat.fi/PXWeb/api/v1/en/Postinumeroalueittainen_avoin_tieto/') response_texts = json.loads(response.text) for response_text in response_texts: levels.append(str(response_text['id'])) paavo_directory = os.path.join(destination_directory, 'paavo_raw') for level in levels: response = requests.post('http://pxnet2.stat.fi/PXWeb/api/v1/en/Postinumeroalueittainen_avoin_tieto/' + str(level)) response_texts = json.loads(response.text) table_data = {} for response_text in response_texts: table_data[response_text['id']] = str(response_text['text']).split('. ')[-1].replace("'", "").replace(" ", "_") for (id, name) in table_data.items(): url = paavo_url(level, id) file_name = name + '.csv' fetch_csv(url, paavo_directory, file_name) def fetch_dataframe(url, query={"query": [], "response": {"format": "csv"}}): """Download a table from PXweb API to a DataFrame""" response = requests.post(url, json=query, stream=True, allow_redirects=True) if response.status_code == 200: byte_data = io.BytesIO(response.content) df = pd.read_csv(byte_data, sep=',', encoding='iso-8859-1') print('Downloaded data from ' + url) return df else: print('Could not download from ' + url) print('HTTP/1.1 ' + str(response.status_code)) return pd.DataFrame() time.sleep(0.2) def paavo_data(): """Download the whole paavo directory to a dictionary with names as keys and dataframes as values""" data = {} # Getting levels from paavo database levels = [] response = requests.post('http://pxnet2.stat.fi/PXWeb/api/v1/en/Postinumeroalueittainen_avoin_tieto/') response_texts = json.loads(response.text) for response_text in response_texts: levels.append(str(response_text['id'])) for level in levels: response = requests.post( 'http://pxnet2.stat.fi/PXWeb/api/v1/en/Postinumeroalueittainen_avoin_tieto/' + str(level)) response_texts = json.loads(response.text) table_data = {} for response_text in response_texts: table_data[response_text['id']] = str(response_text['text']).split('. ')[-1].replace("'", "").replace(" ", "_") for (id, name) in table_data.items(): url = paavo_url(level, id) df = fetch_dataframe(url) if not df.empty: data[name] = df time.sleep(1) return data def fetch_paavo_density_and_area(density_file_destination, area_file_destination): def clean_df(df): # Drop Finland row df.drop(index=0, inplace=True) # Extract postal code df.rename(columns={df.columns[0]: 'Postal code'}, inplace=True) df['Postal code'] = df['Postal code'].apply(lambda x: x.split(' ')[0]) # Replace '.' with 0 and set Postal code as index df.replace({'.': 0}, inplace=True) df.set_index('Postal code', inplace=True) # Change data type of all columns to integer for column in df.columns: df[column] = df[column].astype(int) return df url_2013 = 'http://pxnet2.stat.fi/PXWeb/api/v1/en/Postinumeroalueittainen_avoin_tieto/2015/paavo_9_koko_2015.px/' url_2014 = 'http://pxnet2.stat.fi/PXWeb/api/v1/en/Postinumeroalueittainen_avoin_tieto/2016/paavo_9_koko_2016.px/' url_2015 = 'http://pxnet2.stat.fi/PXWeb/api/v1/en/Postinumeroalueittainen_avoin_tieto/2017/paavo_9_koko_2017.px/' url_2016 = 'http://pxnet2.stat.fi/PXWeb/api/v1/en/Postinumeroalueittainen_avoin_tieto/2018/paavo_9_koko_2018.px/' url_2017 = 'http://pxnet2.stat.fi/PXWeb/api/v1/en/Postinumeroalueittainen_avoin_tieto/2019/paavo_9_koko_2019.px/' dfs = {} years = np.array([[2014], [2015], [2016], [2017]]) # Download and clean each dataframe dfs[2013] = clean_df(fetch_dataframe(url_2013, paavo_queries.surface_population_query)) dfs[2014] = clean_df(fetch_dataframe(url_2014, paavo_queries.surface_population_query)) dfs[2015] = clean_df(fetch_dataframe(url_2015, paavo_queries.surface_population_query)) dfs[2016] = clean_df(fetch_dataframe(url_2016, paavo_queries.surface_population_query)) dfs[2017] = clean_df(fetch_dataframe(url_2017, paavo_queries.surface_population_query)) # Change column labels for (year, df) in dfs.items(): pop_str = 'Population (' + str(year) +')' area_str = 'Surface area (' + str(year) + ')' density_str = 'Density (' + str(year) +')' if year > 2013: df.rename(columns={df.columns[0]: area_str, df.columns[1]: pop_str}, inplace=True) df.insert(2, density_str, df[pop_str] / df[area_str]) df.replace({0.0: np.nan}) else: df.rename(columns={df.columns[0]: pop_str}, inplace=True) df.replace({0.0: np.nan}) # Merge dataframe using Postal code index, manually adding density and surface area columns for 2013 main_table = dfs[2014] main_table = main_table.merge(dfs[2013], how='left', on='Postal code') main_table = main_table.merge(dfs[2015], how='left', on='Postal code') main_table = main_table.merge(dfs[2016], how='left', on='Postal code') main_table = main_table.merge(dfs[2017], how='left', on='Postal code') main_table.insert(0, 'Density (2013)', np.nan) main_table.insert(0, 'Surface area (2013)', np.nan) densities = main_table[['Density (2014)', 'Density (2015)', 'Density (2016)', 'Density (2017)']] # Linear regression on density. If density is negative, drop the latest density and retry. If there is only 1 usable density, copy it to the 2013 density for index, row in densities.iterrows(): y = row.to_numpy() valid_index = np.where(y >= 0) valid_years = years[valid_index] y = y[valid_index] density_prediction = -1.0 while len(y) > 1 and density_prediction < 0: reg = LinearRegression().fit(valid_years, y) density_prediction = reg.predict([[2013]]) if density_prediction < 0: y = y[:-1] valid_years = valid_years[:-1] if len(y) > 1: main_table.at[index, 'Density (2013)'] = density_prediction elif len(y) ==1: main_table.at[index, 'Density (2013)'] = y[0] else: continue # Calculate surface area using density and population for index, row in main_table.iterrows(): if row['Population (2013)'] == np.nan: continue elif row['Population (2013)'] > 0 and row['Density (2013)'] > 0: main_table.at[index, 'Surface area (2013)'] = round(row['Population (2013)']/row['Density (2013)']) elif row['Population (2013)'] == 0 and row['Density (2013)'] == 0: main_table.at[index, 'Surface area (2013)'] = row['Surface area (2014)'] main_table = main_table.fillna(0) # Results densities = main_table[['Density (2013)', 'Density (2014)', 'Density (2015)', 'Density (2016)', 'Density (2017)']] areas = main_table[['Surface area (2013)', 'Surface area (2014)', 'Surface area (2015)', 'Surface area (2016)', 'Surface area (2017)']] # Export to tsv files densities.to_csv(density_file_destination, sep='\t') areas.to_csv(area_file_destination, sep='\t') def fetch_paavo_housing(destination_directory, postal_code_file, density_file): def postal_standardize(df): df= df.astype({'Postal code': str}) for i in list(df.index): df.at[i, 'Postal code'] = '0' * (5-len(df.at[i,'Postal code']))+ df.at[i, 'Postal code'] return df def postal_merge(left, right): return left.merge(right, how='left', on='Postal code') def get_mean_simple(df, n): """Calculate housing prices for groups of postal codes with the same first 6-n digits""" df_n = pd.DataFrame(df['Postal code'].apply(lambda x: x[:(1 - n)])) df_n.rename(columns={df_n.columns[0]: 'Postal code'}, inplace=True) df_n = df_n.join(df[['Total value', 'Number']].copy()) df_n = df_n.groupby("Postal code", as_index=False).agg("sum") df_n['Mean'] = df_n['Total value'] / df_n['Number'] df_n.drop(['Total value', 'Number'], axis=1, inplace=True) # df_n.set_index('Postal code', inplace=True) return df_n def impute_simple(df, df_n): """Impute using the results above""" df_ni = df_n.set_index('Postal code') for code in list(df_n['Postal code']): df_rows = np.array(df[df['Postal code'].str.startswith(code)].index) for i in df_rows: if df.at[i, 'Mean'] == 0 or np.isnan(df.at[i, 'Mean']): df.at[i, 'Mean'] = df_ni.at[code, 'Mean'] return df def impute_with_density(df, postal_df): """Impute with respect to density using a linear model""" def postal_truncate(n): df_n = postal_df.copy() df_n['Postal code'] = df_n['Postal code'].apply(lambda x: x[:(1-n)]) df_n.drop_duplicates(subset='Postal code', inplace=True) return df_n def impute_price(df_, n): truncated_postal = postal_truncate(n) for code in truncated_postal['Postal code']: sub_df = df_[df_['Postal code'].str.startswith(code)] good_df = sub_df[sub_df['Mean'] != 0] bad_df = sub_df[sub_df['Mean'] == 0] if len(good_df.index) >= 7: good_df = good_df.nsmallest(15, 'Mean') X = good_df['Density'] y = good_df['Mean'] X = sm.add_constant(X.values) model = sm.OLS(y, X).fit() for i in bad_df.index: if df_.at[i, 'Mean'] <= 0 or np.isnan(df_.at[i, 'Mean']): df_.at[i, 'Mean'] = int(model.predict([1, df_.at[i, 'Density']])[0]) return df_ for i in range(3,6): df = impute_price(df, i) return df main_table = postal_standardize(pd.read_csv(postal_code_file, sep='\t')) density = postal_standardize(pd.read_csv(density_file, sep='\t')) density = density.fillna(0) postal_code = main_table.copy() year_list = list(range(2005, 2018)) base_query = paavo_queries.ts_housing_query['query'] for year in year_list: for quarter in range(5): # Construct the json query new_query = [{"code": "Vuosi", "selection": {"filter": "item", "values": [str(year)]}}, {"code": "Neljännes", "selection": {"filter": "item", "values": [str(quarter)]}}] + base_query quarter_query = {"query": new_query, "response": {"format": "csv"}} if quarter == 0: mean_label = 'Housing price (' + str(year) + ')' else: mean_label = str(year) + 'Q' +str(quarter) # Get the data table for the quarter quarter_frame = postal_standardize(fetch_dataframe(paavo_queries.housing_url, query= quarter_query)) # Leave only Postal code and house price quarter_frame = quarter_frame[['Postal code', 'Mean', 'Number']] # Replace missing value '.' with '0' quarter_frame.replace({'.': '0'}, inplace=True) # Change mean to housing price and convert to float, number to Int quarter_frame['Mean'] = quarter_frame['Mean'].astype(int) quarter_frame['Number'] = quarter_frame['Number'].astype(int) # Calculate the total housing value for each row quarter_frame['Total value'] = quarter_frame['Mean'] * quarter_frame['Number'] # Get the complete postal code quarter_frame = postal_merge(postal_code, quarter_frame) # Change the numbers of houses where the prices are hidden to 0 so that the calculation of the group mean is not affected for code in list(quarter_frame.index): if quarter_frame.at[code, 'Mean'] == 0 or np.isnan(quarter_frame.at[code, 'Mean']): quarter_frame.at[code, 'Number'] = 0 if year < 2013: # Calculating the average housing price of postal codes with the same first 3, 2, 1 digits quarter_frame_3 = get_mean_simple(quarter_frame, 3) quarter_frame_4 = get_mean_simple(quarter_frame, 4) quarter_frame_5 = get_mean_simple(quarter_frame, 5) # Fill df_4 empty values with that of df_5 and df_3 with that of df_4 quarter_frame_4 = impute_simple(quarter_frame_4, quarter_frame_5) quarter_frame_3 = impute_simple(quarter_frame_3, quarter_frame_4) # Round mean values and fill empty cells with zero, though there should not be any at this point quarter_frame_3.fillna(0, inplace=True) quarter_frame_3['Mean'] = quarter_frame_3['Mean'].astype(int) # Fill the
relations of the form # sin(x + y) - sin(x)*cos(y) - sin(y)*cos(x), etc. Geometric primality is # preserved by the same argument as before. def parse_hints(hints): """Split hints into (n, funcs, iterables, gens).""" n = 1 funcs, iterables, gens = [], [], [] for e in hints: if isinstance(e, (SYMPY_INTS, Integer)): n = e elif isinstance(e, FunctionClass): funcs.append(e) elif iterable(e): iterables.append((e[0], e[1:])) # XXX sin(x+2y)? # Note: we go through polys so e.g. # sin(-x) -> -sin(x) -> sin(x) gens.extend(parallel_poly_from_expr( [e[0](x) for x in e[1:]] + [e[0](Add(*e[1:]))])[1].gens) else: gens.append(e) return n, funcs, iterables, gens def build_ideal(x, terms): """ Build generators for our ideal. Terms is an iterable with elements of the form (fn, coeff), indicating that we have a generator fn(coeff*x). If any of the terms is trigonometric, sin(x) and cos(x) are guaranteed to appear in terms. Similarly for hyperbolic functions. For tan(n*x), sin(n*x) and cos(n*x) are guaranteed. """ I = [] y = Dummy('y') for fn, coeff in terms: for c, s, t, rel in ( [cos, sin, tan, cos(x)**2 + sin(x)**2 - 1], [cosh, sinh, tanh, cosh(x)**2 - sinh(x)**2 - 1]): if coeff == 1 and fn in [c, s]: I.append(rel) elif fn == t: I.append(t(coeff*x)*c(coeff*x) - s(coeff*x)) elif fn in [c, s]: cn = fn(coeff*y).expand(trig=True).subs(y, x) I.append(fn(coeff*x) - cn) return list(set(I)) def analyse_gens(gens, hints): """ Analyse the generators ``gens``, using the hints ``hints``. The meaning of ``hints`` is described in the main docstring. Return a new list of generators, and also the ideal we should work with. """ # First parse the hints n, funcs, iterables, extragens = parse_hints(hints) debug('n=%s' % n, 'funcs:', funcs, 'iterables:', iterables, 'extragens:', extragens) # We just add the extragens to gens and analyse them as before gens = list(gens) gens.extend(extragens) # remove duplicates funcs = list(set(funcs)) iterables = list(set(iterables)) gens = list(set(gens)) # all the functions we can do anything with allfuncs = {sin, cos, tan, sinh, cosh, tanh} # sin(3*x) -> ((3, x), sin) trigterms = [(g.args[0].as_coeff_mul(), g.func) for g in gens if g.func in allfuncs] # Our list of new generators - start with anything that we cannot # work with (i.e. is not a trigonometric term) freegens = [g for g in gens if g.func not in allfuncs] newgens = [] trigdict = {} for (coeff, var), fn in trigterms: trigdict.setdefault(var, []).append((coeff, fn)) res = [] # the ideal for key, val in trigdict.items(): # We have now assembeled a dictionary. Its keys are common # arguments in trigonometric expressions, and values are lists of # pairs (fn, coeff). x0, (fn, coeff) in trigdict means that we # need to deal with fn(coeff*x0). We take the rational gcd of the # coeffs, call it ``gcd``. We then use x = x0/gcd as "base symbol", # all other arguments are integral multiples thereof. # We will build an ideal which works with sin(x), cos(x). # If hint tan is provided, also work with tan(x). Moreover, if # n > 1, also work with sin(k*x) for k <= n, and similarly for cos # (and tan if the hint is provided). Finally, any generators which # the ideal does not work with but we need to accommodate (either # because it was in expr or because it was provided as a hint) # we also build into the ideal. # This selection process is expressed in the list ``terms``. # build_ideal then generates the actual relations in our ideal, # from this list. fns = [x[1] for x in val] val = [x[0] for x in val] gcd = reduce(igcd, val) terms = [(fn, v/gcd) for (fn, v) in zip(fns, val)] fs = set(funcs + fns) for c, s, t in ([cos, sin, tan], [cosh, sinh, tanh]): if any(x in fs for x in (c, s, t)): fs.add(c) fs.add(s) for fn in fs: for k in range(1, n + 1): terms.append((fn, k)) extra = [] for fn, v in terms: if fn == tan: extra.append((sin, v)) extra.append((cos, v)) if fn in [sin, cos] and tan in fs: extra.append((tan, v)) if fn == tanh: extra.append((sinh, v)) extra.append((cosh, v)) if fn in [sinh, cosh] and tanh in fs: extra.append((tanh, v)) terms.extend(extra) x = gcd*Mul(*key) r = build_ideal(x, terms) res.extend(r) newgens.extend(set(fn(v*x) for fn, v in terms)) # Add generators for compound expressions from iterables for fn, args in iterables: if fn == tan: # Tan expressions are recovered from sin and cos. iterables.extend([(sin, args), (cos, args)]) elif fn == tanh: # Tanh expressions are recovered from sihn and cosh. iterables.extend([(sinh, args), (cosh, args)]) else: dummys = symbols('d:%i' % len(args), cls=Dummy) expr = fn( Add(*dummys)).expand(trig=True).subs(list(zip(dummys, args))) res.append(fn(Add(*args)) - expr) if myI in gens: res.append(myI**2 + 1) freegens.remove(myI) newgens.append(myI) return res, freegens, newgens myI = Dummy('I') expr = expr.subs(S.ImaginaryUnit, myI) subs = [(myI, S.ImaginaryUnit)] num, denom = cancel(expr).as_numer_denom() try: (pnum, pdenom), opt = parallel_poly_from_expr([num, denom]) except PolificationFailed: return expr debug('initial gens:', opt.gens) ideal, freegens, gens = analyse_gens(opt.gens, hints) debug('ideal:', ideal) debug('new gens:', gens, " -- len", len(gens)) debug('free gens:', freegens, " -- len", len(gens)) # NOTE we force the domain to be ZZ to stop polys from injecting generators # (which is usually a sign of a bug in the way we build the ideal) if not gens: return expr G = groebner(ideal, order=order, gens=gens, domain=ZZ) debug('groebner basis:', list(G), " -- len", len(G)) # If our fraction is a polynomial in the free generators, simplify all # coefficients separately: from sympy.simplify.ratsimp import ratsimpmodprime if freegens and pdenom.has_only_gens(*set(gens).intersection(pdenom.gens)): num = Poly(num, gens=gens+freegens).eject(*gens) res = [] for monom, coeff in num.terms(): ourgens = set(parallel_poly_from_expr([coeff, denom])[1].gens) # We compute the transitive closure of all generators that can # be reached from our generators through relations in the ideal. changed = True while changed: changed = False for p in ideal: p = Poly(p) if not ourgens.issuperset(p.gens) and \ not p.has_only_gens(*set(p.gens).difference(ourgens)): changed = True ourgens.update(p.exclude().gens) # NOTE preserve order! realgens = [x for x in gens if x in ourgens] # The generators of the ideal have now been (implicitly) split # into two groups: those involving ourgens and those that don't. # Since we took the transitive closure above, these two groups # live in subgrings generated by a *disjoint* set of variables. # Any sensible groebner basis algorithm will preserve this disjoint # structure (i.e. the elements of the groebner basis can be split # similarly), and and the two subsets of the groebner basis then # form groebner bases by themselves. (For the smaller generating # sets, of course.) ourG = [g.as_expr() for g in G.polys if g.has_only_gens(*ourgens.intersection(g.gens))] res.append(Mul(*[a**b for a, b in zip(freegens, monom)]) * \ ratsimpmodprime(coeff/denom, ourG, order=order, gens=realgens, quick=quick, domain=ZZ, polynomial=polynomial).subs(subs)) return Add(*res) # NOTE The following is simpler and has less assumptions on the # groebner basis algorithm. If the above turns out to be broken, # use this. return Add(*[Mul(*[a**b for a, b in zip(freegens, monom)]) * \ ratsimpmodprime(coeff/denom, list(G), order=order, gens=gens, quick=quick, domain=ZZ) for monom, coeff in num.terms()]) else: return ratsimpmodprime( expr, list(G), order=order, gens=freegens+gens, quick=quick, domain=ZZ, polynomial=polynomial).subs(subs) _trigs = (TrigonometricFunction, HyperbolicFunction) def trigsimp(expr, **opts): """ reduces expression by using known trig identities Notes ===== method: - Determine the method to use. Valid choices are 'matching' (default), 'groebner', 'combined', and 'fu'. If 'matching', simplify the expression recursively by targeting common patterns. If 'groebner', apply an experimental groebner basis algorithm. In this case further options are forwarded to ``trigsimp_groebner``, please refer to its docstring. If 'combined', first run the groebner basis algorithm with small default parameters, then run the 'matching' algorithm. 'fu' runs the collection of trigonometric transformations described by Fu, et al. (see the `fu` docstring). Examples ======== >>> from sympy import trigsimp, sin, cos, log >>> from sympy.abc import x, y >>> e = 2*sin(x)**2 + 2*cos(x)**2 >>> trigsimp(e) 2 Simplification occurs
accept unknown kwargs expected_kwargs = [ "retry_strategy", "if_match" ] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "remove_user_from_group got unknown kwargs: {!r}".format(extra_kwargs)) path_params = { "userGroupMembershipId": user_group_membership_id } path_params = {k: v for (k, v) in six.iteritems(path_params) if v is not missing} for (k, v) in six.iteritems(path_params): if v is None or (isinstance(v, six.string_types) and len(v.strip()) == 0): raise ValueError('Parameter {} cannot be None, whitespace or empty string'.format(k)) header_params = { "accept": "application/json", "content-type": "application/json", "if-match": kwargs.get("if_match", missing) } header_params = {k: v for (k, v) in six.iteritems(header_params) if v is not missing and v is not None} retry_strategy = self.retry_strategy if kwargs.get('retry_strategy'): retry_strategy = kwargs.get('retry_strategy') if retry_strategy: return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, path_params=path_params, header_params=header_params) else: return self.base_client.call_api( resource_path=resource_path, method=method, path_params=path_params, header_params=header_params) def reset_idp_scim_client(self, identity_provider_id, **kwargs): """ Resets the OAuth2 client credentials for the SCIM client associated with this identity provider. :param str identity_provider_id: (required) The OCID of the identity provider. :param obj retry_strategy: (optional) A retry strategy to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. A convenience :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` is also available. The specifics of the default retry strategy are described `here <https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/sdk_behaviors/retries.html>`__. To have this operation explicitly not perform any retries, pass an instance of :py:class:`~oci.retry.NoneRetryStrategy`. :return: A :class:`~oci.response.Response` object with data of type :class:`~oci.identity.models.ScimClientCredentials` :rtype: :class:`~oci.response.Response` """ resource_path = "/identityProviders/{identityProviderId}/actions/resetScimClient" method = "POST" expected_kwargs = ["retry_strategy"] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "reset_idp_scim_client got unknown kwargs: {!r}".format(extra_kwargs)) path_params = { "identityProviderId": identity_provider_id } path_params = {k: v for (k, v) in six.iteritems(path_params) if v is not missing} for (k, v) in six.iteritems(path_params): if v is None or (isinstance(v, six.string_types) and len(v.strip()) == 0): raise ValueError('Parameter {} cannot be None, whitespace or empty string'.format(k)) header_params = { "accept": "application/json", "content-type": "application/json" } retry_strategy = self.retry_strategy if kwargs.get('retry_strategy'): retry_strategy = kwargs.get('retry_strategy') if retry_strategy: return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, response_type="ScimClientCredentials") else: return self.base_client.call_api( resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, response_type="ScimClientCredentials") def update_auth_token(self, user_id, auth_token_id, update_auth_token_details, **kwargs): """ Updates the specified auth token's description. :param str user_id: (required) The OCID of the user. :param str auth_token_id: (required) The OCID of the auth token. :param UpdateAuthTokenDetails update_auth_token_details: (required) Request object for updating an auth token. :param str if_match: (optional) For optimistic concurrency control. In the PUT or DELETE call for a resource, set the `if-match` parameter to the value of the etag from a previous GET or POST response for that resource. The resource will be updated or deleted only if the etag you provide matches the resource's current etag value. :param obj retry_strategy: (optional) A retry strategy to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. A convenience :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` is also available. The specifics of the default retry strategy are described `here <https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/sdk_behaviors/retries.html>`__. To have this operation explicitly not perform any retries, pass an instance of :py:class:`~oci.retry.NoneRetryStrategy`. :return: A :class:`~oci.response.Response` object with data of type :class:`~oci.identity.models.AuthToken` :rtype: :class:`~oci.response.Response` """ resource_path = "/users/{userId}/authTokens/{authTokenId}" method = "PUT" # Don't accept unknown kwargs expected_kwargs = [ "retry_strategy", "if_match" ] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "update_auth_token got unknown kwargs: {!r}".format(extra_kwargs)) path_params = { "userId": user_id, "authTokenId": auth_token_id } path_params = {k: v for (k, v) in six.iteritems(path_params) if v is not missing} for (k, v) in six.iteritems(path_params): if v is None or (isinstance(v, six.string_types) and len(v.strip()) == 0): raise ValueError('Parameter {} cannot be None, whitespace or empty string'.format(k)) header_params = { "accept": "application/json", "content-type": "application/json", "if-match": kwargs.get("if_match", missing) } header_params = {k: v for (k, v) in six.iteritems(header_params) if v is not missing and v is not None} retry_strategy = self.retry_strategy if kwargs.get('retry_strategy'): retry_strategy = kwargs.get('retry_strategy') if retry_strategy: return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, body=update_auth_token_details, response_type="AuthToken") else: return self.base_client.call_api( resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, body=update_auth_token_details, response_type="AuthToken") def update_authentication_policy(self, compartment_id, update_authentication_policy_details, **kwargs): """ Updates authentication policy for the specified tenancy :param str compartment_id: (required) The OCID of the compartment. :param UpdateAuthenticationPolicyDetails update_authentication_policy_details: (required) Request object for updating the authentication policy. :param str if_match: (optional) For optimistic concurrency control. In the PUT or DELETE call for a resource, set the `if-match` parameter to the value of the etag from a previous GET or POST response for that resource. The resource will be updated or deleted only if the etag you provide matches the resource's current etag value. :param obj retry_strategy: (optional) A retry strategy to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. A convenience :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` is also available. The specifics of the default retry strategy are described `here <https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/sdk_behaviors/retries.html>`__. To have this operation explicitly not perform any retries, pass an instance of :py:class:`~oci.retry.NoneRetryStrategy`. :return: A :class:`~oci.response.Response` object with data of type :class:`~oci.identity.models.AuthenticationPolicy` :rtype: :class:`~oci.response.Response` """ resource_path = "/authenticationPolicies/{compartmentId}" method = "PUT" # Don't accept unknown kwargs expected_kwargs = [ "retry_strategy", "if_match" ] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "update_authentication_policy got unknown kwargs: {!r}".format(extra_kwargs)) path_params = { "compartmentId": compartment_id } path_params = {k: v for (k, v) in six.iteritems(path_params) if v is not missing} for (k, v) in six.iteritems(path_params): if v is None or (isinstance(v, six.string_types) and len(v.strip()) == 0): raise ValueError('Parameter {} cannot be None, whitespace or empty string'.format(k)) header_params = { "accept": "application/json", "content-type": "application/json", "if-match": kwargs.get("if_match", missing) } header_params = {k: v for (k, v) in six.iteritems(header_params) if v is not missing and v is not None} retry_strategy = self.retry_strategy if kwargs.get('retry_strategy'): retry_strategy = kwargs.get('retry_strategy') if retry_strategy: return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, body=update_authentication_policy_details, response_type="AuthenticationPolicy") else: return self.base_client.call_api( resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, body=update_authentication_policy_details, response_type="AuthenticationPolicy") def update_compartment(self, compartment_id, update_compartment_details, **kwargs): """ Updates the specified compartment's description or name. You can't update the root compartment. :param str compartment_id: (required) The OCID of the compartment. :param UpdateCompartmentDetails update_compartment_details: (required) Request object for updating a compartment. :param str if_match: (optional) For optimistic concurrency control. In the PUT or DELETE call for a resource, set the `if-match` parameter to the value of the etag from a previous GET or POST response for that resource. The resource will be updated or deleted only if the etag you provide matches the resource's current etag value. :param obj retry_strategy: (optional) A retry strategy to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. A convenience :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` is also available. The specifics of the default retry strategy are described `here <https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/sdk_behaviors/retries.html>`__. To have this operation explicitly not perform any retries, pass an instance of :py:class:`~oci.retry.NoneRetryStrategy`. :return: A :class:`~oci.response.Response` object with data of type :class:`~oci.identity.models.Compartment` :rtype: :class:`~oci.response.Response` """ resource_path = "/compartments/{compartmentId}" method = "PUT" # Don't accept unknown kwargs expected_kwargs = [ "retry_strategy", "if_match" ] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "update_compartment got unknown kwargs: {!r}".format(extra_kwargs)) path_params = { "compartmentId": compartment_id } path_params = {k: v for (k, v) in six.iteritems(path_params) if v is not missing} for (k, v) in six.iteritems(path_params): if v is None or (isinstance(v, six.string_types) and len(v.strip()) == 0): raise ValueError('Parameter {} cannot be None, whitespace or empty string'.format(k)) header_params = { "accept": "application/json", "content-type": "application/json", "if-match": kwargs.get("if_match", missing) } header_params = {k: v for (k, v) in six.iteritems(header_params) if v is not missing and v is not None} retry_strategy = self.retry_strategy if kwargs.get('retry_strategy'): retry_strategy = kwargs.get('retry_strategy') if retry_strategy: return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, path_params=path_params, header_params=header_params,
<reponame>mcmasterg/symbiflow-arch-defs<filename>utils/lib/rr_graph/channel.py #!/usr/bin/env python3 import enum import io from collections import namedtuple from . import Pos from . import Size from . import static_property from ..asserts import assert_type from ..asserts import assert_len_eq class ChannelNotStraight(TypeError): pass _Channel = namedtuple("Channel", ("start", "end", "idx")) class Channel(_Channel): class Type(enum.Enum): X = 'CHANX' Y = 'CHANY' def __repr__(self): return 'Channel.Type.'+self.name class Direction(enum.Enum): INC = 'INC_DIR' DEC = 'DEC_DIR' def __repr__(self): return 'Channel.Direction.'+self.name def __new__(cls, start, end, idx=None, id_override=None): if not isinstance(start, Pos): start = Pos(*start) if not isinstance(end, Pos): end = Pos(*end) if start.x != end.x and start.y != end.y: raise ChannelNotStraight( "Channel not straight! {}->{}".format(start, end)) if idx is not None: assert_type(idx, int) obj = _Channel.__new__(cls, start, end, idx) obj.id_override = id_override return obj @static_property def type(self): """Type of the channel. Returns: Channel.Type >>> Channel((0, 0), (10, 0)).type Channel.Type.Y >>> Channel((0, 0), (0, 10)).type Channel.Type.X >>> Channel((1, 1), (1, 1)).type Channel.Type.X """ if self.start.x == self.end.x: return Channel.Type.X elif self.start.y == self.end.y: return Channel.Type.Y else: assert False @static_property def start0(self): """The non-constant start coordinate. >>> Channel((0, 0), (10, 0)).start0 0 >>> Channel((0, 0), (0, 10)).start0 0 >>> Channel((1, 1), (1, 1)).start0 1 >>> Channel((10, 0), (0, 0)).start0 10 >>> Channel((0, 10), (0, 0)).start0 10 """ if self.type == Channel.Type.Y: return self.start.x elif self.type == Channel.Type.X: return self.start.y else: assert False @static_property def end0(self): """The non-constant start coordinate. >>> Channel((0, 0), (10, 0)).end0 10 >>> Channel((0, 0), (0, 10)).end0 0 >>> Channel((1, 1), (1, 1)).end0 1 >>> Channel((10, 0), (0, 0)).end0 0 >>> Channel((0, 10), (0, 0)).end0 0 """ if self.type == Channel.Type.Y: return self.end.x elif self.type == Channel.Type.X: return self.end.y else: assert False @static_property def common(self): """The common coordinate value. >>> Channel((0, 0), (10, 0)).common 0 >>> Channel((0, 0), (0, 10)).common 0 >>> Channel((1, 1), (1, 1)).common 1 >>> Channel((10, 0), (0, 0)).common 0 >>> Channel((0, 10), (0, 0)).common 0 >>> Channel((4, 10), (4, 0)).common 4 """ if self.type == Channel.Type.Y: assert self.start.y == self.end.y return self.start.y elif self.type == Channel.Type.X: assert self.start.x == self.end.x return self.start.x else: assert False @static_property def direction(self): """Direction the channel runs. Returns: Channel.Direction >>> Channel((0, 0), (10, 0)).direction Channel.Direction.INC >>> Channel((0, 0), (0, 10)).direction Channel.Direction.INC >>> Channel((1, 1), (1, 1)).direction Channel.Direction.INC >>> Channel((10, 0), (0, 0)).direction Channel.Direction.DEC >>> Channel((0, 10), (0, 0)).direction Channel.Direction.DEC """ if self.end0 < self.start0: return Channel.Direction.DEC else: return Channel.Direction.INC @static_property def length(self): """Length of the channel. >>> Channel((0, 0), (10, 0)).length 10 >>> Channel((0, 0), (0, 10)).length 10 >>> Channel((1, 1), (1, 1)).length 0 >>> Channel((10, 0), (0, 0)).length 10 >>> Channel((0, 10), (0, 0)).length 10 """ return abs(self.end0 - self.start0) def update_idx(self, idx): """Create a new channel with the same start/end but new index value. >>> s = (1, 4) >>> e = (1, 8) >>> c1 = Channel(s, e, 0) >>> c2 = c1.update_idx(2) >>> assert c1.start == c2.start >>> assert c1.end == c2.end >>> c1.idx 0 >>> c2.idx 2 """ return self.__class__(self.start, self.end, idx, id_override=self.id_override) def __repr__(self): """ >>> repr(Channel((0, 0), (10, 0))) 'C((0,0), (10,0))' >>> repr(Channel((0, 0), (0, 10))) 'C((0,0), (0,10))' >>> repr(Channel((1, 2), (3, 2), 5)) 'C((1,2), (3,2), 5)' >>> repr(Channel((1, 2), (3, 2), None, "ABC")) 'C(ABC)' >>> repr(Channel((1, 2), (3, 2), 5, "ABC")) 'C(ABC,5)' """ if self.id_override: idx_str = "" if self.idx != None: idx_str = ",{}".format(self.idx) return "C({}{})".format(self.id_override, idx_str) idx_str = "" if self.idx != None: idx_str = ", {}".format(self.idx) return "C(({},{}), ({},{}){})".format( self.start.x, self.start.y, self.end.x, self.end.y, idx_str) def __str__(self): """ >>> str(Channel((0, 0), (10, 0))) 'CHANY 0,0->10,0' >>> str(Channel((0, 0), (0, 10))) 'CHANX 0,0->0,10' >>> str(Channel((1, 2), (3, 2), 5)) 'CHANY 1,2->3,2 @5' >>> str(Channel((1, 2), (3, 2), None, "ABC")) 'ABC' >>> str(Channel((1, 2), (3, 2), 5, "ABC")) 'ABC@5' """ idx_str = "" if self.idx != None: idx_str = " @{}".format(self.idx) if self.id_override: return "{}{}".format(self.id_override, idx_str[1:]) return "{} {},{}->{},{}{}".format( self.type.value, self.start.x, self.start.y, self.end.x, self.end.y, idx_str) # Nice short alias.. C = Channel class ChannelGrid(dict): def __init__(self, size, chan_type): self.chan_type = chan_type self.size = Size(*size) for x in range(0, self.x): for y in range(0, self.y): self[Pos(x,y)] = [] @property def x(self): return self.size.x @property def y(self): return self.size.y def column(self, x): column = [] for y in range(0, self.y): column.append(self[Pos(x, y)]) return column def row(self, y): row = [] for x in range(0, self.x): row.append(self[Pos(x, y)]) return row def add_channel(self, ch): """ >>> g = ChannelGrid((10, 10), Channel.Type.Y) >>> # Adding the first channel >>> g.add_channel(Channel((0, 5), (3, 5), None, "A")) C(A,0) >>> g[(0,5)] [C(A,0)] >>> g[(1,5)] [C(A,0)] >>> g[(3,5)] [C(A,0)] >>> g[(4,5)] [None] >>> # Adding second non-overlapping second channel >>> g.add_channel(Channel((4, 5), (6, 5), None, "B")) C(B,0) >>> g[(3,5)] [C(A,0)] >>> g[(4,5)] [C(B,0)] >>> g[(6,5)] [C(B,0)] >>> g[(7,5)] [None] >>> # Adding third channel which overlaps with second channel >>> g.add_channel(Channel((4, 5), (6, 5), None, "C")) C(C,1) >>> g[(3,5)] [C(A,0), None] >>> g[(4,5)] [C(B,0), C(C,1)] >>> g[(6,5)] [C(B,0), C(C,1)] >>> # Adding a channel which overlaps, but is a row over >>> g.add_channel(Channel((4, 6), (6, 6), None, "D")) C(D,0) >>> g[(4,5)] [C(B,0), C(C,1)] >>> g[(4,6)] [C(D,0)] >>> # Adding fourth channel which overlaps both the first >>> # and second+third channel >>> g.add_channel(Channel((2, 5), (5, 5), None, "E")) C(E,2) >>> g[(1,5)] [C(A,0), None, None] >>> g[(2,5)] [C(A,0), None, C(E,2)] >>> g[(5,5)] [C(B,0), C(C,1), C(E,2)] >>> g[(6,5)] [C(B,0), C(C,1), None] >>> # This channel fits in the hole left by the last one. >>> g.add_channel(Channel((0, 5), (2, 5), None, "F")) C(F,1) >>> g[(0,5)] [C(A,0), C(F,1), None] >>> g[(1,5)] [C(A,0), C(F,1), None] >>> g[(2,5)] [C(A,0), C(F,1), C(E,2)] >>> g[(3,5)] [C(A,0), None, C(E,2)] >>> # Add another channel which causes a hole >>> g.add_channel(Channel((0, 5), (6, 5), None, "G")) C(G,3) >>> g[(0,5)] [C(A,0), C(F,1), None, C(G,3)] >>> g[(1,5)] [C(A,0), C(F,1), None, C(G,3)] >>> g[(2,5)] [C(A,0), C(F,1), C(E,2), C(G,3)] >>> g[(3,5)] [C(A,0), None, C(E,2), C(G,3)] >>> g[(4,5)] [C(B,0), C(C,1), C(E,2), C(G,3)] >>> g[(5,5)] [C(B,0), C(C,1), C(E,2), C(G,3)] >>> g[(6,5)] [C(B,0), C(C,1), None, C(G,3)] >>> g[(7,5)] [None, None, None, None] """ assert ch.idx == None if ch.type != self.chan_type: if ch.length != 0: raise TypeError( "Can only add channels of type {} which {} ({}) is not.".format( self.chan_type, ch, ch.type)) else: ch.type = self.chan_type if ch.type == Channel.Type.X: l = self.column(ch.common) elif ch.type == Channel.Type.Y: l = self.row(ch.common) else: assert False assert_len_eq(l) s = ch.start0 e = ch.end0 if ch.direction == Channel.Direction.DEC: e, s = s, e assert e >= s assert s < len(l), (s, '<', len(l), l) assert e < len(l), (e+1, '<', len(l), l) # Find a idx that this channel fits. max_idx = 0 while True: for p in l[s:e+1]: while len(p) < max_idx+1: p.append(None) if p[max_idx] != None: max_idx += 1 break else: break # Make sure everything has the same length. for p in l: while len(p) < max_idx+1: p.append(None) assert_len_eq(l) ch = ch.update_idx(max_idx) assert ch.idx == max_idx for p in l[s:e+1]: p[ch.idx] = ch return ch def pretty_print(self): """ If type == Channel.Type.X A--AC-C B-----B D--DE-E F-----F If type == Channel.Type.Y AB DF || || || || A| D| C| E| || || CB EF """ def get_str(ch): if not ch: s = "" elif ch.id_override: s = ch.id_override else: s = str(ch) return s # Work out how many characters the largest label takes up. s_maxlen = 1 for row in range(0, self.y): for col in range(0, self.x): for ch in self[(col,row)]: s_maxlen = max(s_maxlen, len(get_str(ch))) assert s_maxlen > 0, s_maxlen s_maxlen += 3 if self.chan_type == Channel.Type.Y: beg_fmt = "{:>%i}>" % (s_maxlen-1) end_fmt = "->{:<%i}" % (s_maxlen-2) mid_fmt = "-"*s_maxlen elif self.chan_type == Channel.Type.X: beg_fmt = "{:^%i}" % s_maxlen end_fmt = beg_fmt mid_fmt = beg_fmt.format("|") else: assert False non_fmt = " "*s_maxlen rows = [] for y in range(0, self.y): cols = [] for x in range(0, self.x): channels = [("|{: ^%i}" % (s_maxlen-1)).format(x)] for ch in self[(x,y)]: if not ch: fmt = non_fmt elif ch.start == ch.end: s = get_str(ch) channels.append("{} ".format("".join([ beg_fmt.format(s), mid_fmt.format(s), end_fmt.format(s), ])[:s_maxlen-1]))
with pytest.raises(RSENotFound): mgr.get_rse_info(rse="TheOnethatshouldnotbehere", **self.vo) def test_get_protocols_operations(self): """ RSE (CLIENTS): get protocols for operations of rse.""" protocol_rse = rse_name_generator() self.client.add_rse(protocol_rse) protocols = [{'scheme': 'MOCK_READ_WRITE_DELETE', 'hostname': 'localhost', 'port': 17, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 1, 'write': 1, 'delete': 1}}, 'extended_attributes': 'TheOneWithAllTheRest'}, {'scheme': 'MOCK_WRITE_DELETE', 'hostname': 'localhost', 'port': 42, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 0, 'write': 1, 'delete': 1}}, 'extended_attributes': 'TheOneWithAllTheRest'}, {'scheme': 'MOCK_DELETE', 'hostname': 'localhost', 'port': 19, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 0, 'write': 0, 'delete': 1}}, 'extended_attributes': 'TheOneWithAllTheRest'}, ] # Protocol identifier include supported operations for p in protocols: self.client.add_protocol(protocol_rse, p) ops = {'read': 1, 'write': 2, 'delete': 3} rse_attr = mgr.get_rse_info(rse=protocol_rse, **self.vo) for op in ops: # resp = self.client.get_protocols(protocol_rse, operation=op, protocol_domain='lan') p = mgr.select_protocol(rse_attr, op, domain='lan') if op not in p['scheme'].lower(): for p in protocols: self.client.delete_protocols(protocol_rse, p['scheme']) self.client.delete_rse(protocol_rse) raise Exception('Unexpected protocols returned for %s: %s' % (op, p)) for p in protocols: self.client.delete_protocols(protocol_rse, p['scheme']) self.client.delete_rse(protocol_rse) def test_get_protocols_defaults(self): """ RSE (CLIENTS): get default protocols for operations of rse.""" protocol_rse = rse_name_generator() self.client.add_rse(protocol_rse) protocols = [{'scheme': 'MOCK_READ', 'hostname': 'localhost', 'port': 17, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 1}, 'wan': {'delete': 1} }, 'extended_attributes': 'TheOneWithAllTheRest'}, {'scheme': 'MOCK_WRITE', 'hostname': 'localhost', 'port': 42, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'write': 1}, 'wan': {'read': 1} }, 'extended_attributes': 'TheOneWithAllTheRest'}, {'scheme': 'MOCK_DELETE', 'hostname': 'localhost', 'port': 19, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'delete': 1}, 'wan': {'write': 1}}, 'extended_attributes': 'TheOneWithAllTheRest'}, ] for p in protocols: self.client.add_protocol(protocol_rse, p) rse_attr = mgr.get_rse_info(rse=protocol_rse, **self.vo) for op in ['delete', 'read', 'write']: # resp = self.client.get_protocols(protocol_rse, operation=op, default=True, protocol_domain='lan') p = mgr.select_protocol(rse_attr, op, domain='lan') print(p['scheme']) print(op) if op not in p['scheme'].lower(): for p in protocols: self.client.delete_protocols(protocol_rse, p['scheme']) self.client.delete_rse(protocol_rse) raise Exception('Unexpected protocols returned for %s: %s' % (op, p)) for op in ['delete', 'read', 'write']: # resp = self.client.get_protocols(protocol_rse, operation=op, default=True, protocol_domain='wan') p = mgr.select_protocol(rse_attr, op, domain='wan') if ((op == 'delete') and (p['port'] != 17)) or ((op == 'read') and (p['port'] != 42)) or ((op == 'write') and (p['port'] != 19)): for p in protocols: self.client.delete_protocols(protocol_rse, p['scheme']) self.client.delete_rse(protocol_rse) raise Exception('Unexpected protocols returned for %s: %s' % (op, p)) for p in protocols: self.client.delete_protocols(protocol_rse, p['scheme']) self.client.delete_rse(protocol_rse) def test_get_protocols_nested_attributes(self): """ RSE (CLIENTS): get nested extended_attributes.""" protocol_rse = rse_name_generator() self.client.add_rse(protocol_rse) protocols = [{'scheme': 'MOCK_READ', 'hostname': 'localhost', 'port': 17, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 1}, 'wan': {'delete': 1} }, 'extended_attributes': {'Some': 'value', 'more': {'value1': 1, 'value2': 0}}}] for p in protocols: self.client.add_protocol(protocol_rse, p) resp = mgr.get_rse_info(rse=protocol_rse, **self.vo)['protocols'] assert((not resp[0]['extended_attributes']['more']['value2']) and resp[0]['extended_attributes']['more']['value1']) def test_get_protocols_operations_not_supported(self): """ RSE (CLIENTS): get protocols for operations of rse (RSEOperationNotSupported).""" protocol_rse = rse_name_generator() self.client.add_rse(protocol_rse) protocols = [{'scheme': 'MOCK_WRITE_DELETE', 'hostname': 'localhost', 'port': 17, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 0, 'write': 1, 'delete': 1}}, 'extended_attributes': 'TheOneWithAllTheRest'}, {'scheme': 'MOCK_WRITE_DELETE', 'hostname': 'localhost', 'port': 42, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 0, 'write': 1, 'delete': 1}}, 'extended_attributes': 'TheOneWithAllTheRest'}, {'scheme': 'MOCK_DELETE', 'hostname': 'localhost', 'port': 19, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 0, 'write': 0, 'delete': 1}}, 'extended_attributes': 'TheOneWithAllTheRest'}, ] # Protocol for read is undefined for p in protocols: self.client.add_protocol(protocol_rse, p) try: rse_attr = mgr.get_rse_info(rse=protocol_rse, **self.vo) rse_attr['domain'] = ['lan'] with pytest.raises(exception.RSEProtocolNotSupported): mgr.select_protocol(rse_attr, 'read') finally: self.client.delete_rse(protocol_rse) def test_get_protocols_domain_not_exist(self): """ RSE (CLIENTS): get protocols for operations of rse in not existing domain (RSEProtocolDomainNotSupported).""" protocol_rse = rse_name_generator() self.client.add_rse(protocol_rse) attributes = {'scheme': 'MOCK', 'hostname': 'localhost', 'port': 17, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 0, 'write': 1, 'delete': 1}}, 'extended_attributes': 'TheOneWithAllTheRest'} # Protocol for read is undefined self.client.add_protocol(protocol_rse, attributes) try: rse_attr = mgr.get_rse_info(rse=protocol_rse, **self.vo) with pytest.raises(exception.RSEProtocolDomainNotSupported): mgr.select_protocol(rse_attr, 'write', domain='FRIENDS') finally: self.client.delete_rse(protocol_rse) def test_get_protocols_domain_not_supported(self): """ RSE (CLIENTS): get protocols for operations of rse in unsupported domain (RSEOperationNotSupported).""" protocol_rse = rse_name_generator() self.client.add_rse(protocol_rse) protocols = [{'scheme': 'MOCK', 'hostname': 'localhost', 'port': 17, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 0, 'write': 1, 'delete': 1}}, 'extended_attributes': 'TheOneWithAllTheRest'}, ] # Protocol for read is undefined for p in protocols: self.client.add_protocol(protocol_rse, p) try: rse_attr = mgr.get_rse_info(rse=protocol_rse, **self.vo) rse_attr['domain'] = ['wan'] with pytest.raises(exception.RSEProtocolNotSupported): mgr.select_protocol(rse_attr, 'write') finally: self.client.delete_rse(protocol_rse) def test_get_protocols_defaults_not_supported(self): """ RSE (CLIENTS): get default protocols for operations of rse (RSEOperationNotSupported).""" protocol_rse = rse_name_generator() self.client.add_rse(protocol_rse) protocols = [{'scheme': 'MOCK_WRITE_DELETE', 'hostname': 'localhost', 'port': 17, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 0, 'write': 1, 'delete': 1}}, 'extended_attributes': 'TheOneWithAllTheRest'}, {'scheme': 'MOCK_WRITE_DELETE', 'hostname': 'localhost', 'port': 42, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 0, 'write': 1, 'delete': 1}}, 'extended_attributes': 'TheOneWithAllTheRest'}, {'scheme': 'MOCK_DELETE', 'hostname': 'localhost', 'port': 19, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 0, 'write': 0, 'delete': 1}}, 'extended_attributes': 'TheOneWithAllTheRest'}, ] # Protocol for read is undefined for p in protocols: self.client.add_protocol(protocol_rse, p) try: rse_attr = mgr.get_rse_info(rse=protocol_rse, **self.vo) rse_attr['domain'] = ['lan'] with pytest.raises(exception.RSEProtocolNotSupported): mgr.select_protocol(rse_attr, 'read') finally: self.client.delete_rse(protocol_rse) # UPDATE PROTOCOLS def test_update_protocols_port_exist(self): """ RSE (CLIENTS): set new values for various protocol attributes.""" protocol_rse = rse_name_generator() self.client.add_rse(protocol_rse) protocols = [{'scheme': 'MOCK', 'hostname': 'localhost', 'port': 17, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'wan': {'read': 1, 'write': 1, 'delete': 0}}, 'extended_attributes': 'TheOneWithAllTheRest'}, {'scheme': 'MOCK', 'hostname': 'localhost', 'port': 11, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'wan': {'read': 1, 'write': 1, 'delete': 0}}, 'extended_attributes': 'TheOneWithAllTheRest'}] for p in protocols: self.client.add_protocol(protocol_rse, p) try: with pytest.raises(exception.Duplicate): self.client.update_protocols(protocol_rse, scheme='MOCK', hostname='localhost', port=17, data={'prefix': 'where/the/files/are', 'extended_attributes': 'Something else', 'port': '11'}) finally: self.client.delete_rse(protocol_rse) def test_update_protocols_various_attributes(self): """ RSE (CLIENTS): set new values for various protocol attributes.""" protocol_rse = rse_name_generator() self.client.add_rse(protocol_rse) protocols = [{'scheme': 'MOCK', 'hostname': 'localhost', 'port': 17, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 1, 'write': 1, 'delete': 0}}, 'extended_attributes': 'TheOneWithAllTheRest'}] for p in protocols: self.client.add_protocol(protocol_rse, p) self.client.update_protocols(protocol_rse, scheme='MOCK', hostname='localhost', port=17, data={'prefix': 'where/the/files/are', 'extended_attributes': 'Something else', 'port': '12'}) rse_attr = mgr.get_rse_info(rse=protocol_rse, **self.vo) p = mgr.select_protocol(rse_attr, 'read', scheme='MOCK', domain='lan') if p['prefix'] != 'where/the/files/are' and p['extended_attributes'] != 'Something else': raise Exception('Update gave unexpected results: %s' % p) self.client.delete_protocols(protocol_rse, 'MOCK') self.client.delete_rse(protocol_rse) def test_swap_protocol(self): """ RSE (CLIENTS): swaps the priority of two protocols by scheme. """ protocol_rse = rse_name_generator() self.client.add_rse(protocol_rse) protocols = [{'scheme': 'MOCKA', 'hostname': 'localhost', 'port': 17, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 1, 'write': 1, 'delete': 0}}, 'extended_attributes': 'TheOneWithAllTheRest'}, {'scheme': 'MOCKB', 'hostname': 'localhost', 'port': 42, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 2, 'write': 1, 'delete': 0}}, 'extended_attributes': 'TheOneWithAllTheRest'}, {'scheme': 'MOCKC', 'hostname': 'localhost', 'port': 19, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 3, 'write': 0, 'delete': 1}}, 'extended_attributes': 'TheOneWithAllTheRest'}, ] for p in protocols: self.client.add_protocol(protocol_rse, p) self.client.swap_protocols(protocol_rse, 'lan', 'read', 'MOCKA', 'MOCKC') prots = self.client.get_protocols(protocol_rse) for p in prots: if p['scheme'] == 'MOCKA': if p['domains']['lan']['read'] != 3: print('MOCKA with unexpected priority') print(prots) assert(False) if p['scheme'] == 'MOCKC': if p['domains']['lan']['read'] != 1: print('MOCKC with unexpected priority') print(prots) assert(False) assert(True) def test_update_protocols_rse_not_found(self): """ RSE (CLIENTS): update all protocols with specific identifier of rse (RSENotFound).""" with pytest.raises(RSENotFound): self.client.update_protocols('The One that shouldn\'t be here', scheme='MOCK_Fail', hostname='localhost', port=17, data={'prefix': 'where/the/files/are'}) def test_update_protocols_not_supported(self): """ RSE (CLIENTS): update all protocols with specific identifier of rse (RSEProtocolNotSupported).""" protocol_rse = rse_name_generator() self.client.add_rse(protocol_rse) protocols = [{'scheme': 'MOCK', 'hostname': 'localhost', 'port': 17, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 1, 'write': 1, 'delete': 0}}, 'extended_attributes': 'TheOneWithAllTheRest'}, {'scheme': 'MOCK', 'hostname': 'localhost', 'port': 42, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 0, 'write': 1, 'delete': 0}}, 'extended_attributes': 'TheOneWithAllTheRest'}, {'scheme': 'MOCK_DELETE', 'hostname': 'localhost', 'port': 19, 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': { 'lan': {'read': 0, 'write': 0, 'delete': 1}}, 'extended_attributes': 'TheOneWithAllTheRest'}, ] for p in protocols: self.client.add_protocol(protocol_rse, p) try: with pytest.raises(exception.RSEProtocolNotSupported): self.client.update_protocols(protocol_rse, scheme='MOCK_UNDEFINED', hostname='localhost', port=17, data={'delete_lan': 1}) finally: self.client.delete_rse(protocol_rse) def test_update_protocols_invalid_value(self): """ RSE (CLIENTS): update all protocol with invalid value (InvalidObject).""" protocol_rse = rse_name_generator() self.client.add_rse(protocol_rse) attributes = {'scheme': 'MOCK', 'hostname': 'localhost', 'port': 17, 'prefix': '/the/one/with/all/the/files', # 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains': {'lan': {'read': 1, 'write': 1, 'delete': 0}}, 'extended_attributes': 'TheOneWithAllTheRest'} try: with pytest.raises(exception.InvalidObject): self.client.add_protocol(protocol_rse, attributes) with pytest.raises(exception.RSEProtocolNotSupported): self.client.update_protocols(protocol_rse, scheme=attributes['scheme'], hostname=attributes['hostname'], port=attributes['port'], data={'impl': None}) finally: self.client.delete_rse(protocol_rse) def test_update_protocol_wrong_priority(self): """ RSE (CLIENTS): Add a protocol with an invalid priority for ranking. """ protocol_rse = rse_name_generator() self.client.add_rse(protocol_rse) protocol_ports = [17, 29, 42] for i in range(3): self.client.add_protocol(protocol_rse, {'hostname': 'localhost', 'scheme': 'MOCK', 'port': protocol_ports[i], 'prefix': '/the/one/with/all/the/files', 'impl': 'rucio.rse.protocols.SomeProtocol.SomeImplementation', 'domains':
] [0. 2.5 5. ] [0. 2.5 5. ]] >>> print(north) [[ 0. 0. 0. ] [ 2.5 2.5 2.5] [ 5. 5. 5. ] [ 7.5 7.5 7.5] [10. 10. 10. ]] The spacing can be different for northing and easting, respectively: >>> east, north = grid_coordinates(region=(-5, 1, 0, 10), spacing=(2.5, 1)) >>> print(east.shape, north.shape) (5, 7) (5, 7) >>> print(east) [[-5. -4. -3. -2. -1. 0. 1.] [-5. -4. -3. -2. -1. 0. 1.] [-5. -4. -3. -2. -1. 0. 1.] [-5. -4. -3. -2. -1. 0. 1.] [-5. -4. -3. -2. -1. 0. 1.]] >>> print(north) [[ 0. 0. 0. 0. 0. 0. 0. ] [ 2.5 2.5 2.5 2.5 2.5 2.5 2.5] [ 5. 5. 5. 5. 5. 5. 5. ] [ 7.5 7.5 7.5 7.5 7.5 7.5 7.5] [10. 10. 10. 10. 10. 10. 10. ]] If the region can't be divided into the desired spacing, the spacing will be adjusted to conform to the region: >>> east, north = grid_coordinates(region=(-5, 0, 0, 5), spacing=2.6) >>> print(east.shape, north.shape) (3, 3) (3, 3) >>> print(east) [[-5. -2.5 0. ] [-5. -2.5 0. ] [-5. -2.5 0. ]] >>> print(north) [[0. 0. 0. ] [2.5 2.5 2.5] [5. 5. 5. ]] >>> east, north = grid_coordinates(region=(-5, 0, 0, 5), spacing=2.4) >>> print(east.shape, north.shape) (3, 3) (3, 3) >>> print(east) [[-5. -2.5 0. ] [-5. -2.5 0. ] [-5. -2.5 0. ]] >>> print(north) [[0. 0. 0. ] [2.5 2.5 2.5] [5. 5. 5. ]] You can choose to adjust the East and North boundaries of the region instead: >>> east, north = grid_coordinates(region=(-5, 0, 0, 5), spacing=2.6, ... adjust='region') >>> print(east.shape, north.shape) (3, 3) (3, 3) >>> print(east) [[-5. -2.4 0.2] [-5. -2.4 0.2] [-5. -2.4 0.2]] >>> print(north) [[0. 0. 0. ] [2.6 2.6 2.6] [5.2 5.2 5.2]] >>> east, north = grid_coordinates(region=(-5, 0, 0, 5), spacing=2.4, ... adjust='region') >>> print(east.shape, north.shape) (3, 3) (3, 3) >>> print(east) [[-5. -2.6 -0.2] [-5. -2.6 -0.2] [-5. -2.6 -0.2]] >>> print(north) [[0. 0. 0. ] [2.4 2.4 2.4] [4.8 4.8 4.8]] We can optionally generate coordinates for the center of each grid pixel instead of the corner (default): >>> east, north = grid_coordinates(region=(0, 5, 0, 10), spacing=2.5, ... pixel_register=True) >>> # Raise the printing precision for this example >>> np.set_printoptions(precision=2, suppress=True) >>> # Notice that the shape is 1 less than when pixel_register=False >>> print(east.shape, north.shape) (4, 2) (4, 2) >>> print(east) [[1.25 3.75] [1.25 3.75] [1.25 3.75] [1.25 3.75]] >>> print(north) [[1.25 1.25] [3.75 3.75] [6.25 6.25] [8.75 8.75]] >>> east, north = grid_coordinates(region=(0, 5, 0, 10), shape=(4, 2), ... pixel_register=True) >>> print(east) [[1.25 3.75] [1.25 3.75] [1.25 3.75] [1.25 3.75]] >>> print(north) [[1.25 1.25] [3.75 3.75] [6.25 6.25] [8.75 8.75]] Generate arrays for other coordinates that have a constant value: >>> east, north, height = grid_coordinates( ... region=(0, 5, 0, 10), spacing=2.5, extra_coords=57 ... ) >>> print(east.shape, north.shape, height.shape) (5, 3) (5, 3) (5, 3) >>> print(height) [[57. 57. 57.] [57. 57. 57.] [57. 57. 57.] [57. 57. 57.] [57. 57. 57.]] >>> east, north, height, time = grid_coordinates( ... region=(0, 5, 0, 10), spacing=2.5, extra_coords=[57, 0.1] ... ) >>> print(east.shape, north.shape, height.shape, time.shape) (5, 3) (5, 3) (5, 3) (5, 3) >>> print(height) [[57. 57. 57.] [57. 57. 57.] [57. 57. 57.] [57. 57. 57.] [57. 57. 57.]] >>> print(time) [[0.1 0.1 0.1] [0.1 0.1 0.1] [0.1 0.1 0.1] [0.1 0.1 0.1] [0.1 0.1 0.1]] See also -------- scatter_points : Generate the coordinates for a random scatter of points profile_coordinates : Coordinates for a profile between two points """ check_region(region) if shape is not None and spacing is not None: raise ValueError("Both grid shape and spacing provided. Only one is allowed.") if shape is None and spacing is None: raise ValueError("Either a grid shape or a spacing must be provided.") if spacing is not None: shape, region = spacing_to_shape(region, spacing, adjust) elif pixel_register: # Starts by generating grid-line registered coordinates and shifting # them to the center of the pixel. Need 1 more point if given a shape # so that we can do that because we discard the last point when # shifting the coordinates. shape = tuple(i + 1 for i in shape) east_lines = np.linspace(region[0], region[1], shape[1]) north_lines = np.linspace(region[2], region[3], shape[0]) if pixel_register: east_lines = east_lines[:-1] + (east_lines[1] - east_lines[0]) / 2 north_lines = north_lines[:-1] + (north_lines[1] - north_lines[0]) / 2 coordinates = list(np.meshgrid(east_lines, north_lines)) if extra_coords is not None: for value in np.atleast_1d(extra_coords): coordinates.append(np.ones_like(coordinates[0]) * value) return tuple(coordinates) def spacing_to_shape(region, spacing, adjust): """ Convert the grid spacing to a grid shape. Adjusts the spacing or the region if the desired spacing is not a multiple of the grid dimensions. Parameters ---------- region : list = [W, E, S, N] The boundaries of a given region in Cartesian or geographic coordinates. spacing : float, tuple = (s_north, s_east), or None The grid spacing in the South-North and West-East directions, respectively. A single value means that the spacing is equal in both directions. adjust : {'spacing', 'region'} Whether to adjust the spacing or the region if required. Ignored if *shape* is given instead of *spacing*. Defaults to adjusting the spacing. Returns ------- shape, region : tuples The calculated shape and region that best fits the desired spacing. Spacing or region may be adjusted. """ if adjust not in ["spacing", "region"]: raise ValueError( "Invalid value for *adjust* '{}'. Should be 'spacing' or 'region'".format( adjust ) ) spacing = np.atleast_1d(spacing) if len(spacing) == 1: deast = dnorth = spacing[0] elif len(spacing) == 2: dnorth, deast = spacing else: raise ValueError( "Only two values allowed for grid spacing: {}".format(str(spacing)) ) w, e, s, n = region # Add 1 to get the number of nodes, not segments nnorth = int(round((n - s) / dnorth)) + 1 neast = int(round((e - w) / deast)) + 1 if adjust == "region": # The shape is the same but we adjust the region so that the spacing # isn't altered when we do the linspace. n = s + (nnorth - 1) * dnorth e = w + (neast - 1) * deast return (nnorth, neast), (w, e, s, n) def shape_to_spacing(region, shape, pixel_register=False): """ Calculate the spacing of a grid given region and shape. Parameters ---------- region : list = [W, E, S, N] The boundaries of a given region in Cartesian or geographic coordinates. shape : tuple = (n_north, n_east) or None The number of points in the South-North and West-East directions, respectively. pixel_register : bool If True, the coordinates will refer to the center of each grid pixel instead of the grid lines. In practice, this means that there will be one less element per dimension of the grid when compared to grid line registered (only if given *spacing* and not *shape*). Default is False. Returns ------- spacing : tuple = (s_north, s_east) The grid spacing in the South-North and West-East directions, respectively. Examples -------- >>> spacing = shape_to_spacing([0, 10, -5, 1], (7, 11)) >>> print("{:.1f}, {:.1f}".format(*spacing)) 1.0, 1.0 >>> spacing = shape_to_spacing([0, 10, -5, 1], (14, 11)) >>> print("{:.1f}, {:.1f}".format(*spacing)) 0.5, 1.0 >>> spacing = shape_to_spacing([0, 10, -5, 1], (7, 21)) >>> print("{:.1f}, {:.1f}".format(*spacing)) 1.0, 0.5 >>> spacing = shape_to_spacing( ... [-0.5, 10.5, -5.5, 1.5], (7, 11), pixel_register=True, ... ) >>> print("{:.1f}, {:.1f}".format(*spacing)) 1.0, 1.0 >>> spacing = shape_to_spacing( ... [-0.25, 10.25, -5.5, 1.5], (7, 21), pixel_register=True, ... ) >>> print("{:.1f}, {:.1f}".format(*spacing)) 1.0, 0.5 """ spacing = [] for i, n_points in enumerate(reversed(shape)): if not pixel_register: n_points -= 1 spacing.append((region[2 * i + 1] - region[2 * i]) / n_points) return tuple(reversed(spacing)) def profile_coordinates(point1, point2, size, extra_coords=None): """ Coordinates for a profile along a straight line between two points. Parameters ---------- point1 : tuple or list ``(easting,
"filename" + ".fits" + recipe.inputdir.upper() (including wildcards) :param recipe: DrsRecipe instance :param filename: string, the filename to test :return cond: bool, if True file is valid, if False file is not valid :return filelist: list of strings, list of files found :return error: list of strings, if there was an error (cond = False) and return_error=True, return a list of strings describing the error """ output_files = [] # get drs parameters params = recipe.drs_params # get input directory if directory is not None: input_dir = str(directory) else: # noinspection PyProtectedMember input_dir = recipe.get_input_dir() # ------------------------------------------------------------------------- # Step 1: check "filename" as full link to file (including wildcards) # ------------------------------------------------------------------------- # get glob list of files using glob raw_files = np.sort(glob.glob(filename)) # debug output if len(raw_files) == 0: dargs = [argname, filename] WLOG(params, 'debug', TextEntry('90-001-00003', args=dargs), wrap=False) # if we have file(s) then add them to output files for raw_file in raw_files: dargs = [argname, raw_file] WLOG(params, 'debug', TextEntry('90-001-00004', args=dargs), wrap=False) output_files.append(raw_file) # check if we are finished here if len(output_files) > 0: return True, output_files, [] # ------------------------------------------------------------------------- # Step 2: recipe.inputdir.upper() (including wildcards) # ------------------------------------------------------------------------- # get glob list of files using glob raw_files = np.sort(glob.glob(os.path.join(input_dir, filename))) # debug output if len(raw_files) == 0: dargs = [argname, filename] WLOG(params, 'debug', TextEntry('90-001-00003', args=dargs), wrap=False) # if we have file(s) then add them to output files for raw_file in raw_files: dargs = [argname, raw_file] WLOG(params, 'debug', TextEntry('90-001-00005', args=dargs), wrap=False) output_files.append(raw_file) # check if we are finished here if len(output_files) > 0: return True, output_files, [] # ------------------------------------------------------------------------- # Step 3: check "filename" as full link to file (including wildcards) # + .fits # ------------------------------------------------------------------------- # get glob list of files using glob raw_files = np.sort(glob.glob(filename + '.fits')) # debug output if len(raw_files) == 0 and not filename.endswith('.fits'): dargs = [argname, filename + '.fits'] WLOG(params, 'debug', TextEntry('90-001-00003', args=dargs), wrap=False) # if we have file(s) then add them to output files for raw_file in raw_files: dargs = [argname, raw_file] WLOG(params, 'debug', TextEntry('90-001-00006', args=dargs), wrap=False) output_files.append(raw_file) # check if we are finished here if len(output_files) > 0: return True, output_files, [] # ------------------------------------------------------------------------- # Step 4: recipe.inputdir.upper() (including wildcards) # + .fits # ------------------------------------------------------------------------- # get glob list of files using glob raw_files = np.sort(glob.glob(os.path.join(input_dir, filename + '.fits'))) # debug output if len(raw_files) == 0 and not filename.endswith('.fits'): dargs = [argname, os.path.join(input_dir, filename + '.fits')] WLOG(params, 'debug', TextEntry('90-001-00003', args=dargs), wrap=False) # if we have file(s) then add them to output files for raw_file in raw_files: dargs = [argname, raw_file] WLOG(params, 'debug', TextEntry('90-001-00007', args=dargs), wrap=False) output_files.append(raw_file) # ------------------------------------------------------------------------- # Deal with cases where we didn't find file # ------------------------------------------------------------------------- eargs = [argname, filename, os.path.join(input_dir, filename)] emsg = TextEntry('09-001-00005', args=eargs) if not filename.endswith('.fits'): fitsfile1 = filename + '.fits' fitsfile2 = os.path.join(input_dir, fitsfile1) emsg += TextEntry('\t\t"{0}"'.format(fitsfile1)) emsg += TextEntry('\t\t"{0}"'.format(fitsfile2)) # return False, no files and error messages return False, None, emsg def _check_if_directory(argname, files): """ Simple check to see if each file in files is a directory and then checks if file in files is a file with os.path.isfile :param argname: :param files: :return: """ # empty error entry emsgs = TextEntry(None) # loop around files it = 0 for filename in files: # set eargs eargs = [argname, filename] # check if directory if os.path.isdir(filename): # Need to add as new line if len(emsgs) > 0: emsgs += '\n' + TextEntry('09-001-00026', args=eargs) else: emsgs += TextEntry('09-001-00026', args=eargs) continue # check if not file (or link to file) if not os.path.isfile(filename) and not os.path.islink(filename): # Need to add as new line if len(emsgs) > 0: emsgs += '\n' + TextEntry('09-001-00025', args=eargs) else: emsgs += TextEntry('09-001-00025', args=eargs) # if we have emsgs then we need to get the errors if len(emsgs) > 0: return False, None, emsgs else: return True, files, [] def _check_file_exclusivity(recipe, argname, drs_file, logic, outtypes, alltypelist=None): # get drs parameters params = recipe.drs_params # deal with no alltypelist if alltypelist is None: alltypelist = list(outtypes) else: alltypelist = list(alltypelist) + list(outtypes) # if we have no files yet we don't need to check exclusivity if len(alltypelist) == 0: dargs = [argname, drs_file.name] WLOG(params, 'debug', TextEntry('90-001-00013', args=dargs), wrap=False) return True, None # if argument logic is set to "exclusive" we need to check that the # drs_file.name is the same for this as the last file in outtypes if logic == 'exclusive': # match by name of drs_file cond = drs_file.name == alltypelist[-1].name # if condition not met return False and error if not cond: eargs = [argname, drs_file.name, alltypelist[-1].name] emsg = TextEntry('09-001-00008', args=eargs) return False, emsg # if condition is met return True and empty error else: dargs = [argname, drs_file.name] WLOG(params, 'debug', TextEntry('90-001-00014', args=dargs), wrap=False) return True, None # if logic is 'inclusive' we just need to return True elif logic == 'inclusive': WLOG(params, 'debug', TextEntry('90-001-00015', args=[argname]), wrap=False) return True, None # else logic is wrong - raise error else: eargs = [argname, recipe.name] WLOG(params, 'error', TextEntry('00-006-00004', args=eargs), wrap=False) # ============================================================================= # Define run making functions # ============================================================================= def find_run_files(params, recipe, table, args, filters=None, allowedfibers=None, **kwargs): # set function name func_name = display_func(params, 'find_run_files', __NAME__) # storage for valid files for each argument filedict = OrderedDict() # get constants from params absfile_col = pcheck(params, 'REPROCESS_ABSFILECOL', 'absfile_col', kwargs, func_name) check_required = kwargs.get('check_required', False) # get raw filenames from table files = table[absfile_col] # debug log the number of files found dargs = [func_name, len(files)] WLOG(params, 'debug', TextEntry('90-503-00011', args=dargs)) # loop around arguments for argname in args: # get arg instance arg = args[argname] # if check required see if parameter is required if check_required: if not arg.required and not arg.reprocess: continue # see if we are over writing argument if argname in recipe.extras: filedict[argname] = recipe.extras[argname] continue # make sure we are only dealing with dtype=files if arg.dtype not in ['file', 'files']: # deal with directory (special argument) - if we have a # master night use the master night as the directory name if arg.dtype == 'directory' and recipe.master: filedict[argname] = params['MASTER_NIGHT'] # else set the file dict value to the default value # TODO: Need a better option for this!! # TODO: i.e. when we need values to be set from the header else: filedict[argname] = arg.default continue # add sub-dictionary for each drs file filedict[argname] = OrderedDict() # debug log: the argument being scanned WLOG(params, 'debug', TextEntry('90-503-00012', args=[argname])) # get drs file instances drsfiles = arg.files # if files are None continue if drsfiles is None: continue # ------------------------------------------------------------------ # mask table by filters (if filters in table) filtermask = np.ones(len(table), dtype=bool) for tfilter in filters: if tfilter in table.colnames: # deal with filter values being list/str if isinstance(filters[tfilter], str): testvalues = [filters[tfilter]] elif isinstance(filters[tfilter], list): testvalues = filters[tfilter] else: continue # create a test mask testmask = np.zeros(len(table), dtype=bool) # loop around test values with OR (could be any value) for testvalue in testvalues: # check if value is string if isinstance(testvalue, str): values = np.char.array(table[tfilter]) values = values.strip().upper() testvalue = testvalue.strip().upper() else: values = np.array(table[tfilter]) # criteria 1: value == testvalue vcond1 = values == testvalue # criteria 2: value in [None, 'None', ''] vcond2 = np.in1d(values, [None, 'None', '']) # check mask testmask |= (vcond1 | vcond2) # add filter to filter mask with AND (must have all filters) filtermask &= testmask # ------------------------------------------------------------------ # loop around drs files for drsfile in drsfiles: # copy table ftable = Table(table[filtermask]) ffiles = np.array(files)[filtermask] # debug log: the file being tested dargs = [drsfile.name] WLOG(params, 'debug', TextEntry('90-503-00013', args=dargs)) # define storage (if not already defined) cond1 = drsfile.name not in filedict[argname] if cond1 and (arg.filelogic == 'exclusive'): filedict[argname][drsfile.name] = [] elif 'all' not in filedict[argname]: filedict[argname]['all'] = [] # list of valid files valid_infiles = [] valid_outfiles = [] valid_num = 0 # loop around files
+= self.copy_from_reg_to_reg(destination=dividend, source=src) # mov eax -> edx src = ProcessorRegister.accumulator dest = ProcessorRegister.data value += self.copy_from_reg_to_reg(destination=dest, source=src) # shift edx by 31 -> contains the highest bits of the dividend, # eax the lowest 31 bits value += self.shift(ProcessorRegister.data, ShiftMode.right_arithmetic, amount=31) value.append(0xf7) # idiv mod = 0b11 rm = get_register_encoding(divider) reg = 7 # F7 /7 -> 7 in the reg field modr_byte = (mod << 6) + (reg << 3) + (rm << 0) value.append(modr_byte) # the result is stored in the acc register, so copy it to the # correct result register if needed if destination != ProcessorRegister.accumulator: register = ProcessorRegister.accumulator value += self.copy_from_reg_to_reg(register, dividend) return value def mul(self, destination, source): """Multiply the value of the source by the destination. destination = source * destination Args: source (ProcessorRegister): the source register destination (ProcessorRegister): the source register Returns: bytearray: the machine code """ value = bytearray() if is_single_scalar_reg(destination): value.extend([0xF3, 0x0F, 0x59]) # mulss mod = 0b11 reg = get_register_encoding(destination) rm = get_register_encoding(source) modr_byte = (mod << 6) + (reg << 3) + (rm << 0) value.append(modr_byte) elif is_double_scalar_reg(destination): value.extend([0xF2, 0x0F, 0x59]) # mulsd mod = 0b11 reg = get_register_encoding(destination) rm = get_register_encoding(source) modr_byte = (mod << 6) + (reg << 3) + (rm << 0) value.append(modr_byte) else: value.extend([0x0F, 0xAF]) # imul mod = 0b11 reg = get_register_encoding(destination) rm = get_register_encoding(source) modr_byte = (mod << 6) + (reg << 3) + (rm << 0) value.append(modr_byte) return value def shift(self, register, mode, amount): """Shift the register. Args: register (ProcessorRegister): the register to shift mode (ShiftMode): the mode to shift amount (int): the shift amount Returns: bytearray: the machine code Raises: NotImplementedError: if the mode is not yet implemented """ value = bytearray() if mode == ShiftMode.right_arithmetic: # SAR r/m32, imm8 value.append(0xC1) mod = 0b11 rm = get_register_encoding(register) reg = 7 # C1 /7 ib -> 7 in reg field modr_byte = (mod << 6) + (reg << 3) + (rm << 0) value.append(modr_byte) encoded_amount = struct.pack("b", amount) value += encoded_amount elif mode == ShiftMode.left_arithmetic: # SAL r/m32, imm8 value.append(0xC1) mod = 0b11 rm = get_register_encoding(register) reg = 4 # C1 /4 ib -> 4 in reg field modr_byte = (mod << 6) + (reg << 3) + (rm << 0) value.append(modr_byte) encoded_amount = struct.pack("b", amount) value += encoded_amount else: raise NotImplementedError return value def cmp(self, register_1, register_2): """Compare the 2 registers. Args: register_1 (ProcessorRegister): the first register register_2 (ProcessorRegister): the second register Returns: bytearray: the machine code """ value = bytearray() # CMP r/m32, r32 value.append(0x39) mod = 0b11 rm = get_register_encoding(register_1) reg = get_register_encoding(register_2) modr_byte = (mod << 6) + (reg << 3) + (rm << 0) value.append(modr_byte) return value def cmp_against_const(self, register, const): """Compare the 2 registers. Args: register (ProcessorRegister): the register const (int): the const value Returns: bytearray: the machine code """ value = bytearray() # CMP r/m32, imm32 value.append(0x81) mod = 0b11 rm = get_register_encoding(register) reg = 7 modr_byte = (mod << 6) + (reg << 3) + (rm << 0) value.append(modr_byte) encoded_const = struct.pack("i", const) value += encoded_const return value def je(self, jump_distance): """Jump if the equals flag is set. Args: jump_distance (int): the distance to jump in bytes Returns: bytearray: the machine code """ value = bytearray() # JE rel8 value.append(0x74) encoded_amount = struct.pack("b", jump_distance) value += encoded_amount return value def jne(self, jump_distance): """Jump if the equals flag is not set. Args: jump_distance (int): the distance to jump in bytes Returns: bytearray: the machine code """ value = bytearray() # 0F 85 cd JNE rel32 value.extend([0x0F, 0x85]) encoded_amount = struct.pack("i", jump_distance) value += encoded_amount return value def jge(self, jump_distance): """Jump if the greater or equal flags are set. Args: jump_distance (int): the distance to jump in bytes Returns: bytearray: the machine code """ value = bytearray() # 0F 8D cd JGE rel32 value.extend([0x0F, 0x8D]) encoded_amount = struct.pack("i", jump_distance) value += encoded_amount return value def jle(self, jump_distance): """Jump if the less or equal flags are set. Args: jump_distance (int): the distance to jump in bytes Returns: bytearray: the machine code """ value = bytearray() # 0F 8E cw JLE rel32 value.extend([0x0F, 0x8E]) encoded_amount = struct.pack("i", jump_distance) value += encoded_amount return value def jg(self, jump_distance): """Jump if the greater flags are set. Args: jump_distance (int): the distance to jump in bytes Returns: bytearray: the machine code """ value = bytearray() # 0F 8F cd JG rel32 value.extend([0x0F, 0x8F]) encoded_amount = struct.pack("i", jump_distance) value += encoded_amount return value def jl(self, jump_distance): """Jump if the less flags are set. Args: jump_distance (int): the distance to jump in bytes Returns: bytearray: the machine code """ value = bytearray() # 0F 8C cd JL rel32 value.extend([0x0F, 0x8C]) encoded_amount = struct.pack("i", jump_distance) value += encoded_amount return value def jmp(self, jump_distance): """Jump. Args: jump_distance (int): the distance to jump in bytes Returns: bytearray: the machine code #noqa I202 """ value = bytearray() # JMP rel32 value.append(0xe9) encoded_amount = struct.pack("i", jump_distance) value += encoded_amount return value def bitwise_and(self, source, destination): """Bitwise and the value of the source to the destination. Args: source (ProcessorRegister): the source register destination (ProcessorRegister): the destination register Returns: bytearray: the machine code #noqa I202 """ value = bytearray() value.append(0x21) # AND r/m32, r32 rm = get_register_encoding(destination) reg = get_register_encoding(source) # ModR_byte encoded operands ( ModR/M Byte) MOD 11, RM source and # REG destination mod = 0b11 modr_byte = (mod << 6) + (reg << 3) + (rm << 0) value.append(modr_byte) return value def bitwise_or(self, source, destination): """Bitwise or the value of the source to the destination. Args: source (ProcessorRegister): the source register destination (ProcessorRegister): the destination register Returns: bytearray: the machine code #noqa I202 """ value = bytearray() value.append(0x09) # OR r/m32, r32 rm = get_register_encoding(destination) reg = get_register_encoding(source) # ModR_byte encoded operands ( ModR/M Byte) MOD 11, RM source and # REG destination mod = 0b11 modr_byte = (mod << 6) + (reg << 3) + (rm << 0) value.append(modr_byte) return value def bitwise_xor(self, source, destination): """Bitwise xor the value of the source to the destination. Args: source (ProcessorRegister): the source register destination (ProcessorRegister): the destination register Returns: bytearray: the machine code #noqa I202 """ value = bytearray() value.append(0x31) # XOR r/m32, r32 rm = get_register_encoding(destination) reg = get_register_encoding(source) # ModR_byte encoded operands ( ModR/M Byte) MOD 11, RM source and # REG destination mod = 0b11 modr_byte = (mod << 6) + (reg << 3) + (rm << 0) value.append(modr_byte) return value def bitwise_not(self, destination): """Bitwise xor the value of the source to the destination. Args: destination (ProcessorRegister): the destination register Returns: bytearray: the machine code #noqa I202 """ value = bytearray() value.append(0xf7) # F7 /2 NOT r/m32 rm = get_register_encoding(destination) reg = 2 # F7 /2 NOT r/m32 # ModR_byte encoded operands ( ModR/M Byte) MOD 11, RM source and # REG destination mod = 0b11 modr_byte = (mod << 6) + (reg << 3) + (rm << 0) value.append(modr_byte) return value def logical_and(self, source, destination): """Logical and the value of the source to the destination. Args: source (ProcessorRegister): the source register destination (ProcessorRegister): the destination register Returns: bytearray: the machine code """ value = bytearray() value.append(0x85) # TEST r/m32, r32 rm = get_register_encoding(destination) reg = get_register_encoding(source) # ModR_byte encoded operands ( ModR/M Byte) MOD 11, RM source and # REG destination mod = 0b11 modr_byte = (mod << 6) + (reg << 3) + (rm << 0) value.append(modr_byte) # clean the destination register, and only if the zero flag is set # set the bits in the destination register value += self.copy_value_to_reg(0, destination) # the zero flag will be set if the and was zero value += self.setnz(destination) value += self.movzx(destination, destination) return value def setnz(self, destination): """Set destination if the zero flag is not set. Args: destination (ProcessorRegister): the destination register Returns: bytearray:
A value indicating whether an existing NIC is allowed to be reused during failover subject to availability. :type reuse_existing_nic: bool :param tfo_recovery_nic_name: The name of the NIC to be used when creating target NICs in TFO. :type tfo_recovery_nic_name: str :param tfo_recovery_nic_resource_group_name: The resource group of the NIC to be used when creating target NICs in TFO. :type tfo_recovery_nic_resource_group_name: str :param tfo_reuse_existing_nic: A value indicating whether an existing NIC is allowed to be reused during test failover subject to availability. :type tfo_reuse_existing_nic: bool :param target_nic_name: Target NIC name. :type target_nic_name: str """ _attribute_map = { 'nic_id': {'key': 'nicId', 'type': 'str'}, 'replica_nic_id': {'key': 'replicaNicId', 'type': 'str'}, 'source_nic_arm_id': {'key': 'sourceNicArmId', 'type': 'str'}, 'v_m_network_name': {'key': 'vMNetworkName', 'type': 'str'}, 'recovery_vm_network_id': {'key': 'recoveryVMNetworkId', 'type': 'str'}, 'ip_configs': {'key': 'ipConfigs', 'type': '[IPConfigDetails]'}, 'selection_type': {'key': 'selectionType', 'type': 'str'}, 'recovery_network_security_group_id': {'key': 'recoveryNetworkSecurityGroupId', 'type': 'str'}, 'enable_accelerated_networking_on_recovery': {'key': 'enableAcceleratedNetworkingOnRecovery', 'type': 'bool'}, 'tfo_vm_network_id': {'key': 'tfoVMNetworkId', 'type': 'str'}, 'tfo_network_security_group_id': {'key': 'tfoNetworkSecurityGroupId', 'type': 'str'}, 'enable_accelerated_networking_on_tfo': {'key': 'enableAcceleratedNetworkingOnTfo', 'type': 'bool'}, 'recovery_nic_name': {'key': 'recoveryNicName', 'type': 'str'}, 'recovery_nic_resource_group_name': {'key': 'recoveryNicResourceGroupName', 'type': 'str'}, 'reuse_existing_nic': {'key': 'reuseExistingNic', 'type': 'bool'}, 'tfo_recovery_nic_name': {'key': 'tfoRecoveryNicName', 'type': 'str'}, 'tfo_recovery_nic_resource_group_name': {'key': 'tfoRecoveryNicResourceGroupName', 'type': 'str'}, 'tfo_reuse_existing_nic': {'key': 'tfoReuseExistingNic', 'type': 'bool'}, 'target_nic_name': {'key': 'targetNicName', 'type': 'str'}, } def __init__( self, *, nic_id: Optional[str] = None, replica_nic_id: Optional[str] = None, source_nic_arm_id: Optional[str] = None, v_m_network_name: Optional[str] = None, recovery_vm_network_id: Optional[str] = None, ip_configs: Optional[List["IPConfigDetails"]] = None, selection_type: Optional[str] = None, recovery_network_security_group_id: Optional[str] = None, enable_accelerated_networking_on_recovery: Optional[bool] = None, tfo_vm_network_id: Optional[str] = None, tfo_network_security_group_id: Optional[str] = None, enable_accelerated_networking_on_tfo: Optional[bool] = None, recovery_nic_name: Optional[str] = None, recovery_nic_resource_group_name: Optional[str] = None, reuse_existing_nic: Optional[bool] = False, tfo_recovery_nic_name: Optional[str] = None, tfo_recovery_nic_resource_group_name: Optional[str] = None, tfo_reuse_existing_nic: Optional[bool] = False, target_nic_name: Optional[str] = None, **kwargs ): super(VMNicDetails, self).__init__(**kwargs) self.nic_id = nic_id self.replica_nic_id = replica_nic_id self.source_nic_arm_id = source_nic_arm_id self.v_m_network_name = v_m_network_name self.recovery_vm_network_id = recovery_vm_network_id self.ip_configs = ip_configs self.selection_type = selection_type self.recovery_network_security_group_id = recovery_network_security_group_id self.enable_accelerated_networking_on_recovery = enable_accelerated_networking_on_recovery self.tfo_vm_network_id = tfo_vm_network_id self.tfo_network_security_group_id = tfo_network_security_group_id self.enable_accelerated_networking_on_tfo = enable_accelerated_networking_on_tfo self.recovery_nic_name = recovery_nic_name self.recovery_nic_resource_group_name = recovery_nic_resource_group_name self.reuse_existing_nic = reuse_existing_nic self.tfo_recovery_nic_name = tfo_recovery_nic_name self.tfo_recovery_nic_resource_group_name = tfo_recovery_nic_resource_group_name self.tfo_reuse_existing_nic = tfo_reuse_existing_nic self.target_nic_name = target_nic_name class VMNicInputDetails(msrest.serialization.Model): """Hyper V VM network input details. :param nic_id: The nic Id. :type nic_id: str :param ip_configs: The IP configurations to be used by NIC during test failover and failover. :type ip_configs: list[~azure.mgmt.recoveryservicessiterecovery.models.IPConfigInputDetails] :param selection_type: Selection type for failover. :type selection_type: str :param recovery_network_security_group_id: The id of the NSG associated with the NIC. :type recovery_network_security_group_id: str :param enable_accelerated_networking_on_recovery: Whether the NIC has accelerated networking enabled. :type enable_accelerated_networking_on_recovery: bool :param tfo_network_security_group_id: The NSG to be used by NIC during test failover. :type tfo_network_security_group_id: str :param enable_accelerated_networking_on_tfo: Whether the test NIC has accelerated networking enabled. :type enable_accelerated_networking_on_tfo: bool :param recovery_nic_name: The name of the NIC to be used when creating target NICs. :type recovery_nic_name: str :param recovery_nic_resource_group_name: The resource group of the NIC to be used when creating target NICs. :type recovery_nic_resource_group_name: str :param reuse_existing_nic: A value indicating whether an existing NIC is allowed to be reused during failover subject to availability. :type reuse_existing_nic: bool :param tfo_nic_name: The name of the NIC to be used when creating target NICs in TFO. :type tfo_nic_name: str :param tfo_nic_resource_group_name: The resource group of the NIC to be used when creating target NICs in TFO. :type tfo_nic_resource_group_name: str :param tfo_reuse_existing_nic: A value indicating whether an existing NIC is allowed to be reused during test failover subject to availability. :type tfo_reuse_existing_nic: bool :param target_nic_name: Target NIC name. :type target_nic_name: str """ _attribute_map = { 'nic_id': {'key': 'nicId', 'type': 'str'}, 'ip_configs': {'key': 'ipConfigs', 'type': '[IPConfigInputDetails]'}, 'selection_type': {'key': 'selectionType', 'type': 'str'}, 'recovery_network_security_group_id': {'key': 'recoveryNetworkSecurityGroupId', 'type': 'str'}, 'enable_accelerated_networking_on_recovery': {'key': 'enableAcceleratedNetworkingOnRecovery', 'type': 'bool'}, 'tfo_network_security_group_id': {'key': 'tfoNetworkSecurityGroupId', 'type': 'str'}, 'enable_accelerated_networking_on_tfo': {'key': 'enableAcceleratedNetworkingOnTfo', 'type': 'bool'}, 'recovery_nic_name': {'key': 'recoveryNicName', 'type': 'str'}, 'recovery_nic_resource_group_name': {'key': 'recoveryNicResourceGroupName', 'type': 'str'}, 'reuse_existing_nic': {'key': 'reuseExistingNic', 'type': 'bool'}, 'tfo_nic_name': {'key': 'tfoNicName', 'type': 'str'}, 'tfo_nic_resource_group_name': {'key': 'tfoNicResourceGroupName', 'type': 'str'}, 'tfo_reuse_existing_nic': {'key': 'tfoReuseExistingNic', 'type': 'bool'}, 'target_nic_name': {'key': 'targetNicName', 'type': 'str'}, } def __init__( self, *, nic_id: Optional[str] = None, ip_configs: Optional[List["IPConfigInputDetails"]] = None, selection_type: Optional[str] = None, recovery_network_security_group_id: Optional[str] = None, enable_accelerated_networking_on_recovery: Optional[bool] = None, tfo_network_security_group_id: Optional[str] = None, enable_accelerated_networking_on_tfo: Optional[bool] = None, recovery_nic_name: Optional[str] = None, recovery_nic_resource_group_name: Optional[str] = None, reuse_existing_nic: Optional[bool] = None, tfo_nic_name: Optional[str] = None, tfo_nic_resource_group_name: Optional[str] = None, tfo_reuse_existing_nic: Optional[bool] = None, target_nic_name: Optional[str] = None, **kwargs ): super(VMNicInputDetails, self).__init__(**kwargs) self.nic_id = nic_id self.ip_configs = ip_configs self.selection_type = selection_type self.recovery_network_security_group_id = recovery_network_security_group_id self.enable_accelerated_networking_on_recovery = enable_accelerated_networking_on_recovery self.tfo_network_security_group_id = tfo_network_security_group_id self.enable_accelerated_networking_on_tfo = enable_accelerated_networking_on_tfo self.recovery_nic_name = recovery_nic_name self.recovery_nic_resource_group_name = recovery_nic_resource_group_name self.reuse_existing_nic = reuse_existing_nic self.tfo_nic_name = tfo_nic_name self.tfo_nic_resource_group_name = tfo_nic_resource_group_name self.tfo_reuse_existing_nic = tfo_reuse_existing_nic self.target_nic_name = target_nic_name class VmNicUpdatesTaskDetails(TaskTypeDetails): """This class represents the vm NicUpdates task details. All required parameters must be populated in order to send to Azure. :param instance_type: Required. The type of task details.Constant filled by server. :type instance_type: str :param vm_id: Virtual machine Id. :type vm_id: str :param nic_id: Nic Id. :type nic_id: str :param name: Name of the Nic. :type name: str """ _validation = { 'instance_type': {'required': True}, } _attribute_map = { 'instance_type': {'key': 'instanceType', 'type': 'str'}, 'vm_id': {'key': 'vmId', 'type': 'str'}, 'nic_id': {'key': 'nicId', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, } def __init__( self, *, vm_id: Optional[str] = None, nic_id: Optional[str] = None, name: Optional[str] = None, **kwargs ): super(VmNicUpdatesTaskDetails, self).__init__(**kwargs) self.instance_type = 'VmNicUpdatesTaskDetails' # type: str self.vm_id = vm_id self.nic_id = nic_id self.name = name class VMwareCbtContainerCreationInput(ReplicationProviderSpecificContainerCreationInput): """VMwareCbt container creation input. All required parameters must be populated in order to send to Azure. :param instance_type: Required. The class type.Constant filled by server. :type instance_type: str """ _validation = { 'instance_type': {'required': True}, } _attribute_map = { 'instance_type': {'key': 'instanceType', 'type': 'str'}, } def __init__( self, **kwargs ): super(VMwareCbtContainerCreationInput, self).__init__(**kwargs) self.instance_type = 'VMwareCbt' # type: str class VMwareCbtContainerMappingInput(ReplicationProviderSpecificContainerMappingInput): """VMwareCbt container mapping input. All required parameters must be populated in order to send to Azure. :param instance_type: Required. The class type.Constant filled by server. :type instance_type: str :param key_vault_id: Required. The target key vault ARM Id. :type key_vault_id: str :param key_vault_uri: Required. The target key vault URL. :type key_vault_uri: str :param storage_account_id: Required. The storage account ARM Id. :type storage_account_id: str :param storage_account_sas_secret_name: Required. The secret name of the storage account. :type storage_account_sas_secret_name: str :param service_bus_connection_string_secret_name: Required. The secret name of the service bus connection string. :type service_bus_connection_string_secret_name: str :param target_location: Required. The target location. :type target_location: str """ _validation = { 'instance_type': {'required': True}, 'key_vault_id': {'required': True}, 'key_vault_uri': {'required': True}, 'storage_account_id': {'required': True}, 'storage_account_sas_secret_name': {'required': True}, 'service_bus_connection_string_secret_name': {'required': True}, 'target_location': {'required': True}, } _attribute_map = { 'instance_type': {'key': 'instanceType', 'type': 'str'}, 'key_vault_id': {'key': 'keyVaultId', 'type': 'str'}, 'key_vault_uri': {'key': 'keyVaultUri', 'type': 'str'}, 'storage_account_id': {'key': 'storageAccountId', 'type': 'str'}, 'storage_account_sas_secret_name': {'key': 'storageAccountSasSecretName', 'type': 'str'}, 'service_bus_connection_string_secret_name': {'key': 'serviceBusConnectionStringSecretName', 'type': 'str'}, 'target_location': {'key': 'targetLocation', 'type': 'str'}, } def __init__( self, *, key_vault_id: str, key_vault_uri: str, storage_account_id: str, storage_account_sas_secret_name: str, service_bus_connection_string_secret_name: str, target_location: str, **kwargs ): super(VMwareCbtContainerMappingInput, self).__init__(**kwargs) self.instance_type = 'VMwareCbt' # type: str self.key_vault_id = key_vault_id self.key_vault_uri = key_vault_uri self.storage_account_id = storage_account_id self.storage_account_sas_secret_name = storage_account_sas_secret_name self.service_bus_connection_string_secret_name = service_bus_connection_string_secret_name self.target_location = target_location class VMwareCbtDiskInput(msrest.serialization.Model): """VMwareCbt disk input. All required parameters must be populated in order to send to Azure. :param disk_id: Required. The disk Id. :type disk_id: str :param disk_type: The disk type. Possible values include: "Standard_LRS", "Premium_LRS", "StandardSSD_LRS". :type disk_type: str or ~azure.mgmt.recoveryservicessiterecovery.models.DiskAccountType :param is_os_disk: Required. A value indicating whether the disk is the OS disk. :type is_os_disk: str :param log_storage_account_id: Required. The log storage account ARM Id. :type log_storage_account_id: str :param log_storage_account_sas_secret_name: Required. The key vault secret name of the log storage account. :type log_storage_account_sas_secret_name: str :param disk_encryption_set_id: The DiskEncryptionSet ARM Id. :type disk_encryption_set_id: str """ _validation = { 'disk_id': {'required': True}, 'is_os_disk': {'required': True}, 'log_storage_account_id': {'required': True}, 'log_storage_account_sas_secret_name': {'required': True}, } _attribute_map = { 'disk_id': {'key': 'diskId', 'type': 'str'}, 'disk_type': {'key': 'diskType', 'type': 'str'}, 'is_os_disk': {'key': 'isOSDisk', 'type': 'str'}, 'log_storage_account_id': {'key': 'logStorageAccountId', 'type': 'str'}, 'log_storage_account_sas_secret_name': {'key': 'logStorageAccountSasSecretName', 'type': 'str'}, 'disk_encryption_set_id': {'key': 'diskEncryptionSetId', 'type': 'str'}, } def __init__( self, *, disk_id: str,
<filename>methtuple/funcs.py<gh_stars>1-10 from __future__ import print_function from .mtuple import * import re import csv import operator import sys import itertools #### Function definitions #### def make_ignores_list(ic): """Make a list from a string of read positions that are to be ignored. Input should be 1-based co-ordinates and these are converted to 0-based co-ordinates. Args: ic: A string of read positions to ignore. Multiple values should be comma-delimited, ranges can be specified by use of the hyphen and all positions should use 1-based co-ordinates. For example: '1-5, 80, 98-100' corresponds to ignoring read-positions 1, 2, 3, 4, 5, 80, 98, 99, 100 and so returns [0, 1, 2, 3, 4, 79, 97, 98, 99]. Returns: A Python list of the 0-based positions to be ignored. """ if ic is None: val = [] else: val = [] y = [x.strip() for x in ic.split(',')] for i in y: z = [x.strip() for x in i.split('-')] if len(z) == 2: val = val + list(range(int(z[0]), int(z[1]) + 1)) elif len(z) == 1: val = val + [int(z[0])] else: exit_msg = ''.join(['ERROR: -ir1p and -ir2p must be comma-delimited. Ranges can be specified by use of the hyphen and all positions should use 1-based co-ordinates, e.g. \'1-5, 80, 98-100\'.']) sys.exit(exit_msg) if not all(isinstance(i, int) for i in val): exit_msg = ''.join(['ERROR: -ir1p and -ir2p must be comma-delimited. Ranges can be specified by use of the hyphen and all positions should use 1-based co-ordinates, e.g. \'1-5, 80, 98-100\'.']) sys.exit(exit_msg) # Convert from 1-based to 0-based co-ordinates val = [x - 1 for x in val] return val def ignore_read_pos(read, methylation_index, ignore_read_pos_list): """Ignore methylation loci in a read that appear in the ignore_read_pos_list. A methylation locus may be one of CpG, CHH, CHG or CNN. Args: read: A pysam.AlignedSegment instance. methylation_index: A list of zero-based indices. Each index corresponds to the leftmost aligned position of a methylation locus in a read. For example: [0, 5] corresponds to a read with a methylation locus at the first and sixth positions of the read. ignore_read_pos_list: The list of read positions to be ignored. Returns: An updated version of methylation_index. Will report a warning if the FLAG does not encode whether the read is part of a paired-end or which mate of the paired-end read it is. Will report an error and call sys.exit() if the XR-tag or XG-tag is incompatible or missing. """ # NOTE: Assumes that paired-end reads have FR orientation, which is always true for Bismark but might not be for other aligners strand = get_strand(read) # Single-end reads if not read.is_paired: if strand == '+': mi_updated = [mi for mi in methylation_index if mi not in ignore_read_pos_list] elif strand == '-': ignore_read_pos_list = [read.query_length - ic - 1 for ic in ignore_read_pos_list] mi_updated = [mi for mi in methylation_index if mi not in ignore_read_pos_list] # Paired-end reads: read_1 elif read.is_paired and read.is_read1: if strand == '+': mi_updated = [mi for mi in methylation_index if mi not in ignore_read_pos_list] elif strand == '-': ignore_read_pos_list = [read.query_length - ic - 1 for ic in ignore_read_pos_list] mi_updated = [mi for mi in methylation_index if mi not in ignore_read_pos_list] # Paired-end reads: read_2 elif read.is_paired and read.is_read2: if strand == '+': ignore_read_pos_list = [read.query_length - ic - 1 for ic in ignore_read_pos_list] mi_updated = [mi for mi in methylation_index if mi not in ignore_read_pos_list] if strand == '-': mi_updated = [mi for mi in methylation_index if mi not in ignore_read_pos_list] # Return updated methylation_index return mi_updated def ignore_low_quality_bases(read, methylation_index, min_qual, phred_offset): """Ignore low quality bases of a read that contribute to a read's methylation_index. Args: read: A pysam.AlignedSegment instance. methylation_index: A list of zero-based indices. Each index corresponds to the leftmost aligned position of a methylation locus in a read. For example: [0, 5] corresponds to a read with a methylation locus at the first and sixth positions of the read. min_qual: The minimum base quality (integer). All bases with quality < min_qual are excluded from the returned methylation_index instance. phred_offset: The Phred offset of the data (33 or 64). Returns: An updated version of methylation_index. """ if (min_qual < 0) or (round(min_qual) != min_qual): raise ValueError("ignore_low_quality_bases: 'low_qual' must be a positive integer") if phred_offset != 33 and phred_offset != 64: raise ValueError("ignore_low_quality_bases: 'phred_offset' must be a 33 or 64") # As of pysam v0.8.1, pysam.AlignedSegment.query_qualities now returns "a python array of unsigned chars" and "no offset of 33 needs to be subtracted" (http://pysam.readthedocs.org/en/latest/api.html#api). Therefore phred64 encoded base qualities now need to have an offset 64 - 33 = 31 subtracted and phred33 base qualities do not need any offset subtracted (0 is subtracted, which is a no-op, to minimise code changes). phred_offset = phred_offset - 33 ignore_these_bases = [] for i in methylation_index: if (read.query_qualities[i] - phred_offset) < min_qual: ignore_these_bases.append(i) return [x for x in methylation_index if x not in ignore_these_bases] def fix_old_bismark(read): """Fix the QNAME and FLAG field of a paired-end read from a SAM/BAM file generated by Bismark version < 0.8.3 Args: read: A pysam.AlignedSegment instance. Returns: An updated version of the read. """ # Strip '/1' or '/2' appended to the end of QNAMEs by Bismark version < 0.8.3. Assumes there are no forward slash characters in the QNAME field read.query_name = read.query_name.split('/')[0] # Fix FLAG value if read.flag == 67: read.flag = 99 elif read.flag == 115: read.flag = 83 elif read.flag == 131: read.flag = 147 elif read.flag == 179: read.flag = 163 else: exit_msg = ''.join(['ERROR: Unexpected FLAG (', str(read.flag), ') for read ', read.query_name, 'Sorry, --aligner Bismark_old is unable to deal with this FLAG. Please file an issue at www.github.com/PeteHaitch/methtuple describing the error..']) sys.exit(exit_msg) return read def does_read_contain_complicated_cigar(read): """Check whether a read contains a complicated CIGAR string character, defined as anything other than a match (M; 0), insertion (I; 1), deletion (D; 2), soft-clip (S, 4) or hard-clip (H, 5). Args: read: A pysam.AlignedSegment instance. Returns: True if read contains an complicated CIGAR string character, False otherwise. """ val = any([x[0] not in [0, 1, 2, 4, 5] for x in read.cigartuples]) return val def extract_and_update_methylation_index_from_single_end_read(read, AlignmentFile, methylation_m_tuples, m, all_combinations, methylation_type, methylation_pattern, ignore_read_1_pos, min_qual, phred_offset, ob_strand_offset): """Extracts m-tuples of methylation loci from a single-end read and adds the comethylation m-tuple to the methylation_m_tuples object. Args: read: An AlignedSegment instance corresponding to a single-end read. AlignmentFile: The AlignmentFile instance corresponding to the sample. Required in order to extract chromosome names from read. methylation_m_tuples: An MTuple instance. m: Is the "m" in "m-tuple", i.e. the size of the m-tuple. m must be an integer greater than or equal to 1. WARNING: No error or warning produced if this condition is violated. all_combinations: A boolean indicating whether all combinations of m-tuples should be created or just "neighbouring" m-tuples. methylation_type: A string of the methylation type, e.g. CG for CpG methylation. Must be a valid option for the MTuple class. methylation_pattern: A regular expression of the methylation loci, e.g. '[Zz]' for CpG-methylation ignore_read_1_pos: Ignore this list of read positions from each read. min_qual: Ignore bases with quality-score less than this value. phred_offset: The offset in the Phred scores. Phred33 corresponds to phred_offset = 33 and Phred64 corresponds to phred_offset = 64. ob_strand_offset: How many bases a methylation loci on the OB-strand must be moved to the left in order to line up with the C on the OT-strand; e.g. ob_strand_offset = 1 for CpGs. Returns: methylation_m_tuples: An updated version of methylation_m_tuples. n_methylation_loci: The number of methylation loci extracted from the read. """ # Identify methylation events in read, e.g. CpGs or CHHs. The methylation_pattern is specified by a command line argument (e.g. Z/z corresponds to CpG) methylation_index = [midx.start() for midx in re.finditer(methylation_pattern, read.get_tag('XM'))] # Ignore any read positions specified in ignore_read_1_pos methylation_index = ignore_read_pos(read, methylation_index, ignore_read_1_pos) # Ignore any positions with a base quality less than min_qual methylation_index = ignore_low_quality_bases(read, methylation_index, min_qual, phred_offset) n_methylation_loci = len(methylation_index) strand = get_strand(read) # Call methylation m-tuples if there are sufficient methylation loci in the
<filename>yinyang/src/parsing/SMTLIBv2Visitor.py # MIT License # # Copyright (c) [2020 - 2021] The yinyang authors # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Generated from SMTLIBv2.g4 by ANTLR 4.8 from antlr4 import * from yinyang.src.parsing.Ast import * from yinyang.src.parsing.SMTLIBv2Parser import SMTLIBv2Parser # This class defines a complete generic visitor for a parse tree produced by SMTLIBv2Parser. class SMTLIBv2Visitor(ParseTreeVisitor): # Visit a parse tree produced by SMTLIBv2Parser#response. def visitResponse(self, ctx: SMTLIBv2Parser.ResponseContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#generalReservedWord. def visitGeneralReservedWord(self, ctx: SMTLIBv2Parser.GeneralReservedWordContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#simpleSymbol. def visitSimpleSymbol(self, ctx: SMTLIBv2Parser.SimpleSymbolContext): return ctx.getText() # Visit a parse tree produced by SMTLIBv2Parser#quotedSymbol. def visitQuotedSymbol(self, ctx: SMTLIBv2Parser.QuotedSymbolContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#predefSymbol. def visitPredefSymbol(self, ctx: SMTLIBv2Parser.PredefSymbolContext): return ctx.getText() # Visit a parse tree produced by SMTLIBv2Parser#predefKeyword. def visitPredefKeyword(self, ctx: SMTLIBv2Parser.PredefKeywordContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#symbol. def visitSymbol(self, ctx: SMTLIBv2Parser.SymbolContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#numeral. def visitNumeral(self, ctx: SMTLIBv2Parser.NumeralContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#decimal. def visitDecimal(self, ctx: SMTLIBv2Parser.DecimalContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#hexadecimal. def visitHexadecimal(self, ctx: SMTLIBv2Parser.HexadecimalContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#binary. def visitBinary(self, ctx: SMTLIBv2Parser.BinaryContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#string. def visitString(self, ctx: SMTLIBv2Parser.StringContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#keyword. def visitKeyword(self, ctx: SMTLIBv2Parser.KeywordContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#spec_constant. def visitSpec_constant(self, ctx: SMTLIBv2Parser.Spec_constantContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#s_expr. def visitS_expr(self, ctx: SMTLIBv2Parser.S_exprContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#index. def visitIndex(self, ctx: SMTLIBv2Parser.IndexContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#identifier. def visitIdentifier(self, ctx: SMTLIBv2Parser.IdentifierContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#attribute_value. def visitAttribute_value(self, ctx: SMTLIBv2Parser.Attribute_valueContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#attribute. def visitAttribute(self, ctx: SMTLIBv2Parser.AttributeContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#qual_identifier. def visitQual_identifier(self, ctx: SMTLIBv2Parser.Qual_identifierContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#var_binding. def visitVar_binding(self, ctx: SMTLIBv2Parser.Var_bindingContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#sorted_var. def visitSorted_var(self, ctx: SMTLIBv2Parser.Sorted_varContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#pattern. def visitPattern(self, ctx: SMTLIBv2Parser.PatternContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#match_case. def visitMatch_case(self, ctx: SMTLIBv2Parser.Match_caseContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#sort_symbol_decl. def visitSort_symbol_decl(self, ctx: SMTLIBv2Parser.Sort_symbol_declContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#meta_spec_constant. def visitMeta_spec_constant(self, ctx: SMTLIBv2Parser.Meta_spec_constantContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#fun_symbol_decl. def visitFun_symbol_decl(self, ctx: SMTLIBv2Parser.Fun_symbol_declContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#par_fun_symbol_decl. def visitPar_fun_symbol_decl(self, ctx: SMTLIBv2Parser.Par_fun_symbol_declContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#theory_attribute. def visitTheory_attribute(self, ctx: SMTLIBv2Parser.Theory_attributeContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#theory_decl. def visitTheory_decl(self, ctx: SMTLIBv2Parser.Theory_declContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#logic_attribue. def visitLogic_attribue(self, ctx: SMTLIBv2Parser.Logic_attribueContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#logic. def visitLogic(self, ctx: SMTLIBv2Parser.LogicContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#sort_dec. def visitSort_dec(self, ctx: SMTLIBv2Parser.Sort_decContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#selector_dec. def visitSelector_dec(self, ctx: SMTLIBv2Parser.Selector_decContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#constructor_dec. def visitConstructor_dec(self, ctx: SMTLIBv2Parser.Constructor_decContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#datatype_dec. def visitDatatype_dec(self, ctx: SMTLIBv2Parser.Datatype_decContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#function_dec. def visitFunction_dec(self, ctx: SMTLIBv2Parser.Function_decContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#function_def. def visitFunction_def(self, ctx: SMTLIBv2Parser.Function_defContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#prop_literal. def visitProp_literal(self, ctx: SMTLIBv2Parser.Prop_literalContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_assert. def visitCmd_assert(self, ctx: SMTLIBv2Parser.Cmd_assertContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_checkSat. def visitCmd_checkSat(self, ctx: SMTLIBv2Parser.Cmd_checkSatContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_checkSatAssuming. def visitCmd_checkSatAssuming( self, ctx: SMTLIBv2Parser.Cmd_checkSatAssumingContext ): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_declareConst. def visitCmd_declareConst(self, ctx: SMTLIBv2Parser.Cmd_declareConstContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_declareDatatype. def visitCmd_declareDatatype(self, ctx: SMTLIBv2Parser.Cmd_declareDatatypeContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_declareDatatypes. def visitCmd_declareDatatypes( self, ctx: SMTLIBv2Parser.Cmd_declareDatatypesContext ): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_declareFun. def visitCmd_declareFun(self, ctx: SMTLIBv2Parser.Cmd_declareFunContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_declareSort. def visitCmd_declareSort(self, ctx: SMTLIBv2Parser.Cmd_declareSortContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_defineFun. def visitCmd_defineFun(self, ctx: SMTLIBv2Parser.Cmd_defineFunContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_defineFunRec. def visitCmd_defineFunRec(self, ctx: SMTLIBv2Parser.Cmd_defineFunRecContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_defineFunsRec. def visitCmd_defineFunsRec(self, ctx: SMTLIBv2Parser.Cmd_defineFunsRecContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_defineSort. def visitCmd_defineSort(self, ctx: SMTLIBv2Parser.Cmd_defineSortContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_echo. def visitCmd_echo(self, ctx: SMTLIBv2Parser.Cmd_echoContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_exit. def visitCmd_exit(self, ctx: SMTLIBv2Parser.Cmd_exitContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_getAssertions. def visitCmd_getAssertions(self, ctx: SMTLIBv2Parser.Cmd_getAssertionsContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_getAssignment. def visitCmd_getAssignment(self, ctx: SMTLIBv2Parser.Cmd_getAssignmentContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_getInfo. def visitCmd_getInfo(self, ctx: SMTLIBv2Parser.Cmd_getInfoContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_getModel. def visitCmd_getModel(self, ctx: SMTLIBv2Parser.Cmd_getModelContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_getOption. def visitCmd_getOption(self, ctx: SMTLIBv2Parser.Cmd_getOptionContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_getProof. def visitCmd_getProof(self, ctx: SMTLIBv2Parser.Cmd_getProofContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_getUnsatAssumptions. def visitCmd_getUnsatAssumptions( self, ctx: SMTLIBv2Parser.Cmd_getUnsatAssumptionsContext ): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_getUnsatCore. def visitCmd_getUnsatCore(self, ctx: SMTLIBv2Parser.Cmd_getUnsatCoreContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_getValue. def visitCmd_getValue(self, ctx: SMTLIBv2Parser.Cmd_getValueContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_pop. def visitCmd_pop(self, ctx: SMTLIBv2Parser.Cmd_popContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_push. def visitCmd_push(self, ctx: SMTLIBv2Parser.Cmd_pushContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_reset. def visitCmd_reset(self, ctx: SMTLIBv2Parser.Cmd_resetContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_resetAssertions. def visitCmd_resetAssertions(self, ctx: SMTLIBv2Parser.Cmd_resetAssertionsContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_setInfo. def visitCmd_setInfo(self, ctx: SMTLIBv2Parser.Cmd_setInfoContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_setLogic. def visitCmd_setLogic(self, ctx: SMTLIBv2Parser.Cmd_setLogicContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#cmd_setOption. def visitCmd_setOption(self, ctx: SMTLIBv2Parser.Cmd_setOptionContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#b_value. def visitB_value(self, ctx: SMTLIBv2Parser.B_valueContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#option. def visitOption(self, ctx: SMTLIBv2Parser.OptionContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#info_flag. def visitInfo_flag(self, ctx: SMTLIBv2Parser.Info_flagContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#error_behaviour. def visitError_behaviour(self, ctx: SMTLIBv2Parser.Error_behaviourContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#reason_unknown. def visitReason_unknown(self, ctx: SMTLIBv2Parser.Reason_unknownContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#model_response. def visitModel_response(self, ctx: SMTLIBv2Parser.Model_responseContext): return self.visitChildren(ctx) # Visit a parse tree produced by SMTLIBv2Parser#info_response. def visitInfo_response(self, ctx: SMTLIBv2Parser.Info_responseContext): return self.visitChildren(ctx) # Visit a parse tree produced by
name. Args: file_name: file name for checkpoint Returns: None """ def _cast(t: torch.Tensor): if t.dtype == torch.float16: return t.to(dtype=torch.float32) else: return t checkpoint = { "state_dict": { k: _cast(v) for k, v in self.agent.state_dict().items() }, # FIXME optim state, should I cast it? "optim_state": self.agent.optim_state_dict(), # "optim_state": { # k: _cast(v) for k, v in self.agent.optimizer.state_dict().items() # }, # "state_dict": self.agent.state_dict(), # "optim_state": self.agent.optimizer.state_dict(), "config": self.config, } if extra_state is not None: checkpoint["extra_state"] = extra_state os.makedirs(self.config.CHECKPOINT_FOLDER, exist_ok=True) torch.save( checkpoint, os.path.join(self.config.CHECKPOINT_FOLDER, file_name) ) def load_checkpoint(self, checkpoint_path: str, *args, **kwargs) -> Dict: r"""Load checkpoint of specified path as a dict. Args: checkpoint_path: path of target checkpoint *args: additional positional args **kwargs: additional keyword args Returns: dict containing checkpoint info """ return torch.load(checkpoint_path, *args, **kwargs) METRICS_BLACKLIST = {"top_down_map", "collisions.is_collision"} @classmethod def _extract_scalars_from_info( cls, info: Dict[str, Any] ) -> Dict[str, float]: result = {} for k, v in info.items(): if k in cls.METRICS_BLACKLIST: continue if isinstance(v, dict): result.update( { k + "." + subk: subv for subk, subv in cls._extract_scalars_from_info( v ).items() if (k + "." + subk) not in cls.METRICS_BLACKLIST } ) # Things that are scalar-like will have an np.size of 1. # Strings also have an np.size of 1, so explicitly ban those elif np.size(v) == 1 and not isinstance(v, str): result[k] = float(v) return result @classmethod def _extract_scalars_from_infos( cls, infos: List[Dict[str, Any]] ) -> Dict[str, List[float]]: results = defaultdict(list) for i in range(len(infos)): for k, v in cls._extract_scalars_from_info(infos[i]).items(): results[k].append(v) return results def _get_policy_head_count(self): reward_keys = self.config.RL.POLICIES if reward_keys[0] == "none" and len(reward_keys) == 1: return 1 if self.config.RL.REWARD_FUSION.STRATEGY == "SPLIT": return 2 return 1 def _build_rewards( self, env_rewards, metrics, ): r""" In order to support more complex reward operations, we treat rewards as normal metrics. The env still returns rewards as per gym API, but env reward should be combined with measures as configured. Typically, the env reward will just contain slack. Args: env_rewards: [b] env reward metrics: dict of [b] (reward) measures. Note these sizes don't have extra feature dims since rewards are expected to be scalars. Return: env_rewards: k x b, where k is the number of policy heads (typically 1) """ # extract the reward metrics reward_keys = self.config.RL.POLICIES if reward_keys[0] == "none" and len(reward_keys) == 1: return env_rewards.unsqueeze(0) strategy = self.config.RL.REWARD_FUSION.STRATEGY if strategy == "SUM": return (env_rewards + sum(metrics[p] for p in reward_keys)).unsqueeze(0) reward_a = sum(metrics[p] for p in reward_keys[:-1]) + env_rewards reward_b = metrics[reward_keys[-1]] if self.config.RL.REWARD_FUSION.ENV_ON_ALL: reward_b = reward_b + env_rewards if self.config.RL.REWARD_FUSION.STRATEGY == "RAMP": # Ramps from a to b ramp_factor = min(1, max(0, ( self.count_steps - self.config.RL.REWARD_FUSION.RAMP.START ) / ( self.config.RL.REWARD_FUSION.RAMP.END - self.config.RL.REWARD_FUSION.RAMP.START ))) return (reward_a * (1 - ramp_factor) + reward_b * ramp_factor).unsqueeze(0) elif self.config.RL.REWARD_FUSION.STRATEGY == "SPLIT": return torch.stack([reward_a, reward_b], dim=0) raise NotImplementedError def _collect_rollout_step( self, rollouts, current_episode_reward, current_episode_env_reward, running_episode_stats, prior_obs_state=None ): pth_time = 0.0 env_time = 0.0 ppo_cfg = self.config.RL.PPO curiosity_cfg = ppo_cfg.CURIOSITY t_sample_action = time.time() # sample actions with torch.no_grad(), torch.cuda.amp.autocast() if self._fp16_autocast else contextlib.suppress(): step_observation = { k: v[rollouts.step] for k, v in rollouts.observations.items() } behavioral_index = 0 if self._get_policy_head_count() > 1 and self.count_steps > self.config.RL.REWARD_FUSION.SPLIT.TRANSITION: behavioral_index = 1 ( values, actions, actions_log_probs, recurrent_hidden_states, obs, ) = self.actor_critic.act( step_observation, rollouts.get_recurrent_states()[rollouts.step], rollouts.prev_actions[rollouts.step], rollouts.masks[rollouts.step], return_features=True, behavioral_index=behavioral_index ) pth_time += time.time() - t_sample_action t_step_env = time.time() outputs = self.envs.step([a[0].item() for a in actions]) observations, rewards, dones, infos = [list(x) for x in zip(*outputs)] env_time += time.time() - t_step_env t_update_stats = time.time() # Hardcoded def map_to_full_metric(m): if m == 'reached': return ['coverage', 'reached'] elif m == 'visit_count': return ['coverage', 'visit_count'] elif m == "mini_reached": return ['coverage', 'mini_reached'] else: return [m] TRACKED_METRICS = [map_to_full_metric(m) for m in self.config.RL.PPO.ROLLOUT.METRICS] tracked_metrics = batch_list(infos, device=self.device, whitelist=TRACKED_METRICS) batch = batch_obs(observations, device=self.device) if self.semantic_predictor is not None: batch["semantic"] = self.semantic_predictor(batch["rgb"], batch["depth"]) if ppo_cfg.POLICY.EVAL_SEMANTICS_CKPT == "weights/rednet_semmap_mp3d_40.pth": batch["semantic"] -= 1 batch = apply_obs_transforms_batch(batch, self.obs_transforms) rewards = torch.tensor( rewards, dtype=torch.float, device=current_episode_reward.device ) POLICY_METRICS = [map_to_full_metric(m) for m in self.config.RL.POLICIES if m is not "none"] # Careful not to duplicate this policy_metrics = batch_list(infos, device=rewards.device, whitelist=POLICY_METRICS) rewards = self._build_rewards(rewards, policy_metrics) rewards = rewards.unsqueeze(-1) # b x k -> b x k x 1 # reward [k x b x 1] * masks [b x 1] -> [k x b x 1] masks = torch.tensor( [[0.0] if done else [1.0] for done in dones], dtype=torch.float, device=current_episode_reward.device, ) current_episode_env_reward += rewards curiosity_obs = None if curiosity_cfg.USE_CURIOSITY: # ! Curiosity not supported for multi-rewards. Assuming bonus belongs to first dimension curiosity_obs = obs[curiosity_cfg.VISION_KEY] if prior_obs_state is not None: with torch.no_grad(): # Pass in the state after seeing the prior observation (our input state) prior_state = rollouts.get_recurrent_states()[rollouts.step] if curiosity_cfg.USE_BELIEF else None fp_error = self.agent.get_curiosity_error( prior_obs_state, curiosity_obs, rollouts.prev_actions[rollouts.step], beliefs=prior_state ) curiosity_reward = torch.log(fp_error + 1.0).unsqueeze(1).to(rewards.device) * curiosity_cfg.REWARD_SCALE # If the episode has ended (mask is 0), prev and current obs are not in same scene, zero reward curiosity_reward = curiosity_reward * masks # b x 1 rewards[:,0] = rewards[:, 0] + curiosity_reward current_episode_reward += rewards running_episode_stats["reward"] += (1 - masks) * current_episode_reward # only add reward at episode end? running_episode_stats["env_reward"] += (1 - masks) * current_episode_env_reward running_episode_stats["count"] += 1 - masks for k, v in self._extract_scalars_from_infos(infos).items(): v = torch.tensor( v, dtype=torch.float, device=current_episode_reward.device ).unsqueeze(1) if k not in running_episode_stats: running_episode_stats[k] = torch.zeros_like( running_episode_stats["count"] ) running_episode_stats[k] += (1 - masks) * v current_episode_reward *= masks current_episode_env_reward *= masks if self._static_encoder: if self._fp16_mixed: raise Exception("Not implemented") with torch.no_grad(), torch.cuda.amp.autocast() if self._fp16_autocast else contextlib.suppress(): batch["visual_features"] = self._encoder(batch) if self._get_policy_head_count() == 1: # Single-policy agents don't return the policy dimension. values = values.unsqueeze(1) actions_log_probs = actions_log_probs.unsqueeze(1) rollouts.insert( batch, recurrent_hidden_states, actions, actions_log_probs, # b x k x 1 values, # b x k x 1 rewards, # k x b x 1 masks, tracked_metrics ) pth_time += time.time() - t_update_stats return pth_time, env_time, self.envs.num_envs, curiosity_obs def _update_agent(self, ppo_cfg, rollouts): t_update_model = time.time() with torch.no_grad(), torch.cuda.amp.autocast() if self._fp16_autocast else contextlib.suppress(): last_observation = { k: v[rollouts.step] for k, v in rollouts.observations.items() } next_value = self.actor_critic.get_value( last_observation, rollouts.get_recurrent_states()[rollouts.step], rollouts.prev_actions[rollouts.step], rollouts.masks[rollouts.step], ).detach() behavioral_index = 0 if self._get_policy_head_count() > 1 and self.count_steps > self.config.RL.REWARD_FUSION.SPLIT.TRANSITION: behavioral_index = 1 iw_clipped = ppo_cfg.SPLIT_IW_BOUNDS if hasattr(ppo_cfg, 'SPLIT_IW_BOUNDS') else \ [1.0 - ppo_cfg.clip_param, 1.0 + ppo_cfg.clip_param] rollouts.compute_returns( next_value, ppo_cfg.use_gae, ppo_cfg.gamma, ppo_cfg.tau, behavioral_index=behavioral_index, importance_weight=self.config.RL.REWARD_FUSION.SPLIT.IMPORTANCE_WEIGHT, weight_clip=iw_clipped, ) ( value_loss, action_loss, dist_entropy, aux_task_losses, aux_dist_entropy, aux_weights, inv_curiosity, fwd_curiosity, ) = self.agent.update( rollouts, ppo_cfg.gamma, behavioral_index=behavioral_index ) rollouts.after_update() return ( time.time() - t_update_model, value_loss, action_loss, dist_entropy, aux_task_losses, aux_dist_entropy, aux_weights, inv_curiosity, fwd_curiosity, ) def _make_deltas(self, window_episode_stats): deltas = { k: ( (v[-1] - v[0]).flatten(start_dim=-2).sum(dim=-1) # k x b x 1 OR b x 1 -> k or 1 if len(v) > 1 else v[0].flatten(start_dim=-2).sum(dim=-1) ) for k, v in window_episode_stats.items() } # Get items, and flatten rewards to report multi-policy flat_deltas = {} for k, v in deltas.items(): if len(v.size()) > 0: flat_deltas[k] = v[0].item() for i in range(1, v.size(0)): flat_deltas[f"{k}_{i}"] = v[i].item() else: flat_deltas[k] = v.item() flat_deltas["count"] = max(flat_deltas["count"], 1.0) return flat_deltas def train(self, ckpt_path="", ckpt=-1, start_updates=0) -> None: r"""Main method for training PPO. Returns: None """ self.envs = construct_envs( self.config, get_env_class(self.config.ENV_NAME) ) self.device = ( torch.device("cuda", self.config.TORCH_GPU_ID) if torch.cuda.is_available() else torch.device("cpu") ) ppo_cfg = self.config.RL.PPO task_cfg = self.config.TASK_CONFIG.TASK policy_encoders_map = get_vision_encoder_inputs(ppo_cfg) """ Initialize auxiliary tasks """ aux_cfg = self.config.RL.AUX_TASKS init_aux_tasks, num_recurrent_memories, aux_task_strings, aux_encoder_insts = \ self._setup_auxiliary_tasks(aux_cfg, ppo_cfg, task_cfg, observation_space=observation_space, policy_encoders=policy_encoders_map) self._setup_actor_critic_agent( ppo_cfg, task_cfg, aux_cfg, init_aux_tasks, aux_encoders=aux_encoder_insts, policy_encoders=policy_encoders_map ) rollouts = RolloutStorage( ppo_cfg.num_steps, self.envs.num_envs, self.obs_space, self.envs.action_spaces[0], ppo_cfg.hidden_size, num_recurrent_memories=num_recurrent_memories, num_policy_heads=self._get_policy_head_count(), metrics=ppo_cfg.ROLLOUT.METRICS ) rollouts.to(self.device) if self._fp16_mixed: rollouts.to_fp16() observations = self.envs.reset() batch = batch_obs(observations, device=self.device) if self.semantic_predictor is not None: batch["semantic"] = self.semantic_predictor(batch["rgb"], batch["depth"]) batch = apply_obs_transforms_batch(batch, self.obs_transforms) for sensor in rollouts.observations: rollouts.observations[sensor][0].copy_(batch[sensor]) # batch and observations may contain shared PyTorch CUDA # tensors. We must explicitly clear them here otherwise # they will be kept in memory for the entire duration of training! batch = None observations = None logger.info( "agent number of parameters: {}".format( sum(param.numel() for param in self.agent.actor_critic.parameters()) ) )
# -*- coding: utf-8 -*- # Copyright 2009-2017 Yelp and Contributors # Copyright 2018-2019 Yelp # Copyright 2020 Affirm, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Abstract base class for all runners that execute binaries/scripts (that is, everything but inline mode). """ import logging import os import os.path import pipes import re import sys from mrjob.py2 import PY2 from platform import python_implementation from subprocess import Popen from subprocess import PIPE try: import pty pty # quiet "redefinition of unused ..." warning from pyflakes except ImportError: pty = None try: import pyspark pyspark # quiet "redefinition of unused ..." warning from pyflakes except ImportError: pyspark = None import mrjob.step from mrjob.compat import translate_jobconf from mrjob.conf import combine_cmds from mrjob.conf import combine_dicts from mrjob.logs.log4j import _parse_hadoop_log4j_records from mrjob.logs.spark import _parse_spark_log from mrjob.logs.step import _eio_to_eof from mrjob.py2 import string_types from mrjob.runner import MRJobRunner from mrjob.setup import parse_setup_cmd from mrjob.util import cmd_line from mrjob.util import shlex_split from mrjob.util import unique from mrjob.util import which from mrjob.util import zip_dir log = logging.getLogger(__name__) # no need to escape arguments that only include these characters _HADOOP_SAFE_ARG_RE = re.compile(r'^[\w\./=-]*$') # used to handle manifest files _MANIFEST_INPUT_FORMAT = 'org.apache.hadoop.mapred.lib.NLineInputFormat' # map archive file extensions to the command used to unarchive them _EXT_TO_UNARCHIVE_CMD = { '.zip': 'unzip -o %(file)s -d %(dir)s', '.tar': 'mkdir %(dir)s; tar xf %(file)s -C %(dir)s', '.tar.gz': 'mkdir %(dir)s; tar xfz %(file)s -C %(dir)s', '.tgz': 'mkdir %(dir)s; tar xfz %(file)s -C %(dir)s', } def _unarchive_cmd(path): """Look up the unarchive command to use with the given file extension, or raise KeyError if there is no matching command.""" for ext, unarchive_cmd in sorted(_EXT_TO_UNARCHIVE_CMD.items()): # use this so we can match e.g. mrjob-0.7.0.tar.gz if path.endswith(ext): return unarchive_cmd raise KeyError('unknown archive type: %s' % path) class MRJobBinRunner(MRJobRunner): OPT_NAMES = MRJobRunner.OPT_NAMES | { 'python_bin', 'sh_bin', 'spark_args', 'spark_submit_bin', 'task_python_bin', } def __init__(self, **kwargs): super(MRJobBinRunner, self).__init__(**kwargs) # where a zip file of the mrjob library is stored locally self._mrjob_zip_path = None # we'll create the setup wrapper scripts later self._setup_wrapper_script_path = None self._manifest_setup_script_path = None self._spark_python_wrapper_path = None # self._setup is a list of shell commands with path dicts # interleaved; see mrjob.setup.parse_setup_cmd() for details self._setup = [parse_setup_cmd(cmd) for cmd in self._opts['setup']] for cmd in self._setup: for token in cmd: if isinstance(token, dict): # convert dir archives tokens to archives if token['type'] == 'dir': # feed the archive's path to self._working_dir_mgr token['path'] = self._dir_archive_path(token['path']) token['type'] = 'archive' self._working_dir_mgr.add(**token) # warning: no setup scripts on Spark when no working dir if self._setup and self._has_pyspark_steps() and not( self._spark_executors_have_own_wd()): log.warning("setup commands aren't supported on Spark master %r" % self._spark_master()) # --py-files on Spark doesn't allow '#' (see #1375) if any('#' in path for path in self._opts['py_files']): raise ValueError("py_files cannot contain '#'") # Keep track of where the spark-submit binary is self._spark_submit_bin = self._opts['spark_submit_bin'] # AFFIRM: parameterized cmdenv # See commit <PASSWORD> for key, value in self._opts['cmdenv'].items(): if '%s' in value: job_key = self._job_key.replace('.', '_') self._opts['cmdenv'][key] = value % job_key @classmethod def _default_opts(cls): return combine_dicts( super(MRJobBinRunner, cls)._default_opts(), dict( read_logs=True, ) ) def _fix_opt(self, opt_key, opt_value, source): """Check sh_bin""" opt_value = super(MRJobBinRunner, self)._fix_opt( opt_key, opt_value, source) # check that sh_bin doesn't have too many args if opt_key == 'sh_bin': # opt_value is usually a string, combiner makes it a list of args sh_bin = combine_cmds(opt_value) # empty sh_bin just means to use the default, see #1926 # make these hard requirements in v0.7.0? if len(sh_bin) > 1 and not os.path.isabs(sh_bin[0]): log.warning('sh_bin (from %s) should use an absolute path' ' if you want it to take arguments' % source) elif len(sh_bin) > 2: log.warning('sh_bin (from %s) should not take more than one' ' argument' % source) return opt_value ### python binary ### def _python_bin(self): """Python binary used for everything other than invoking the job. For running job tasks (e.g. ``--mapper``, ``--spark``), we use :py:meth:`_task_python_bin`, which can be set to a different value by setting :mrjob-opt:`task_python_bin`. Ways mrjob uses Python other than running tasks: * file locking in setup wrapper scripts * finding site-packages dir to bootstrap mrjob on clusters * invoking ``cat.py`` in local mode * the Python binary for Spark (``$PYSPARK_PYTHON``) """ # python_bin isn't an option for inline runners return self._opts['python_bin'] or self._default_python_bin() def _task_python_bin(self): """Python binary used to invoke job with ``--mapper``, ``--reducer``, ``--spark``, etc.""" return (self._opts['task_python_bin'] or self._python_bin()) def _default_python_bin(self, local=False): """The default python command. If local is true, try to use sys.executable. Otherwise use 'python2.7' or 'python3' as appropriate. This returns a single-item list (because it's a command). """ is_pypy = (python_implementation() == 'PyPy') if local and sys.executable: return [sys.executable] else: if PY2: return ['pypy'] if is_pypy else ['python2.7'] else: return ['pypy3'] if is_pypy else ['python3'] ### running MRJob scripts ### def _script_args_for_step(self, step_num, mrc, input_manifest=False): args = (self._task_python_bin() + [self._working_dir_mgr.name('file', self._script_path)] + self._args_for_task(step_num, mrc)) if input_manifest and mrc == 'mapper': wrapper = self._manifest_setup_script_path elif self._setup_wrapper_script_path: wrapper = self._setup_wrapper_script_path else: return args return (self._sh_bin() + [ self._working_dir_mgr.name('file', wrapper)] + args) def _substep_args(self, step_num, mrc): step = self._get_step(step_num) if step[mrc]['type'] == 'command': cmd = step[mrc]['command'] # never wrap custom hadoop streaming commands in bash if isinstance(cmd, string_types): return shlex_split(cmd) else: return cmd elif step[mrc]['type'] == 'script': script_args = self._script_args_for_step( step_num, mrc, input_manifest=step.get('input_manifest')) if 'pre_filter' in step[mrc]: return self._sh_wrap( '%s | %s' % (step[mrc]['pre_filter'], cmd_line(script_args))) else: return script_args else: raise ValueError("Invalid %s step %d: %r" % ( mrc, step_num, step[mrc])) ### hadoop streaming ### def _render_substep(self, step_num, mrc): step = self._get_step(step_num) if mrc in step: # cmd_line() does things that shell is fine with but # Hadoop Streaming finds confusing. return _hadoop_cmd_line(self._substep_args(step_num, mrc)) else: if mrc == 'mapper': return 'cat' else: return None def _hadoop_args_for_step(self, step_num): """Build a list of extra arguments to the hadoop binary. This handles *cmdenv*, *hadoop_extra_args*, *hadoop_input_format*, *hadoop_output_format*, *jobconf*, and *partitioner*. This doesn't handle input, output, mappers, reducers, or uploading files. """ args = [] # -libjars, -D args.extend(self._hadoop_generic_args_for_step(step_num)) # hadoop_extra_args (if defined; it's not for sim runners) # this has to come after -D because it may include streaming-specific # args (see #1332). args.extend(self._opts.get('hadoop_extra_args', ())) # partitioner partitioner = self._partitioner or self._sort_values_partitioner() if partitioner: args.extend(['-partitioner', partitioner]) # cmdenv for key, value in sorted(self._opts['cmdenv'].items()): args.append('-cmdenv') args.append('%s=%s' % (key, value)) # hadoop_input_format if step_num == 0: if self._uses_input_manifest(): args.extend(['-inputformat', _MANIFEST_INPUT_FORMAT]) elif self._hadoop_input_format: args.extend(['-inputformat', self._hadoop_input_format]) # hadoop_output_format if (step_num == self._num_steps() - 1 and self._hadoop_output_format): args.extend(['-outputformat', self._hadoop_output_format]) return args def _hadoop_streaming_jar_args(self, step_num): """The arguments that come after ``hadoop jar <streaming jar path>`` when running a Hadoop streaming job.""" args = [] # get command for each part of the job mapper, combiner, reducer = ( self._hadoop_streaming_commands(step_num)) # set up uploading from HDFS/cloud storage to the working dir args.extend(self._upload_args()) # if no reducer, shut off reducer tasks. This has to come before # extra hadoop args, which could contain jar-specific args # (e.g. -outputformat). See #1331. # # might want to just integrate this into _hadoop_args_for_step? if not reducer: args.extend(['-D', ('%s=0' % translate_jobconf( 'mapreduce.job.reduces', self.get_hadoop_version()))]) # Add extra hadoop args first as hadoop args could be a hadoop # specific argument which must come before job # specific args. args.extend(self._hadoop_args_for_step(step_num)) # set up input for input_uri in self._step_input_uris(step_num): args.extend(['-input', input_uri]) # set up output args.append('-output') args.append(self._step_output_uri(step_num)) args.append('-mapper') args.append(mapper) if combiner: args.append('-combiner') args.append(combiner) if reducer: args.append('-reducer') args.append(reducer) return args def _hadoop_streaming_commands(self, step_num): return ( self._render_substep(step_num, 'mapper'), self._render_substep(step_num, 'combiner'), self._render_substep(step_num, 'reducer'), ) def _hadoop_generic_args_for_step(self, step_num): """Arguments like -D and -libjars that apply to every Hadoop subcommand.""" args = [] # libjars (#198) libjar_paths = self._libjar_paths() if libjar_paths: args.extend(['-libjars', ','.join(libjar_paths)]) # jobconf (-D) jobconf = self._jobconf_for_step(step_num) for key, value in sorted(jobconf.items()): args.extend(['-D', '%s=%s' % (key, value)]) return args def _libjar_paths(self): """Paths or URIs of libjars, from Hadoop/Spark's point of view. Override this
arrow keys to move.'] while self.opening_scene == True: # while opening scene is True display text and background self.display.window.blit(Boundary.back_ground, (0,0)) # display background self.title_text = self.fonts[0].render(self.titles[0], 1, self.color) self.title_text2 = self.fonts[0].render(self.titles[1], 1, self.color) self.display.window.blit(self.title_text, ((self.display.width//2) - (self.title_text.get_width()//2), 70)) self.display.window.blit(self.title_text2, ((self.display.width//2) - (self.title_text2.get_width()//2), 130)) self.body_location = 300 # established in loop so it is reset each time for body_text in self.body: b_t = self.fonts[1].render(body_text, 1, self.color) self.display.window.blit(b_t, ((self.display.width//2) - (b_t.get_width()//2), self.body_location)) self.body_location += 30 # move body text down 30 at a time self.instructions_location = 600 # established in loop so it is reset each time for instruction in self.instructions: instructions_text = self.fonts[1].render(instruction, 1, self.color) self.display.window.blit(instructions_text, ((self.display.width//2) - (instructions_text.get_width()//2), self.instructions_location)) self.instructions_location += 30 pygame.display.update() for event in pygame.event.get(): if event.type == pygame.KEYUP: # game will start upon release of any key self.opening_scene = False # kick back out to main loop if event.type == pygame.QUIT: self.opening_scene = False self.quit = True pygame.quit() def end_game(self): '''Create Credits object and restart game upon user input Attributes end_music (pygame music): music played at game over screen game_over (Credits obj): credits object with the current final score displaying_credits (bool): control for end game loop ''' pygame.mixer.music.stop() self.end_music = pygame.mixer.music.load('audio/Battle-Conflict.mp3') pygame.mixer.music.play(-1) self.game_over = Credits(self.score.score) # create credits obj self.game_over.write_highscores() self.displaying_credits = True while self.displaying_credits: #if self.displaying_credits == False: # break self.display.window.blit(Boundary.back_ground, (0,0)) # display background to screen self.game_over.display_credits(self.display.window) # print credits to screen pygame.display.update() pygame.time.delay(2000) # delay pygame so key pressing at end of game doesn't auto restart for event in pygame.event.get(): if event.type == pygame.KEYUP: # reset game upon pressing and release of key # Reset all object class attribute list to empty for new game Asteroid.asteroid_lst[:] = [] ShooterObject.shots_queue[:] = [] Explosion.explosion_lst[:] = [] Health_PowerUp.current_powerups[:] = [] # using initial game setup commands to reset everything upon restart. self.music = pygame.mixer.music.load('audio/Battle-SilverMoon.mp3') pygame.mixer.music.play(-1) self.clock = pygame.time.Clock() self.run = True self.display = Boundary(500, 700) self.main_sprite = Character() self.mothership = Mothership() self.score = Score() self.count = 0 self.center_frame = 0 self.left_right_frame = 0 self.next_frame = time.time() self.most_recent_key = None self.powerup_timer = 0 self.displaying_credits = False if event.type == pygame.QUIT: self.displaying_credits = False pygame.quit() #break def handle_key_presses(self): '''Move character right and left, setting character movement states and correct frames to be displayed''' keys = pygame.key.get_pressed() if keys[pygame.K_LEFT]: # left arrow key to move left self.main_sprite.move_left(self.display) # using display as input to set boundaries for movement. if self.main_sprite.left == False: # only allowing access to branch if False so it won't run while holding down key self.main_sprite.left = True # sprite is now moving left self.main_sprite.right = False # right and center are now both False self.main_sprite.center = False self.left_right_frame = 0 # resetting left&right frame count. Will help display intermediate strafe states self.most_recent_key = 'l' # setting left so intermediate strafe images used to level out spaceship elif keys[pygame.K_RIGHT]: # right arrow key to move right self.main_sprite.move_right(self.display) # using display as input to set boundaries for movement. if self.main_sprite.right == False: # only allowing access to branch if False so it won't run while holding down key self.main_sprite.right = True self.main_sprite.left = False self.main_sprite.center = False self.left_right_frame = 0 self.most_recent_key = 'r' # setting right so intermediate strafe images used to level out spaceship else: if self.main_sprite.center == False: # once right or left keys are let go, if statement will run self.main_sprite.center = True self.main_sprite.right = False self.main_sprite.left = False self.left_right_frame = 0 # resetting upon return to center will allow us to access intermediate strafe states def generate_shots(self): '''Generate shots fired from spaceship at a constant rate''' if (self.count % ShooterObject.shot_rate == 0): # every 50 loops the spaceship will generate a ShooterObject(bullet) self.main_sprite.shoot('normal') # normal indicates the bullet type and specifies its properties upon creation. def generate_asteroids(self): '''Generate asteroids at a random rate''' # calling asteroid random number generator if numbers are the same then asteroid is generated and placed on screen if Asteroid.ast_diff_setting[Asteroid.current_setting] == random.randint(0,Asteroid.ast_diff_setting[Asteroid.current_setting]): self.a = Asteroid() def generate_powerup(self): '''Generate health and timed power ups at discrete intervals and game conditions''' if self.count > self.powerup_health_timer: # health has its own timer and now is completely unlinked to other powerup generation if self.mothership.health_amt != 1000: # only if the mothership has taken on some damage should powerups begin to generate # powerup generation is a function of game health with a max generation rate of 300 if self.mothership.health_amt*2 == random.randint(0,self.mothership.health_amt*2 + 300): self.p = Health_PowerUp() self.powerup_health_timer = self.count + 500 # cooldown timer for power ups are set at ~8 seconds if self.count > self.powerup_timer: # power up cooldown has expired if TimedPowerUp.activated == False: # only allow power up generation if a powerup isn't in current use. if self.mothership.health_amt >= 500: # havin' a good time then you should get a double XP if 1000 == random.randint(0,1000): TimedPowerUp('Double XP') self.powerup_timer = self.count + 500 # setting cooldown for powerups ~8 seconds if self.mothership.health_amt <= 500: # about t' die might need Insta-Kill if 1000 == random.randint(0,1000): TimedPowerUp('Insta-Kill') self.powerup_timer = self.count + 500 def handle_collisions(self): '''Loop through all object types on screen and determine if collisions have occurred''' for powerup in Health_PowerUp.current_powerups: if (powerup.x > self.main_sprite.x) and (powerup.x < self.main_sprite.x + self.main_sprite.width)\ and (powerup.y + powerup.height > self.main_sprite.y)\ and (powerup.y + powerup.height < self.main_sprite.y + self.main_sprite.height): # within boundaries of main sprite if powerup.activated == False: # set so power up can only give mothership health once. self.mothership.health_amt += powerup.health_add # increment mothership's health self.mothership.update_damage() # update motherships damage powerup.activated = True # activate powerup if powerup.activated == True: if powerup.powerup_display_timer > 25: # turn off powerup activate after counter has reached 25 powerup.activated = False Health_PowerUp.current_powerups.pop(Health_PowerUp.current_powerups.index(powerup)) del powerup # remove powerup from instance list and delete for t_powerup in TimedPowerUp.current_powerups: if (t_powerup.x > self.main_sprite.x) and (t_powerup.x < self.main_sprite.x + self.main_sprite.width)\ and (t_powerup.y + t_powerup.height > self.main_sprite.y)\ and (t_powerup.y + t_powerup.height < self.main_sprite.y + self.main_sprite.height): #within boundaries if TimedPowerUp.activated == False: # only turn switch if False, this keeps actions from repeating TimedPowerUp.activated = True t_powerup.effect_timer = self.count # setting powerup timer to current game loop number if TimedPowerUp.activated == True: if self.count - t_powerup.effect_timer > t_powerup.powerup_duration: # ~10 seconds worth of powerup TimedPowerUp.activated = False # undos all effects from activation TimedPowerUp.current_powerups.pop(TimedPowerUp.current_powerups.index(t_powerup)) del t_powerup # remove of instance list and delete for bullet in ShooterObject.shots_queue: for asteroid in Asteroid.asteroid_lst: if (bullet.start_x >= asteroid.x) and (bullet.start_x <= asteroid.x + asteroid.width)\ and (bullet.end_y <= asteroid.y + asteroid.width): # check to see if bullet is within asteroid hit box # if within hit box, then more complex calculation to see if bullet is within radius is performed. if ((bullet.end_y - (asteroid.y + (asteroid.width/2)))**2 + (bullet.start_x - (asteroid.x + (asteroid.width/2)))**2)**0.5 < (asteroid.width/2): bullet.hit = True # register hit and reduce asteroid health if (TimedPowerUp.activated == True) and (TimedPowerUp.current_option == 'Insta-Kill'): # powerup effect asteroid.health_amt = 0 # instantly reduct asteroid health to zero. asteroid.damage_taken += bullet.damage else: asteroid.health_amt -= bullet.damage # if no powerup then just reduce ast health by bullet damage asteroid.damage_taken += bullet.damage asteroid.update_health_bars() if (asteroid.health_amt <= 0) or (asteroid.y + asteroid.width > 650): # check deletion conditions if asteroid.health_amt <= 0: if (TimedPowerUp.activated == True) and (TimedPowerUp.current_option == 'Double XP'): # powerup effect self.score.score += (asteroid.width * 2) # double the amount of XP you receive else: self.score.score += asteroid.width # increment score asteroid width amt asteroid.destruction_method = 'negative health' # method informs that xp gain should be shown on screen elif (asteroid.y + asteroid.width > 650): # has made contact with mothership asteroid.destruction_method = 'off screen' self.mothership.health_amt -= asteroid.damage # update mothership health and damage self.mothership.damage_taken += asteroid.damage self.mothership.update_damage() Asteroid.asteroid_lst.pop(Asteroid.asteroid_lst.index(asteroid)) asteroid.generate_explosion() # generate asteroid before deleting obj del
= reference_round_df.groupby('barcode_reference_dot_id') ref_selected_df_no_duplicates = reference_round_df for brdi, grp in barcoded_round_grouped: barcode = np.zeros([barcode_length],dtype=np.int8) barcode[grp.round_num.values.astype(np.int8)-1] = 1 #hamming_dist, index_gene = nn_sklearn.kneighbors(barcode.reshape(1, -1), return_distance=True) #gene= codebook_df.loc[index_gene.reshape(index_gene.shape[0]),'Gene'].tolist() barcode = barcode.tostring() if len(ref_selected_df_no_duplicates) != 0: ref_selected_df_no_duplicates.loc[ref_selected_df_no_duplicates.barcode_reference_dot_id == brdi,'raw_barcodes'] = barcode #ref_selected_df_no_duplicates.loc[ref_selected_df_no_duplicates.barcode_reference_dot_id == brdi,'decoded_gene_name'] = gene #ref_selected_df_no_duplicates.loc[ref_selected_df_no_duplicates.barcode_reference_dot_id == brdi,'hamming_distance'] = hamming_dist.flatten()[0] #fish_counts.loc[grp.index,'barcode_reference_dot_id'] = brdi #fish_counts.loc[grp.index,'raw_barcodes'] = barcode #dists, index = nn_sklearn.kneighbors(all_barcodes, return_distance=True) all_decoded_dots_list.append(ref_selected_df_no_duplicates) if all_decoded_dots_list: all_decoded_dots_df = pd.concat(all_decoded_dots_list,ignore_index=False) codebook_df = convert_str_codebook(codebook_df,'Code') codebook_array = make_codebook_array(codebook_df,'Code') nn_sklearn = NearestNeighbors(n_neighbors=1, metric="hamming") nn_sklearn.fit(codebook_array) all_barcodes = np.vstack(all_decoded_dots_df.raw_barcodes.map(lambda x: np.frombuffer(x, np.int8)).values) dists_arr, index_arr = nn_sklearn.kneighbors(all_barcodes, return_distance=True) genes=codebook_df.loc[index_arr.reshape(index_arr.shape[0]),'Gene'].tolist() all_decoded_dots_df.loc[:,'decoded_genes'] = genes all_decoded_dots_df.loc[:,'hamming_distance'] = dists_arr all_decoded_dots_df.loc[:,'number_positive_bits'] = all_barcodes.sum(axis=1) all_decoded_dots_df['barcodes_extraction_resolution'] = barcodes_extraction_resolution else: all_decoded_dots_df = pd.DataFrame(columns = registered_counts_df.columns) all_decoded_dots_df['decoded_genes'] = np.nan all_decoded_dots_df['hamming_distance'] = np.nan all_decoded_dots_df['number_positive_bits'] = np.nan all_decoded_dots_df['barcode_reference_dot_id'] = np.nan all_decoded_dots_df['raw_barcodes'] = np.nan all_decoded_dots_df['barcodes_extraction_resolution'] = barcodes_extraction_resolution # Save barcoded_round and all_decoded_dots_df return barcoded_round, all_decoded_dots_df # TODO Remove all the functions below ######## ------------------------------------------------------------------- class extract_barcodes_NN(): """ Class used to extract the barcodes from the registered counts using nearest neighbour Parameters: ----------- counts: pandas.DataFrame pandas file with the fov counts after registration analysis_parameters: dict parameters for data processing experiment_config: Dict dictionary with the experimental data codebook_df: pandas.DataFrame pandas file with the codebook used to deconvolve the barcode NB: if there is a problem with the registration the barcode assigned will be 0*barcode_length """ def __init__(self, counts, analysis_parameters:Dict,experiment_config:Dict,codebook_df,file_tags,status:str): self.barcodes_extraction_resolution = analysis_parameters['BarcodesExtractionResolution'] self.RegistrationMinMatchingBeads = analysis_parameters['RegistrationMinMatchingBeads'] self.barcode_length = experiment_config['Barcode_length'] self.counts = counts self.logger = selected_logger() self.codebook_df = codebook_df self.file_tags = file_tags self.status = status self.registration_errors = Registration_errors() @staticmethod def barcode_nn(counts_df, ref_round_number, barcodes_extraction_resolution): column_names = list(counts_df.columns.values) column_names = column_names.append('barcode_reference_dot_id') barcoded_df = pd.DataFrame(columns=column_names) reference_array = counts_df.loc[counts_df.round_num == ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() reference_round_df = counts_df.loc[counts_df.round_num == ref_round_number,:].reset_index(drop=True) # Step one (all dots not in round 1) coords_compare = counts_df.loc[counts_df.round_num != ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() compare_df = counts_df.loc[counts_df.round_num != ref_round_number,:].reset_index(drop=True) if (reference_array.shape[0] >0) and (coords_compare.shape[0] >0): # initialize network nn = NearestNeighbors(n_neighbors=1, metric="euclidean") nn.fit(reference_array) # Get the nn dists, indices = nn.kneighbors(coords_compare, return_distance=True) # select only the nn that are below barcodes_extraction_resolution distance idx_selected_coords_compare = np.where(dists <= barcodes_extraction_resolution)[0] compare_selected_df = compare_df.loc[idx_selected_coords_compare,:] compare_selected_df['barcode_reference_dot_id'] = np.nan # ref_idx = indices[idx_selected_coords_compare] # compare_selected_df.loc[compare_selected_df.index.isin(idx_selected_coords_compare),'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] for idx in idx_selected_coords_compare: ref_idx = indices[idx] compare_selected_df.loc[idx,'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] reference_round_df['barcode_reference_dot_id'] = reference_round_df.dot_id barcoded_df = barcoded_df.append([compare_selected_df, reference_round_df], ignore_index=True) compare_df = compare_df.drop(compare_selected_df.index) compare_df = compare_df.reset_index(drop=True) return compare_df, barcoded_df @staticmethod def convert_str_codebook(codebook_df,column_name): codebook_df[column_name] = codebook_df[column_name].map(lambda x: np.frombuffer(x, np.int8)) return codebook_df @staticmethod def make_codebook_array(codebook_df,column_name): codebook_array = np.zeros((len(codebook_df[column_name]),codebook_df[column_name][0].shape[0])) for idx, el in enumerate(codebook_df[column_name]): row = codebook_df[column_name][idx] row = row[np.newaxis,:] codebook_array[idx,:] = row return codebook_array def run_extraction(self): data_models = Output_models() registration_errors = Registration_errors() fov = self.file_tags['fov'] channel = self.file_tags['channel'] self.barcoded_fov_df = data_models.barcode_analysis_df self.barcoded_fov_df.attrs = self.counts.attrs if self.status == 'FAILED': error = self.counts['min_number_matching_dots_registration'].values[0] round_num = self.counts['round_num'].values[0] self.barcoded_fov_df = self.barcoded_fov_df.append({'min_number_matching_dots_registration':error, 'fov_num':int(fov),'dot_channel':channel,'round_num': round_num },ignore_index=True) elif self.status == 'SUCCESS': if (min(self.counts.loc[:,'min_number_matching_dots_registration']) < self.RegistrationMinMatchingBeads): round_num = self.counts['round_num'].values[0] self.barcoded_fov_df = self.barcoded_fov_df.append({'min_number_matching_dots_registration':registration_errors.registration_below_extraction_resolution, 'fov_num':int(fov),'dot_channel':channel,'round_num': round_num},ignore_index=True) self.status = 'FAILED' else: hd_2 = 2 / self.barcode_length hd_3 = 3 / self.barcode_length # barcode_length = len(self.counts['round_num'].unique()) rounds = np.arange(1,self.barcode_length+1) self.codebook_df = self.convert_str_codebook(self.codebook_df,'Code') codebook_array = self.make_codebook_array(self.codebook_df,'Code') nn_sklearn = NearestNeighbors(n_neighbors=1, metric="hamming") nn_sklearn.fit(codebook_array) # remove points with np.NAN # self.counts = self.counts.dropna() for round_num in rounds: compare_df, barcoded_df = self.barcode_nn(self.counts, round_num, self.barcodes_extraction_resolution) self.barcoded_fov_df = self.barcoded_fov_df.append(barcoded_df, ignore_index=True) self.counts = compare_df self.counts['barcode_reference_dot_id'] = self.counts.dot_id self.barcoded_fov_df = self.barcoded_fov_df.append(self.counts, ignore_index=True) self.barcoded_fov_df['barcodes_extraction_resolution'] = self.barcodes_extraction_resolution self.grpd = self.barcoded_fov_df.groupby('barcode_reference_dot_id') # self.all_barcodes = {} # for name, group in self.grpd: # rounds_num = group.round_num.values # dot_ids = group.dot_id.values # rounds_num = rounds_num.astype(int) # barcode = np.zeros([self.barcode_length],dtype=np.int8) # barcode[(rounds_num-1)] += 1 # dists_arr, index_arr = nn_sklearn.kneighbors(barcode.reshape(1, -1), return_distance=True) # gene=self.codebook_df.loc[index_arr.reshape(index_arr.shape[0]),'Gene'].tolist()[0] # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'raw_barcodes'] = barcode.tostring() # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'all_Hdistance_genes'] = gene # if dists_arr[0][0] == 0: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'0Hdistance_genes'] = gene # elif dists_arr[0][0] < hd_2: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'below2Hdistance_genes'] = gene # elif dists_arr[0][0] < hd_3: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'below3Hdistance_genes'] = gene barcode_reference_dot_id_list = [] num_unique_dots = np.unique(self.barcoded_fov_df.loc[:,'barcode_reference_dot_id']).shape[0] # There are no dots is the df if num_unique_dots > 0: all_barcodes = np.zeros([num_unique_dots,self.barcode_length],dtype=np.int8) for idx, (name, group) in enumerate(self.grpd): barcode_reference_dot_id_list.append(name) barcode = np.zeros([self.barcode_length],dtype=np.int8) rounds_num = group.round_num.values rounds_num = rounds_num.astype(int) barcode[(rounds_num-1)] += 1 all_barcodes[idx,:] = barcode dists_arr, index_arr = nn_sklearn.kneighbors(all_barcodes, return_distance=True) genes=self.codebook_df.loc[index_arr.reshape(index_arr.shape[0]),'Gene'].tolist() for idx,name in enumerate(barcode_reference_dot_id_list): barcode = all_barcodes[idx,:] gene = genes[idx] hd = dists_arr[idx][0] cols = ['raw_barcodes','all_Hdistance_genes','number_positive_bits','hamming_distance'] # will add last column depending on hd writing_data = [barcode.tostring(),gene,barcode.sum(),hd] if hd == 0: cols = cols + ['zeroHdistance_genes'] writing_data = writing_data + [gene] if hd < hd_2: cols = cols + ['below2Hdistance_genes'] writing_data = writing_data + [gene] if hd < hd_3: cols = cols + ['below3Hdistance_genes'] writing_data = writing_data + [gene] self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,cols] = writing_data # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'raw_barcodes'] = barcode.tostring() # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'all_Hdistance_genes'] = gene # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'number_positive_bits'] = barcode.sum() # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'hamming_distance'] = hd # if hd == 0: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'0Hdistance_genes'] = gene # elif hd < hd_2: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'below2Hdistance_genes'] = gene # elif hd < hd_3: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'below3Hdistance_genes'] = gene fname = self.file_tags['experiment_fpath'] / 'tmp' / 'registered_counts' / (self.file_tags['experiment_name'] + '_' + self.file_tags['channel'] + '_decoded_fov_' + self.file_tags['fov'] + '.parquet') self.barcoded_fov_df.to_parquet(fname,index=False) class extract_barcodes_NN_test(): """ Class used to extract the barcodes from the registered counts using nearest neighbour Parameters: ----------- counts: pandas.DataFrame pandas file with the fov counts after registration analysis_parameters: dict parameters for data processing experiment_config: Dict dictionary with the experimental data codebook_df: pandas.DataFrame pandas file with the codebook used to deconvolve the barcode NB: if there is a problem with the registration the barcode assigned will be 0*barcode_length """ def __init__(self, fov, channel, counts, analysis_parameters:Dict,experiment_config:Dict,codebook_df,status:str): self.barcodes_extraction_resolution = analysis_parameters['BarcodesExtractionResolution'] self.RegistrationMinMatchingBeads = analysis_parameters['RegistrationMinMatchingBeads'] self.barcode_length = experiment_config['Barcode_length'] self.fov = fov self.channel = channel self.counts = counts self.logger = selected_logger() self.codebook_df = codebook_df self.status = status self.registration_errors = Registration_errors() @staticmethod def barcode_nn(counts_df, ref_round_number, barcodes_extraction_resolution): column_names = list(counts_df.columns.values) column_names = column_names.append('barcode_reference_dot_id') barcoded_df = pd.DataFrame(columns=column_names) reference_array = counts_df.loc[counts_df.round_num == ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() reference_round_df = counts_df.loc[counts_df.round_num == ref_round_number,:].reset_index(drop=True) # Step one (all dots not in round 1) coords_compare = counts_df.loc[counts_df.round_num != ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() compare_df = counts_df.loc[counts_df.round_num != ref_round_number,:].reset_index(drop=True) if (reference_array.shape[0] >0) and (coords_compare.shape[0] >0): # initialize network nn = NearestNeighbors(n_neighbors=1, metric="euclidean") nn.fit(reference_array) # Get the nn dists, indices = nn.kneighbors(coords_compare, return_distance=True) # select only the nn that are below barcodes_extraction_resolution distance idx_selected_coords_compare = np.where(dists <= barcodes_extraction_resolution)[0] compare_selected_df = compare_df.loc[idx_selected_coords_compare,:] compare_selected_df['barcode_reference_dot_id'] = np.nan # ref_idx = indices[idx_selected_coords_compare] # compare_selected_df.loc[compare_selected_df.index.isin(idx_selected_coords_compare),'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] for idx in idx_selected_coords_compare: ref_idx = indices[idx] compare_selected_df.loc[idx,'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] reference_round_df['barcode_reference_dot_id'] = reference_round_df.dot_id barcoded_df = barcoded_df.append([compare_selected_df, reference_round_df], ignore_index=True) compare_df = compare_df.drop(compare_selected_df.index) compare_df = compare_df.reset_index(drop=True) return compare_df, barcoded_df @staticmethod def convert_str_codebook(codebook_df,column_name): codebook_df[column_name] = codebook_df[column_name].map(lambda x: np.frombuffer(x, np.int8)) return codebook_df @staticmethod def make_codebook_array(codebook_df,column_name): codebook_array = np.zeros((len(codebook_df[column_name]),codebook_df[column_name][0].shape[0])) for idx, el in enumerate(codebook_df[column_name]): row = codebook_df[column_name][idx] row = row[np.newaxis,:] codebook_array[idx,:] = row return codebook_array def run_extraction(self): data_models = Output_models() registration_errors = Registration_errors() self.barcoded_fov_df = data_models.barcode_analysis_df self.barcoded_fov_df.attrs = self.counts.attrs if self.status == 'FAILED': error = self.counts['min_number_matching_dots_registration'].values[0] round_num = self.counts['round_num'].values[0] self.barcoded_fov_df = self.barcoded_fov_df.append({'min_number_matching_dots_registration':error, 'fov_num':int(self.fov),'dot_channel':self.channel,'round_num': round_num },ignore_index=True) elif self.status == 'SUCCESS': if (min(self.counts.loc[:,'min_number_matching_dots_registration']) < self.RegistrationMinMatchingBeads): round_num = self.counts['round_num'].values[0] self.barcoded_fov_df = self.barcoded_fov_df.append({'min_number_matching_dots_registration':registration_errors.registration_below_extraction_resolution, 'fov_num':int(self.fov),'dot_channel':self.channel,'round_num': round_num},ignore_index=True) self.status = 'FAILED' else: hd_2 = 2 / self.barcode_length hd_3 = 3 / self.barcode_length # barcode_length = len(self.counts['round_num'].unique()) rounds = np.arange(1,self.barcode_length+1) self.codebook_df = self.convert_str_codebook(self.codebook_df,'Code') codebook_array = self.make_codebook_array(self.codebook_df,'Code') nn_sklearn = NearestNeighbors(n_neighbors=1, metric="hamming") nn_sklearn.fit(codebook_array) # remove points with np.NAN # self.counts = self.counts.dropna() for round_num in rounds: compare_df, barcoded_df = self.barcode_nn(self.counts, round_num, self.barcodes_extraction_resolution) self.barcoded_fov_df = self.barcoded_fov_df.append(barcoded_df, ignore_index=True) self.counts = compare_df self.counts['barcode_reference_dot_id'] = self.counts.dot_id self.barcoded_fov_df = self.barcoded_fov_df.append(self.counts, ignore_index=True) self.barcoded_fov_df['barcodes_extraction_resolution'] = self.barcodes_extraction_resolution self.grpd = self.barcoded_fov_df.groupby('barcode_reference_dot_id') barcode_reference_dot_id_list = [] num_unique_dots = np.unique(self.barcoded_fov_df.loc[:,'barcode_reference_dot_id']).shape[0] # There are no dots is the df if num_unique_dots > 0: all_barcodes = np.zeros([num_unique_dots,self.barcode_length],dtype=np.int8) for idx, (name, group) in enumerate(self.grpd): barcode_reference_dot_id_list.append(name) barcode = np.zeros([self.barcode_length],dtype=np.int8) rounds_num = group.round_num.values rounds_num = rounds_num.astype(int) barcode[(rounds_num-1)] += 1 all_barcodes[idx,:] = barcode dists_arr, index_arr = nn_sklearn.kneighbors(all_barcodes, return_distance=True) genes=self.codebook_df.loc[index_arr.reshape(index_arr.shape[0]),'Gene'].tolist() for idx,name in enumerate(barcode_reference_dot_id_list): barcode = all_barcodes[idx,:] gene = genes[idx] hd = dists_arr[idx][0] cols = ['raw_barcodes','all_Hdistance_genes','number_positive_bits','hamming_distance'] # will add last column depending on hd writing_data = [barcode.tostring(),gene,barcode.sum(),hd] if
# HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json', 'application/x-www-form-urlencoded', 'application/xml', 'text/xml']) # Authentication setting auth_settings = ['access_token'] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='InlineResponse2001', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), collection_formats=collection_formats) def portals_id_designs_nk_commenters_delete(self, id, nk, **kwargs): """ Deletes all commenters of this model. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_nk_commenters_delete(id, nk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str nk: Foreign key for designs. (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.portals_id_designs_nk_commenters_delete_with_http_info(id, nk, **kwargs) else: (data) = self.portals_id_designs_nk_commenters_delete_with_http_info(id, nk, **kwargs) return data def portals_id_designs_nk_commenters_delete_with_http_info(self, id, nk, **kwargs): """ Deletes all commenters of this model. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_nk_commenters_delete_with_http_info(id, nk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str nk: Foreign key for designs. (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'nk'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method portals_id_designs_nk_commenters_delete" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `portals_id_designs_nk_commenters_delete`") # verify the required parameter 'nk' is set if ('nk' not in params) or (params['nk'] is None): raise ValueError("Missing the required parameter `nk` when calling `portals_id_designs_nk_commenters_delete`") collection_formats = {} resource_path = '/Portals/{id}/designs/{nk}/commenters'.replace('{format}', 'json') path_params = {} if 'id' in params: path_params['id'] = params['id'] if 'nk' in params: path_params['nk'] = params['nk'] query_params = {} header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/xml', 'text/xml', 'application/javascript', 'text/javascript']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json', 'application/x-www-form-urlencoded', 'application/xml', 'text/xml']) # Authentication setting auth_settings = ['access_token'] return self.api_client.call_api(resource_path, 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), collection_formats=collection_formats) def portals_id_designs_nk_commenters_fk_delete(self, id, nk, fk, **kwargs): """ Delete a related item by id for commenters. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_nk_commenters_fk_delete(id, nk, fk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str nk: Foreign key for designs. (required) :param str fk: Foreign key for commenters (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.portals_id_designs_nk_commenters_fk_delete_with_http_info(id, nk, fk, **kwargs) else: (data) = self.portals_id_designs_nk_commenters_fk_delete_with_http_info(id, nk, fk, **kwargs) return data def portals_id_designs_nk_commenters_fk_delete_with_http_info(self, id, nk, fk, **kwargs): """ Delete a related item by id for commenters. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_nk_commenters_fk_delete_with_http_info(id, nk, fk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str nk: Foreign key for designs. (required) :param str fk: Foreign key for commenters (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'nk', 'fk'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method portals_id_designs_nk_commenters_fk_delete" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `portals_id_designs_nk_commenters_fk_delete`") # verify the required parameter 'nk' is set if ('nk' not in params) or (params['nk'] is None): raise ValueError("Missing the required parameter `nk` when calling `portals_id_designs_nk_commenters_fk_delete`") # verify the required parameter 'fk' is set if ('fk' not in params) or (params['fk'] is None): raise ValueError("Missing the required parameter `fk` when calling `portals_id_designs_nk_commenters_fk_delete`") collection_formats = {} resource_path = '/Portals/{id}/designs/{nk}/commenters/{fk}'.replace('{format}', 'json') path_params = {} if 'id' in params: path_params['id'] = params['id'] if 'nk' in params: path_params['nk'] = params['nk'] if 'fk' in params: path_params['fk'] = params['fk'] query_params = {} header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/xml', 'text/xml', 'application/javascript', 'text/javascript']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json', 'application/x-www-form-urlencoded', 'application/xml', 'text/xml']) # Authentication setting auth_settings = ['access_token'] return self.api_client.call_api(resource_path, 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), collection_formats=collection_formats) def portals_id_designs_nk_commenters_fk_get(self, id, nk, fk, **kwargs): """ Find a related item by id for commenters. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_nk_commenters_fk_get(id, nk, fk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str nk: Foreign key for designs. (required) :param str fk: Foreign key for commenters (required) :return: TeamMember If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.portals_id_designs_nk_commenters_fk_get_with_http_info(id, nk, fk, **kwargs) else: (data) = self.portals_id_designs_nk_commenters_fk_get_with_http_info(id, nk, fk, **kwargs) return data def portals_id_designs_nk_commenters_fk_get_with_http_info(self, id, nk, fk, **kwargs): """ Find a related item by id for commenters. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_nk_commenters_fk_get_with_http_info(id, nk, fk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str nk: Foreign key for designs. (required) :param str fk: Foreign key for commenters (required) :return: TeamMember If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'nk', 'fk'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method portals_id_designs_nk_commenters_fk_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `portals_id_designs_nk_commenters_fk_get`") # verify the required parameter 'nk' is set if ('nk' not in params) or (params['nk'] is None): raise ValueError("Missing the required parameter `nk` when calling `portals_id_designs_nk_commenters_fk_get`") # verify the required parameter 'fk' is set if ('fk' not in params) or (params['fk'] is None): raise ValueError("Missing the required parameter `fk` when calling `portals_id_designs_nk_commenters_fk_get`") collection_formats = {} resource_path = '/Portals/{id}/designs/{nk}/commenters/{fk}'.replace('{format}', 'json') path_params = {} if 'id' in params: path_params['id'] = params['id'] if 'nk' in params: path_params['nk'] = params['nk'] if 'fk' in params: path_params['fk'] = params['fk'] query_params = {} header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/xml', 'text/xml', 'application/javascript', 'text/javascript']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json', 'application/x-www-form-urlencoded', 'application/xml', 'text/xml']) # Authentication setting auth_settings = ['access_token'] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='TeamMember', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), collection_formats=collection_formats) def portals_id_designs_nk_commenters_fk_put(self, id, nk, fk, **kwargs): """ Update a related
= ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) all_structs.append(set_silent_user_info_result) set_silent_user_info_result.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'e', [gen_exp, None], None, ), # 1 ) class get_input_history_args(object): """ Attributes: - open_id - search_key """ def __init__(self, open_id=None, search_key=None,): self.open_id = open_id self.search_key = search_key def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.open_id = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.search_key = vichele_stay_alone() self.search_key.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('get_input_history_args') if self.open_id is not None: oprot.writeFieldBegin('open_id', TType.STRING, 1) oprot.writeString(self.open_id.encode('utf-8') if sys.version_info[0] == 2 else self.open_id) oprot.writeFieldEnd() if self.search_key is not None: oprot.writeFieldBegin('search_key', TType.STRUCT, 2) self.search_key.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) all_structs.append(get_input_history_args) get_input_history_args.thrift_spec = ( None, # 0 (1, TType.STRING, 'open_id', 'UTF8', None, ), # 1 (2, TType.STRUCT, 'search_key', [vichele_stay_alone, None], None, ), # 2 ) class get_input_history_result(object): """ Attributes: - success - e """ def __init__(self, success=None, e=None,): self.success = success self.e = e def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.LIST: self.success = [] (_etype276, _size273) = iprot.readListBegin() for _i277 in range(_size273): _elem278 = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() self.success.append(_elem278) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.e = gen_exp.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('get_input_history_result') if self.success is not None: oprot.writeFieldBegin('success', TType.LIST, 0) oprot.writeListBegin(TType.STRING, len(self.success)) for iter279 in self.success: oprot.writeString(iter279.encode('utf-8') if sys.version_info[0] == 2 else iter279) oprot.writeListEnd() oprot.writeFieldEnd() if self.e is not None: oprot.writeFieldBegin('e', TType.STRUCT, 1) self.e.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) all_structs.append(get_input_history_result) get_input_history_result.thrift_spec = ( (0, TType.LIST, 'success', (TType.STRING, 'UTF8', False), None, ), # 0 (1, TType.STRUCT, 'e', [gen_exp, None], None, ), # 1 ) class get_company_vichele_info_args(object): """ Attributes: - ssid - anchor - status - enter_date - stuff_name - supplier_name - vichele_number """ def __init__(self, ssid=None, anchor=None, status=None, enter_date=None, stuff_name=None, supplier_name=None, vichele_number=None,): self.ssid = ssid self.anchor = anchor self.status = status self.enter_date = enter_date self.stuff_name = stuff_name self.supplier_name = supplier_name self.vichele_number = vichele_number def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.ssid = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I64: self.anchor = iprot.readI64() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.I64: self.status = iprot.readI64() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRING: self.enter_date = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.STRING: self.stuff_name = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.STRING: self.supplier_name = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 7: if ftype == TType.STRING: self.vichele_number = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('get_company_vichele_info_args') if self.ssid is not None: oprot.writeFieldBegin('ssid', TType.STRING, 1) oprot.writeString(self.ssid.encode('utf-8') if sys.version_info[0] == 2 else self.ssid) oprot.writeFieldEnd() if self.anchor is not None: oprot.writeFieldBegin('anchor', TType.I64, 2) oprot.writeI64(self.anchor) oprot.writeFieldEnd() if self.status is not None: oprot.writeFieldBegin('status', TType.I64, 3) oprot.writeI64(self.status) oprot.writeFieldEnd() if self.enter_date is not None: oprot.writeFieldBegin('enter_date', TType.STRING, 4) oprot.writeString(self.enter_date.encode('utf-8') if sys.version_info[0] == 2 else self.enter_date) oprot.writeFieldEnd() if self.stuff_name is not None: oprot.writeFieldBegin('stuff_name', TType.STRING, 5) oprot.writeString(self.stuff_name.encode('utf-8') if sys.version_info[0] == 2 else self.stuff_name) oprot.writeFieldEnd() if self.supplier_name is not None: oprot.writeFieldBegin('supplier_name', TType.STRING, 6) oprot.writeString(self.supplier_name.encode('utf-8') if sys.version_info[0] == 2 else self.supplier_name) oprot.writeFieldEnd() if self.vichele_number is not None: oprot.writeFieldBegin('vichele_number', TType.STRING, 7) oprot.writeString(self.vichele_number.encode('utf-8') if sys.version_info[0] == 2 else self.vichele_number) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) all_structs.append(get_company_vichele_info_args) get_company_vichele_info_args.thrift_spec = ( None, # 0 (1, TType.STRING, 'ssid', 'UTF8', None, ), # 1 (2, TType.I64, 'anchor', None, None, ), # 2 (3, TType.I64, 'status', None, None, ), # 3 (4, TType.STRING, 'enter_date', 'UTF8', None, ), # 4 (5, TType.STRING, 'stuff_name', 'UTF8', None, ), # 5 (6, TType.STRING, 'supplier_name', 'UTF8', None, ), # 6 (7, TType.STRING, 'vichele_number', 'UTF8', None, ), # 7 ) class get_company_vichele_info_result(object): """ Attributes: - success - e """ def __init__(self, success=None, e=None,): self.success = success self.e = e def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.LIST: self.success = [] (_etype283, _size280) = iprot.readListBegin() for _i284 in range(_size280): _elem285 = vichele_stay_alone() _elem285.read(iprot) self.success.append(_elem285) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.e = gen_exp.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('get_company_vichele_info_result') if self.success is not None: oprot.writeFieldBegin('success', TType.LIST, 0) oprot.writeListBegin(TType.STRUCT, len(self.success)) for iter286 in self.success: iter286.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.e is not None: oprot.writeFieldBegin('e', TType.STRUCT, 1) self.e.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) all_structs.append(get_company_vichele_info_result) get_company_vichele_info_result.thrift_spec = ( (0, TType.LIST, 'success', (TType.STRUCT, [vichele_stay_alone, None], False), None, ), # 0 (1, TType.STRUCT, 'e', [gen_exp, None], None, ), # 1 ) class confirm_vichele_args(object): """ Attributes: - ssid - info - company_for_select - all_select - enter_date - stuff_name - supplier_name """ def __init__(self, ssid=None, info=None, company_for_select=None, all_select=None, enter_date=None, stuff_name=None, supplier_name=None,): self.ssid = ssid self.info = info self.company_for_select = company_for_select self.all_select = all_select self.enter_date = enter_date self.stuff_name = stuff_name self.supplier_name = supplier_name def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.ssid = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.LIST: self.info = [] (_etype290, _size287) = iprot.readListBegin() for _i291 in range(_size287): _elem292 = vichele_stay_alone() _elem292.read(iprot) self.info.append(_elem292) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.LIST: self.company_for_select = [] (_etype296, _size293) = iprot.readListBegin() for _i297 in range(_size293): _elem298 = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() self.company_for_select.append(_elem298) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.BOOL: self.all_select = iprot.readBool() else: iprot.skip(ftype) elif fid == 5: if
import os import requests MB_PASSWORD = os.getenv("<PASSWORD>") MB_USERNAME = os.getenv("MB_USERNAME") MB_DOMAIN = os.getenv("MB_DOMAIN") MB_BASIC_AUTH_USERNAME = os.getenv("MB_BASIC_AUTH_USERNAME") MB_BASIC_AUTH_PASSWORD = os.getenv("MB_BASIC_AUTH_PASSWORD") class Metabase_API(): def __init__(self, domain=MB_DOMAIN, email=MB_USERNAME, password=<PASSWORD>, basic_auth=(MB_BASIC_AUTH_USERNAME, MB_BASIC_AUTH_PASSWORD)): self.domain = domain.rstrip('/') self.email = email self.password = password self.session_id = None self.header = None self.auth = basic_auth if any(basic_auth) else None self.authenticate() def authenticate(self): """Get a Session ID""" conn_header = { 'username':self.email, 'password':<PASSWORD> } res = requests.post(self.domain + '/api/session', json=conn_header, auth=self.auth) if not res.ok: raise Exception(res) self.session_id = res.json()['id'] self.header = {'X-Metabase-Session':self.session_id} def validate_session(self): """Get a new session ID if the previous one has expired""" res = requests.get(self.domain + '/api/user/current', headers=self.header, auth=self.auth) if res.ok: # 200 return True elif res.status_code == 401: # unauthorized return self.authenticate() else: raise Exception(res) ################################################################## ######################### REST Methods ########################### ################################################################## def get(self, endpoint, *args, **kwargs): self.validate_session() res = requests.get(self.domain + endpoint, headers=self.header, **kwargs, auth=self.auth) if 'raw' in args: return res else: return res.json() if res.ok else False def post(self, endpoint, *args, **kwargs): self.validate_session() res = requests.post(self.domain + endpoint, headers=self.header, **kwargs, auth=self.auth) if 'raw' in args: return res else: return res.json() if res.ok else False def put(self, endpoint, *args, **kwargs): """Used for updating objects (cards, dashboards, ...)""" self.validate_session() res = requests.put(self.domain + endpoint, headers=self.header, **kwargs, auth=self.auth) if 'raw' in args: return res else: return res.status_code def delete(self, endpoint, *args, **kwargs): self.validate_session() res = requests.delete(self.domain + endpoint, headers=self.header, **kwargs, auth=self.auth) if 'raw' in args: return res else: return res.status_code ############################################################### ##################### Helper Functions ######################## ############################################################### def get_item_info(self, item_type , item_id=None, item_name=None , collection_id=None, collection_name=None , params=None): ''' Return the info for the given item. Use 'params' for providing arguments. E.g. to include tables in the result for databases, use: params={'include':'tables'} ''' assert item_type in ['database', 'table', 'card', 'collection', 'dashboard', 'pulse', 'segment'] if params: assert type(params) == dict if not item_id: if not item_name: raise ValueError('Either the name or id of the {} must be provided.'.format(item_type)) item_id = self.get_item_id(item_type, item_name, collection_id=collection_id, collection_name=collection_name) res = self.get("/api/{}/{}".format(item_type, item_id), params=params) if res: return res else: raise ValueError('There is no {} with the id "{}"'.format(item_type, item_id)) def get_item_name(self, item_type, item_id): assert item_type in ['database', 'table', 'card', 'collection', 'dashboard', 'pulse', 'segment'] res = self.get("/api/{}/{}".format(item_type, item_id)) if res: return res['name'] else: raise ValueError('There is no {} with the id "{}"'.format(item_type, item_id)) def get_item_id(self, item_type, item_name, collection_id=None, collection_name=None, db_id=None, db_name=None, table_id=None): assert item_type in ['database', 'table', 'card', 'collection', 'dashboard', 'pulse', 'segment'] if item_type in ['card', 'dashboard', 'pulse']: if not collection_id: if not collection_name: # Collection name/id is not provided. Searching in all collections item_IDs = [ i['id'] for i in self.get("/api/{}/".format(item_type)) if i['name'] == item_name and i['archived'] == False ] else: collection_id = self.get_item_id('collection', collection_name) if collection_name != 'root' else None item_IDs = [ i['id'] for i in self.get("/api/{}/".format(item_type)) if i['name'] == item_name and i['collection_id'] == collection_id and i['archived'] == False ] else: collection_name = self.get_item_name('collection', collection_id) item_IDs = [ i['id'] for i in self.get("/api/{}/".format(item_type)) if i['name'] == item_name and i['collection_id'] == collection_id and i['archived'] == False ] if len(item_IDs) > 1: if not collection_name: raise ValueError('There is more than one {} with the name "{}".\n\ Provide collection id/name to limit the search space'.format(item_type, item_name)) raise ValueError('There is more than one {} with the name "{}" in the collection "{}"' .format(item_type, item_name, collection_name)) if len(item_IDs) == 0: if not collection_name: raise ValueError('There is no {} with the name "{}"'.format(item_type, item_name)) raise ValueError('There is no item with the name "{}" in the collection "{}"' .format(item_name, collection_name)) return item_IDs[0] if item_type == 'collection': collection_IDs = [ i['id'] for i in self.get("/api/collection/") if i['name'] == item_name ] if len(collection_IDs) > 1: raise ValueError('There is more than one collection with the name "{}"'.format(item_name)) if len(collection_IDs) == 0: raise ValueError('There is no collection with the name "{}"'.format(item_name)) return collection_IDs[0] if item_type == 'database': res = self.get("/api/database/") if type(res) == dict: # in Metabase version *.40.0 the format of the returned result for this endpoint changed res = res['data'] db_IDs = [ i['id'] for i in res if i['name'] == item_name ] if len(db_IDs) > 1: raise ValueError('There is more than one DB with the name "{}"'.format(item_name)) if len(db_IDs) == 0: raise ValueError('There is no DB with the name "{}"'.format(item_name)) return db_IDs[0] if item_type == 'table': tables = self.get("/api/table/") if db_id: table_IDs = [ i['id'] for i in tables if i['name'] == item_name and i['db']['id'] == db_id ] elif db_name: table_IDs = [ i['id'] for i in tables if i['name'] == item_name and i['db']['name'] == db_name ] else: table_IDs = [ i['id'] for i in tables if i['name'] == item_name ] if len(table_IDs) > 1: raise ValueError('There is more than one table with the name {}. Provide db id/name.'.format(item_name)) if len(table_IDs) == 0: raise ValueError('There is no table with the name "{}" (in the provided db, if any)'.format(item_name)) return table_IDs[0] if item_type == 'segment': segment_IDs = [ i['id'] for i in self.get("/api/segment/") if i['name'] == item_name and (not table_id or i['table_id'] == table_id) ] if len(segment_IDs) > 1: raise ValueError('There is more than one segment with the name "{}"'.format(item_name)) if len(segment_IDs) == 0: raise ValueError('There is no segment with the name "{}"'.format(item_name)) return segment_IDs[0] def get_collection_id(self, collection_name): import warnings warnings.warn("The function get_collection_id will be removed in the next version. Use get_item_id function instead.", DeprecationWarning) collection_IDs = [ i['id'] for i in self.get("/api/collection/") if i['name'] == collection_name ] if len(collection_IDs) > 1: raise ValueError('There is more than one collection with the name "{}"'.format(collection_name)) if len(collection_IDs) == 0: raise ValueError('There is no collection with the name "{}"'.format(collection_name)) return collection_IDs[0] def get_db_id(self, db_name): import warnings warnings.warn("The function get_db_id will be removed in the next version. Use get_item_id function instead.", DeprecationWarning) res = self.get("/api/database/") if type(res) == dict: # in Metabase version *.40.0 the format of the returned result for this endpoint changed res = res['data'] db_IDs = [ i['id'] for i in res if i['name'] == db_name ] if len(db_IDs) > 1: raise ValueError('There is more than one DB with the name "{}"'.format(db_name)) if len(db_IDs) == 0: raise ValueError('There is no DB with the name "{}"'.format(db_name)) return db_IDs[0] def get_table_id(self, table_name, db_name=None, db_id=None): import warnings warnings.warn("The function get_table_id will be removed in the next version. Use get_item_id function instead.", DeprecationWarning) tables = self.get("/api/table/") if db_id: table_IDs = [ i['id'] for i in tables if i['name'] == table_name and i['db']['id'] == db_id ] elif db_name: table_IDs = [ i['id'] for i in tables if i['name'] == table_name and i['db']['name'] == db_name ] else: table_IDs = [ i['id'] for i in tables if i['name'] == table_name ] if len(table_IDs) > 1: raise ValueError('There is more than one table with the name {}. Provide db id/name.'.format(table_name)) if len(table_IDs) == 0: raise ValueError('There is no table with the name "{}" (in the provided db, if any)'.format(table_name)) return table_IDs[0] def get_segment_id(self, segment_name, table_id=None): import warnings warnings.warn("The function get_segment_id will be removed in the next version. Use get_item_id function instead.", DeprecationWarning) segment_IDs = [ i['id'] for i in self.get("/api/segment/") if i['name'] == segment_name and (not table_id or i['table_id'] == table_id) ] if len(segment_IDs) > 1: raise ValueError('There is more than one segment with the name "{}"'.format(segment_name)) if len(segment_IDs) == 0: raise ValueError('There is no segment with the name "{}"'.format(segment_name)) return segment_IDs[0] def get_db_id_from_table_id(self, table_id): tables = [ i['db_id'] for i in self.get("/api/table/") if i['id'] == table_id ] if len(tables) == 0: raise ValueError('There is no DB containing the table with the ID "{}"'.format(table_id)) return tables[0] def get_db_info(self, db_name=None, db_id=None, params=None): ''' Return Database info. Use 'params' for providing arguments. For example to include tables in the result, use: params={'include':'tables'} ''' import warnings warnings.warn("The function get_db_info will be removed in the next version. Use get_item_info function instead.", DeprecationWarning) if params: assert type(params) == dict if not db_id: if not db_name: raise ValueError('Either the name or id of the DB needs to be provided.') db_id = self.get_item_id('database', db_name)
""" FindRepoTask -------------------------------------------------- Run tool to find repos that should be taken down 1. Tool should group repos by owner, if one owner has multiple repos in violation 2. Newly found repos are tagged as “new” """ from .BaseTask import BaseTask from takedown.client.GitHub import GitHubClient import sys import requests import datetime class FindRepoTask(BaseTask): def __init__(self, **config): super().__init__(**config) self.__dict__.update(config) self.client = GitHubClient() self.__token = "" self.__is_authenticated = False self.search_query = "" self.previous_records = None # save rate limit and bandwidth with GitHub requests, cache user_info self.cached_user_info = {} def prepare(self, token: str, search_query: str, previous_records: dict = None): """ prepare the task :param token: input github token :param search_query: input search_query :param previous_records: previous records of searched repos :return: self instance """ self.client.authenticate(token) self.__token = token self.__is_authenticated = True self.search_query = search_query self.previous_records = previous_records return self def __pre_check__(self, ignore_warning: bool = False): """ run before execute :return: false if check failed """ if self.search_query == "": return False if len(self.search_query) < 5 and not ignore_warning: confirm = None while not confirm: confirm = input("The length of search query `{}` is too short that will produce massive search results." " Are you sure to proceed? [y/n]\n".format(self.search_query)) if confirm.lower() not in ['y', 'n']: confirm = None print("Please enter 'y' or 'n': ") elif confirm.lower() == 'n': return False if not self.__is_authenticated: print("No token provided for GitHub client.", file=sys.stderr) return False return True def execute_search_by_code(self, ignore_warning: bool = False, chain: bool = False): """ search by code :param chain: true if used in multiple targets :param ignore_warning: :return: """ # pre-check if not self.__pre_check__(ignore_warning): return None # try to fire one request print("Start searching for code...") first_result = self.client.search(self.search_query, "code", ) if not first_result: print("An error occurs, abort program", file=sys.stderr) return None else: print("Results retrieved from GitHub. Page: 1.") if first_result.total > 500 and not ignore_warning: confirm = None while not confirm: confirm = input("The number of search results is {}. It is so large that you may narrow search queries." " The max retrievable number is 1000. Are you sure to proceed? [y/n]\n" .format(first_result.total)) if confirm.lower() not in ['y', 'n']: confirm = None print("Please enter 'y' or 'n': ") elif confirm.lower() == 'n': return None fields_filtered_results = [] code_search_result = first_result total = first_result.total page = 2 # page 1 has been requested while total > (page - 1) * 100 and page <= 10: fields_filtered_results = [*code_search_result.generate_list([ "owner__url", "repo__name", "repo__html_url", ]), *fields_filtered_results] code_search_result = self.client.search(self.search_query, "code", page=page) if not code_search_result: print("Error in search with GitHub rest APIs", file=sys.stderr) return None else: print("Results retrieved from GitHub. Page: {}.".format(page)) page += 1 fields_filtered_results = [*code_search_result.generate_list([ "owner__url", "owner__html_url", "repo__name", "repo__html_url", ]), *fields_filtered_results] print("Retrieving additional information of users...") processed_results = [] # cache repeated user info to save request rate cached_user_info = self.cached_user_info # cache repo html url to ensure each result is unique after processing repo_set = set() # process result by adding user info for result in fields_filtered_results: if result["repo__html_url"] not in repo_set: res = cached_user_info.get(result["owner__url"], None) if not res: res = requests.get(result["owner__url"], headers={ 'user-agent': 'python', 'Authorization': "token {}".format(self.__token) }).json() cached_user_info[result["owner__url"]] = res processed_results.append({ **result, "owner__email": res.get("email", None), "owner__name": res.get("name", None), "owner__username": res.get("login", None), "owner__html_url": res.get("html_url", None) }) repo_set.add(result["repo__html_url"]) print("Processing results...") final_result_dict = {} for result in processed_results: if result["owner__username"] in final_result_dict: repos = final_result_dict[result["owner__username"]]["repos"] # if repo already exist if result["repo__name"] in repos: # update history repos[result["repo__name"]]["history"].append( { "date": repos[result["repo__name"]]["date"], "status": repos[result["repo__name"]]["status"] } ) repos[result["repo__name"]]["status"] = "Redetected" repos[result["repo__name"]]["date"] = str(datetime.datetime.now()) else: repos[result["repo__name"]] = { "repo__name": result["repo__name"], "repo__html_url": result["repo__html_url"], "status": "New", "date": str(datetime.datetime.now()), "history": [] } elif self.previous_records and result["owner__username"] in self.previous_records: previous_record = self.previous_records[result["owner__username"]] repos = previous_record["repos"] # if repo already exist if result["repo__name"] in repos: repos[result["repo__name"]]["history"].append( { "date": repos[result["repo__name"]]["date"], "status": repos[result["repo__name"]]["status"] } ) repos[result["repo__name"]]["status"] = "Redetected" repos[result["repo__name"]]["date"] = str(datetime.datetime.now()) else: repos[result["repo__name"]] = { "repo__name": result["repo__name"], "repo__html_url": result["repo__html_url"], "status": "New", "date": str(datetime.datetime.now()), "history": [] } final_result_dict[result["owner__username"]] = previous_record else: final_result_dict[result["owner__username"]] = { "owner__username": result["owner__username"], "owner__name": result["owner__name"], "owner__email": [result["owner__email"]], "owner__html_url": result["owner__html_url"], "repos": { result["repo__name"]: { "repo__name": result["repo__name"], "repo__html_url": result["repo__html_url"], "status": "New", "date": str(datetime.datetime.now()), "history": [] } } } if chain: return final_result_dict final_result = { "results": [] } for user in final_result_dict.values(): repos = user.pop("repos") final_result["results"].append( { **user, "repos": [ {**repo_info} for repo_info in repos.values() ] } ) return final_result def execute_search_by_repo(self, ignore_warning: bool = False, chain: bool = False): """ search by code :param ignore_warning: :return: """ # pre-check if not self.__pre_check__(ignore_warning): return None # try to fire one request print("Start searching for repo...") first_result = self.client.search(self.search_query, "repo", ) if not first_result: print("An error occurs, abort program", file=sys.stderr) return None else: print("Results retrieved from GitHub. Page: 1.") if first_result.total > 500 and not ignore_warning: confirm = None while not confirm: confirm = input("The number of search results is {}. It is so large that you may narrow search queries." " The max retrievable number is 1000. Are you sure to proceed? [y/n]\n" .format(first_result.total)) if confirm.lower() not in ['y', 'n']: confirm = None print("Please enter 'y' or 'n': ") elif confirm.lower() == 'n': return None fields_filtered_results = [] code_search_result = first_result total = first_result.total page = 2 # page 1 has been requested while total > (page - 1) * 100 and page <= 10: fields_filtered_results = [*code_search_result.generate_list([ "owner__url", "repo__name", "repo__html_url", ]), *fields_filtered_results] code_search_result = self.client.search(self.search_query, "repo", page=page) if not code_search_result: print("Error in search with GitHub rest APIs", file=sys.stderr) return None else: print("Results retrieved from GitHub. Page: {}.".format(page)) page += 1 fields_filtered_results = [*code_search_result.generate_list([ "owner__url", "owner__html_url", "repo__name", "repo__html_url", ]), *fields_filtered_results] print("Retrieving additional information of users...") processed_results = [] # cache repeated user info to save request rate # repo results are unique returned by GitHub cached_user_info = self.cached_user_info # cache repo html url to ensure each result is unique after processing for result in fields_filtered_results: res = cached_user_info.get(result["owner__url"], None) if not res: res = requests.get(result["owner__url"], headers={ 'user-agent': 'python', 'Authorization': "token {}".format(self.__token) }).json() cached_user_info[result["owner__url"]] = res processed_results.append({ **result, "owner__email": res.get("email", None), "owner__name": res.get("name", None), "owner__username": res.get("login", None), "owner__html_url": res.get("html_url", None) }) print("Processing results...") final_result_dict = {} for result in processed_results: if result["owner__username"] in final_result_dict: repos = final_result_dict[result["owner__username"]]["repos"] # if repo already exist if result["repo__name"] in repos: repos[result["repo__name"]]["history"].append( { "date": repos[result["repo__name"]]["date"], "status": repos[result["repo__name"]]["status"] } ) repos[result["repo__name"]]["status"] = "Redetected" repos[result["repo__name"]]["date"] = str(datetime.datetime.now()) else: repos[result["repo__name"]] = { "repo__name": result["repo__name"], "repo__html_url": result["repo__html_url"], "status": "New", "date": str(datetime.datetime.now()), "history": [] } elif self.previous_records and result["owner__username"] in self.previous_records: previous_record = self.previous_records[result["owner__username"]] repos = previous_record["repos"] # if repo already exist if result["repo__name"] in repos: repos[result["repo__name"]]["history"].append( { "date": repos[result["repo__name"]]["date"], "status": repos[result["repo__name"]]["status"] } ) repos[result["repo__name"]]["status"] = "Redetected" repos[result["repo__name"]]["date"] = str(datetime.datetime.now()) else: repos[result["repo__name"]] = { "repo__name": result["repo__name"], "repo__html_url": result["repo__html_url"], "status": "New", "date": str(datetime.datetime.now()), "history": [] } final_result_dict[result["owner__username"]] = previous_record else: final_result_dict[result["owner__username"]] = { "owner__username": result["owner__username"], "owner__name": result["owner__name"], "owner__email": [result["owner__email"]], "owner__html_url": result["owner__html_url"], "repos": { result["repo__name"]: { "repo__name": result["repo__name"], "repo__html_url": result["repo__html_url"], "status": "New", "date": str(datetime.datetime.now()), "history": [] } } } if chain: return final_result_dict final_result = { "results": [] } for user in final_result_dict.values(): repos = user.pop("repos") final_result["results"].append( { **user, "repos": [ {**repo_info} for repo_info in repos.values() ] } ) return final_result def merge(self, results: list) -> dict: """ merge intermediate results :param results: :return: """ # merged results processed_results = [] # map that used to <owner_username : index_in_processed_array> cache_user = {} # set that used to store visited repos cache_set = set() for result in results: for record in result.keys(): curr = result[record] if record in cache_user: processed_result = processed_results[cache_user[record]] for repo_name in curr["repos"].keys(): if "{}/{}".format(record, repo_name) not in cache_set: processed_result["repos"].append( curr["repos"][repo_name] ) cache_set.add("{}/{}".format(record, repo_name)) else: cache_user[record] = len(processed_results) repos = curr.get("repos") processed_results.append( { **curr, "repos": [ {**repo_info} for repo_info in repos.values() ] } ) for repo in repos.keys(): cache_set.add("{}/{}".format(record, repo)) return {"results": processed_results} def execute(self, targets=None, ignore_warning: bool = False, chain: bool = False): """ general execution function :param targets: "repo" or "code" or ["repo", "code"], by default "code" :param ignore_warning: :param chain: :return: """ if not targets: return self.execute_search_by_code(ignore_warning=ignore_warning, chain=chain) elif isinstance(targets, list):
# coding: utf-8 import logging import requests import mimetypes from io import BytesIO from urllib.parse import urlparse from datetime import datetime, timedelta from collections import OrderedDict from flask_babelex import gettext as _ from flask import ( render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response, ) from werkzeug.contrib.atom import AtomFeed from urllib.parse import urljoin from legendarium.formatter import descriptive_short_format from . import main from webapp import babel from webapp import cache from webapp import controllers from webapp.choices import STUDY_AREAS from webapp.utils import utils from webapp.utils.caching import cache_key_with_lang, cache_key_with_lang_with_qs from webapp import forms from webapp.config.lang_names import display_original_lang_name from opac_schema.v1.models import Journal, Issue, Article, Collection from lxml import etree from packtools import HTMLGenerator logger = logging.getLogger(__name__) JOURNAL_UNPUBLISH = _("O periódico está indisponível por motivo de: ") ISSUE_UNPUBLISH = _("O número está indisponível por motivo de: ") ARTICLE_UNPUBLISH = _("O artigo está indisponível por motivo de: ") IAHX_LANGS = dict( p='pt', e='es', i='en', ) def url_external(endpoint, **kwargs): url = url_for(endpoint, **kwargs) return urljoin(request.url_root, url) class RetryableError(Exception): """Erro recuperável sem que seja necessário modificar o estado dos dados na parte cliente, e.g., timeouts, erros advindos de particionamento de rede etc. """ class NonRetryableError(Exception): """Erro do qual não pode ser recuperado sem modificar o estado dos dados na parte cliente, e.g., recurso solicitado não exite, URI inválida etc. """ def fetch_data(url: str, timeout: float = 2) -> bytes: try: response = requests.get(url, timeout=timeout) except (requests.ConnectionError, requests.Timeout) as exc: raise RetryableError(exc) from exc except (requests.InvalidSchema, requests.MissingSchema, requests.InvalidURL) as exc: raise NonRetryableError(exc) from exc else: try: response.raise_for_status() except requests.HTTPError as exc: if 400 <= exc.response.status_code < 500: raise NonRetryableError(exc) from exc elif 500 <= exc.response.status_code < 600: raise RetryableError(exc) from exc else: raise return response.content @main.before_app_request def add_collection_to_g(): if not hasattr(g, 'collection'): try: collection = controllers.get_current_collection() setattr(g, 'collection', collection) except Exception: # discutir o que fazer aqui setattr(g, 'collection', {}) @main.after_request def add_header(response): response.headers['x-content-type-options'] = 'nosniff' return response @main.after_request def add_language_code(response): language = session.get('lang', get_locale()) response.set_cookie('language', language) return response @main.before_app_request def add_forms_to_g(): setattr(g, 'email_share', forms.EmailShareForm()) setattr(g, 'email_contact', forms.ContactForm()) setattr(g, 'error', forms.ErrorForm()) @main.before_app_request def add_scielo_org_config_to_g(): language = session.get('lang', get_locale()) scielo_org_links = { key: url[language] for key, url in current_app.config.get('SCIELO_ORG_URIS', {}).items() } setattr(g, 'scielo_org', scielo_org_links) @babel.localeselector def get_locale(): langs = current_app.config.get('LANGUAGES') lang_from_headers = request.accept_languages.best_match(list(langs.keys())) if 'lang' not in list(session.keys()): session['lang'] = lang_from_headers if not lang_from_headers and not session['lang']: # Caso não seja possível detectar o idioma e não tenhamos a chave lang # no seção, fixamos o idioma padrão. session['lang'] = current_app.config.get('BABEL_DEFAULT_LOCALE') return session['lang'] @main.route('/set_locale/<string:lang_code>/') def set_locale(lang_code): langs = current_app.config.get('LANGUAGES') if lang_code not in list(langs.keys()): abort(400, _('Código de idioma inválido')) referrer = request.referrer hash = request.args.get('hash') if hash: referrer += "#" + hash # salvar o lang code na sessão session['lang'] = lang_code return redirect(referrer) def get_lang_from_session(): """ Tenta retornar o idioma da seção, caso não consiga retorna BABEL_DEFAULT_LOCALE. """ try: return session['lang'] except KeyError: return current_app.config.get('BABEL_DEFAULT_LOCALE') @main.route('/') @cache.cached(key_prefix=cache_key_with_lang) def index(): language = session.get('lang', get_locale()) news = controllers.get_latest_news_by_lang(language) tweets = controllers.get_collection_tweets() press_releases = controllers.get_press_releases({'language': language}) urls = { 'downloads': '{0}/w/accesses?collection={1}'.format( current_app.config['METRICS_URL'], current_app.config['OPAC_COLLECTION']), 'references': '{0}/w/publication/size?collection={1}'.format( current_app.config['METRICS_URL'], current_app.config['OPAC_COLLECTION']), 'other': '{0}/?collection={1}'.format( current_app.config['METRICS_URL'], current_app.config['OPAC_COLLECTION']) } if ( g.collection is not None and isinstance(g.collection, Collection) and g.collection.metrics is not None and current_app.config['USE_HOME_METRICS'] ): g.collection.metrics.total_journal = Journal.objects.filter( is_public=True, current_status="current" ).count() g.collection.metrics.total_article = Article.objects.filter( is_public=True ).count() context = { 'news': news, 'urls': urls, 'tweets': tweets, 'press_releases': press_releases, } return render_template("collection/index.html", **context) # ##################################Collection################################### @main.route('/journals/alpha') @cache.cached(key_prefix=cache_key_with_lang) def collection_list(): allowed_filters = ["current", "no-current", ""] query_filter = request.args.get("status", "") if not query_filter in allowed_filters: query_filter = "" journals_list = [ controllers.get_journal_json_data(journal) for journal in controllers.get_journals(query_filter=query_filter) ] return render_template("collection/list_journal.html", **{'journals_list': journals_list, 'query_filter': query_filter}) @main.route("/journals/thematic") @cache.cached(key_prefix=cache_key_with_lang) def collection_list_thematic(): allowed_query_filters = ["current", "no-current", ""] allowed_thematic_filters = ["areas", "wos", "publisher"] thematic_table = { "areas": "study_areas", "wos": "subject_categories", "publisher": "publisher_name", } query_filter = request.args.get("status", "") title_query = request.args.get("query", "") thematic_filter = request.args.get("filter", "areas") if not query_filter in allowed_query_filters: query_filter = "" if not thematic_filter in allowed_thematic_filters: thematic_filter = "areas" lang = get_lang_from_session()[:2].lower() objects = controllers.get_journals_grouped_by( thematic_table[thematic_filter], title_query, query_filter=query_filter, lang=lang, ) return render_template( "collection/list_thematic.html", **{"objects": objects, "query_filter": query_filter, "filter": thematic_filter} ) @main.route('/journals/feed/') @cache.cached(key_prefix=cache_key_with_lang) def collection_list_feed(): language = session.get('lang', get_locale()) collection = controllers.get_current_collection() title = 'SciELO - %s - %s' % (collection.name, _('Últimos periódicos inseridos na coleção')) subtitle = _('10 últimos periódicos inseridos na coleção %s' % collection.name) feed = AtomFeed(title, subtitle=subtitle, feed_url=request.url, url=request.url_root) journals = controllers.get_journals_paginated( title_query='', page=1, order_by='-created', per_page=10) if not journals.items: feed.add('Nenhum periódico encontrado', url=request.url, updated=datetime.now()) for journal in journals.items: issues = controllers.get_issues_by_jid(journal.jid, is_public=True) last_issue = issues[0] if issues else None articles = [] if last_issue: articles = controllers.get_articles_by_iid(last_issue.iid, is_public=True) result_dict = OrderedDict() for article in articles: section = article.get_section_by_lang(language[:2]) result_dict.setdefault(section, []) result_dict[section].append(article) context = { 'journal': journal, 'articles': result_dict, 'language': language, 'last_issue': last_issue } feed.add(journal.title, render_template("collection/list_feed_content.html", **context), content_type='html', author=journal.publisher_name, url=url_external('main.journal_detail', url_seg=journal.url_segment), updated=journal.updated, published=journal.created) return feed.get_response() @main.route("/about/", methods=['GET']) @main.route('/about/<string:slug_name>', methods=['GET']) @cache.cached(key_prefix=cache_key_with_lang_with_qs) def about_collection(slug_name=None): language = session.get('lang', get_locale()) context = {} page = None if slug_name: # caso seja uma página page = controllers.get_page_by_slug_name(slug_name, language) if not page: abort(404, _('Página não encontrada')) context['page'] = page else: # caso não seja uma página é uma lista pages = controllers.get_pages_by_lang(language) context['pages'] = pages return render_template("collection/about.html", **context) # ###################################Journal##################################### @main.route('/scielo.php/') @cache.cached(key_prefix=cache_key_with_lang_with_qs) def router_legacy(): script_php = request.args.get('script', None) pid = request.args.get('pid', None) tlng = request.args.get('tlng', None) allowed_scripts = [ 'sci_serial', 'sci_issuetoc', 'sci_arttext', 'sci_abstract', 'sci_issues', 'sci_pdf' ] if (script_php is not None) and (script_php in allowed_scripts) and not pid: # se tem pelo menos um param: pid ou script_php abort(400, _(u'Requsição inválida ao tentar acessar o artigo com pid: %s' % pid)) elif script_php and pid: if script_php == 'sci_serial': # pid = issn journal = controllers.get_journal_by_issn(pid) if not journal: abort(404, _('Periódico não encontrado')) if not journal.is_public: abort(404, JOURNAL_UNPUBLISH + _(journal.unpublish_reason)) return redirect(url_for('main.journal_detail', url_seg=journal.url_segment), code=301) elif script_php == 'sci_issuetoc': issue = controllers.get_issue_by_pid(pid) if not issue: abort(404, _('Número não encontrado')) if not issue.is_public: abort(404, ISSUE_UNPUBLISH + _(issue.unpublish_reason)) if not issue.journal.is_public: abort(404, JOURNAL_UNPUBLISH + _(issue.journal.unpublish_reason)) if issue.url_segment and "ahead" in issue.url_segment: return redirect( url_for('main.aop_toc', url_seg=url_seg), code=301) return redirect( url_for( "main.issue_toc", url_seg=issue.journal.url_segment, url_seg_issue=issue.url_segment), 301 ) elif script_php == 'sci_arttext' or script_php == 'sci_abstract': article = controllers.get_article_by_pid_v2(pid) if not article: abort(404, _('Artigo não encontrado')) # 'abstract' or None (not False, porque False converterá a string 'False') part = (script_php == 'sci_abstract' and 'abstract') or None if tlng not in article.languages: tlng = article.original_language return redirect(url_for('main.article_detail_v3', url_seg=article.journal.url_segment, article_pid_v3=article.aid, part=part, lang=tlng), code=301) elif script_php == 'sci_issues': journal = controllers.get_journal_by_issn(pid) if not journal: abort(404, _('Periódico não encontrado')) if not journal.is_public: abort(404, JOURNAL_UNPUBLISH + _(journal.unpublish_reason)) return redirect(url_for('main.issue_grid', url_seg=journal.url_segment), 301) elif script_php == 'sci_pdf': # accesso ao pdf do artigo: article = controllers.get_article_by_pid_v2(pid) if not article: abort(404, _('Artigo não encontrado')) return redirect( url_for( 'main.article_detail_v3', url_seg=article.journal.url_segment, article_pid_v3=article.aid, format='pdf', ), code=301 ) else: abort(400, _(u'Requsição inválida ao tentar acessar o artigo com pid: %s' % pid)) else: return redirect('/') @main.route('/<string:journal_seg>') @main.route('/journal/<string:journal_seg>') def journal_detail_legacy_url(journal_seg): return redirect(url_for('main.journal_detail', url_seg=journal_seg), code=301) @main.route('/j/<string:url_seg>/') @cache.cached(key_prefix=cache_key_with_lang) def journal_detail(url_seg): journal = controllers.get_journal_by_url_seg(url_seg) if not journal: abort(404, _('Periódico não encontrado')) if not journal.is_public: abort(404, JOURNAL_UNPUBLISH + _(journal.unpublish_reason)) utils.fix_journal_last_issue(journal) # todo: ajustar para que seja só noticias relacionadas ao periódico language = session.get('lang', get_locale()) news = controllers.get_latest_news_by_lang(language) # Press releases press_releases = controllers.get_press_releases({ 'journal': journal, 'language': language}) # Lista de seções # Mantendo sempre o idioma inglês para as seções na página incial do periódico if journal.last_issue and journal.current_status == "current": sections = [section for section in journal.last_issue.sections if section.language == 'en'] recent_articles = controllers.get_recent_articles_of_issue(journal.last_issue.iid, is_public=True) else: sections = [] recent_articles = [] latest_issue = journal.last_issue if latest_issue: latest_issue_legend = descriptive_short_format( title=journal.title, short_title=journal.short_title, pubdate=str(latest_issue.year), volume=latest_issue.volume, number=latest_issue.number, suppl=latest_issue.suppl_text, language=language[:2].lower()) else: latest_issue_legend = '' journal_metrics = controllers.get_journal_metrics(journal) context = { 'journal': journal, 'press_releases': press_releases, 'recent_articles': recent_articles, 'journal_study_areas': [ STUDY_AREAS.get(study_area.upper()) for study_area in journal.study_areas ], # o primiero item da lista é o último número. # condicional para verificar se issues contém itens 'last_issue': latest_issue, 'latest_issue_legend': latest_issue_legend, 'sections': sections if sections else None, 'news': news, 'journal_metrics': journal_metrics } return render_template("journal/detail.html", **context) @main.route('/journal/<string:url_seg>/feed/') @cache.cached(key_prefix=cache_key_with_lang) def journal_feed(url_seg): journal = controllers.get_journal_by_url_seg(url_seg) if not journal: abort(404, _('Periódico não encontrado')) if not journal.is_public: abort(404, JOURNAL_UNPUBLISH + _(journal.unpublish_reason)) issues = controllers.get_issues_by_jid(journal.jid, is_public=True) last_issue = issues[0] if issues else None articles = controllers.get_articles_by_iid(last_issue.iid, is_public=True) feed = AtomFeed(journal.title, feed_url=request.url, url=request.url_root, subtitle=utils.get_label_issue(last_issue)) feed_language = session.get('lang', get_locale()) feed_language = feed_language[:2].lower() for article in articles: # ######### TODO: Revisar ######### article_lang = feed_language if feed_language not in article.languages: article_lang = article.original_language feed.add(article.title or _('Artigo sem título'), render_template("issue/feed_content.html", article=article), content_type='html', id=article.doi or article.pid,
colg.aggregate(how, _level=(_level or 0) + 1) def _agg_2dim(name, how): """ aggregate a 2-dim with how """ colg = self._gotitem(self._selection, ndim=2, subset=obj) return colg.aggregate(how, _level=None) def _agg(arg, func): """ run the aggregations over the arg with func return an OrderedDict """ result = compat.OrderedDict() for fname, agg_how in compat.iteritems(arg): result[fname] = func(fname, agg_how) return result # set the final keys keys = list(compat.iterkeys(arg)) result = compat.OrderedDict() # nested renamer if is_nested_renamer: result = list(_agg(arg, _agg_1dim).values()) if all(isinstance(r, dict) for r in result): result, results = compat.OrderedDict(), result for r in results: result.update(r) keys = list(compat.iterkeys(result)) else: if self._selection is not None: keys = None # some selection on the object elif self._selection is not None: sl = set(self._selection_list) # we are a Series like object, # but may have multiple aggregations if len(sl) == 1: result = _agg(arg, lambda fname, agg_how: _agg_1dim(self._selection, agg_how)) # we are selecting the same set as we are aggregating elif not len(sl - set(keys)): result = _agg(arg, _agg_1dim) # we are a DataFrame, with possibly multiple aggregations else: result = _agg(arg, _agg_2dim) # no selection else: try: result = _agg(arg, _agg_1dim) except SpecificationError: # we are aggregating expecting all 1d-returns # but we have 2d result = _agg(arg, _agg_2dim) # combine results def is_any_series(): # return a boolean if we have *any* nested series return any(isinstance(r, ABCSeries) for r in compat.itervalues(result)) def is_any_frame(): # return a boolean if we have *any* nested series return any(isinstance(r, ABCDataFrame) for r in compat.itervalues(result)) if isinstance(result, list): return concat(result, keys=keys, axis=1, sort=True), True elif is_any_frame(): # we have a dict of DataFrames # return a MI DataFrame return concat([result[k] for k in keys], keys=keys, axis=1), True elif isinstance(self, ABCSeries) and is_any_series(): # we have a dict of Series # return a MI Series try: result = concat(result) except TypeError: # we want to give a nice error here if # we have non-same sized objects, so # we don't automatically broadcast raise ValueError("cannot perform both aggregation " "and transformation operations " "simultaneously") return result, True # fall thru from pandas import DataFrame, Series try: result = DataFrame(result) except ValueError: # we have a dict of scalars result = Series(result, name=getattr(self, 'name', None)) return result, True elif is_list_like(arg) and arg not in compat.string_types: # we require a list, but not an 'str' return self._aggregate_multiple_funcs(arg, _level=_level, _axis=_axis), None else: result = None f = self._is_cython_func(arg) if f and not args and not kwargs: return getattr(self, f)(), None # caller can react return result, True def _aggregate_multiple_funcs(self, arg, _level, _axis): from pandas.core.reshape.concat import concat if _axis != 0: raise NotImplementedError("axis other than 0 is not supported") if self._selected_obj.ndim == 1: obj = self._selected_obj else: obj = self._obj_with_exclusions results = [] keys = [] # degenerate case if obj.ndim == 1: for a in arg: try: colg = self._gotitem(obj.name, ndim=1, subset=obj) results.append(colg.aggregate(a)) # make sure we find a good name name = com.get_callable_name(a) or a keys.append(name) except (TypeError, DataError): pass except SpecificationError: raise # multiples else: for index, col in enumerate(obj): try: colg = self._gotitem(col, ndim=1, subset=obj.iloc[:, index]) results.append(colg.aggregate(arg)) keys.append(col) except (TypeError, DataError): pass except ValueError: # cannot aggregate continue except SpecificationError: raise # if we are empty if not len(results): raise ValueError("no results") try: return concat(results, keys=keys, axis=1, sort=False) except TypeError: # we are concatting non-NDFrame objects, # e.g. a list of scalars from pandas.core.dtypes.cast import is_nested_object from pandas import Series result = Series(results, index=keys, name=self.name) if is_nested_object(result): raise ValueError("cannot combine transform and " "aggregation operations") return result def _shallow_copy(self, obj=None, obj_type=None, **kwargs): """ return a new object with the replacement attributes """ if obj is None: obj = self._selected_obj.copy() if obj_type is None: obj_type = self._constructor if isinstance(obj, obj_type): obj = obj.obj for attr in self._attributes: if attr not in kwargs: kwargs[attr] = getattr(self, attr) return obj_type(obj, **kwargs) def _is_cython_func(self, arg): """ if we define an internal function for this argument, return it """ return self._cython_table.get(arg) def _is_builtin_func(self, arg): """ if we define an builtin function for this argument, return it, otherwise return the arg """ return self._builtin_table.get(arg, arg) class IndexOpsMixin(object): """ common ops mixin to support a unified interface / docs for Series / Index """ # ndarray compatibility __array_priority__ = 1000 def transpose(self, *args, **kwargs): """ Return the transpose, which is by definition self. """ nv.validate_transpose(args, kwargs) return self T = property(transpose, doc="Return the transpose, which is by " "definition self.") @property def _is_homogeneous_type(self): """ Whether the object has a single dtype. By definition, Series and Index are always considered homogeneous. A MultiIndex may or may not be homogeneous, depending on the dtypes of the levels. See Also -------- DataFrame._is_homogeneous_type MultiIndex._is_homogeneous_type """ return True @property def shape(self): """ Return a tuple of the shape of the underlying data. """ return self._values.shape @property def ndim(self): """ Number of dimensions of the underlying data, by definition 1. """ return 1 def item(self): """ Return the first element of the underlying data as a python scalar. """ try: return self.values.item() except IndexError: # copy numpy's message here because Py26 raises an IndexError raise ValueError('can only convert an array of size 1 to a ' 'Python scalar') @property def data(self): """ Return the data pointer of the underlying data. """ warnings.warn("{obj}.data is deprecated and will be removed " "in a future version".format(obj=type(self).__name__), FutureWarning, stacklevel=2) return self.values.data @property def itemsize(self): """ Return the size of the dtype of the item of the underlying data. """ warnings.warn("{obj}.itemsize is deprecated and will be removed " "in a future version".format(obj=type(self).__name__), FutureWarning, stacklevel=2) return self._ndarray_values.itemsize @property def nbytes(self): """ Return the number of bytes in the underlying data. """ return self._values.nbytes @property def strides(self): """ Return the strides of the underlying data. """ warnings.warn("{obj}.strides is deprecated and will be removed " "in a future version".format(obj=type(self).__name__), FutureWarning, stacklevel=2) return self._ndarray_values.strides @property def size(self): """ Return the number of elements in the underlying data. """ return self._values.size @property def flags(self): """ Return the ndarray.flags for the underlying data. """ warnings.warn("{obj}.flags is deprecated and will be removed " "in a future version".format(obj=type(self).__name__), FutureWarning, stacklevel=2) return self.values.flags @property def base(self): """ Return the base object if the memory of the underlying data is shared. """ warnings.warn("{obj}.base is deprecated and will be removed " "in a future version".format(obj=type(self).__name__), FutureWarning, stacklevel=2) return self.values.base @property def array(self): # type: () -> Union[np.ndarray, ExtensionArray] """ The actual Array backing this Series or Index. .. versionadded:: 0.24.0 Returns ------- array : numpy.ndarray or ExtensionArray This is the actual array stored within this object. This differs from ``.values`` which may require converting the data to a different form. See Also -------- Index.to_numpy : Similar method that always returns a NumPy array. Series.to_numpy : Similar method that always returns a NumPy array. Notes ----- This table lays out the different array types for each extension dtype within pandas. ================== ============================= dtype array type ================== ============================= category Categorical period PeriodArray interval IntervalArray IntegerNA IntegerArray datetime64[ns, tz] DatetimeArray ================== ============================= For any 3rd-party extension types, the array type will be an ExtensionArray. For all remaining dtypes ``.array`` will be the :class:`numpy.ndarray` stored within. If you absolutely need a NumPy array (possibly with copying / coercing data), then use :meth:`Series.to_numpy` instead. .. note:: ``.array`` will always return the underlying object backing the Series or Index. If a future version of pandas adds a specialized extension type for a data type, then the return type of ``.array`` for that data type will change from an object-dtype ndarray to the new ExtensionArray. Examples -------- >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a'])) >>> ser.array [a, b, a] Categories (2, object): [a, b] """ return self._values def to_numpy(self, dtype=None, copy=False): """ A NumPy ndarray representing the values in this Series or Index. .. versionadded:: 0.24.0 Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray`
known differences found: 2" in stdout.getvalue() ) assert ( "Number of columns compared with all values completely equal: 0" in stdout.getvalue() ) def test_column_comparison_outputs_number_of_columns_with_differences_for_custom_known_diffs( comparison_kd2, ): stdout = io.StringIO() comparison_kd2.report(file=stdout) assert "****** Column Comparison ******" in stdout.getvalue() assert ( "Number of columns compared with unexpected differences in some values: 2" in stdout.getvalue() ) assert ( "Number of columns compared with all values equal but known differences found: 1" in stdout.getvalue() ) assert ( "Number of columns compared with all values completely equal: 0" in stdout.getvalue() ) def test_columns_with_unequal_values_show_mismatch_counts(comparison1): stdout = io.StringIO() comparison1.report(file=stdout) assert "****** Columns with Unequal Values ******" in stdout.getvalue() assert re.search( r"""Base\s*Column\s*Name \s+ Compare\s*Column\s*Name \s+ Base\s*Dtype \s+ Compare\sDtype \s* \#\sMatches \s* \#\sMismatches \n -+ \s+ -+ \s+ -+ \s+ -+ \s+ -+ \s+ -+""", stdout.getvalue(), re.X, ) assert re.search( r"""dollar_amt \s+ dollar_amt \s+ bigint \s+ double \s+ 2 \s+ 2""", stdout.getvalue(), re.X, ) assert re.search( r"""float_fld \s+ float_fld \s+ double \s+ double \s+ 1 \s+ 3""", stdout.getvalue(), re.X, ) assert re.search( r"""name \s+ name \s+ string \s+ string \s+ 3 \s+ 1""", stdout.getvalue(), re.X ) def test_columns_with_different_names_with_unequal_values_show_mismatch_counts( comparison3, ): stdout = io.StringIO() comparison3.report(file=stdout) assert "****** Columns with Unequal Values ******" in stdout.getvalue() assert re.search( r"""Base\s*Column\s*Name \s+ Compare\s*Column\s*Name \s+ Base\s*Dtype \s+ Compare\sDtype \s* \#\sMatches \s* \#\sMismatches \n -+ \s+ -+ \s+ -+ \s+ -+ \s+ -+ \s+ -+""", stdout.getvalue(), re.X, ) assert re.search( r"""dollar_amt \s+ dollar_amount \s+ bigint \s+ double \s+ 2 \s+ 3""", stdout.getvalue(), re.X, ) assert re.search( r"""float_fld \s+ float_field \s+ double \s+ double \s+ 4 \s+ 1""", stdout.getvalue(), re.X, ) assert re.search( r"""name \s+ name \s+ string \s+ string \s+ 4 \s+ 1""", stdout.getvalue(), re.X ) def test_rows_only_base_returns_a_dataframe_with_rows_only_in_base(spark, comparison1): # require schema if contains only 1 row and contain field value as None schema = StructType( [ StructField("acct", LongType(), True), StructField("date_fld", DateType(), True), StructField("dollar_amt", LongType(), True), StructField("float_fld", DoubleType(), True), StructField("name", StringType(), True), ] ) expected_df = spark.createDataFrame( [ Row( acct=10000001239, date_fld=datetime.date(2017, 1, 1), dollar_amt=1, float_fld=None, name="<NAME>", ) ], schema, ) assert comparison1.rows_only_base.count() == 1 assert ( expected_df.union( comparison1.rows_only_base.select( "acct", "date_fld", "dollar_amt", "float_fld", "name" ) ) .distinct() .count() == 1 ) def test_rows_only_compare_returns_a_dataframe_with_rows_only_in_compare( spark, comparison1 ): expected_df = spark.createDataFrame( [ Row( acct=10000001238, dollar_amt=1.05, name="<NAME>", float_fld=111.0, accnt_purge=True, ) ] ) assert comparison1.rows_only_compare.count() == 1 assert expected_df.union(comparison1.rows_only_compare).distinct().count() == 1 def test_rows_both_mismatch_returns_a_dataframe_with_rows_where_variables_mismatched( spark, comparison1 ): expected_df = spark.createDataFrame( [ Row( accnt_purge=False, acct=10000001234, date_fld=datetime.date(2017, 1, 1), dollar_amt_base=123, dollar_amt_compare=123.4, dollar_amt_match=False, float_fld_base=14530.1555, float_fld_compare=14530.155, float_fld_match=False, name_base="<NAME>", name_compare="<NAME>", name_match=False, ), Row( accnt_purge=False, acct=10000001235, date_fld=datetime.date(2017, 1, 1), dollar_amt_base=0, dollar_amt_compare=0.45, dollar_amt_match=False, float_fld_base=1.0, float_fld_compare=None, float_fld_match=False, name_base="<NAME>", name_compare="<NAME>", name_match=True, ), Row( accnt_purge=False, acct=10000001236, date_fld=datetime.date(2017, 1, 1), dollar_amt_base=1345, dollar_amt_compare=1345.0, dollar_amt_match=True, float_fld_base=None, float_fld_compare=1.0, float_fld_match=False, name_base="<NAME>", name_compare="<NAME>", name_match=True, ), ] ) assert comparison1.rows_both_mismatch.count() == 3 assert expected_df.union(comparison1.rows_both_mismatch).distinct().count() == 3 def test_rows_both_mismatch_only_includes_rows_with_true_mismatches_when_known_diffs_are_present( spark, comparison_kd1 ): expected_df = spark.createDataFrame( [ Row( acct=10000001237, acct_seq=0, cd_base="0004", cd_compare=4.0, cd_match=True, cd_match_type="KNOWN_DIFFERENCE", open_dt_base=datetime.date(2017, 5, 4), open_dt_compare=2017124, open_dt_match=True, open_dt_match_type="KNOWN_DIFFERENCE", stat_cd_base="*2", stat_cd_compare="V3", stat_cd_match=False, stat_cd_match_type="MISMATCH", ) ] ) assert comparison_kd1.rows_both_mismatch.count() == 1 assert expected_df.union(comparison_kd1.rows_both_mismatch).distinct().count() == 1 def test_rows_both_all_returns_a_dataframe_with_all_rows_in_both_dataframes( spark, comparison1 ): expected_df = spark.createDataFrame( [ Row( accnt_purge=False, acct=10000001234, date_fld=datetime.date(2017, 1, 1), dollar_amt_base=123, dollar_amt_compare=123.4, dollar_amt_match=False, float_fld_base=14530.1555, float_fld_compare=14530.155, float_fld_match=False, name_base="<NAME>", name_compare="<NAME>", name_match=False, ), Row( accnt_purge=False, acct=10000001235, date_fld=datetime.date(2017, 1, 1), dollar_amt_base=0, dollar_amt_compare=0.45, dollar_amt_match=False, float_fld_base=1.0, float_fld_compare=None, float_fld_match=False, name_base="<NAME>", name_compare="<NAME>", name_match=True, ), Row( accnt_purge=False, acct=10000001236, date_fld=datetime.date(2017, 1, 1), dollar_amt_base=1345, dollar_amt_compare=1345.0, dollar_amt_match=True, float_fld_base=None, float_fld_compare=1.0, float_fld_match=False, name_base="<NAME>", name_compare="<NAME>", name_match=True, ), Row( accnt_purge=False, acct=10000001237, date_fld=datetime.date(2017, 1, 1), dollar_amt_base=123456, dollar_amt_compare=123456.0, dollar_amt_match=True, float_fld_base=345.12, float_fld_compare=345.12, float_fld_match=True, name_base="<NAME>", name_compare="<NAME>", name_match=True, ), ] ) assert comparison1.rows_both_all.count() == 4 assert expected_df.union(comparison1.rows_both_all).distinct().count() == 4 def test_rows_both_all_shows_known_diffs_flag_and_known_diffs_count_as_matches( spark, comparison_kd1 ): expected_df = spark.createDataFrame( [ Row( acct=10000001234, acct_seq=0, cd_base="0001", cd_compare=1.0, cd_match=True, cd_match_type="KNOWN_DIFFERENCE", open_dt_base=datetime.date(2017, 5, 1), open_dt_compare=2017121, open_dt_match=True, open_dt_match_type="KNOWN_DIFFERENCE", stat_cd_base="*2", stat_cd_compare=None, stat_cd_match=True, stat_cd_match_type="KNOWN_DIFFERENCE", ), Row( acct=10000001235, acct_seq=0, cd_base="0002", cd_compare=2.0, cd_match=True, cd_match_type="KNOWN_DIFFERENCE", open_dt_base=datetime.date(2017, 5, 2), open_dt_compare=2017122, open_dt_match=True, open_dt_match_type="KNOWN_DIFFERENCE", stat_cd_base="V1", stat_cd_compare="V1", stat_cd_match=True, stat_cd_match_type="MATCH", ), Row( acct=10000001236, acct_seq=0, cd_base="0003", cd_compare=3.0, cd_match=True, cd_match_type="KNOWN_DIFFERENCE", open_dt_base=datetime.date(2017, 5, 3), open_dt_compare=2017123, open_dt_match=True, open_dt_match_type="KNOWN_DIFFERENCE", stat_cd_base="V2", stat_cd_compare="V2", stat_cd_match=True, stat_cd_match_type="MATCH", ), Row( acct=10000001237, acct_seq=0, cd_base="0004", cd_compare=4.0, cd_match=True, cd_match_type="KNOWN_DIFFERENCE", open_dt_base=datetime.date(2017, 5, 4), open_dt_compare=2017124, open_dt_match=True, open_dt_match_type="KNOWN_DIFFERENCE", stat_cd_base="*2", stat_cd_compare="V3", stat_cd_match=False, stat_cd_match_type="MISMATCH", ), Row( acct=10000001238, acct_seq=0, cd_base="0005", cd_compare=5.0, cd_match=True, cd_match_type="KNOWN_DIFFERENCE", open_dt_base=datetime.date(2017, 5, 5), open_dt_compare=2017125, open_dt_match=True, open_dt_match_type="KNOWN_DIFFERENCE", stat_cd_base="*2", stat_cd_compare=None, stat_cd_match=True, stat_cd_match_type="KNOWN_DIFFERENCE", ), ] ) assert comparison_kd1.rows_both_all.count() == 5 assert expected_df.union(comparison_kd1.rows_both_all).distinct().count() == 5 def test_rows_both_all_returns_a_dataframe_with_all_rows_in_identical_dataframes( spark, comparison2 ): expected_df = spark.createDataFrame( [ Row( acct=10000001234, date_fld_base=datetime.date(2017, 1, 1), date_fld_compare=datetime.date(2017, 1, 1), date_fld_match=True, dollar_amt_base=123, dollar_amt_compare=123, dollar_amt_match=True, float_fld_base=14530.1555, float_fld_compare=14530.1555, float_fld_match=True, name_base="<NAME>", name_compare="<NAME>", name_match=True, ), Row( acct=10000001235, date_fld_base=datetime.date(2017, 1, 1), date_fld_compare=datetime.date(2017, 1, 1), date_fld_match=True, dollar_amt_base=0, dollar_amt_compare=0, dollar_amt_match=True, float_fld_base=1.0, float_fld_compare=1.0, float_fld_match=True, name_base="<NAME>", name_compare="<NAME>", name_match=True, ), Row( acct=10000001236, date_fld_base=datetime.date(2017, 1, 1), date_fld_compare=datetime.date(2017, 1, 1), date_fld_match=True, dollar_amt_base=1345, dollar_amt_compare=1345, dollar_amt_match=True, float_fld_base=None, float_fld_compare=None, float_fld_match=True, name_base="<NAME>", name_compare="<NAME>", name_match=True, ), Row( acct=10000001237, date_fld_base=datetime.date(2017, 1, 1), date_fld_compare=datetime.date(2017, 1, 1), date_fld_match=True, dollar_amt_base=123456, dollar_amt_compare=123456, dollar_amt_match=True, float_fld_base=345.12, float_fld_compare=345.12, float_fld_match=True, name_base="<NAME>", name_compare="<NAME>", name_match=True, ), Row( acct=10000001239, date_fld_base=datetime.date(2017, 1, 1), date_fld_compare=datetime.date(2017, 1, 1), date_fld_match=True, dollar_amt_base=1, dollar_amt_compare=1, dollar_amt_match=True, float_fld_base=None, float_fld_compare=None, float_fld_match=True, name_base="<NAME>", name_compare="<NAME>", name_match=True, ), ] ) assert comparison2.rows_both_all.count() == 5 assert expected_df.union(comparison2.rows_both_all).distinct().count() == 5 def test_rows_both_all_returns_all_rows_in_both_dataframes_for_differently_named_columns( spark, comparison3 ): expected_df = spark.createDataFrame( [ Row( accnt_purge=False, acct=10000001234, date_fld_base=datetime.date(2017, 1, 1), date_fld_compare=datetime.date(2017, 1, 1), date_fld_match=True, dollar_amt_base=123, dollar_amt_compare=123.4, dollar_amt_match=False, float_fld_base=14530.1555, float_fld_compare=14530.155, float_fld_match=False, name_base="<NAME>", name_compare="<NAME>", name_match=False, ), Row( accnt_purge=False, acct=10000001235, date_fld_base=datetime.date(2017, 1, 1), date_fld_compare=datetime.date(2017, 1, 1), date_fld_match=True, dollar_amt_base=0, dollar_amt_compare=0.45, dollar_amt_match=False, float_fld_base=1.0, float_fld_compare=1.0, float_fld_match=True, name_base="<NAME>", name_compare="<NAME>", name_match=True, ), Row( accnt_purge=False, acct=10000001236, date_fld_base=datetime.date(2017, 1, 1), date_fld_compare=datetime.date(2017, 1, 1), date_fld_match=True, dollar_amt_base=1345, dollar_amt_compare=1345.0, dollar_amt_match=True, float_fld_base=None, float_fld_compare=None, float_fld_match=True, name_base="<NAME>", name_compare="<NAME>", name_match=True, ), Row( accnt_purge=False, acct=10000001237, date_fld_base=datetime.date(2017, 1, 1), date_fld_compare=datetime.date(2017, 1, 1), date_fld_match=True, dollar_amt_base=123456, dollar_amt_compare=123456.0, dollar_amt_match=True, float_fld_base=345.12, float_fld_compare=345.12, float_fld_match=True, name_base="<NAME>", name_compare="<NAME>", name_match=True, ), Row( accnt_purge=True, acct=10000001239, date_fld_base=datetime.date(2017, 1, 1), date_fld_compare=datetime.date(2017, 1, 1), date_fld_match=True, dollar_amt_base=1, dollar_amt_compare=1.05, dollar_amt_match=False, float_fld_base=None, float_fld_compare=None, float_fld_match=True, name_base="<NAME>", name_compare="<NAME>", name_match=True, ), ] ) assert comparison3.rows_both_all.count() == 5 assert expected_df.union(comparison3.rows_both_all).distinct().count() == 5 def test_columns_with_unequal_values_text_is_aligned(comparison4): stdout = io.StringIO() comparison4.report(file=stdout) stdout.seek(0) # Back up to the beginning of the stream text_alignment_validator( report=stdout, section_start="****** Columns with Unequal Values ******", section_end="\n", left_indices=(1, 2, 3, 4), right_indices=(5, 6), column_regexes=[ r"""(Base\sColumn\sName) \s+ (Compare\sColumn\sName) \s+ (Base\sDtype) \s+ (Compare\sDtype) \s+ (\#\sMatches) \s+ (\#\sMismatches)""", r"""(-+) \s+ (-+) \s+ (-+) \s+ (-+) \s+ (-+) \s+ (-+)""", r"""(dollar_amt) \s+ (dollar_amt) \s+ (bigint) \s+ (double) \s+ (2) \s+ (2)""", r"""(float_fld) \s+ (float_fld) \s+ (double) \s+ (double) \s+ (1) \s+ (3)""", r"""(super_duper_big_long_name) \s+ (name) \s+ (string) \s+ (string) \s+ (3) \s+ (1)\s*""", ], ) def test_columns_with_unequal_values_text_is_aligned_with_known_differences( comparison_kd1, ): stdout = io.StringIO() comparison_kd1.report(file=stdout) stdout.seek(0) # Back up to the beginning of the stream text_alignment_validator( report=stdout, section_start="****** Columns with Unequal Values ******", section_end="\n", left_indices=(1, 2, 3, 4), right_indices=(5, 6, 7), column_regexes=[ r"""(Base\sColumn\sName) \s+ (Compare\sColumn\sName) \s+ (Base\sDtype) \s+ (Compare\sDtype) \s+ (\#\sMatches) \s+ (\#\sKnown\sDiffs) \s+ (\#\sMismatches)""", r"""(-+) \s+ (-+) \s+ (-+) \s+ (-+) \s+ (-+) \s+ (-+) \s+ (-+)""", r"""(stat_cd) \s+ (STATC) \s+ (string) \s+ (string) \s+ (2) \s+ (2) \s+ (1)""", r"""(open_dt) \s+ (ACCOUNT_OPEN) \s+ (date) \s+ (bigint) \s+ (0) \s+ (5) \s+ (0)""", r"""(cd) \s+ (CODE) \s+ (string) \s+ (double) \s+ (0) \s+ (5) \s+ (0)\s*""", ], ) def test_columns_with_unequal_values_text_is_aligned_with_custom_known_differences( comparison_kd2, ): stdout = io.StringIO() comparison_kd2.report(file=stdout) stdout.seek(0) # Back up to the beginning of the stream text_alignment_validator( report=stdout, section_start="****** Columns with Unequal Values ******", section_end="\n", left_indices=(1, 2, 3, 4), right_indices=(5, 6, 7), column_regexes=[ r"""(Base\sColumn\sName) \s+ (Compare\sColumn\sName) \s+ (Base\sDtype) \s+ (Compare\sDtype) \s+ (\#\sMatches) \s+ (\#\sKnown\sDiffs) \s+ (\#\sMismatches)""", r"""(-+) \s+ (-+) \s+ (-+) \s+ (-+) \s+ (-+) \s+ (-+) \s+ (-+)""", r"""(stat_cd) \s+ (STATC) \s+ (string) \s+ (string) \s+ (2) \s+ (2) \s+ (1)""", r"""(open_dt) \s+ (ACCOUNT_OPEN) \s+ (date) \s+ (bigint) \s+ (0) \s+ (0) \s+ (5)""", r"""(cd) \s+ (CODE) \s+ (string) \s+ (double) \s+ (0) \s+ (5) \s+ (0)\s*""", ], ) def test_columns_with_unequal_values_text_is_aligned_for_decimals(comparison_decimal): stdout = io.StringIO() comparison_decimal.report(file=stdout) stdout.seek(0) # Back up to the beginning of the stream text_alignment_validator( report=stdout, section_start="****** Columns with Unequal Values ******", section_end="\n", left_indices=(1, 2, 3, 4), right_indices=(5, 6), column_regexes=[ r"""(Base\sColumn\sName) \s+ (Compare\sColumn\sName) \s+ (Base\sDtype) \s+ (Compare\sDtype) \s+ (\#\sMatches) \s+ (\#\sMismatches)""", r"""(-+) \s+ (-+) \s+ (-+) \s+ (-+) \s+ (-+) \s+ (-+)""", r"""(dollar_amt) \s+ (dollar_amt) \s+ (decimal\(8,2\)) \s+ (double) \s+ (1) \s+ (1)""", ], ) def test_schema_differences_text_is_aligned(comparison4): stdout = io.StringIO() comparison4.report(file=stdout) comparison4.report() stdout.seek(0) # Back up to the beginning of the stream text_alignment_validator( report=stdout, section_start="****** Schema Differences ******", section_end="\n", left_indices=(1, 2, 3, 4), right_indices=(), column_regexes=[ r"""(Base\sColumn\sName) \s+ (Compare\sColumn\sName) \s+ (Base\sDtype) \s+ (Compare\sDtype)""", r"""(-+) \s+ (-+) \s+ (-+) \s+ (-+)""", r"""(dollar_amt) \s+ (dollar_amt) \s+
<gh_stars>0 import gc import os from itertools import product import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pandas as pd import scanpy as sc import scipy.stats as sts from tqdm.notebook import tqdm import triku as tk from triku.tl._triku_functions import subtract_median from sklearn.decomposition import PCA import ray @ray.remote def run_individual(adata, window, n_comp, knn, seed, save_dir, dataset_prefix): # print(window, n_comp, knn, seed) save_file = "{save_dir}/{pref}-w_{w}-comps_{n_comps}-knn_{knn}-seed_{seed}.csv".format( save_dir=save_dir, pref=dataset_prefix, w=window, n_comps=n_comp, knn=knn, seed=seed, ) if os.path.exists(save_file): pass # print("FILE EXISTS!") else: adata_copy = adata.copy() try: sc.pp.filter_genes(adata_copy, min_cells=1) sc.pp.filter_cells(adata_copy, min_genes=1) sc.pp.log1p(adata_copy) try: pca = PCA(n_components=n_comp, whiten=True, svd_solver="auto", random_state=seed,).fit_transform(adata_copy.X.toarray()) except: # the array is already dense pca = PCA(n_components=n_comp, whiten=True, svd_solver="auto", random_state=seed,).fit_transform(adata_copy.X) adata_copy.obsm['X_pca'] = pca sc.pp.neighbors(adata_copy, random_state=seed, metric='cosine', n_neighbors=knn) tk.tl.triku(adata_copy, n_windows=window, verbose='error') df_res = pd.DataFrame( data={ "triku_distance": adata_copy.var["triku_distance"].values, "triku_distance_uncorrected": adata_copy.var["triku_distance_uncorrected"].values }, index=adata_copy.var_names.values, ) except: df_res = pd.DataFrame( data={ "triku_distance": [np.NaN] * len(adata_copy.var_names), "triku_distance_uncorrected": [np.NaN] * len(adata_copy.var_names) }, index=adata_copy.var_names.values, ) df_res.to_csv(save_file) def run_batch(adata, windows, n_comps, knns, seeds, save_dir, dataset_prefix): # We have to run an array of selections. To do that, one of the parameters above must be # a list, and the rest a list of one integer. They can also be all lists, but consider that the # calculation will take time. Once triku is run, we will export the distances for each combination # as csv. Each csv will contain the median-corrected distances, with and without correction with # randomization, for a determined combination of window / n_comp / knn and seed (we will use 3 or 5 seeds # for replication purposes). ray.init(ignore_reinit_error=True) ray_get = ray.get([run_individual.remote(adata, window, n_comp, knn, seed, save_dir, dataset_prefix) for window, n_comp, knn, seed in product(*[windows, n_comps, knns, seeds])]) ray.shutdown() def run_all_batches(lib_preps, orgs, dataset, read_dir, save_dir): for lib_prep, org in tqdm(product(*[lib_preps, orgs])): file_in = None for file in os.listdir(read_dir): if ( org in file in file and lib_prep in file and file.endswith(".h5ad") ): file_in = file if file_in is None: print(f"File for {lib_prep} in {org} not found.") continue adata = sc.read_h5ad(read_dir + file_in) sqr_n_cells = int(adata.shape[0] ** 0.5) run_batch( adata, windows=[100], n_comps=[3, 5, 10, 20, 30, 40, 50, 100], knns=[sqr_n_cells + 1], seeds=[0, 1, 2, 3, 4], save_dir=save_dir, dataset_prefix=lib_prep + "_" + dataset + "_" + org, ) run_batch( adata, windows=[100], n_comps=[30], knns=[ sqr_n_cells // 20 + 1, sqr_n_cells // 10 + 1, sqr_n_cells // 5 + 1, sqr_n_cells // 2 + 1, sqr_n_cells + 1, int(sqr_n_cells * 1.5) + 1, sqr_n_cells * 2 + 1, sqr_n_cells * 4 + 1, ], seeds=[0, 1, 2, 3, 4], save_dir=save_dir, dataset_prefix=lib_prep + "_" + dataset + "_" + org, ) run_batch( adata, windows=[10, 20, 30, 50, 100, 200, 500, 1000], n_comps=[30], knns=[sqr_n_cells + 1], seeds=[0, 1, 2, 3, 4], save_dir=save_dir, dataset_prefix=lib_prep + "_" + dataset + "_" + org, ) del adata gc.collect() def return_knn_indices(save_dir, org, lib_prep, dataset): knn_list = [] for file in os.listdir(save_dir): if ( org in file and lib_prep in file and "w_100-" in file and "comps_30-" in file and dataset in file ): knn_str = file[file.find("knn") + 4 :] knn_list.append(int(knn_str[: knn_str.find("-")])) knn_list = sorted(list(dict.fromkeys(knn_list))) return knn_list def return_pca_indices(save_dir, org, lib_prep, dataset): # We need to recover the fixed kNN value. This value is the 5th value on the knn_list; so we will take it. knn_pinpoint = return_knn_indices(save_dir, org, lib_prep, dataset)[4] # Now we get the list of n_comps values pca_list = [] for file in os.listdir(save_dir): if ( org in file and lib_prep in file and "w_100-" in file and "knn_%s-" % knn_pinpoint in file and dataset in file ): pca_str = file[file.find("comps") + 6 :] pca_list.append(int(pca_str[: pca_str.find("-")])) pca_list = sorted(list(dict.fromkeys(pca_list))) return pca_list, knn_pinpoint def return_window_indices(save_dir, org, lib_prep, dataset): # We need to recover the fixed kNN value. This value is the 5th value on the knn_list; so we will take it. knn_pinpoint = return_knn_indices(save_dir, org, lib_prep, dataset)[4] # Now we get the list of n_comps values w_list = [] for file in os.listdir(save_dir): if ( org in file and lib_prep in file and "comps_30-" in file and "knn_%s-" % knn_pinpoint in file and dataset in file ): w_str = file[file.find("w_") + 2 :] w_list.append(int(w_str[: w_str.find("-")])) w_list = sorted(list(dict.fromkeys(w_list))) return w_list, knn_pinpoint def return_relative_noise(df_1, df_2, select_index_df): relative_noise_non_rand = list( ( df_1["triku_distance"].loc[select_index_df].values - df_2["triku_distance"].loc[select_index_df].values ) / ( np.abs(df_1["triku_distance"].loc[select_index_df].values) + np.abs(df_2["triku_distance"].loc[select_index_df].values) ) ) relative_noise_rand = list( ( df_1["triku_distance_uncorrected"].loc[select_index_df].values - df_2["triku_distance_uncorrected"].loc[select_index_df].values ) / ( np.abs(df_1["triku_distance_uncorrected"].loc[select_index_df].values) + np.abs(df_2["triku_distance_uncorrected"].loc[select_index_df].values) ) ) return relative_noise_rand, relative_noise_non_rand def return_percentage_overlap(df_1, df_2, min_n_feats, max_n_feats): feats_1_no_cor = ( df_1.sort_values(by="triku_distance", ascending=False) .index[min_n_feats:max_n_feats] .values ) feats_2_no_cor = ( df_2.sort_values(by="triku_distance", ascending=False) .index[min_n_feats:max_n_feats] .values ) feats_1_rand = ( df_1.sort_values(by="triku_distance_uncorrected", ascending=False) .index[min_n_feats:max_n_feats] .values ) feats_2_rand = ( df_2.sort_values(by="triku_distance_uncorrected", ascending=False) .index[min_n_feats:max_n_feats] .values ) percentage_overlap_non_rand = len( np.intersect1d(feats_1_no_cor, feats_2_no_cor) ) / (max_n_feats - min_n_feats) percentage_overlap_rand = len( np.intersect1d(feats_1_rand, feats_2_rand) ) / (max_n_feats - min_n_feats) return [percentage_overlap_rand], [percentage_overlap_non_rand] def return_correlation(df_1, df_2, min_n_feats, max_n_feats): feats_1_no_cor = ( df_1["triku_distance"] .sort_values(ascending=False) .iloc[min_n_feats:max_n_feats] .values ) feats_2_no_cor = ( df_2["triku_distance"] .sort_values(ascending=False) .iloc[min_n_feats:max_n_feats] .values ) feats_1_rand = ( df_1["triku_distance_uncorrected"] .sort_values(ascending=False) .iloc[min_n_feats:max_n_feats] .values ) feats_2_rand = ( df_2["triku_distance_uncorrected"] .sort_values(ascending=False) .iloc[min_n_feats:max_n_feats] .values ) for array in [feats_1_no_cor, feats_2_no_cor, feats_1_rand, feats_2_rand]: np.nan_to_num(array, copy=False) correlation_non_rand = sts.pearsonr(feats_1_no_cor, feats_2_no_cor) correlation_rand = sts.pearsonr(feats_1_rand, feats_2_rand) return [correlation_non_rand[0]], [correlation_rand[0]] def random_noise_parameter( lib_prep, org, dataset, save_dir, min_n_feats, max_n_feats, what, by ): list_dists_non_randomized, list_dists_randomized, list_param_value = ( [], [], [], ) knn_list = return_knn_indices(save_dir, org, lib_prep, dataset) pca_list = return_pca_indices(save_dir, org, lib_prep, dataset) if by == "knn": parameter_list = knn_list elif by == "pca": parameter_list, _ = pca_list for val in parameter_list: list_dfs = [] for file in os.listdir(save_dir): if by == "knn": static_comp = ( "w_100-" in file and "comps_30-" in file and dataset in file ) dyn_comp = "knn_" + str(val) in file elif by == "pca": static_comp = ( "w_100-" in file and "knn_" + str(knn_list[4]) + "-" in file and dataset in file ) dyn_comp = "comps_{}-".format(val) in file if org in file and lib_prep in file and static_comp and dyn_comp: df = pd.read_csv(save_dir + file) df = df.set_index("Unnamed: 0") list_dfs.append(df) # find the genes with biggest distance. We will only choose the last dataframe, but for other # stuff we will do a combination of all of them select_index_df = ( (df["triku_distance"] + df["triku_distance_uncorrected"]) .sort_values(ascending=False) .index[min_n_feats:max_n_feats] ) for i in range(len(list_dfs)): for j in range(len(list_dfs)): if i > j: df_1, df_2 = list_dfs[i], list_dfs[j] if what == "relative noise": what_rand, what_non_rand = return_relative_noise( df_1, df_2, select_index_df ) elif what == "overlap": what_rand, what_non_rand = return_percentage_overlap( df_1, df_2, min_n_feats, max_n_feats ) else: what_rand, what_non_rand = None, None list_dists_non_randomized += what_non_rand list_dists_randomized += what_rand list_param_value += [val] * len(what_non_rand) df_violin = pd.DataFrame( { "d": np.abs(list_dists_non_randomized + list_dists_randomized), by: list_param_value * 2, "randomized": ["No"] * len(list_dists_non_randomized) + ["Yes"] * len(list_dists_randomized), } ) return df_violin def compare_parameter( lib_prep, org, dataset, save_dir, min_n_feats, max_n_feats, what, by ): list_dists_non_randomized, list_dists_randomized, list_knn = [], [], [] knn_list = return_knn_indices(save_dir, org, lib_prep, dataset) pca_list = return_pca_indices(save_dir, org, lib_prep, dataset) window_list = return_window_indices(save_dir, org, lib_prep, dataset) # We first fill on list of dfs with knn = sqrt(N) list_dfs_knn_1 = [] for file in os.listdir(save_dir): if ( org in file and lib_prep in file and "w_100-" in file and "comps_30-" in file and "knn_" + str(knn_list[4]) in file and dataset in file ): df = pd.read_csv(save_dir + file) df = df.set_index("Unnamed: 0") list_dfs_knn_1.append(df) if by == "knn": parameter_list = knn_list elif by == "pca": parameter_list, _ = pca_list elif by == "w": parameter_list, _ = window_list for val in parameter_list: list_dfs_knn_2 = [] for file in os.listdir(save_dir): if by == "knn": static_comp = ( "w_100-" in file and "comps_30-" in file and dataset in file ) dyn_comp = "knn_" + str(val) in file elif by == "pca": static_comp = ( "w_100-" in file and "knn_" + str(knn_list[4]) + "-" in file and dataset in file ) dyn_comp = "comps_{}-".format(val) in file elif by == "w": static_comp = ( "comps_30-" in file and "knn_" + str(knn_list[4]) + "-" in file and dataset in file ) dyn_comp = "w_{}-".format(val) in file if org in file and
n n n n n n n n n n n 13 60 38 X monitor_control g 2 1986 semidetached n n h n n n n n n h n h h h n 90 444 39 X monitor_control g 2 1986 semidetached n n h n n n n n n n n n n n n 8 42 40 X monitor_control g 2 1986 semidetached n n h h n n n n n n n n n n n 16 114 41 hst datacapture g 2 1980 semidetached n h h vh h l h h n h l h h n l 177.9 1248 42 slp launchprocessing g 6 1975 semidetached h l h n n l l n n h n n h vl n 302 2400 43 Y application_ground g 5 1982 semidetached n h l n n h n h h n n n h h n 282.1 1368 44 Y application_ground g 5 1982 semidetached h h l n n n h h h n n n h n n 284.7 973 45 Y avionicsmonitoring g 5 1982 semidetached h h n n n l l n h h n h n n n 79 400 46 Y avionicsmonitoring g 5 1977 semidetached l n n n n l l h h vh n h l l h 423 2400 47 Y missionplanning g 5 1977 semidetached n n n n n l n h vh vh l h h n n 190 420 48 Y missionplanning g 5 1984 semidetached n n h n h n n h h n n h h n h 47.5 252 49 Y missionplanning g 5 1980 semidetached vh n xh h h l l n h n n n l h n 21 107 50 Y simulation g 5 1983 semidetached n h h vh n n h h h h n h l l h 78 571.4 51 Y simulation g 5 1984 semidetached n h h vh n n h h h h n h l l h 11.4 98.8 52 Y simulation g 5 1985 semidetached n h h vh n n h h h h n h l l h 19.3 155 53 Y missionplanning g 5 1979 semidetached h n vh h h l h h n n h h l vh h 101 750 54 Y missionplanning g 5 1979 semidetached h n h h h l h n h n n n l vh n 219 2120 55 Y utility g 5 1979 semidetached h n h h h l h n h n n n l vh n 50 370 56 spl datacapture g 2 1979 semidetached vh h h vh vh n n vh vh vh n h h h l 227 1181 57 spl batchdataprocessing g 2 1977 semidetached n h vh n n l n h n vh l n h n l 70 278 58 de avionicsmonitoring g 2 1979 semidetached h l h n n l l n n n n h h n l 0.9 8.4 59 slp operatingsystem g 6 1974 semidetached vh l xh xh vh l l h vh h vl h vl vl h 980 4560 60 slp operatingsystem g 6 1975 embedded n l h n n l l vh n vh h h n l n 350 720 61 Y operatingsystem g 5 1976 embedded h n xh h h l l h n n h h h h n 70 458 62 Y utility g 5 1979 embedded h n xh h h l l h n n h h h h n 271 2460 63 Y avionicsmonitoring g 5 1971 organic n n n n n l l h h h n h n l n 90 162 64 Y avionicsmonitoring g 5 1980 organic n n n n n l l h h h n h n l n 40 150 65 Y avionicsmonitoring g 5 1979 embedded h n h h n l l h h h n h n n n 137 636 66 Y avionicsmonitoring g 5 1977 embedded h n h h n h l h h h n h n vl n 150 882 67 Y avionicsmonitoring g 5 1976 embedded vh n h h n l l h h h n h n n n 339 444 68 Y avionicsmonitoring g 5 1983 organic l h l n n h l h h h n h n l n 240 192 69 Y avionicsmonitoring g 5 1978 semidetached h n h n vh l n h h h h h l l l 144 576 70 Y avionicsmonitoring g 5 1979 semidetached n l n n vh l n h h h h h l l l 151 432 71 Y avionicsmonitoring g 5 1979 semidetached n l h n vh l n h h h h h l l l 34 72 72 Y avionicsmonitoring g 5 1979 semidetached n n h n vh l n h h h h h l l l 98 300 73 Y avionicsmonitoring g 5 1979 semidetached n n h n vh l n h h h h h l l l 85 300 74 Y avionicsmonitoring g 5 1982 semidetached n l n n vh l n h h h h h l l l 20 240 75 Y avionicsmonitoring g 5 1978 semidetached n l n n vh l n h h h h h l l l 111 600 76 Y avionicsmonitoring g 5 1978 semidetached h vh h n vh l n h h h h h l l l 162 756 77 Y avionicsmonitoring g 5 1978 semidetached h h vh n vh l n h h h h h l l l 352 1200 78 Y operatingsystem g 5 1979 semidetached h n vh n vh l n h h h h h l l l 165 97 79 Y missionplanning g 5 1984 embedded h n vh h h l vh h n n h h h vh h 60 409 80 Y missionplanning g 5 1984 embedded h n vh h h l vh h n n h h h vh h 100 703 81 hst Avionics f 2 1980 embedded h vh vh xh xh h h n n n l l n n h 32 1350 82 hst Avionics f 2 1980 embedded h h h vh xh h h h h h h h h n n 53 480 84 spl Avionics f 3 1977 embedded h l vh vh xh l n vh vh vh vl vl h h n 41 599 89 spl Avionics f 3 1977 embedded h l vh vh xh l n vh vh vh vl vl h h n 24 430 91 Y Avionics f 5 1977 embedded vh h vh xh xh n n h h h h h h n h 165 4178.2 92 Y science f 5 1977 embedded vh h vh xh xh n n h h h h h h n h 65 1772.5 93 Y Avionics f 5 1977 embedded vh h vh xh xh n l h h h h h h n h 70 1645.9 94 Y Avionics f 5 1977 embedded vh h xh xh xh n n h h h h h h n h 50 1924.5 97 gal Avionics f 5 1982 embedded vh l vh vh xh l l h l n vl l l h h 7.25 648 98 Y Avionics f 5 1980 embedded vh h vh xh xh n n h h h h h h n h 233 8211 99 X Avionics f 2 1983 embedded h n vh vh vh h h n n n l l n n h 16.3 480 100 X Avionics f 2 1983 embedded h n vh vh vh h h n n n l l n n h 6.2 12 """)) # ______________________________________________________________________----- #### Rows class
import warnings import numbers import numpy as np import geopandas as gpd from sklearn.cluster import MiniBatchKMeans from .base_classes import BaseSpatialCV from .grid_builder import construct_blocks, assign_pt_to_grid from .utils import geometry_to_2d, convert_geodataframe, load_custom_polygon __all__ = [ "HBLOCK", "SKCV", "RepeatedSKCV", "UserDefinedSCV" ] class HBLOCK(BaseSpatialCV): """ H-Blocking spatial cross-validator. Partitions study area into a series of grid polygons that are assigned into different folds based on several user-defined options. HBLOCK exposes several parameters for choosing block sizes, types and fold assignment. Yields indices to split data into training and test sets. Parameters ---------- tiles_x : integer, default=5 Number of grid tiles in the West-East direction. tiles_y : integer, default=5 Number of grid tiles in the North-South direction. shape : string, default='square' Specify shape of grid polygons, square or hex. method : string, default='unique' Choose grid ID assignment method to build folds. Options are: unique, where every polygon in the grid is a fold; systematic, where folds reflect diagonal or anti-diagonal patterns across the study area; random, where folds are randomly assigned into groups determined by n_groups parameter; and optimized_random, where random assignment of grids into groups are optimized by reducing disimilarity between folds. buffer_radius : integer, default=0 Buffer radius (dead zone) to exclude training points that are within a defined distance of test data within a fold. direction : string, default='diagonal' Choose direction of pattern for systematic grid assignment, diagonal or anti-diagonal (anti). n_groups : integer, default=5 Number of folds to randomly assign grid polygons into. data : array Array containing covariates used in predictive task. Used to calculate disimilarity of feature space between folds to find the optimized random grid assignment. n_sims : integer, default=10 Number of iterations in which to find optimized grid assignment into folds. distance_metric : string, default='euclidean' Distance metric used to reconcile points that sit at exact border between two grids. Defaults to euclidean assuming projected coordinate system, otherwise use haversine for unprojected spaces. random_state : int, default=None random_state is the seed used by the random number generator. Examples -------- """ def __init__( self, tiles_x=5, tiles_y=5, shape='square', method='unique', buffer_radius=0, direction='diagonal', n_groups=5, data=None, n_sims=10, distance_metric='euclidean', random_state=None ): self.tiles_x = tiles_x self.tiles_y = tiles_y self.shape = shape self.method = method self.buffer_radius = buffer_radius self.direction = direction self.n_groups = n_groups self.data = data self.n_sims = n_sims self.distance_metric = distance_metric self.n_splits = tiles_x*tiles_y self.random_state = random_state def _iter_test_indices(self, XYs): """ Generates integer indices corresponding to test sets and training indices to be excluded from model training. Parameters ---------- XYs : GeoSeries GeoSeries containing shapely Points that identify Easting and Northing coordinates of data points. Yields ------ test_indices : array The testing set indices for that fold. train_exclude : array The training set indices to exclude for that fold. """ # Define grid type used in CV procedure grid = construct_blocks(XYs, tiles_x = self.tiles_x, tiles_y = self.tiles_y, shape = self.shape, method = self.method, direction = self.direction, n_groups = self.n_groups, data = self.data, n_sims = self.n_sims, random_state = self.random_state) # Convert to GDF to use Geopandas functions XYs = gpd.GeoDataFrame(({'geometry':XYs})) # Assign pts to grids XYs = assign_pt_to_grid(XYs, grid, self.distance_metric) grid_ids = np.unique(grid.grid_id) # Yield test indices and optionally training indices within buffer for grid_id in grid_ids: test_indices = XYs.loc[XYs['grid_id'] == grid_id ].index.values # Remove empty grids if len(test_indices) < 1: continue grid_poly_buffer = grid.loc[[grid_id]].buffer(self.buffer_radius) test_indices, train_exclude = \ super()._remove_buffered_indices(XYs, test_indices, self.buffer_radius, grid_poly_buffer) yield test_indices, train_exclude class SKCV(BaseSpatialCV): """ Spatial K-fold cross-validator. Modification of standard CV to overcome biased prediction performance of estimates due to autocorrelation in spatial data. Overoptimistic bias in performance is prevented by ensuring spatial proximity of test data, and maintaing a training set that is within a certain spatial distance from the test dataset. When K=N, SKCV becomes a spatial leave-one-out (SLOO) cross-validator. Yields indices to split data into training and test sets. Parameters ---------- n_splits : int, default=10 Number of folds. Must be at least 2. buffer_radius : integer, default=0 Buffer radius (dead zone) to exclude training points that are within a defined distance of test data within a fold. random_state : int, RandomState instance or None, optional, default=None random_state is the seed used by the random number generator. Examples -------- """ def __init__( self, n_splits=10, buffer_radius = 0, random_state = None ): self.n_splits = n_splits self.buffer_radius = buffer_radius self.random_state = random_state def _iter_test_indices(self, XYs): """ Generates integer indices corresponding to test sets. Parameters ---------- X : GeoSeries GeoSeries containing shapely Points that identify Easting and Northing coordinates of data points. Yields ------ test_indices : array The testing set indices for that fold. train_exclude : array The training set indices to exclude for that fold. """ if self.n_splits > len(XYs) : raise ValueError( "Number of specified n_splits (folds) is larger than number of data points. Given {} observations and {} folds.".format( len(XYs), self.n_splits ) ) sloo = len(XYs) == self.n_splits lattice = any(XYs.geom_type == 'Polygon') or any(XYs.geom_type == 'MultiPolygon') # If K = N, SLOO if sloo: num_samples = XYs.shape[0] indices_from_folds = np.arange(num_samples) else: # Partion XYs space into folds XYs_to_2d = geometry_to_2d(XYs) km_skcv = MiniBatchKMeans(n_clusters = self.n_splits, random_state=self.random_state) labels = km_skcv.fit(XYs_to_2d).labels_ uniques, counts = np.unique(labels, return_counts=True) check_fold_n = (counts < 2) if check_fold_n.any(): warn = "{} folds contain less than three points and do not form polygons.".format( check_fold_n.sum() ) warnings.warn(warn) indices_from_folds = [np.argwhere(labels == i).reshape(-1) for i in uniques] for fold_indices in indices_from_folds: if sloo: test_indices = np.array([fold_indices]) fold_polygon = XYs.loc[test_indices].buffer(self.buffer_radius) elif lattice: test_indices = np.array(fold_indices) fold_polygon = XYs.loc[test_indices].unary_union.buffer(self.buffer_radius) else: # skcv test_indices = np.array(fold_indices) fold_polygon = XYs.loc[test_indices].unary_union.convex_hull.buffer(self.buffer_radius) test_indices, train_exclude = \ super()._remove_buffered_indices(XYs, test_indices, self.buffer_radius, fold_polygon) yield test_indices, train_exclude class RepeatedSKCV(SKCV): """ Repeats Spatial K-Fold cross-validation (SKCV) n times with different K-means randomization in each repetition. Given the sensitivity of K-means to the initial, randomly initialised starting values of the centroid seeds, RepeatedSKCV repeats SKCV a number of times, yielding a generator of n_repeats * K test and training splits. Parameters ---------- n_splits : int, default=10 Number of folds. Must be at least 2. n_repeats : int, default=10 Number of times cross-validator needs to be repeated. random_state : int, RandomState instance or None, optional, default=None If int, random_state is the seed used by the random number generator. If None, the random number generator is the RandomState instance used by `np.random`. **cvargs : additional params Constructor parameters for cv. """ def __init__( self, n_repeats=10, n_splits=10, random_state=None, **cvargs ): if not isinstance(n_repeats, numbers.Integral): raise ValueError("Number of repetitions must be of Integral type.") if n_repeats <= 0: raise ValueError("Number of repetitions must be greater than 0.") self.cv = SKCV self.n_repeats = n_repeats self.n_splits = n_splits self.cvargs = cvargs def split(self, XYs): n_repeats = self.n_repeats for idx in range(n_repeats): cv = self.cv(self.n_splits, **self.cvargs) for train_index, test_index in cv.split(XYs): yield train_index, test_index class UserDefinedSCV(BaseSpatialCV): """ Spatial cross-validation using user-defined polygons. Yields indices to split data into training and test sets. Parameters ---------- custom_polygons : string, GeoSeries File path to user defined grid polygons used to assign data points into folds. buffer_radius : integer, default=0 Buffer radius (dead zone) to exclude training points that are within a defined distance of test data within a fold. distance_metric : string, default='euclidean' Distance metric used to reconcile points that sit at exact border between two grids. Defaults to euclidean assuming projected coordinate system, otherwise use haversine for unprojected spaces. Yields ------ test_indices : array The testing set indices for that fold. train_exclude : array The training set indices to exclude for that fold. """ def __init__( self, custom_polygons, buffer_radius = 0, distance_metric = 'euclidean' ): self.buffer_radius =
<reponame>akutta/hercules #!/usr/bin/env python3 import argparse from datetime import datetime, timedelta from importlib import import_module import io import json import os import re import shutil import sys import tempfile import threading import time import warnings try: from clint.textui import progress except ImportError: print("Warning: clint is not installed, no fancy progressbars in the terminal for you.") progress = None import numpy import yaml if sys.version_info[0] < 3: # OK, ancients, I will support Python 2, but you owe me a beer input = raw_input # noqa: F821 PB_MESSAGES = { "Burndown": "internal.pb.pb_pb2.BurndownAnalysisResults", "Couples": "internal.pb.pb_pb2.CouplesAnalysisResults", "Shotness": "internal.pb.pb_pb2.ShotnessAnalysisResults", } def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("-o", "--output", default="", help="Path to the output file/directory (empty for display). " "If the extension is JSON, the data is saved instead of " "the real image.") parser.add_argument("-i", "--input", default="-", help="Path to the input file (- for stdin).") parser.add_argument("-f", "--input-format", default="auto", choices=["yaml", "pb", "auto"]) parser.add_argument("--text-size", default=12, type=int, help="Size of the labels and legend.") parser.add_argument("--backend", help="Matplotlib backend to use.") parser.add_argument("--style", choices=["black", "white"], default="black", help="Plot's general color scheme.") parser.add_argument("--size", help="Axes' size in inches, for example \"12,9\"") parser.add_argument("--relative", action="store_true", help="Occupy 100%% height for every measurement.") parser.add_argument("--couples-tmp-dir", help="Temporary directory to work with couples.") parser.add_argument("-m", "--mode", choices=["project", "file", "person", "churn_matrix", "ownership", "couples", "shotness", "sentiment", "all", "run_times"], help="What to plot.") parser.add_argument( "--resample", default="year", help="The way to resample the time series. Possible values are: " "\"month\", \"year\", \"no\", \"raw\" and pandas offset aliases (" "http://pandas.pydata.org/pandas-docs/stable/timeseries.html" "#offset-aliases).") parser.add_argument("--disable-projector", action="store_true", help="Do not run Tensorflow Projector on couples.") parser.add_argument("--max-people", default=20, type=int, help="Maximum number of developers in churn matrix and people plots.") args = parser.parse_args() return args class Reader(object): def read(self, file): raise NotImplementedError def get_name(self): raise NotImplementedError def get_header(self): raise NotImplementedError def get_burndown_parameters(self): raise NotImplementedError def get_project_burndown(self): raise NotImplementedError def get_files_burndown(self): raise NotImplementedError def get_people_burndown(self): raise NotImplementedError def get_ownership_burndown(self): raise NotImplementedError def get_people_interaction(self): raise NotImplementedError def get_files_coocc(self): raise NotImplementedError def get_people_coocc(self): raise NotImplementedError def get_shotness_coocc(self): raise NotImplementedError def get_shotness(self): raise NotImplementedError class YamlReader(Reader): def read(self, file): yaml.reader.Reader.NON_PRINTABLE = re.compile(r"(?!x)x") try: loader = yaml.CLoader except AttributeError: print("Warning: failed to import yaml.CLoader, falling back to slow yaml.Loader") loader = yaml.Loader try: if file != "-": with open(file) as fin: data = yaml.load(fin, Loader=loader) else: data = yaml.load(sys.stdin, Loader=loader) except (UnicodeEncodeError, yaml.reader.ReaderError) as e: print("\nInvalid unicode in the input: %s\nPlease filter it through " "fix_yaml_unicode.py" % e) sys.exit(1) self.data = data def get_run_times(self): return {} def get_name(self): return self.data["hercules"]["repository"] def get_header(self): header = self.data["hercules"] return header["begin_unix_time"], header["end_unix_time"] def get_burndown_parameters(self): header = self.data["Burndown"] return header["sampling"], header["granularity"] def get_project_burndown(self): return self.data["hercules"]["repository"], \ self._parse_burndown_matrix(self.data["Burndown"]["project"]).T def get_files_burndown(self): return [(p[0], self._parse_burndown_matrix(p[1]).T) for p in self.data["Burndown"]["files"].items()] def get_people_burndown(self): return [(p[0], self._parse_burndown_matrix(p[1]).T) for p in self.data["Burndown"]["people"].items()] def get_ownership_burndown(self): return self.data["Burndown"]["people_sequence"].copy(),\ {p[0]: self._parse_burndown_matrix(p[1]) for p in self.data["Burndown"]["people"].items()} def get_people_interaction(self): return self.data["Burndown"]["people_sequence"].copy(), \ self._parse_burndown_matrix(self.data["Burndown"]["people_interaction"]) def get_files_coocc(self): coocc = self.data["Couples"]["files_coocc"] return coocc["index"], self._parse_coocc_matrix(coocc["matrix"]) def get_people_coocc(self): coocc = self.data["Couples"]["people_coocc"] return coocc["index"], self._parse_coocc_matrix(coocc["matrix"]) def get_shotness_coocc(self): shotness = self.data["Shotness"] index = ["%s:%s" % (i["file"], i["name"]) for i in shotness] indptr = numpy.zeros(len(shotness) + 1, dtype=numpy.int64) indices = [] data = [] for i, record in enumerate(shotness): pairs = [(int(k), v) for k, v in record["counters"].items()] pairs.sort() indptr[i + 1] = indptr[i] + len(pairs) for k, v in pairs: indices.append(k) data.append(v) indices = numpy.array(indices, dtype=numpy.int32) data = numpy.array(data, dtype=numpy.int32) from scipy.sparse import csr_matrix return index, csr_matrix((data, indices, indptr), shape=(len(shotness),) * 2) def get_shotness(self): from munch import munchify obj = munchify(self.data["Shotness"]) # turn strings into ints for item in obj: item.counters = {int(k): v for k, v in item.counters.items()} if len(obj) == 0: raise KeyError return obj def get_sentiment(self): from munch import munchify return munchify({int(key): { "Comments": vals[2].split("|"), "Commits": vals[1], "Value": float(vals[0]) } for key, vals in self.data["Sentiment"].items()}) def _parse_burndown_matrix(self, matrix): return numpy.array([numpy.fromstring(line, dtype=int, sep=" ") for line in matrix.split("\n")]) def _parse_coocc_matrix(self, matrix): from scipy.sparse import csr_matrix data = [] indices = [] indptr = [0] for row in matrix: for k, v in sorted(row.items()): data.append(v) indices.append(k) indptr.append(indptr[-1] + len(row)) return csr_matrix((data, indices, indptr), shape=(len(matrix),) * 2) class ProtobufReader(Reader): def read(self, file): try: from internal.pb.pb_pb2 import AnalysisResults except ImportError as e: print("\n\n>>> You need to generate internal/pb/pb_pb2.py - run \"make\"\n", file=sys.stderr) raise e from None self.data = AnalysisResults() if file != "-": with open(file, "rb") as fin: self.data.ParseFromString(fin.read()) else: self.data.ParseFromString(sys.stdin.buffer.read()) self.contents = {} for key, val in self.data.contents.items(): try: mod, name = PB_MESSAGES[key].rsplit(".", 1) except KeyError: sys.stderr.write("Warning: there is no registered PB decoder for %s\n" % key) continue cls = getattr(import_module(mod), name) self.contents[key] = msg = cls() msg.ParseFromString(val) def get_run_times(self): return {key: val for key, val in self.data.header.run_time_per_item.items()} def get_name(self): return self.data.header.repository def get_header(self): header = self.data.header return header.begin_unix_time, header.end_unix_time def get_burndown_parameters(self): burndown = self.contents["Burndown"] return burndown.sampling, burndown.granularity def get_project_burndown(self): return self._parse_burndown_matrix(self.contents["Burndown"].project) def get_files_burndown(self): return [self._parse_burndown_matrix(i) for i in self.contents["Burndown"].files] def get_people_burndown(self): return [self._parse_burndown_matrix(i) for i in self.contents["Burndown"].people] def get_ownership_burndown(self): people = self.get_people_burndown() return [p[0] for p in people], {p[0]: p[1].T for p in people} def get_people_interaction(self): burndown = self.contents["Burndown"] return [i.name for i in burndown.people], \ self._parse_sparse_matrix(burndown.people_interaction).toarray() def get_files_coocc(self): node = self.contents["Couples"].file_couples return list(node.index), self._parse_sparse_matrix(node.matrix) def get_people_coocc(self): node = self.contents["Couples"].people_couples return list(node.index), self._parse_sparse_matrix(node.matrix) def get_shotness_coocc(self): shotness = self.get_shotness() index = ["%s:%s" % (i.file, i.name) for i in shotness] indptr = numpy.zeros(len(shotness) + 1, dtype=numpy.int32) indices = [] data = [] for i, record in enumerate(shotness): pairs = list(record.counters.items()) pairs.sort() indptr[i + 1] = indptr[i] + len(pairs) for k, v in pairs: indices.append(k) data.append(v) indices = numpy.array(indices, dtype=numpy.int32) data = numpy.array(data, dtype=numpy.int32) from scipy.sparse import csr_matrix return index, csr_matrix((data, indices, indptr), shape=(len(shotness),) * 2) def get_shotness(self): records = self.contents["Shotness"].records if len(records) == 0: raise KeyError return records def get_sentiment(self): byday = self.contents["Sentiment"].SentimentByDay if len(byday) == 0: raise KeyError return byday def _parse_burndown_matrix(self, matrix): dense = numpy.zeros((matrix.number_of_rows, matrix.number_of_columns), dtype=int) for y, row in enumerate(matrix.rows): for x, col in enumerate(row.columns): dense[y, x] = col return matrix.name, dense.T def _parse_sparse_matrix(self, matrix): from scipy.sparse import csr_matrix return csr_matrix((list(matrix.data), list(matrix.indices), list(matrix.indptr)), shape=(matrix.number_of_rows, matrix.number_of_columns)) READERS = {"yaml": YamlReader, "yml": YamlReader, "pb": ProtobufReader} def read_input(args): sys.stdout.write("Reading the input... ") sys.stdout.flush() if args.input != "-": if args.input_format == "auto": args.input_format = args.input.rsplit(".", 1)[1] elif args.input_format == "auto": args.input_format = "yaml" reader = READERS[args.input_format]() reader.read(args.input) print("done") return reader def calculate_average_lifetime(matrix): lifetimes = numpy.zeros(matrix.shape[1] - 1) for band in matrix: start = 0 for i, line in enumerate(band): if i == 0 or band[i - 1] == 0: start += 1 continue lifetimes[i - start] = band[i - 1] - line lifetimes[i - start] = band[i - 1] lsum = lifetimes.sum() if lsum != 0: return (lifetimes.dot(numpy.arange(1, matrix.shape[1], 1)) / (lsum * matrix.shape[1])) return numpy.nan def interpolate_burndown_matrix(matrix, granularity, sampling): daily = numpy.zeros( (matrix.shape[0] * granularity, matrix.shape[1] * sampling), dtype=numpy.float32) """ ----------> samples, x | | | ⌄ bands, y """ for y in range(matrix.shape[0]): for x in range(matrix.shape[1]): if y * granularity > (x + 1) * sampling: # the future is zeros continue def decay(start_index: int, start_val: float): if start_val == 0: return k = matrix[y][x] / start_val # <= 1 scale = (x + 1) * sampling - start_index for i in range(y * granularity, (y + 1) * granularity): initial = daily[i][start_index - 1] for j in range(start_index, (x + 1) * sampling): daily[i][j] = initial * ( 1 + (k - 1) * (j - start_index + 1) / scale) def grow(finish_index: int, finish_val: float): initial = matrix[y][x - 1] if x > 0 else 0 start_index = x * sampling if start_index < y * granularity: start_index = y * granularity if finish_index == start_index: return avg = (finish_val - initial) / (finish_index - start_index) for j in range(x * sampling, finish_index): for i in range(start_index, j + 1): daily[i][j] = avg # copy [x*g..y*s) for j in range(x * sampling, finish_index): for i in range(y * granularity, x * sampling): daily[i][j] = daily[i][j - 1] if (y + 1) * granularity >= (x + 1) * sampling: # x*granularity <= (y+1)*sampling # 1. x*granularity <= y*sampling # y*sampling..(y+1)sampling # # x+1 # / # / # / y+1 -| # / | # / y -| # / # / x
from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.common.exceptions import NoSuchElementException, TimeoutException from enum import Enum import re import os from autohandshake.src.exceptions import ( InvalidURLError, NoSuchElementError, WrongPageForMethodError, InsufficientPermissionsError, InvalidUserTypeError ) from autohandshake.src.constants import MAX_WAIT_TIME from autohandshake.src.constants import BASE_URL class UserType(Enum): """ The possible user types in Handshake * Employer - a Handshake employer account * Staff - a career services staff/admin account * Student - a student or alumni account """ EMPLOYER = 'Employers' STAFF = 'Career Services' STUDENT = 'Students' class HandshakeBrowser: """ An automated browser for navigating Handshake. Since a logged-in instance of this class is returned by HandshakeSession's __enter__ method, it does not usually need to be manually instantiated. Additionally, for most use cases, the user only needs to pass a HandshakeBrowser object to a Page object, then let the Page's methods do the heavy-lifting. For example, you almost never need to write: :: browser = HandshakeBrowser() The vast majority of use cases look something like: :: with HandshakeSession(school_url, email) as browser: some_page = SomePage(browser) some_page.do_something() If you need to specify a custom max_wait_time, that can be done through the HandshakeSession object: :: # this with HandshakeSession(school_url, email, max_wait_time = 60) as browser: some_page = SomePage(browser) # not this browser = HandshakeBrowser(max_wait_time = 60) """ def __init__(self, max_wait_time: int = MAX_WAIT_TIME, chromedriver_path: str = None, download_dir: str = None): """ :param max_wait_time: the maximum time (in seconds) to wait for an element to load before throwing a timeout error :type max_wait_time: int :param chromedriver_path: the filepath to chromedriver.exe. If not specified, the package's own driver will be used :type chromedriver_path: str :param download_dir: the directory in which to download any files. If not specified, defaults to system's default download location. :type download_dir: str """ options = webdriver.ChromeOptions() options.add_argument('--window-size=1920,1080') if download_dir: options.add_experimental_option('prefs', {'download.default_directory': download_dir}) dirname = os.path.dirname(__file__) if not chromedriver_path: chromedriver_path = os.path.join(dirname, '../chromedriver.exe') self._browser = webdriver.Chrome(executable_path=chromedriver_path, options=options) self.max_wait_time = max_wait_time self._user_type = None def get(self, url: str): """Go to the web page specified by the given Handshake url. :param url: the url to visit. Must be of the form "https://[...].joinhandshake.com[/...]" :type url: str """ self._validate_url_str(url) self._browser.get(url) self._validate_page_exists() self._validate_permissions() def quit(self): """Close the browser""" self._browser.quit() def element_exists_by_xpath(self, xpath: str) -> bool: """ Determine whether or not an element with the given xpath exists in the page. :param xpath: the xpath of the element to search for :type xpath: str :return: True if the element exists, false otherwise :rtype: bool """ try: self._browser.find_element_by_xpath(xpath) return True except NoSuchElementException: return False def wait_until_element_exists_by_xpath(self, xpath: str): """ Wait until an element with the given xpath exists on the page. :param xpath: the xpath of the element to wait for :type xpath: str """ try: WebDriverWait(self._browser, self.max_wait_time).until( EC.visibility_of_element_located((By.XPATH, xpath))) except TimeoutException: raise TimeoutError(f"Element with xpath {xpath} did not appear in time") def wait_until_element_does_not_exist_by_xpath(self, xpath: str): """ Wait until an element with the given xpath exists on the page. :param xpath: the xpath of the element to wait for :type xpath: str """ try: WebDriverWait(self._browser, self.max_wait_time).until( EC.invisibility_of_element_located((By.XPATH, xpath))) except TimeoutException: raise TimeoutError(f"Element with xpath {xpath} did not disappear in tme") def wait_until_element_is_clickable_by_xpath(self, xpath: str): """ Wait until an element with the given xpath is clickable. :param xpath: the xpath of the element to wait for :type xpath: str """ try: WebDriverWait(self._browser, self.max_wait_time).until( EC.element_to_be_clickable((By.XPATH, xpath))) except TimeoutException: raise TimeoutError(f"Element with xpath {xpath} did not become clickable") def send_text_to_element_by_xpath(self, xpath: str, text: str, clear: bool = True): """ Send a string to an input field identified by the given xpath :param text: the text to send :type text: str :param xpath: the xpath of the input field to which to send the text :type xpath: str :param clear: whether or not to clear the field before sending text. If False, text will be appended to any text already present. :type clear: bool """ try: element = self._browser.find_element_by_xpath(xpath) if clear: element.clear() element.send_keys(text) except NoSuchElementException: raise NoSuchElementError(f'No element found for xpath: "{xpath}"') def click_element_by_xpath(self, xpath): """ Click an element on the page given its xpath :param xpath: the xpath of the element to click :type xpath: str """ try: self._browser.find_element_by_xpath(xpath).click() except NoSuchElementException: raise NoSuchElementError(f'No element found for xpath: "{xpath}"') def wait_then_click_element_by_xpath(self, xpath): """ Click an element on the page given its xpath after waiting to make sure it exists :param xpath: the xpath of the element to click :type xpath: str """ self.wait_until_element_exists_by_xpath(xpath) self.click_element_by_xpath(xpath) def get_element_attribute_by_xpath(self, xpath: str, attribute: str) -> str: """ Get the value of the given attribute from the element with the given xpath :param xpath: the xpath of the element of interest :type xpath: str :param attribute: the name of the attribute of interest, e.g. 'value' :type attribute: str :return: the value of the attribute on the element of interest :rtype: str """ try: if attribute.lower() == 'text': return self._browser.find_element_by_xpath(xpath).text return self._browser.find_element_by_xpath(xpath).get_attribute(attribute) except NoSuchElementException: raise NoSuchElementError(f'No element found for xpath: "{xpath}"') def get_elements_attribute_by_xpath(self, xpath: str, attribute: str) -> list: """ Get the value of a given attribute for all elements with the given xpath :param xpath: the xpath of the elements of interest :type xpath: str :param attribute: the name of the attribute of interest, e.g. 'value' :type attribute: str :return: a list of values of the given attribute for each matching element :rtype: list """ try: elements = self._browser.find_elements_by_xpath(xpath) if attribute.lower() == 'text': return [element.text for element in elements] return [element.get_attribute(attribute) for element in elements] except NoSuchElementException: raise NoSuchElementError(f'No elements found for xpath: "{xpath}"') def execute_script_on_element_by_xpath(self, script: str, xpath: str = None): """ Execute the given javascript expression. If xpath of element is provided, the element becomes available to use in the script, and can be accessed using arguments[0]. :param script: the javascript to be executed :type script: str :param xpath: the xpath of the optional element to be passed to the script :type xpath: str """ if not xpath: self._browser.execute_script(script) else: try: self._browser.execute_script(script, self._browser.find_element_by_xpath(xpath)) except NoSuchElementException: raise NoSuchElementError(f'No elements found for xpath: "{xpath}"') def element_is_selected_by_xpath(self, xpath: str) -> bool: """Get whether or not the element specified by the given xpath is selected :param xpath: the xpath of the elements of interest :type xpath: str :return: True if the element is selected, False otherwise :rtype: bool """ try: return self._browser.find_element_by_xpath(xpath).is_selected() except: raise NoSuchElementError(f'No elements found for xpath: "{xpath}"') def switch_to_frame_by_xpath(self, xpath): try: frame = self._browser.find_element_by_xpath(xpath) self._browser.switch_to.frame(frame) except NoSuchElementException: raise NoSuchElementError(f'No elements found for xpath: "{xpath}"') def update_constants(self): """ Update any Handshake environment constants such as School ID or User ID. This should be done every time the browser switches user types and upon initial login. """ if self._user_type == UserType.EMPLOYER: self.employer_id = self._get_meta_constant('logged_in_user_institution_id') else: self.school_id = self._get_meta_constant('logged_in_user_institution_id') self.user_id = self._get_meta_constant('logged_in_user_id') self._user_type = UserType(self._get_meta_constant('current_user_type')) def _get_meta_constant(self, name: str) -> str: """ Get the content of a meta tag with the given name. The method is used to pull data like the current school id, user id, or employer id from Handshake's <meta> tags. All tags are of the form: <meta content="foo" name="bar">. Given "bar," this method returns "foo". :param name: the name of the meta tag to query :type name: str :return: the content of the meta tag :rtype: str """ return self.get_element_attribute_by_xpath(f'//meta[@name="{name}"]', 'content') def switch_to_new_tab(self): """Wait for the new tab to finish loaded, then switch to it.""" WebDriverWait(self._browser, self.max_wait_time).until( EC.number_of_windows_to_be(2)) self._browser.switch_to.window(self._browser.window_handles[-1]) def return_to_main_tab(self): """With a second tab open, close the current tab and return to the main tab.""" self._browser.execute_script('window.close();') self._browser.switch_to.window(self._browser.window_handles[0]) def maximize_window(self): """Maximize the browser window.""" self._browser.maximize_window() @property def user_type(self) -> UserType: """ Get the user type of the account currently logged into Handshake. :return: the browser's currently-logged-in user type :rtype: UserType """ return self._user_type def switch_users(self, user_type: UserType): """ Switch to the system view specified by the given user type. This method automates the built-in "Switch Users" function in Handshake. :param user_type: the user type to which to switch :type user_type: UserType """ if
+ config['content_type'] base_field_override_response = issue_request(config, 'GET', base_field_override_url, headers) if base_field_override_response.status_code == 200: field_config = json.loads(base_field_override_response.text) for item in field_config['data']: field_name = item['attributes']['field_name'] required = item['attributes']['required'] field_type = item['attributes']['field_type'] entity_type = item['attributes']['entity_type'] field_definitions[field_name] = { 'cardinality': 1, 'field_type': field_type, 'required': required, 'entity_type': entity_type } # Hacky implementation of parsing Drupal's JSON:API pager. offset = 0 while 'next' in field_config['links']: base_field_override_response = issue_request(config, 'GET', base_field_override_url, headers, '', '', {'page[offset]': offset, 'page[limit]': '50'}) field_config = json.loads(base_field_override_response.text) for item in field_config['data']: field_name = item['attributes']['field_name'] required = item['attributes']['required'] field_type = item['attributes']['field_type'] entity_type = item['attributes']['entity_type'] field_definitions[field_name] = { 'cardinality': 1, 'field_type': field_type, 'required': required, 'entity_type': entity_type } if 'next' not in field_config['links']: break return field_definitions def check_input(config, args): """Validate the config file and input data. """ logging.info('Starting configuration check for "%s" task using config file %s.', config['task'], args.config) ping_islandora(config) # Check the config file. tasks = ['create', 'update', 'delete', 'add_media', 'delete_media', 'create_from_files'] joiner = ', ' if config['task'] not in tasks: message = '"task" in your configuration file must be one of "create", "update", "delete", "add_media", or "create_from_files".' logging.error(message) sys.exit('Error: ' + message) config_keys = list(config.keys()) config_keys.remove('check') # Dealing with optional config keys. If you introduce a new optional key, add it to this list. Note that optional # keys are not validated. optional_config_keys = ['delimiter', 'subdelimiter', 'log_file_path', 'log_file_mode', 'allow_missing_files', 'preprocessors', 'bootstrap', 'published', 'validate_title_length', 'media_type', 'media_types', 'pause', 'output_csv', 'delete_media_with_nodes', 'paged_content_from_directories', 'paged_content_sequence_seprator', 'paged_content_page_model_tid', 'paged_content_page_display_hints', 'paged_content_page_content_type', 'allow_adding_terms', 'log_json', 'user_agent', 'allow_redirects'] for optional_config_key in optional_config_keys: if optional_config_key in config_keys: config_keys.remove(optional_config_key) # Check for presence of required config keys. if config['task'] == 'create': create_options = ['task', 'host', 'username', 'password', 'content_type', 'input_dir', 'input_csv', 'media_use_tid', 'drupal_filesystem', 'id_field'] if not set(config_keys) == set(create_options): message = 'Please check your config file for required values: ' + joiner.join(create_options) + '.' logging.error(message) sys.exit('Error: ' + message) if config['task'] == 'update': update_options = ['task', 'host', 'username', 'password', 'content_type', 'input_dir', 'input_csv'] if not set(config_keys) == set(update_options): message = 'Please check your config file for required values: ' + joiner.join(update_options) + '.' logging.error(message) sys.exit('Error: ' + message) if config['task'] == 'delete': delete_options = ['task', 'host', 'username', 'password', 'input_dir', 'input_csv'] if not set(config_keys) == set(delete_options): message = 'Please check your config file for required values: ' + joiner.join(delete_options) + '.' logging.error(message) sys.exit('Error: ' + message) if config['task'] == 'add_media': add_media_options = ['task', 'host', 'username', 'password', 'input_dir', 'input_csv', 'media_use_tid', 'drupal_filesystem'] if not set(config_keys) == set(add_media_options): message = 'Please check your config file for required values: ' + joiner.join(add_media_options) + '.' logging.error(message) sys.exit('Error: ' + message) if config['task'] == 'delete_media': delete_media_options = ['task', 'host', 'username', 'password', 'input_dir', 'input_csv'] if not set(config_keys) == set(delete_media_options): message = 'Please check your config file for required values: ' + joiner.join(delete_media_options) + '.' logging.error(message) sys.exit('Error: ' + message) message = 'OK, configuration file has all required values (did not check for optional values).' print(message) logging.info(message) # Check existence of CSV file. input_csv = os.path.join(config['input_dir'], config['input_csv']) if os.path.exists(input_csv): message = 'OK, CSV file ' + input_csv + ' found.' print(message) logging.info(message) else: message = 'CSV file ' + input_csv + ' not found.' logging.error(message) sys.exit('Error: ' + message) # Check column headers in CSV file. csv_data = get_csv_data(config['input_dir'], config['input_csv'], config['delimiter']) csv_column_headers = csv_data.fieldnames # Check whether each row contains the same number of columns as there # are headers. for count, row in enumerate(csv_data, start=1): string_field_count = 0 for field in row: if (row[field] is not None): string_field_count += 1 if len(csv_column_headers) > string_field_count: logging.error("Row %s of your CSV file does not " + "have same number of columns (%s) as there are headers " + "(%s).", str(count), str(string_field_count), str(len(csv_column_headers))) sys.exit("Error: Row " + str(count) + " of your CSV file " + "does not have same number of columns (" + str(string_field_count) + ") as there are headers (" + str(len(csv_column_headers)) + ").") if len(csv_column_headers) < string_field_count: logging.error("Row %s of your CSV file has more columns than there are headers " + "(%s).", str(count), str(string_field_count), str(len(csv_column_headers))) sys.exit("Error: Row " + str(count) + " of your CSV file " + "has more columns than there are headers (" + str(len(csv_column_headers)) + ").") message = "OK, all " + str(count) + " rows in the CSV file have the same number of columns as there are headers (" + str(len(csv_column_headers)) + ")." print(message) logging.info(message) # Task-specific CSV checks. langcode_was_present = False if config['task'] == 'create': field_definitions = get_field_definitions(config) if config['id_field'] not in csv_column_headers: message = 'For "create" tasks, your CSV file must have a column containing a unique identifier.' logging.error(message) sys.exit('Error: ' + message) if 'file' not in csv_column_headers and config['paged_content_from_directories'] is False: message = 'For "create" tasks, your CSV file must contain a "file" column.' logging.error(message) sys.exit('Error: ' + message) if 'title' not in csv_column_headers: message = 'For "create" tasks, your CSV file must contain a "title" column.' logging.error(message) sys.exit('Error: ' + message) if 'output_csv' in config.keys(): if os.path.exists(config['output_csv']): message = 'Output CSV already exists at ' + config['output_csv'] + ', records will be appended to it.' print(message) logging.info(message) # Specific to creating paged content. Current, if 'parent_id' is present in the CSV file, so must 'field_weight' and 'field_member_of'. if 'parent_id' in csv_column_headers: if ('field_weight' not in csv_column_headers or 'field_member_of' not in csv_column_headers): message = 'If your CSV file contains a "parent_id" column, it must also contain "field_weight" and "field_member_of" columns.' logging.error(message) sys.exit('Error: ' + message) drupal_fieldnames = [] for drupal_fieldname in field_definitions: drupal_fieldnames.append(drupal_fieldname) if len(drupal_fieldnames) == 0: message = "Can't retrieve field definitions from Drupal. Please confirm that the JSON:API module is enabled." logging.error(message) sys.exit('Error: ' + message) # We .remove() CSV column headers for this check because they are not Drupal field names (including 'langcode'). # Any new columns introduced into the CSV need to be removed here. if config['id_field'] in csv_column_headers: csv_column_headers.remove(config['id_field']) if 'file' in csv_column_headers: csv_column_headers.remove('file') if 'node_id' in csv_column_headers: csv_column_headers.remove('node_id') if 'parent_id' in csv_column_headers: csv_column_headers.remove('parent_id') # langcode is a standard Drupal field but it doesn't show up in any field configs. if 'langcode' in csv_column_headers: csv_column_headers.remove('langcode') # Set this so we can validate langcode below. langcode_was_present = True for csv_column_header in csv_column_headers: if csv_column_header not in drupal_fieldnames: logging.error("CSV column header %s does not appear to match any Drupal field names.", csv_column_header) sys.exit('Error: CSV column header "' + csv_column_header + '" does not appear to match any Drupal field names.') message = 'OK, CSV column headers match Drupal field names.' print(message) logging.info(message) # Check that Drupal fields that are required are in the CSV file (create task only). if config['task'] == 'create': required_drupal_fields = [] for drupal_fieldname in field_definitions: # In the create task, we only check for required fields that apply to nodes. if 'entity_type' in field_definitions[drupal_fieldname] and field_definitions[drupal_fieldname]['entity_type'] == 'node': if 'required' in field_definitions[drupal_fieldname] and field_definitions[drupal_fieldname]['required'] is True: required_drupal_fields.append(drupal_fieldname) for required_drupal_field in required_drupal_fields: if required_drupal_field not in csv_column_headers: logging.error("Required Drupal field %s is not present in the CSV file.", required_drupal_field) sys.exit('Error: Required Drupal field "' + required_drupal_field + '" is not present in the CSV file.') message = 'OK, required Drupal fields are present in the CSV file.' print(message) logging.info(message) if config['task'] == 'update': if 'node_id' not in csv_column_headers: message = 'For "update" tasks, your CSV file must contain a "node_id" column.' logging.error(message) sys.exit('Error: ' + message) field_definitions = get_field_definitions(config) drupal_fieldnames = [] for drupal_fieldname in field_definitions: drupal_fieldnames.append(drupal_fieldname) if 'title' in csv_column_headers: csv_column_headers.remove('title') if 'file' in csv_column_headers: message = 'Error: CSV column header "file" is not allowed in update tasks.' logging.error(message) sys.exit(message) if 'node_id' in csv_column_headers: csv_column_headers.remove('node_id') for csv_column_header in csv_column_headers: if csv_column_header not in drupal_fieldnames: logging.error('CSV column header %s does not appear to match any Drupal field names.', csv_column_header) sys.exit('Error: CSV column header "' + csv_column_header + '" does not appear to match any Drupal field names.') message = 'OK, CSV column headers match Drupal field names.' print(message) logging.info(message) if config['task'] == 'update' or config['task'] == 'create': # Validate values in fields
else 75, nameScale=0.8 if isFirst else 1.0, flatness=0.0 if isFirst else 1.0, shadow=0.5 if isFirst else 1.0, showDeath=True if isFirst else False, showLives=False)) x += xOffs * (0.8 if isFirst else 0.56) isFirst = False testLives += 1 # non-solo mode else: for team in self.teams: if team.getID() == 0: x = -50 xOffs = -85 else: x = 50 xOffs = 85 for player in team.players: for icon in player.gameData['icons']: icon.setPositionAndScale((x,30),0.7) icon.updateForLives() x += xOffs def _getSpawnPoint(self,player): # in solo-mode, if there's an existing live player on the map, spawn at whichever # spot is farthest from them (keeps the action spread out) if self._soloMode: livingPlayer = None for team in self.teams: for player in team.players: if player.isAlive(): p = player.actor.node.position livingPlayer = player livingPlayerPos = p break if livingPlayer: playerPos = bs.Vector(*livingPlayerPos) points = [] for team in self.teams: startPos = bs.Vector(*self.getMap().getStartPosition(team.getID())) points.append([(startPos-playerPos).length(),startPos]) points.sort() return points[-1][1] else: return None else: return None def spawnPlayer(self,player): """This next line is the default spawn line. But we need to spawn our special guy""" #self.spawnPlayerSpaz(player,self._getSpawnPoint(player)) #position = self._getSpawnPoint(player) #if isinstance(self.getSession(), bs.TeamsSession): # position = self.getMap().getStartPosition(player.getTeam().getID()) #else: # # otherwise do free-for-all spawn locations position = self.getMap().getFFAStartPosition(self.players) angle = 20 #spaz = self.spawnPlayerSpaz(player) # lets reconnect this player's controls to this # spaz but *without* the ability to attack or pick stuff up #spaz.connectControlsToPlayer(enablePunch=False, # enableBomb=False, # enablePickUp=False) # also lets have them make some noise when they die.. #spaz.playBigDeathSound = True name = player.getName() lightColor = bsUtils.getNormalizedColor(player.color) displayColor = bs.getSafeColor(player.color, targetIntensity=0.75) spaz = PlayerSpaz_Zom(color=player.color, highlight=player.highlight, character=player.character, player=player) player.setActor(spaz) #For some reason, I can't figure out how to get a list of all spaz. #Therefore, I am making the list here so I can get which spaz belongs #to the player supplied by HitMessage. self.spazList.append(spaz) # we want a bigger area-of-interest in co-op mode # if isinstance(self.getSession(),bs.CoopSession): spaz.node.areaOfInterestRadius = 5.0 # else: spaz.node.areaOfInterestRadius = 5.0 # if this is co-op and we're on Courtyard or Runaround, add the material that allows us to # collide with the player-walls # FIXME; need to generalize this if isinstance(self.getSession(), bs.CoopSession) and self.getMap().getName() in ['Courtyard', 'Tower D']: mat = self.getMap().preloadData['collideWithWallMaterial'] spaz.node.materials += (mat,) spaz.node.rollerMaterials += (mat,) spaz.node.name = name spaz.node.nameColor = displayColor spaz.connectControlsToPlayer() #Unfortunately, I can't figure out how to prevent picking up other player but allow other pickup. factory = spaz.getFactory() self.scoreSet.playerGotNewSpaz(player, spaz) # move to the stand position and add a flash of light spaz.handleMessage(bs.StandMessage(position, angle if angle is not None else random.uniform(0, 360))) t = bs.getGameTime() bs.playSound(self._spawnSound, 1, position=spaz.node.position) light = bs.newNode('light', attrs={'color': lightColor}) spaz.node.connectAttr('position', light, 'position') bsUtils.animate(light, 'intensity', {0: 0, 250: 1, 500: 0}) bs.gameTimer(500, light.delete) #Start code to spawn special guy: #End of code to spawn special guy if not self._soloMode: bs.gameTimer(300,bs.Call(self._printLives,player)) # if we have any icons, update their state for icon in player.gameData['icons']: icon.handlePlayerSpawned() def respawnPlayerZombie(self,player,respawnTime=None): """ Given a bs.Player, sets up a standard respawn timer, along with the standard counter display, etc. At the end of the respawn period spawnPlayer() will be called if the Player still exists. An explicit 'respawnTime' can optionally be provided (in milliseconds). """ if player is None or not player.exists(): if player is None: bs.printError('None passed as player to respawnPlayer()') else: bs.printError('Nonexistant bs.Player passed to respawnPlayer(); call player.exists() to make sure a player is still there.') return if player.getTeam() is None: bs.printError('player has no team in respawnPlayer()') return if respawnTime is None: if len(player.getTeam().players) == 1: respawnTime = 3000 elif len(player.getTeam().players) == 2: respawnTime = 5000 elif len(player.getTeam().players) == 3: respawnTime = 6000 else: respawnTime = 7000 # if this standard setting is present, factor it in if 'Respawn Times' in self.settings: respawnTime *= self.settings['Respawn Times'] respawnTime = int(max(1000,respawnTime)) if respawnTime%1000 != 0: respawnTime -= respawnTime%1000 # we want whole seconds if player.actor and not self.hasEnded(): import bsSpaz player.gameData['respawnTimer'] = bs.Timer(respawnTime,bs.WeakCall(self.spawnPlayerIfExistsAsZombie,player)) player.gameData['respawnIcon'] = bsSpaz.RespawnIcon(player,respawnTime) def spawnPlayerIfExistsAsZombie(self,player): """ A utility method which calls self.spawnPlayer() *only* if the bs.Player provided still exists; handy for use in timers and whatnot. There is no need to override this; just override spawnPlayer(). """ if player.exists(): self.spawnPlayerZombie(player) def spawnPlayerZombie(self,player): position = self.getMap().getFFAStartPosition(self.players) angle = 20 name = player.getName() lightColor = bsUtils.getNormalizedColor(player.color) displayColor = bs.getSafeColor(player.color, targetIntensity=0.75) spaz = PlayerZombie(color=player.color, highlight=player.highlight, character='Kronk2', player=player) player.setActor(spaz) #For some reason, I can't figure out how to get a list of all spaz. #Therefore, I am making the list here so I can get which spaz belongs #to the player supplied by HitMessage. self.spazList.append(spaz) # we want a bigger area-of-interest in co-op mode # if isinstance(self.getSession(),bs.CoopSession): spaz.node.areaOfInterestRadius = 5.0 # else: spaz.node.areaOfInterestRadius = 5.0 # if this is co-op and we're on Courtyard or Runaround, add the material that allows us to # collide with the player-walls # FIXME; need to generalize this if isinstance(self.getSession(), bs.CoopSession) and self.getMap().getName() in ['Courtyard', 'Tower D']: mat = self.getMap().preloadData['collideWithWallMaterial'] spaz.node.materials += (mat,) spaz.node.rollerMaterials += (mat,) #Need to prevent picking up powerups: pam = bs.Powerup.getFactory().powerupAcceptMaterial for attr in ['materials','rollerMaterials','extrasMaterials']: materials = getattr(spaz.node,attr) if pam in materials: setattr(spaz.node,attr,tuple(m for m in materials if m != pam)) #spaz.node.materials.remove(pam) #spaz.node.rollerMaterials.remove(pam) #spaz.node.extrasMaterials.remove(pam) spaz.node.name = name spaz.node.nameColor = displayColor spaz.connectControlsToPlayer(enablePunch=True, enableBomb=False, enablePickUp=False) #Unfortunately, I can't figure out how to prevent picking up other player but allow other pickup. self.scoreSet.playerGotNewSpaz(player, spaz) # move to the stand position and add a flash of light spaz.handleMessage(bs.StandMessage(position, angle if angle is not None else random.uniform(0, 360))) t = bs.getGameTime() bs.playSound(self._spawnSound, 1, position=spaz.node.position) light = bs.newNode('light', attrs={'color': lightColor}) spaz.node.connectAttr('position', light, 'position') bsUtils.animate(light, 'intensity', {0: 0, 250: 1, 500: 0}) bs.gameTimer(500, light.delete) #Start code to spawn special guy: #End of code to spawn special guy if not self._soloMode: bs.gameTimer(300,bs.Call(self._printLives,player)) # if we have any icons, update their state for icon in player.gameData['icons']: icon.handlePlayerSpawned() def _printLives(self,player): if not player.exists() or not player.isAlive(): return try: pos = player.actor.node.position except Exception,e: print 'EXC getting player pos in bsElim',e return if player.gameData['lives'] > 0: bs.PopupText('x'+str(player.gameData['lives']-1),color=(1,1,0,1), offset=(0,-0.8,0),randomOffset=0.0,scale=1.8,position=pos).autoRetain() else: bs.PopupText('Dead!',color=(1,1,0,1), offset=(0,-0.8,0),randomOffset=0.0,scale=1.8,position=pos).autoRetain() def onPlayerLeave(self,player): bs.TeamGameActivity.onPlayerLeave(self,player) player.gameData['icons'] = None # remove us from spawn-order if self._soloMode: if player in player.getTeam().gameData['spawnOrder']: player.getTeam().gameData['spawnOrder'].remove(player) # update icons in a moment since our team will be gone from the list then bs.gameTimer(0, self._updateIcons) def onBegin(self): bs.TeamGameActivity.onBegin(self) self.setupStandardTimeLimit(self.settings['Time Limit']) self.setupStandardPowerupDrops() self.zombieQ = 1 # queue of zombies to spawn. this will increment/decrement if self._soloMode: self._vsText = bs.NodeActor(bs.newNode("text", attrs={'position':(0,105), 'hAttach':"center", 'hAlign':'center', 'maxWidth':200, 'shadow':0.5, 'vrDepth':390, 'scale':0.6, 'vAttach':"bottom", 'color':(0.8,0.8,0.3,1.0), 'text':bs.Lstr(resource='vsText')})) # if balance-team-lives is on, add lives to the smaller team until total lives match if (isinstance(self.getSession(),bs.TeamsSession) and self.settings['Balance Total Lives'] and len(self.teams[0].players) > 0 and len(self.teams[1].players) > 0): if self._getTotalTeamLives(self.teams[0]) < self._getTotalTeamLives(self.teams[1]): lesserTeam = self.teams[0] greaterTeam = self.teams[1] else: lesserTeam = self.teams[1] greaterTeam = self.teams[0] addIndex = 0 while self._getTotalTeamLives(lesserTeam) < self._getTotalTeamLives(greaterTeam): lesserTeam.players[addIndex].gameData['lives'] += 1 addIndex = (addIndex + 1) % len(lesserTeam.players) #Let's add a couple of bots # this wrangles our bots self._bots = zBotSet() #Set colors and character for ToughGuyBot to be zombie setattr(bs.ToughGuyBot, 'color', (0.4,0.1,0.05)) setattr(bs.ToughGuyBot, 'highlight', (0.2,0.4,0.3)) setattr(bs.ToughGuyBot, 'character', 'Kronk2') # start some timers to spawn bots thePt = self.getMap().getFFAStartPosition(self.players) #bs.gameTimer(1000,bs.Call(self._bots.spawnBot,bs.ToughGuyBot,pos=thePt,spawnTime=3000)) self._updateIcons() self._updateScoreBoard # we could check game-over conditions at explicit trigger points, # but lets just do the simple thing and poll it... bs.gameTimer(1000, self._update, repeat=True) def _getTotalTeamLives(self,team): return sum(player.gameData['lives'] for player in team.players) def handleMessage(self,m): if isinstance(m,bs.PlayerSpazDeathMessage): bs.TeamGameActivity.handleMessage(self, m) # augment standard behavior player = m.spaz.getPlayer() #print([player, m.spaz.hitPoints, "killed by", m.killerPlayer]) if player.gameData['lives'] > 0: #Dying player was not zombie. Remove a life player.gameData['lives'] -= 1 else: #Dying player was a zombie. Give points to killer if m.killerPlayer.exists(): if m.killerPlayer.gameData['lives'] > 0: m.killerPlayer.getTeam().gameData['score'] += 2 self._updateScoreBoard() #Remove this spaz from the list of active spazzes if m.spaz in self.spazList: self.spazList.remove(m.spaz) if player.gameData['lives'] < 0: bs.printError('Got lives < 0 in Elim; this shouldnt happen. solo:'+str(self._soloMode)) player.gameData['lives'] = 0 # if we have any icons, update their state for
<reponame>nukui-s/mlens """ML-ENSEMBLE :author: <NAME> :copyright: 2017-2018 :licence: MIT Blend Ensemble class. Fully integrable with Scikit-learn. """ from __future__ import division from .base import BaseEnsemble from ..index import BlendIndex, FullIndex class BlendEnsemble(BaseEnsemble): r"""Blend Ensemble class. The Blend Ensemble is a supervised ensemble closely related to the :class:`SuperLearner`. It differs in that to estimate the prediction matrix Z used by the meta learner, it uses a subset of the data to predict its complement, and the meta learner is fitted on those predictions. By only fitting every base learner once on a subset of the full training data, :class:`BlendEnsemble` is a fast ensemble that can handle very large datasets simply by only using portion of it at each stage. The cost of this approach is that information is thrown out at each stage, as one layer will not see the training data used by the previous layer. With large data that can be expected to satisfy an i.i.d. assumption, the :class:`BlendEnsemble` can achieve similar performance to more sophisticated ensembles at a fraction of the training time. However, with data data is not uniformly distributed or exhibits high variance the :class:`BlendEnsemble` can be a poor choice as information is lost at each stage of fitting. See Also -------- :class:`SuperLearner`, :class:`Subsemble` .. note :: All parameters can be overriden in the :attr:`add` method unless otherwise specified. Notably, the ``backend`` and ``n_jobs`` cannot be altered in the :attr:`add` method. Parameters ---------- test_size : int, float (default = 0.5) the size of the test set for each layer. This parameter can be overridden in the :attr:`add` method if different test sizes is desired for each layer. If a ``float`` is specified, it is presumed to be the fraction of the available data to be used for training, and so ``0. < test_size < 1.``. shuffle : bool (default = False) whether to shuffle data before before processing each layer. This parameter can be overridden in the :attr:`add` method if different test sizes is desired for each layer. random_state : int (default = None) random seed for shuffling inputs. Note that the seed here is used to generate a unique seed for each layer. Can be overridden in the :attr:`add` method. scorer : object (default = None) scoring function. If a function is provided, base estimators will be scored on the prediction made. The scorer should be a function that accepts an array of true values and an array of predictions: ``score = f(y_true, y_pred)``. Can be overridden in the :attr:`add` method. raise_on_exception : bool (default = True) whether to issue warnings on soft exceptions or raise error. Examples include lack of layers, bad inputs, and failed fit of an estimator in a layer. If set to ``False``, warnings are issued instead but estimation continues unless exception is fatal. Note that this can result in unexpected behavior unless the exception is anticipated. array_check : int (default = 2) level of strictness in checking input arrays. - ``array_check = 0`` will not check ``X`` or ``y`` - ``array_check = 1`` will check ``X`` and ``y`` for inconsistencies and warn when format looks suspicious, but retain original format. - ``array_check = 2`` will impose Scikit-learn array checks, which converts ``X`` and ``y`` to numpy arrays and raises an error if conversion fails. verbose : int or bool (default = False) level of verbosity. * ``verbose = 0`` silent (same as ``verbose = False``) * ``verbose = 1`` messages at start and finish (same as ``verbose = True``) * ``verbose = 2`` messages for each layer If ``verbose >= 50`` prints to ``sys.stdout``, else ``sys.stderr``. For verbosity in the layers themselves, use ``fit_params``. n_jobs : int (default = -1) Degree of parallel processing. Set to -1 for maximum parallelism and 1 for sequential processing. Cannot be overriden in the :attr:`add` method. backend : str or object (default = 'threading') backend infrastructure to use during call to :class:`mlens.externals.joblib.Parallel`. See Joblib for further documentation. To set global backend, set ``mlens.config._BACKEND``. Cannot be overriden in the :attr:`add` method. model_selection: bool (default=False) Whether to use the ensemble in model selection mode. If ``True``, this will alter the ``transform`` method. When calling ``transform`` on new data, the ensemble will call ``predict``, while calling ``transform`` with the training data reproduces predictions from the ``fit`` call. Hence the ensemble can be used as a pure transformer in a preprocessing pipeline passed to the :class:`Evaluator`, as training folds are faithfully reproduced as during a ``fit``call and test folds are transformed with the ``predict`` method. sample_size: int (default=20) size of training set sample (``[min(sample_size, X.size[0]), min(X.size[1], sample_size)]``) Examples -------- Instantiate ensembles with no preprocessing: use list of estimators >>> from mlens.ensemble import BlendEnsemble >>> from mlens.metrics.metrics import rmse >>> from sklearn.datasets import load_boston >>> from sklearn.linear_model import Lasso >>> from sklearn.svm import SVR >>> >>> X, y = load_boston(True) >>> >>> ensemble = BlendEnsemble() >>> ensemble.add([SVR(), ('can name some or all est', Lasso())]) >>> ensemble.add_meta(SVR()) >>> >>> ensemble.fit(X, y) >>> preds = ensemble.predict(X) >>> rmse(y, preds) 7.3337... Instantiate ensembles with different preprocessing pipelines through dicts. >>> from mlens.ensemble import BlendEnsemble >>> from mlens.metrics.metrics import rmse >>> from sklearn.datasets import load_boston >>> from sklearn. preprocessing import MinMaxScaler, StandardScaler >>> from sklearn.linear_model import Lasso >>> from sklearn.svm import SVR >>> >>> X, y = load_boston(True) >>> >>> preprocessing_cases = {'mm': [MinMaxScaler()], ... 'sc': [StandardScaler()]} >>> >>> estimators_per_case = {'mm': [SVR()], ... 'sc': [('can name some or all ests', Lasso())]} >>> >>> ensemble = BlendEnsemble() >>> ensemble.add(estimators_per_case, preprocessing_cases).add(SVR(), ... meta=True) >>> >>> ensemble.fit(X, y) >>> preds = ensemble.predict(X) >>> rmse(y, preds) 8.249013 """ def __init__( self, test_size=0.5, shuffle=False, random_state=None, scorer=None, raise_on_exception=True, array_check=2, verbose=False, n_jobs=-1, backend=None, model_selection=False, sample_size=20, layers=None): super(BlendEnsemble, self).__init__( shuffle=shuffle, random_state=random_state, scorer=scorer, raise_on_exception=raise_on_exception, array_check=array_check, verbose=verbose, n_jobs=n_jobs, model_selection=model_selection, sample_size=sample_size, layers=layers, backend=backend) self.__initialized__ = 0 # Unlock parameter setting self.test_size = test_size self.__initialized__ = 1 # Protect against param resets def add_meta(self, estimator, **kwargs): """Meta Learner. Compatibility method for adding a meta learner to be used for final predictions. Parameters ---------- estimator : instance estimator instance. **kwargs : optional optional keyword arguments. """ return self.add(estimators=estimator, meta=True, **kwargs) def add(self, estimators, preprocessing=None, proba=False, meta=False, propagate_features=None, **kwargs): """Add layer to ensemble. Parameters ---------- preprocessing: dict of lists or list, optional (default = None) preprocessing pipelines for given layer. If the same preprocessing applies to all estimators, ``preprocessing`` should be a list of transformer instances. The list can contain the instances directly, named tuples of transformers, or a combination of both. :: option_1 = [transformer_1, transformer_2] option_2 = [("trans-1", transformer_1), ("trans-2", transformer_2)] option_3 = [transformer_1, ("trans-2", transformer_2)] If different preprocessing pipelines are desired, a dictionary that maps preprocessing pipelines must be passed. The names of the preprocessing dictionary must correspond to the names of the estimator dictionary. :: preprocessing_cases = {"case-1": [trans_1, trans_2], "case-2": [alt_trans_1, alt_trans_2]} estimators = {"case-1": [est_a, est_b], "case-2": [est_c, est_d]} The lists for each dictionary entry can be any of ``option_1``, ``option_2`` and ``option_3``. estimators: dict of lists or list or instance estimators constituting the layer. If preprocessing is none and the layer is meant to be the meta estimator, it is permissible to pass a single instantiated estimator. If ``preprocessing`` is ``None`` or ``list``, ``estimators`` should be a ``list``. The list can either contain estimator instances, named tuples of estimator instances, or a combination of both. :: option_1 = [estimator_1, estimator_2] option_2 = [("est-1", estimator_1), ("est-2", estimator_2)] option_3 = [estimator_1, ("est-2", estimator_2)] If different preprocessing pipelines are desired, a dictionary that maps estimators to preprocessing pipelines must be passed. The names of the estimator dictionary must correspond to the names of the estimator dictionary. :: preprocessing_cases = {"case-1": [trans_1, trans_2], "case-2": [alt_trans_1, alt_trans_2]} estimators = {"case-1": [est_a, est_b], "case-2": [est_c, est_d]} The lists for each dictionary entry can be any of ``option_1``, ``option_2`` and ``option_3``. proba : bool (default = False)
<filename>dbca/dbca_splitter.py from typing import List, Tuple import logging import numpy as np from tqdm import tqdm import time import json from pathlib import Path import pandas as pd import matplotlib.pyplot as plt from dbca.sample import Sample from dbca.sample_set import SampleSet from dbca.full_sample_set import FullSampleSet from dbca.split_sample_set import SplitSampleSet from dbca.storage import SampleStore from dbca.config import DBCASplitterConfig from dbca.dist_funcs import chernoff_divergence from dbca.freq_distribution import FrequencyDistribution logger = logging.getLogger(__name__) def get_weights_df(sample_set: SampleSet, dist_type: str = "compound") -> pd.DataFrame: """ Return DataFrame of atom/compound weights in a sample set. Args: sample_set (SampleSet): Sample set from which to extract weights. dist_type (str, optional): "atom" or "compound" to designate which weights to extract. Defaults to "compound". Returns: pd.DataFrame: DataFrame of atom/compound weights in a sample set. """ assert(dist_type in ["compound", "atom"]) weights = sample_set.compound_weights if dist_type == "compound" else sample_set.atom_weights df = pd.DataFrame([{"name": k, "weight": v} for k,v in weights.items()]) df = df.set_index('name') df.sort_values(by="weight", ascending=False, inplace=True) return df class DBCASplitter: """ Processes a sample set to generate training and test splits according to specified compositionality settings, which are controlled by: * D_A: target atom divergence * D_C: target compound divergence A compositional generalization setting features high compound divergence and low atom divergence. For full detail of generation settings, see DBCASplitterConfig. """ def __init__(self, samples: List[Sample], config: DBCASplitterConfig = None): """ Create new DBCASplitter. Args: samples (List[Sample]): Full set of samples to create splits from. config (DBCASplitterConfig, optional): Optional settings for split generation. """ self.sample_store = SampleStore(samples) self.full_sample_set = FullSampleSet(sample_store=self.sample_store, workers=config.num_loader_processes) self.sample_splits = {s_id: None for s_id in self.full_sample_set.sample_ids} self.unused_sample_ids = set(self.sample_splits.keys()) self.config = config if config else DBCASplitterConfig() self.logger = logging.getLogger(__name__) self.train_set = SplitSampleSet(split="train") self.test_set = SplitSampleSet(split="test") # set seed for reproduceability np.random.seed(self.config.seed) def init_build(self): self.logger.info(f"Creating output directory at {self.config.save_dir}...") self.config.save_dir_path.mkdir(parents=True, exist_ok=True) self.save_config(self.config.save_dir_path) @property def step(self) -> int: """ Current step of generation. """ return self.train_set.size + self.test_set.size @property def total_steps(self) -> int: """ Return total number of steps needed for generation of splits. """ return self.config.n_train + self.config.n_test @property def steps_left(self) -> int: """ Return number of steps left for generation process. """ return self.total_steps - self.step @property def build_done(self) -> bool: """ Return True if build complete, False o.w. """ return ((self.train_set.size == self.config.n_train) and (self.test_set.size == self.config.n_test)) @property def target_train_test_ratio(self): """ Return target desired ratio between train and test set size. """ return self.config.train_test_ratio @property def curr_train_test_ratio(self): """ Return current ratio between train and test set size. """ if self.train_set.size == 0: return 0 if self.test_set.size == 0: return np.inf return self.train_set.size / self.test_set.size @property def train_step(self) -> bool: """ Return True if current step should add sample to training set and False o.w. (should add to test set)""" if (self.train_set.size % self.target_train_test_ratio != 0): return True elif self.curr_train_test_ratio <= self.target_train_test_ratio: return True else: return False def get_sample(self, sample_id: str) -> Sample: """ Return sample with id `sample_id`. """ return self.sample_store.sample_by_id(sample_id) def calc_atom_divergence(self, dist_a: FrequencyDistribution, dist_b: FrequencyDistribution) -> float: return chernoff_divergence(dist_a, dist_b, alpha=self.config.alpha_a) def calc_compound_divergence(self, dist_a: FrequencyDistribution, dist_b: FrequencyDistribution) -> float: return chernoff_divergence(dist_a, dist_b, alpha=self.config.alpha_c) @property def atom_divergence(self)-> float: """ Returns ------- float DESCRIPTION. """ return self.calc_atom_divergence(self.train_set.atom_distribution, self.test_set.atom_distribution) @property def compound_divergence(self) -> float: """ Returns ------- float DESCRIPTION. """ return self.calc_compound_divergence(self.train_set.compound_distribution, self.test_set.compound_distribution) def score(self, train_a_dist: FrequencyDistribution, test_a_dist: FrequencyDistribution, train_c_dist: FrequencyDistribution, test_c_dist: FrequencyDistribution) -> float: """ Calculate score of input train/test splits. Parameters ---------- train_a_dist : FrequencyDistribution Train atom distribution. test_a_dist : FrequencyDistribution Test atom distribution. train_c_dist : FrequencyDistribution Train compound distribution. test_c_dist : FrequencyDistribution Test compound distribution. Returns ------- float Score of input train/test splits (in [0,1]). """ atom_score = self.calc_atom_divergence(train_a_dist, test_a_dist) # exact atom divergence less important than it being below maximal threshold if atom_score < self.config.D_A: atom_score = 0 compound_score = np.abs(self.calc_compound_divergence(train_c_dist, test_c_dist) - self.config.D_C) return compound_score + atom_score def find_best_sample(self, sample_set_to_update: SplitSampleSet, other_sample_set: SplitSampleSet) -> str: """ Greedily select the best sample to add to `sample_set_to_update` w.r.t target atom and compound divergence measures. Parameters ---------- sample_set_to_update : SplitSampleSet Sample set to be updated with chosen sample. other_sample_set : SplitSampleSet The other sample set (not updated). Returns ------- str id of found sample. """ all_scores = [] self.logger.debug("Searching for new sample...") for s_id in self.unused_sample_ids: all_scores.append((s_id, self.peek_sample(s_id, sample_set_to_update, other_sample_set))) sorted_scores = sorted(all_scores, key=lambda x: (x[1], x[0])) best_id, best_score = sorted_scores[0] debug_infos = {"best_id": best_id, "best_score": best_score, "all_scores": all_scores} return best_id, debug_infos def peek_sample(self, sample_id: str, sample_set_to_update: SplitSampleSet, other_sample_set: SplitSampleSet) -> float: """ Check score for adding sample `sample_id` to `sample_set_to_update` without actually making the update (not in-place). Args: sample_id (str): id of sample to check update for. sample_set_to_update (SplitSampleSet): Sample set to be updated with chosen sample. other_sample_set (SplitSampleSet): The other sample set (not updated). Returns: float: Split score if we had added `sample_id` to `sample_set_to_update` """ a_dist, c_dist = sample_set_to_update.update(sample_id, self.full_sample_set, inplace=False) if sample_set_to_update.is_train: train_a_dist = a_dist train_c_dist = c_dist test_a_dist = other_sample_set.atom_distribution test_c_dist = other_sample_set.compound_distribution else: test_a_dist = a_dist test_c_dist = c_dist train_a_dist = other_sample_set.atom_distribution train_c_dist = other_sample_set.compound_distribution return self.score(train_a_dist, test_a_dist, train_c_dist, test_c_dist) def add_sample_to_set(self, sample_id: str, split_sample_set: SplitSampleSet): """ Add new sample to sample set (update in-place). """ split = split_sample_set.split_type self.sample_splits[sample_id] = split self.unused_sample_ids.remove(sample_id) split_sample_set.update(sample_id, full_sample_set=self.full_sample_set, inplace=True) def save_config(self, save_dir: Path): """ Save configuration file as JSON. """ config_path = save_dir / 'config.json' config_path.write_text(self.config.to_json()) def save_samples(self, path: Path): """ Save actual splits to `save_path`. """ train_samples = "" with open(f'{path.parent}/train_samples.txt', 'a') as train, open(f'{path.parent}/test_samples.txt', 'a') as test: for s_id, split in self.sample_splits.items(): if split: if split.value == "train": train.write(self.sample_store._samples[s_id]._name) train.write("\n") elif split.value == "test": test.write(self.sample_store._samples[s_id]._name) test.write("\n") else: assert False train.close() test.close() #json.dump(train_samples, (path.parent / (path.name + '-train.json')).open(mode="w")) #json.dump(test_samples, (path.parent / (path.name + '-test.json')).open(mode="w")) def save_splits(self, save_path: Path): """ Save split information to `save_path`. """ splits = {s_id: split.value for s_id, split in self.sample_splits.items() if split} save_data = {"splits": splits, "train_size": self.train_set.size, "test_size": self.test_set.size, "compound_divergence": self.compound_divergence, "atom_divergence": self.atom_divergence } json.dump(save_data, save_path.open(mode="w")) def end_iteration(self): if self.config.save_progress: self.save_splits(Path(self.config.save_dir) / "data.json") def end_generation(self): """ End generation process. """ self.logger.info("Finished creating dataset!") self.logger.info(f"Train set size: {self.train_set.size}, test set size: {self.test_set.size}") self.logger.info(f"D_A: {self.atom_divergence}, D_C: {self.compound_divergence}") self.logger.info(f"Saving to {self.config.save_dir}...") self.save_splits(Path(self.config.save_dir) / "data.json") self.save_samples(Path(self.config.save_dir) / "samples") def generate_splits(self) -> Tuple[SplitSampleSet, SplitSampleSet]: """ At each iteration, a new sample u is selected such that D_C(V||W) and D_A(V||W) are kept as closely as possible to the desired values. Returns ------- SplitSampleSet Generated train set split. SplitSampleSet Generated test set split. """ self.init_build() # add random init to initialize train set chosen_sample_id = np.random.choice(list(self.unused_sample_ids)) self.logger.info(f"Choosing random first sample: {chosen_sample_id}...") self.add_sample_to_set(chosen_sample_id, self.train_set) # main split generation loop self.logger.info("Starting to create splits...") for i in tqdm(range(self.steps_left), total=self.steps_left): tic = time.perf_counter() if self.train_step: best_id, debug_infos = self.find_best_sample(self.train_set, self.test_set) self.add_sample_to_set(best_id, self.train_set) split = self.train_set.split_type.value else: best_id, debug_infos = self.find_best_sample(self.test_set, self.train_set) self.add_sample_to_set(best_id, self.test_set) split = self.test_set.split_type.value toc = time.perf_counter() self.logger.debug(f"Found new {split} sample ({best_id})! Score: {debug_infos.get('best_score')}, Time: {toc - tic:0.4f}") self.logger.debug(f"Train set size: {self.train_set.size}, test set size: {self.test_set.size}") self.logger.debug(f"D_A: {self.atom_divergence}, D_C: {self.compound_divergence}") self.end_iteration() self.end_generation() self.logger.info("Done!") @classmethod def measure_sample_sets(cls, train_set: List[Sample], test_set: List[Sample]): """ Measure atom and compound divergence between two existing sample sets. Parameters ---------- train_set : List[Sample] Train set samples. test_set : List[Sample] Test set samples. Returns ------- float: atom divergence float: compound divergence DBCASplitter: DBCASplitter object containing full split details. """ dbca_splitter = cls(train_set + test_set) for sample in train_set: dbca_splitter.add_sample_to_set(sample.id, dbca_splitter.train_set) for sample in test_set: dbca_splitter.add_sample_to_set(sample.id, dbca_splitter.test_set) return dbca_splitter.atom_divergence, dbca_splitter.compound_divergence, dbca_splitter def get_merged_weights_df(self, dist_type: str = "compound") -> pd.DataFrame: tr_df = get_weights_df(self.train_set, dist_type=dist_type) te_df = get_weights_df(self.test_set, dist_type=dist_type) com_df = pd.concat((tr_df, te_df), axis=1) com_df.columns = ["train", "test"] com_df.fillna(0,
name_='MyDigiPassEidAddress') if self.hasContent_(): outfile.write('>%s' % (eol_, )) self.exportChildren(outfile, level + 1, namespaceprefix_='', name_='MyDigiPassEidAddress', pretty_print=pretty_print) outfile.write('</%s%s>%s' % (namespaceprefix_, name_, eol_)) else: outfile.write('/>%s' % (eol_, )) def exportAttributes(self, outfile, level, already_processed, namespaceprefix_='', name_='MyDigiPassEidAddress'): if self.streetAndNumber is not None and 'streetAndNumber' not in already_processed: already_processed.add('streetAndNumber') outfile.write(' streetAndNumber=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.streetAndNumber), input_name='streetAndNumber')), )) if self.zipCode is not None and 'zipCode' not in already_processed: already_processed.add('zipCode') outfile.write(' zipCode=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.zipCode), input_name='zipCode')), )) if self.municipality is not None and 'municipality' not in already_processed: already_processed.add('municipality') outfile.write(' municipality=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.municipality), input_name='municipality')), )) def exportChildren(self, outfile, level, namespaceprefix_='', name_='MyDigiPassEidAddress', fromsubclass_=False, pretty_print=True): pass def build(self, node): already_processed = set() self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) return self def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('streetAndNumber', node) if value is not None and 'streetAndNumber' not in already_processed: already_processed.add('streetAndNumber') self.streetAndNumber = value value = find_attr_value_('zipCode', node) if value is not None and 'zipCode' not in already_processed: already_processed.add('zipCode') self.zipCode = value value = find_attr_value_('municipality', node) if value is not None and 'municipality' not in already_processed: already_processed.add('municipality') self.municipality = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class MyDigiPassEidAddress class MyDigiPassProfile(GeneratedsSuper): subclass = None superclass = None def __init__(self, updatedAt=None, firstName=None, lastName=None, bornOn=None, preferredLocale=None, uuid=None): self.original_tagname_ = None self.updatedAt = _cast(None, updatedAt) self.firstName = _cast(None, firstName) self.lastName = _cast(None, lastName) self.bornOn = _cast(None, bornOn) self.preferredLocale = _cast(None, preferredLocale) self.uuid = _cast(None, uuid) def factory(*args_, **kwargs_): if CurrentSubclassModule_ is not None: subclass = getSubclassFromModule_( CurrentSubclassModule_, MyDigiPassProfile) if subclass is not None: return subclass(*args_, **kwargs_) if MyDigiPassProfile.subclass: return MyDigiPassProfile.subclass(*args_, **kwargs_) else: return MyDigiPassProfile(*args_, **kwargs_) factory = staticmethod(factory) def get_updatedAt(self): return self.updatedAt def set_updatedAt(self, updatedAt): self.updatedAt = updatedAt def get_firstName(self): return self.firstName def set_firstName(self, firstName): self.firstName = firstName def get_lastName(self): return self.lastName def set_lastName(self, lastName): self.lastName = lastName def get_bornOn(self): return self.bornOn def set_bornOn(self, bornOn): self.bornOn = bornOn def get_preferredLocale(self): return self.preferredLocale def set_preferredLocale(self, preferredLocale): self.preferredLocale = preferredLocale def get_uuid(self): return self.uuid def set_uuid(self, uuid): self.uuid = uuid def hasContent_(self): if ( ): return True else: return False def export(self, outfile, level, namespaceprefix_='', name_='MyDigiPassProfile', namespacedef_='', pretty_print=True): imported_ns_def_ = GenerateDSNamespaceDefs_.get('MyDigiPassProfile') if imported_ns_def_ is not None: namespacedef_ = imported_ns_def_ if pretty_print: eol_ = '\n' else: eol_ = '' if self.original_tagname_ is not None: name_ = self.original_tagname_ showIndent(outfile, level, pretty_print) outfile.write('<%s%s%s' % (namespaceprefix_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(outfile, level, already_processed, namespaceprefix_, name_='MyDigiPassProfile') if self.hasContent_(): outfile.write('>%s' % (eol_, )) self.exportChildren(outfile, level + 1, namespaceprefix_='', name_='MyDigiPassProfile', pretty_print=pretty_print) outfile.write('</%s%s>%s' % (namespaceprefix_, name_, eol_)) else: outfile.write('/>%s' % (eol_, )) def exportAttributes(self, outfile, level, already_processed, namespaceprefix_='', name_='MyDigiPassProfile'): if self.updatedAt is not None and 'updatedAt' not in already_processed: already_processed.add('updatedAt') outfile.write(' updatedAt=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.updatedAt), input_name='updatedAt')), )) if self.firstName is not None and 'firstName' not in already_processed: already_processed.add('firstName') outfile.write(' firstName=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.firstName), input_name='firstName')), )) if self.lastName is not None and 'lastName' not in already_processed: already_processed.add('lastName') outfile.write(' lastName=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.lastName), input_name='lastName')), )) if self.bornOn is not None and 'bornOn' not in already_processed: already_processed.add('bornOn') outfile.write(' bornOn=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.bornOn), input_name='bornOn')), )) if self.preferredLocale is not None and 'preferredLocale' not in already_processed: already_processed.add('preferredLocale') outfile.write(' preferredLocale=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.preferredLocale), input_name='preferredLocale')), )) if self.uuid is not None and 'uuid' not in already_processed: already_processed.add('uuid') outfile.write(' uuid=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.uuid), input_name='uuid')), )) def exportChildren(self, outfile, level, namespaceprefix_='', name_='MyDigiPassProfile', fromsubclass_=False, pretty_print=True): pass def build(self, node): already_processed = set() self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) return self def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('updatedAt', node) if value is not None and 'updatedAt' not in already_processed: already_processed.add('updatedAt') self.updatedAt = value value = find_attr_value_('firstName', node) if value is not None and 'firstName' not in already_processed: already_processed.add('firstName') self.firstName = value value = find_attr_value_('lastName', node) if value is not None and 'lastName' not in already_processed: already_processed.add('lastName') self.lastName = value value = find_attr_value_('bornOn', node) if value is not None and 'bornOn' not in already_processed: already_processed.add('bornOn') self.bornOn = value value = find_attr_value_('preferredLocale', node) if value is not None and 'preferredLocale' not in already_processed: already_processed.add('preferredLocale') self.preferredLocale = value value = find_attr_value_('uuid', node) if value is not None and 'uuid' not in already_processed: already_processed.add('uuid') self.uuid = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class MyDigiPassProfile class MyDigiPassAddress(GeneratedsSuper): subclass = None superclass = None def __init__(self, address1=None, address2=None, city=None, zip=None, country=None, state=None): self.original_tagname_ = None self.address1 = _cast(None, address1) self.address2 = _cast(None, address2) self.city = _cast(None, city) self.zip = _cast(None, zip) self.country = _cast(None, country) self.state = _cast(None, state) def factory(*args_, **kwargs_): if CurrentSubclassModule_ is not None: subclass = getSubclassFromModule_( CurrentSubclassModule_, MyDigiPassAddress) if subclass is not None: return subclass(*args_, **kwargs_) if MyDigiPassAddress.subclass: return MyDigiPassAddress.subclass(*args_, **kwargs_) else: return MyDigiPassAddress(*args_, **kwargs_) factory = staticmethod(factory) def get_address1(self): return self.address1 def set_address1(self, address1): self.address1 = address1 def get_address2(self): return self.address2 def set_address2(self, address2): self.address2 = address2 def get_city(self): return self.city def set_city(self, city): self.city = city def get_zip(self): return self.zip def set_zip(self, zip): self.zip = zip def get_country(self): return self.country def set_country(self, country): self.country = country def get_state(self): return self.state def set_state(self, state): self.state = state def hasContent_(self): if ( ): return True else: return False def export(self, outfile, level, namespaceprefix_='', name_='MyDigiPassAddress', namespacedef_='', pretty_print=True): imported_ns_def_ = GenerateDSNamespaceDefs_.get('MyDigiPassAddress') if imported_ns_def_ is not None: namespacedef_ = imported_ns_def_ if pretty_print: eol_ = '\n' else: eol_ = '' if self.original_tagname_ is not None: name_ = self.original_tagname_ showIndent(outfile, level, pretty_print) outfile.write('<%s%s%s' % (namespaceprefix_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(outfile, level, already_processed, namespaceprefix_, name_='MyDigiPassAddress') if self.hasContent_(): outfile.write('>%s' % (eol_, )) self.exportChildren(outfile, level + 1, namespaceprefix_='', name_='MyDigiPassAddress', pretty_print=pretty_print) outfile.write('</%s%s>%s' % (namespaceprefix_, name_, eol_)) else: outfile.write('/>%s' % (eol_, )) def exportAttributes(self, outfile, level, already_processed, namespaceprefix_='', name_='MyDigiPassAddress'): if self.address1 is not None and 'address1' not in already_processed: already_processed.add('address1') outfile.write(' address1=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.address1), input_name='address1')), )) if self.address2 is not None and 'address2' not in already_processed: already_processed.add('address2') outfile.write(' address2=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.address2), input_name='address2')), )) if self.city is not None and 'city' not in already_processed: already_processed.add('city') outfile.write(' city=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.city), input_name='city')), )) if self.zip is not None and 'zip' not in already_processed: already_processed.add('zip') outfile.write(' zip=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.zip), input_name='zip')), )) if self.country is not None and 'country' not in already_processed: already_processed.add('country') outfile.write(' country=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.country), input_name='country')), )) if self.state is not None and 'state' not in already_processed: already_processed.add('state') outfile.write(' state=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.state), input_name='state')), )) def exportChildren(self, outfile, level, namespaceprefix_='', name_='MyDigiPassAddress', fromsubclass_=False, pretty_print=True): pass def build(self, node): already_processed = set() self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) return self def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('address1', node) if value is not None and 'address1' not in already_processed: already_processed.add('address1') self.address1 = value value = find_attr_value_('address2', node) if value is not None and 'address2' not in already_processed: already_processed.add('address2') self.address2 = value value = find_attr_value_('city', node) if value is not None and 'city' not in already_processed: already_processed.add('city') self.city = value value = find_attr_value_('zip', node) if value is not None and 'zip' not in already_processed: already_processed.add('zip') self.zip = value value = find_attr_value_('country', node) if value is not None and 'country' not in already_processed: already_processed.add('country') self.country = value value = find_attr_value_('state', node) if value is not None and 'state' not in already_processed: already_processed.add('state') self.state = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class MyDigiPassAddress class MyDigiPassWidgetStep(WidgetStep): subclass = None superclass = WidgetStep def __init__(self, id=None, creationTimestamp=None, definition=None, previousStep=None, nextStep=None, message=None, button=None, receivedTimestamp=None, acknowledgedTimestamp=None, displayValue=None, formButton=None, eidPhoto=None, email=None, phone=None, eidProfile=None, eidAddress=None, profile=None, address=None): self.original_tagname_ = None super(MyDigiPassWidgetStep, self).__init__(id, creationTimestamp, definition, previousStep, nextStep, message, button, receivedTimestamp, acknowledgedTimestamp, displayValue, formButton, ) self.eidPhoto = _cast(None, eidPhoto) self.email = _cast(None, email) self.phone = _cast(None, phone) self.eidProfile = eidProfile self.eidAddress = eidAddress self.profile = profile self.address = address def factory(*args_, **kwargs_): if CurrentSubclassModule_ is not None: subclass = getSubclassFromModule_( CurrentSubclassModule_, MyDigiPassWidgetStep) if subclass is not None: return subclass(*args_, **kwargs_) if MyDigiPassWidgetStep.subclass: return MyDigiPassWidgetStep.subclass(*args_, **kwargs_) else: return MyDigiPassWidgetStep(*args_, **kwargs_) factory = staticmethod(factory) def get_eidProfile(self): return self.eidProfile def set_eidProfile(self, eidProfile): self.eidProfile = eidProfile def get_eidAddress(self): return self.eidAddress def set_eidAddress(self, eidAddress): self.eidAddress =
m21, Tam, Tp, Ts, Q = params """ Model with split, ancient migration, heterogenous effective population size (with 2 classes of loci shared by the two populations = Hill-Robertson effects) nu1: Size of population 1 after split. nu2: Size of population 2 after split. b1: Population growth coefficient of population 1 b2: Population growth coefficient of population 2 hrf: Hill-Robertson factor, i.e. the degree to which Ne is locally reduced due to the effects of background selection and selective sweep effects m12: Migration from pop 2 to pop 1 (2*Na*m12). m21: Migration from pop 1 to pop 2. Tam: The scaled time between the split and the end of ancient migration. Ts: The scaled time between the end of ancient migration and present (in units of 2*Na generations). Q: The proportion of the genome with a reduced effective size due to selection at linked sites n1,n2: Size of fs to generate. pts: Number of points to use in grid for evaluation. """ # Define the grid we'll use xx = dadi.Numerics.default_grid(pts) #### Calculate the pectrum in normally-recombining regions # phi for the equilibrium ancestral population phinr = dadi.PhiManip.phi_1D(xx) #Now do the population growth event. phinr = dadi.Integration.one_pop(phinr, xx, Tp, nu=nuA) # Now do the divergence event phinr = dadi.PhiManip.phi_1D_to_2D(xx, phinr) # We set the population sizes after the split to nu1 and nu2 and the migration rates to m12 and m21 phinr = dadi.Integration.two_pops(phinr, xx, Tam, nu1, nu2, m12=m12, m21=m21) # We start the population size change after the split independantly in each population and set the migration rates to zero bnu1_func = lambda t: nu1 * b1**(t/Ts) bnu2_func = lambda t: nu2 * b2**(t/Ts) phinr = dadi.Integration.two_pops(phinr, xx, Ts, bnu1_func, bnu2_func, m12=0, m21=0) ## calculate the spectrum. fsnr = dadi.Spectrum.from_phi(phinr, (n1,n2), (xx,xx)) #### Spectrum of low-recombining regions # phi for the equilibrium ancestral population philr = dadi.PhiManip.phi_1D(xx) #Now do the population growth event. philr = dadi.Integration.one_pop(philr, xx, Tp, nu=nuA) # Now do the divergence event philr = dadi.PhiManip.phi_1D_to_2D(xx, philr) # We set the population sizes after the split to nu1 and nu2 and the migration rates to m12 and m21 philr = dadi.Integration.two_pops(philr, xx, Tam, nu1*hrf, nu2*hrf, m12=m12, m21=m21) # We start the population size change after the split independantly (bnu{1,2}_func) & integrate the hrf for low-recombining regions in each population and set the migration rates to zero bnu1hrf_func = lambda t: (nu1 * b1**(t/Ts)) * hrf bnu2hrf_func = lambda t: (nu2 * b1**(t/Ts)) * hrf philr = dadi.Integration.two_pops(philr, xx, Ts, bnu1hrf_func, bnu2hrf_func, m12=0, m21=0) ## calculate the spectrum. fslr = dadi.Spectrum.from_phi(philr, (n1,n2), (xx,xx)) #### Sum the two spectra fs= (1-Q)*fsnr + Q*fslr return fs def AMA2mG(params, (n1,n2), pts): nuA, nu1, nu2, b1, b2, m12, m21, me12, me21, Tam, Tp, Ts, P = params """ Model of semi permeability with split, ancient migration with 2 migration rates nu1: Size of population 1 after split. nu2: Size of population 2 after split. b1: Population growth coefficient of population 1 b2: Population growth coefficient of population 2 m12: Migration from pop 2 to pop 1 (2*Na*m12). m21: Migration from pop 1 to pop 2. me12: Effective migration from pop 2 to pop 1 in genomic islands. me21: Effective migration from pop 1 to pop 2 in genomic islands. Tam: The scaled time between the split and the end of ancient migration (in units of 2*Na generations). Ts: The scaled time between the end of ancient migration and present. P: The porportion of the genome evolving neutrally n1,n2: Size of fs to generate. pts: Number of points to use in grid for evaluation. """ # Define the grid we'll use xx = dadi.Numerics.default_grid(pts) ### Calculate the neutral spectrum # phi for the equilibrium ancestral population phiN = dadi.PhiManip.phi_1D(xx) #Now do the population growth event. phiN = dadi.Integration.one_pop(phiN, xx, Tp, nu=nuA) # Now do the divergence event phiN = dadi.PhiManip.phi_1D_to_2D(xx, phiN) # We set the population sizes nu1 & nu2 after the split and set the migration rate to m12 and m21 phiN = dadi.Integration.two_pops(phiN, xx, Tam, nu1, nu2, m12=m12, m21=m21) # We start the population reduction after the split and set the migration rates to zero bnu1_func = lambda t: nu1 * b1**(t/Ts) bnu2_func = lambda t: nu2 * b2**(t/Ts) phiN = dadi.Integration.two_pops(phiN, xx, Ts, bnu1_func, bnu2_func, m12=0, m21=0) ## calculate the spectrum. fsN = dadi.Spectrum.from_phi(phiN, (n1,n2), (xx,xx)) ### Calculate the genomic island spectrum # phi for the equilibrium ancestral population phiI = dadi.PhiManip.phi_1D(xx) #Now do the population growth event. phiI = dadi.Integration.one_pop(phiI, xx, Tp, nu=nuA) # Now do the divergence event phiI = dadi.PhiManip.phi_1D_to_2D(xx, phiI) # We set the population sizes nu1 & nu2 after the split and set the migration rate to me12 and me21 phiI = dadi.Integration.two_pops(phiI, xx, Tam, nu1, nu2, m12=me12, m21=me21) # We start the population reduction after the split and set the migration rates to zero bnu1_func = lambda t: nu1 * b1**(t/Ts) bnu2_func = lambda t: nu2 * b2**(t/Ts) phiI = dadi.Integration.two_pops(phiI, xx, Ts, bnu1_func, bnu2_func, m12=me12, m21=me21) ## calculate the spectrum. fsI = dadi.Spectrum.from_phi(phiI, (n1,n2), (xx,xx)) ### Sum the two spectra in proportion O (and P) fs = P*fsN + (1-P)*fsI return fs def AMA2N2mG(params, (n1,n2), pts): nuA, nu1, nu2, b1, b2, hrf, m12, m21, me12, me21, Tam, Tp, Ts, P, Q = params """ Model of semi permeability with split, ancient migration with 2 migration rates, heterogenous effective population size (2 classes, shared by the two populations = background selection) nu1: Size of population 1 after split. nu2: Size of population 2 after split. b1: Population growth coefficient of population 1 b2: Population growth coefficient of population 2 hrf: Hill-Robertson factor, i.e. the degree to which Ne is locally reduced due to the effects of background selection and selective sweep effects m12: Migration from pop 2 to pop 1 (2*Na*m12). m21: Migration from pop 1 to pop 2. me12: Effective migration from pop 2 to pop 1 in genomic islands. me21: Effective migration from pop 1 to pop 2 in genomic islands. Ts: The scaled time between the split and the ancient migration (in units of 2*Na generations). Tam: The scale time between the ancient migration and present. P: The proportion of the genome evolving neutrally Q: The proportion of the genome with a reduced effective size due to selection at linked sites n1,n2: Size of fs to generate. pts: Number of points to use in grid for evaluation. """ # Define the grid we'll use xx = dadi.Numerics.default_grid(pts) #### Calculate the neutral spectrum # phi for the equilibrium ancestral population phiN = dadi.PhiManip.phi_1D(xx) #Now do the population growth event. phiN = dadi.Integration.one_pop(phiN, xx, Tp, nu=nuA) # Now do the divergence event phiN = dadi.PhiManip.phi_1D_to_2D(xx, phiN) # We SET the population size nu1 & nu2 after the split and set the migration rates to m12 & m21 phiN = dadi.Integration.two_pops(phiN, xx, Tam, nu1, nu2, m12=m12, m21=m21) # We set the population sizes change independently in each population after ancient migration to bnu1_func and bnu2_func and set the migration rates to zero bnu1_func = lambda t: nu1 * b1**(t/Ts) bnu2_func = lambda t: nu2 * b2**(t/Ts) phiN = dadi.Integration.two_pops(phiN, xx, Ts, bnu1_func, bnu2_func, m12=0, m21=0) ### ## calculate the spectrum. fsN = dadi.Spectrum.from_phi(phiN, (n1,n2), (xx,xx)) #### Calculate the genomic island spectrum # phi for the equilibrium ancestral population phiI = dadi.PhiManip.phi_1D(xx) #Now do the population growth event. phiI = dadi.Integration.one_pop(phiI, xx, Tp, nu=nuA) # Now do the divergence event phiI = dadi.PhiManip.phi_1D_to_2D(xx, phiI) # We set the population size after the split in each population and set the migration rates to me12 & me21 phiI = dadi.Integration.two_pops(phiI, xx, Tam, nu1, nu2, m12=me12, m21=me21) # We keep the population sizes change after ancient migration to bnu1_func and bnu2_func and set the migration rates
<reponame>cds-snc/notifier-api import datetime import uuid import pytest from boto3.exceptions import Boto3Error from freezegun import freeze_time from notifications_utils.recipients import ( validate_and_format_email_address, validate_and_format_phone_number, ) from sqlalchemy.exc import SQLAlchemyError from app.models import ( LETTER_TYPE, Notification, NotificationHistory, ScheduledNotification, Template, ) from app.notifications.process_notifications import ( choose_queue, create_content_for_notification, db_save_and_send_notification, persist_notification, persist_notifications, persist_scheduled_notification, send_notification_to_queue, simulated_recipient, transform_notification, ) from app.v2.errors import BadRequestError from tests.app.conftest import create_sample_api_key from tests.app.db import create_service, create_template def test_create_content_for_notification_passes(sample_email_template): template = Template.query.get(sample_email_template.id) content = create_content_for_notification(template, None) assert str(content) == template.content def test_create_content_for_notification_with_placeholders_passes( sample_template_with_placeholders, ): template = Template.query.get(sample_template_with_placeholders.id) content = create_content_for_notification(template, {"name": "Bobby"}) assert content.content == template.content assert "Bobby" in str(content) def test_create_content_for_notification_fails_with_missing_personalisation( sample_template_with_placeholders, ): template = Template.query.get(sample_template_with_placeholders.id) with pytest.raises(BadRequestError): create_content_for_notification(template, None) def test_create_content_for_notification_allows_additional_personalisation( sample_template_with_placeholders, ): template = Template.query.get(sample_template_with_placeholders.id) create_content_for_notification(template, {"name": "Bobby", "Additional placeholder": "Data"}) def test_persist_notification_throws_exception_when_missing_template(sample_api_key): assert Notification.query.count() == 0 assert NotificationHistory.query.count() == 0 with pytest.raises(SQLAlchemyError): persist_notification( template_id=None, template_version=None, recipient="+16502532222", service=sample_api_key.service, personalisation=None, notification_type="sms", api_key_id=sample_api_key.id, key_type=sample_api_key.key_type, ) assert Notification.query.count() == 0 assert NotificationHistory.query.count() == 0 @pytest.mark.skip(reason="Deprecated: This test needs to use the persist_notifications path") def test_persist_notification_does_not_increment_cache_if_test_key( notify_db, notify_db_session, sample_template, sample_job, mocker ): api_key = create_sample_api_key( notify_db=notify_db, notify_db_session=notify_db_session, service=sample_template.service, key_type="test", ) mocker.patch("app.notifications.process_notifications.redis_store.get", return_value="cache") mocker.patch( "app.notifications.process_notifications.redis_store.get_all_from_hash", return_value="cache", ) daily_limit_cache = mocker.patch("app.notifications.process_notifications.redis_store.incr") template_usage_cache = mocker.patch("app.notifications.process_notifications.redis_store.increment_hash_value") mocker.patch("app.notifications.process_notifications.dao_get_template_by_id", return_value=sample_template) mocker.patch("app.notifications.process_notifications.choose_queue", return_value="email_queue") assert Notification.query.count() == 0 assert NotificationHistory.query.count() == 0 persist_notification( template_id=sample_template.id, template_version=sample_template.version, recipient="+16502532222", service=sample_template.service, personalisation={}, notification_type="sms", api_key_id=api_key.id, key_type=api_key.key_type, job_id=sample_job.id, job_row_number=100, reference="ref", ) assert Notification.query.count() == 1 assert not daily_limit_cache.called assert not template_usage_cache.called @pytest.mark.skip(reason="Deprecated: This test needs to use the persist_notifications path") @freeze_time("2016-01-01 11:09:00.061258") def test_persist_notification_with_optionals(sample_job, sample_api_key, mocker, sample_template): assert Notification.query.count() == 0 assert NotificationHistory.query.count() == 0 mocked_redis = mocker.patch("app.notifications.process_notifications.redis_store.get") mocker.patch("app.notifications.process_notifications.dao_get_template_by_id", return_value=sample_template) mocker.patch("app.notifications.process_notifications.choose_queue", return_value="email_queue") n_id = uuid.uuid4() created_at = datetime.datetime(2016, 11, 11, 16, 8, 18) persist_notification( template_id=sample_job.template.id, template_version=sample_job.template.version, recipient="+16502532222", service=sample_job.service, personalisation=None, notification_type="sms", api_key_id=sample_api_key.id, key_type=sample_api_key.key_type, created_at=created_at, job_id=sample_job.id, job_row_number=10, client_reference="ref from client", notification_id=n_id, created_by_id=sample_job.created_by_id, ) assert Notification.query.count() == 1 assert NotificationHistory.query.count() == 0 persisted_notification = Notification.query.all()[0] assert persisted_notification.id == n_id persisted_notification.job_id == sample_job.id assert persisted_notification.job_row_number == 10 assert persisted_notification.created_at == created_at mocked_redis.assert_called_once_with(str(sample_job.service_id) + "-2016-01-01-count") assert persisted_notification.client_reference == "ref from client" assert persisted_notification.reference is None assert persisted_notification.international is False assert persisted_notification.phone_prefix == "1" assert persisted_notification.rate_multiplier == 1 assert persisted_notification.created_by_id == sample_job.created_by_id assert not persisted_notification.reply_to_text @pytest.mark.skip(reason="Deprecated: This test needs to use the persist_notifications path") @freeze_time("2016-01-01 11:09:00.061258") def test_persist_notification_doesnt_touch_cache_for_old_keys_that_dont_exist(sample_template, sample_api_key, mocker): mock_incr = mocker.patch("app.notifications.process_notifications.redis_store.incr") mocker.patch("app.notifications.process_notifications.redis_store.get", return_value=None) mocker.patch( "app.notifications.process_notifications.redis_store.get_all_from_hash", return_value=None, ) persist_notification( template_id=sample_template.id, template_version=sample_template.version, recipient="+16502532222", service=sample_template.service, personalisation={}, notification_type="sms", api_key_id=sample_api_key.id, key_type=sample_api_key.key_type, reference="ref", ) mock_incr.assert_not_called() @pytest.mark.skip(reason="Deprecated: This test needs to use the persist_notifications path") @freeze_time("2016-01-01 11:09:00.061258") def test_persist_notification_increments_cache_if_key_exists(sample_template, sample_api_key, mocker): mock_incr = mocker.patch("app.notifications.process_notifications.redis_store.incr") mocker.patch("app.notifications.process_notifications.redis_store.get", return_value=1) mocker.patch( "app.notifications.process_notifications.redis_store.get_all_from_hash", return_value={sample_template.id, 1}, ) mocker.patch("app.notifications.process_notifications.dao_get_template_by_id", return_value=sample_template) mocker.patch("app.notifications.process_notifications.choose_queue", return_value="email_queue") persist_notification( template_id=sample_template.id, template_version=sample_template.version, recipient="+16502532222", service=sample_template.service, personalisation={}, notification_type="sms", api_key_id=sample_api_key.id, key_type=sample_api_key.key_type, reference="ref2", ) mock_incr.assert_called_once_with( str(sample_template.service_id) + "-2016-01-01-count", ) @pytest.mark.parametrize( ("research_mode, requested_queue, notification_type, key_type, reply_to_text, expected_queue, expected_task"), [ (True, None, "sms", "normal", None, "research-mode-tasks", "deliver_sms"), (True, None, "email", "normal", None, "research-mode-tasks", "deliver_email"), (True, None, "email", "team", None, "research-mode-tasks", "deliver_email"), ( True, None, "letter", "normal", None, "research-mode-tasks", "letters_pdf_tasks.create_letters_pdf", ), ( True, None, "sms", "normal", "+14383898585", "send-throttled-sms-tasks", "deliver_throttled_sms", ), (False, None, "sms", "normal", None, "send-sms-tasks", "deliver_sms"), (False, None, "email", "normal", None, "send-email-tasks", "deliver_email"), (False, None, "sms", "team", None, "send-sms-tasks", "deliver_sms"), ( False, None, "letter", "normal", None, "create-letters-pdf-tasks", "letters_pdf_tasks.create_letters_pdf", ), (False, None, "sms", "test", None, "research-mode-tasks", "deliver_sms"), ( False, None, "sms", "normal", "+14383898585", "send-throttled-sms-tasks", "deliver_throttled_sms", ), ( True, "notify-internal-tasks", "email", "normal", None, "research-mode-tasks", "deliver_email", ), ( False, "notify-internal-tasks", "sms", "normal", None, "notify-internal-tasks", "deliver_sms", ), ( False, "notify-internal-tasks", "email", "normal", None, "notify-internal-tasks", "deliver_email", ), ( False, "notify-internal-tasks", "sms", "test", None, "research-mode-tasks", "deliver_sms", ), ( False, "notify-internal-tasks", "sms", "normal", "+14383898585", "send-throttled-sms-tasks", "deliver_throttled_sms", ), ], ) def test_send_notification_to_queue( notify_db, notify_db_session, research_mode, requested_queue, notification_type, key_type, reply_to_text, expected_queue, expected_task, mocker, ): if "." not in expected_task: expected_task = f"provider_tasks.{expected_task}" mocked = mocker.patch(f"app.celery.{expected_task}.apply_async") notification = Notification( id=uuid.uuid4(), key_type=key_type, notification_type=notification_type, created_at=datetime.datetime(2016, 11, 11, 16, 8, 18), reply_to_text=reply_to_text, ) send_notification_to_queue(notification=notification, research_mode=research_mode, queue=requested_queue) mocked.assert_called_once_with([str(notification.id)], queue=expected_queue) def test_send_notification_to_queue_throws_exception_deletes_notification(sample_notification, mocker): mocked = mocker.patch( "app.celery.provider_tasks.deliver_sms.apply_async", side_effect=Boto3Error("EXPECTED"), ) with pytest.raises(Boto3Error): send_notification_to_queue(sample_notification, False) mocked.assert_called_once_with([(str(sample_notification.id))], queue="send-sms-tasks") assert Notification.query.count() == 0 assert NotificationHistory.query.count() == 0 @pytest.mark.parametrize( "to_address, notification_type, expected", [ ("+16132532222", "sms", True), ("+16132532223", "sms", True), ("6132532222", "sms", True), ("<EMAIL>", "email", True), ("<EMAIL>", "email", True), ("<EMAIL>", "email", True), ("6132532225", "sms", False), ("<EMAIL>", "email", False), ], ) def test_simulated_recipient(notify_api, to_address, notification_type, expected): """ The values where the expected = 'research-mode' are listed in the config['SIMULATED_EMAIL_ADDRESSES'] and config['SIMULATED_SMS_NUMBERS']. These values should result in using the research mode queue. SIMULATED_EMAIL_ADDRESSES = ( '<EMAIL>', '<EMAIL>', '<EMAIL>' ) SIMULATED_SMS_NUMBERS = ('6132532222', '+16132532222', '+16132532223') """ formatted_address = None if notification_type == "email": formatted_address = validate_and_format_email_address(to_address) else: formatted_address = validate_and_format_phone_number(to_address) is_simulated_address = simulated_recipient(formatted_address, notification_type) assert is_simulated_address == expected @pytest.mark.parametrize( "recipient, expected_international, expected_prefix, expected_units", [ ("6502532222", False, "1", 1), # NA ("+16502532222", False, "1", 1), # NA ("+79587714230", True, "7", 1), # Russia ("+360623400400", True, "36", 3), ], # Hungary ) def test_persist_notification_with_international_info_stores_correct_info( sample_job, sample_api_key, mocker, recipient, expected_international, expected_prefix, expected_units, ): persist_notification( template_id=sample_job.template.id, template_version=sample_job.template.version, recipient=recipient, service=sample_job.service, personalisation=None, notification_type="sms", api_key_id=sample_api_key.id, key_type=sample_api_key.key_type, job_id=sample_job.id, job_row_number=10, client_reference="ref from client", ) persisted_notification = Notification.query.all()[0] assert persisted_notification.international is expected_international assert persisted_notification.phone_prefix == expected_prefix assert persisted_notification.rate_multiplier == expected_units def test_persist_notification_with_international_info_does_not_store_for_email(sample_job, sample_api_key, mocker): persist_notification( template_id=sample_job.template.id, template_version=sample_job.template.version, recipient="<EMAIL>", service=sample_job.service, personalisation=None, notification_type="email", api_key_id=sample_api_key.id, key_type=sample_api_key.key_type, job_id=sample_job.id, job_row_number=10, client_reference="ref from client", ) persisted_notification = Notification.query.all()[0] assert persisted_notification.international is False assert persisted_notification.phone_prefix is None assert persisted_notification.rate_multiplier is None # This test assumes the local timezone is EST def test_persist_scheduled_notification(sample_notification): persist_scheduled_notification(sample_notification.id, "2017-05-12 14:15") scheduled_notification = ScheduledNotification.query.all() assert len(scheduled_notification) == 1 assert scheduled_notification[0].notification_id == sample_notification.id assert scheduled_notification[0].scheduled_for == datetime.datetime(2017, 5, 12, 18, 15) @pytest.mark.parametrize( "recipient, expected_recipient_normalised", [ ("6502532222", "+16502532222"), (" 6502532223", "+16502532223"), ("6502532223", "+16502532223"), ], ) def test_persist_sms_notification_stores_normalised_number( sample_job, sample_api_key, mocker, recipient, expected_recipient_normalised ): persist_notification( template_id=sample_job.template.id, template_version=sample_job.template.version, recipient=recipient, service=sample_job.service, personalisation=None, notification_type="sms", api_key_id=sample_api_key.id, key_type=sample_api_key.key_type, job_id=sample_job.id, ) persisted_notification = Notification.query.all()[0] assert persisted_notification.to == recipient assert persisted_notification.normalised_to == expected_recipient_normalised @pytest.mark.parametrize( "recipient, expected_recipient_normalised", [("<EMAIL>", "<EMAIL>"), ("<EMAIL>", "<EMAIL>")], ) def test_persist_email_notification_stores_normalised_email( sample_job, sample_api_key, mocker, recipient, expected_recipient_normalised ): persist_notification( template_id=sample_job.template.id, template_version=sample_job.template.version, recipient=recipient, service=sample_job.service, personalisation=None, notification_type="email", api_key_id=sample_api_key.id, key_type=sample_api_key.key_type, job_id=sample_job.id, ) persisted_notification = Notification.query.all()[0] assert persisted_notification.to == recipient assert persisted_notification.normalised_to == expected_recipient_normalised @pytest.mark.parametrize( "postage_argument, template_postage, expected_postage", [ ("second", "first", "second"), ("first", "first", "first"), ("first", "second", "first"), (None, "second", "second"), ], ) def test_persist_letter_notification_finds_correct_postage( mocker, notify_db, notify_db_session, postage_argument, template_postage, expected_postage, ): service = create_service(service_permissions=[LETTER_TYPE]) api_key = create_sample_api_key(notify_db, notify_db_session, service=service) template = create_template(service, template_type=LETTER_TYPE, postage=template_postage) mocker.patch("app.dao.templates_dao.dao_get_template_by_id", return_value=template) persist_notification( template_id=template.id, template_version=template.version, template_postage=template.postage, recipient="<NAME>, 10 Downing Street, London", service=service, personalisation=None, notification_type=LETTER_TYPE, api_key_id=api_key.id, key_type=api_key.key_type, postage=postage_argument, ) persisted_notification = Notification.query.all()[0] assert persisted_notification.postage == expected_postage def test_persist_notification_with_billable_units_stores_correct_info(mocker, notify_db_session): service = create_service(service_permissions=[LETTER_TYPE]) template = create_template(service, template_type=LETTER_TYPE) mocker.patch("app.dao.templates_dao.dao_get_template_by_id", return_value=template) persist_notification( template_id=template.id, template_version=template.version, recipient="123 Main Street", service=template.service, personalisation=None, notification_type=template.template_type, api_key_id=None, key_type="normal", billable_units=3, template_postage=template.postage, ) persisted_notification = Notification.query.all()[0] assert persisted_notification.billable_units == 3 class TestPersistNotifications: def test_persist_notifications_list(self, sample_job, sample_api_key, notify_db_session): persist_notifications( [ dict( template_id=sample_job.template.id, template_version=sample_job.template.version, recipient="<EMAIL>", service=sample_job.service, personalisation=None, notification_type="email", api_key_id=sample_api_key.id, key_type=sample_api_key.key_type, job_id=sample_job.id, job_row_number=10, client_reference="ref from client", ), dict( template_id=sample_job.template.id, template_version=sample_job.template.version, recipient="<EMAIL>", service=sample_job.service, personalisation=None, notification_type="email", api_key_id=sample_api_key.id, key_type=sample_api_key.key_type, job_id=sample_job.id, job_row_number=10, client_reference="ref from client", ), ] ) persisted_notification = Notification.query.all() assert persisted_notification[0].to == "<EMAIL>" assert persisted_notification[1].to == "<EMAIL>" assert persisted_notification[0].service == sample_job.service @pytest.mark.parametrize( ("research_mode, requested_queue, notification_type, key_type, reply_to_text, expected_queue"), [ (True, None, "sms", "normal", None, "research-mode-tasks"), (True, None, "email", "normal", None, "research-mode-tasks"), (True, None, "email", "team", None, "research-mode-tasks"), ( True, None, "letter", "normal", None, "research-mode-tasks", ), ( True, None, "sms", "normal", "+14383898585", "send-throttled-sms-tasks", ), (False, None, "sms", "normal", None, "send-sms-tasks"), (False, None, "email", "normal", None, "send-email-tasks"), (False, None, "sms", "team", None, "send-sms-tasks"), ( False, None, "letter", "normal", None, "create-letters-pdf-tasks", ), (False, None, "sms", "test", None, "research-mode-tasks"), ( False, None, "sms", "normal", "+14383898585", "send-throttled-sms-tasks", ), ( True, "notify-internal-tasks", "email", "normal", None, "research-mode-tasks", ), ( False, "notify-internal-tasks", "sms", "normal", None, "notify-internal-tasks", ), ( False, "notify-internal-tasks", "email", "normal", None, "notify-internal-tasks", ), ( False, "notify-internal-tasks", "sms", "test", None, "research-mode-tasks", ), ( False, "notify-internal-tasks", "sms", "normal", "+14383898585", "send-throttled-sms-tasks", ), ], ) def test_choose_queue( sample_template, sample_api_key, sample_job, research_mode, requested_queue, notification_type, key_type, reply_to_text, expected_queue, ): notification = Notification( id=uuid.uuid4(), template_id=sample_template.id, template_version=sample_template.version, service=sample_template.service, personalisation={}, notification_type=notification_type, api_key_id=sample_api_key.id, key_type=key_type, job_id=sample_job.id, job_row_number=100, reference="ref", reply_to_text=reply_to_text, to="+16502532222", created_at=datetime.datetime(2016, 11, 11, 16, 8, 18), ) assert choose_queue(notification, research_mode, requested_queue) == expected_queue class TestTransformNotification: def test_transform_notification_with_optionals(self, sample_job, sample_api_key, notify_db_session): assert Notification.query.count() == 0 assert NotificationHistory.query.count() == 0 n_id = uuid.uuid4() created_at = datetime.datetime(2016, 11, 11, 16, 8, 18) notification = transform_notification( template_id=sample_job.template.id, template_version=sample_job.template.version, recipient="+16502532222", service=sample_job.service, personalisation=None, notification_type="sms", api_key_id=sample_api_key.id, key_type=sample_api_key.key_type, created_at=created_at, job_id=sample_job.id, job_row_number=10, client_reference="ref from client", notification_id=n_id, created_by_id=sample_job.created_by_id, ) assert notification.id == n_id assert notification.job_id == sample_job.id assert notification.job_row_number == 10 assert notification.created_at == created_at assert notification.client_reference == "ref from client" assert notification.reference is None assert notification.international is False assert notification.phone_prefix == "1" assert notification.rate_multiplier == 1 assert
from __future__ import division from __future__ import print_function from __future__ import absolute_import from builtins import str from builtins import range from builtins import object from copy import copy, deepcopy import numpy as np from scipy.optimize import newton from HARK import AgentType, Solution, NullFunc, HARKobject, makeOnePeriodOOSolver from HARK.utilities import warnings # Because of "patch" to warnings modules from HARK.interpolation import( LinearInterp, # Piecewise linear interpolation CubicInterp, # Piecewise cubic interpolation LinearInterpOnInterp1D, # Interpolator over 1D interpolations BilinearInterp, # 2D interpolator ConstantFunction, # Interpolator-like class that returns constant value IdentityFunction # Interpolator-like class that returns one of its arguments ) from HARK.distribution import Lognormal, MeanOneLogNormal, Uniform from HARK.distribution import DiscreteDistribution, addDiscreteOutcomeConstantMean, combineIndepDstns from HARK.utilities import makeGridExpMult, CRRAutility, CRRAutilityP, \ CRRAutilityPP, CRRAutilityP_inv, CRRAutility_invP, CRRAutility_inv, \ CRRAutilityP_invP from HARK import _log from HARK import set_verbosity_level __all__ = ['ConsumerSolution', 'ValueFunc', 'MargValueFunc', 'MargMargValueFunc', 'ConsPerfForesightSolver', 'ConsIndShockSetup', 'ConsIndShockSolverBasic', 'PerfForesightConsumerType', 'init_perfect_foresight', 'init_lifecycle','init_cyclical'] utility = CRRAutility utilityP = CRRAutilityP utilityPP = CRRAutilityPP utilityP_inv = CRRAutilityP_inv utility_invP = CRRAutility_invP utility_inv = CRRAutility_inv utilityP_invP = CRRAutilityP_invP # ===================================================================== # === Classes that help solve consumption-saving models === # ===================================================================== class ConsumerSolution(Solution): ''' A class representing the solution of a single period of a consumption-saving problem. The solution must include a consumption function and marginal value function. Here and elsewhere in the code, Nrm indicates that variables are normalized by permanent income. ''' distance_criteria = ['vPfunc'] def __init__(self, cFunc=None, vFunc=None, vPfunc=None, vPPfunc=None, mNrmMin=None, hNrm=None, MPCmin=None, MPCmax=None, HNrm=None): ''' The constructor for a new ConsumerSolution object. Parameters ---------- cFunc : function The consumption function for this period, defined over market resources and habit stocks: c = cFunc(m, H). vFunc : function The beginning-of-period value function for this period, defined over market resources and habit stocks: v = vFunc(m,H). vPfunc : function The beginning-of-period marginal value function for this period, defined over market resources and habit stocks: vP = vPfunc(m,H). vPPfunc : function The beginning-of-period marginal marginal value function for this period, defined over market resources and habit stocks: vPP = vPPfunc(m,H). mNrmMin : float The minimum allowable market resources for this period; the consump- tion function (etc) are undefined for m < mNrmMin. hNrm : float Human wealth after receiving income this period: PDV of all future income, ignoring mortality. MPCmin : float Infimum of the marginal propensity to consume this period. MPC --> MPCmin as m --> infinity. MPCmax : float Supremum of the marginal propensity to consume this period. MPC --> MPCmax as m --> mNrmMin. HNrm : float The habit stock for this period, follow a law of motion Returns ------- None ''' # Change any missing function inputs to NullFunc self.cFunc = cFunc if cFunc is not None else NullFunc() self.vFunc = vFunc if vFunc is not None else NullFunc() self.vPfunc = vPfunc if vPfunc is not None else NullFunc() # vPFunc = NullFunc() if vPfunc is None else vPfunc self.vPPfunc = vPPfunc if vPPfunc is not None else NullFunc() self.mNrmMin = mNrmMin self.hNrm = hNrm self.MPCmin = MPCmin self.MPCmax = MPCmax self.HNrm = HNrm def appendSolution(self,new_solution): ''' Appends one solution to another to create a ConsumerSolution whose attributes are lists. Used in ConsMarkovModel, where we append solutions *conditional* on a particular value of a Markov state to each other in order to get the entire solution. Parameters ---------- new_solution : ConsumerSolution The solution to a consumption-saving problem; each attribute is a list representing state-conditional values or functions. Returns ------- None ''' if type(self.cFunc)!=list: # Then we assume that self is an empty initialized solution instance. # Begin by checking this is so. assert NullFunc().distance(self.cFunc) == 0, 'appendSolution called incorrectly!' # We will need the attributes of the solution instance to be lists. Do that here. self.cFunc = [new_solution.cFunc] self.vFunc = [new_solution.vFunc] self.vPfunc = [new_solution.vPfunc] self.vPPfunc = [new_solution.vPPfunc] self.mNrmMin = [new_solution.mNrmMin] self.haNrm = [new_solution.haNrm] else: self.cFunc.append(new_solution.cFunc) self.vFunc.append(new_solution.vFunc) self.vPfunc.append(new_solution.vPfunc) self.vPPfunc.append(new_solution.vPPfunc) self.mNrmMin.append(new_solution.mNrmMin) self.haNrm.append(new_solution.haNrm) class ValueFunc(HARKobject): ''' A class for representing a value function. The underlying interpolation is in the space of (m,u_inv(v)); this class "re-curves" to the value function. ''' distance_criteria = ['func','CRRA'] def __init__(self,vFuncNvrs,CRRA): ''' Constructor for a new value function object. Parameters ---------- vFuncNvrs : function A real function representing the value function composed with the inverse utility function, defined on market resources: u_inv(vFunc(m)) CRRA : float Coefficient of relative risk aversion. Returns ------- None ''' self.func = deepcopy(vFuncNvrs) self.CRRA = CRRA def __call__(self,m): ''' Evaluate the value function at given levels of market resources m. Parameters ---------- m : float or np.array Market resources (normalized by permanent income) whose value is to be found. Returns ------- v : float or np.array Lifetime value of beginning this period with market resources m; has same size as input m. ''' return utility(self.func(m),gam=self.CRRA) class ValueFunc2D(HARKobject): ''' A class for representing a value function in a model where habit stocks is included as the second state variable. The underlying interpolation is in the space of (mNrm,haNrm) --> u_inv(v); this class "re-curves" to the value function. ''' distance_criteria = ['func', 'CRRA'] def __init__(self, vFuncNvrs, CRRA): ''' Constructor for a new value function object. Parameters ---------- vFuncNvrs : function A real function representing the value function composed with the inverse utility function, defined on market resources and habit stocks: u_inv(vFunc(m,H)) CRRA : float Coefficient of relative risk aversion. Returns ------- None ''' self.func = deepcopy(vFuncNvrs) self.CRRA = CRRA def __call__(self, m, H): ''' Evaluate the value function at given levels of normalized market resources mNrm and normalized habit stocks haNrm. Parameters ---------- m : float or np.array Market resources (normalized by permanent income) whose value is to be found. H : float or np.array Habit stocks (normalized by permanent income) whose value is to be found. Returns ------- v : float or np.array Lifetime value of beginning this period with normalized market resources m and normalized habit stock H; has same size as inputs m and H. ''' return utility((self.func(m, H)/(H**self.Habitgamma)), gam=self.CRRA) class MargValueFunc(HARKobject): ''' A class for representing a marginal value function in models where the standard envelope condition of v'(m) = u'(c(m)) holds (with CRRA utility). ''' distance_criteria = ['cFunc','CRRA'] def __init__(self,cFunc,CRRA): ''' Constructor for a new marginal value function object. Parameters ---------- cFunc : function A real function representing the marginal value function composed with the inverse marginal utility function, defined on market resources: uP_inv(vPfunc(m)). Called cFunc because when standard envelope condition applies, uP_inv(vPfunc(m)) = cFunc(m). CRRA : float Coefficient of relative risk aversion. Returns ------- None ''' self.cFunc = deepcopy(cFunc) self.CRRA = CRRA def __call__(self,m): ''' Evaluate the marginal value function at given levels of market resources m. Parameters ---------- m : float or np.array Market resources (normalized by permanent income) whose marginal value is to be found. Returns ------- vP : float or np.array Marginal lifetime value of beginning this period with market resources m; has same size as input m. ''' return utilityP(self.cFunc(m),gam=self.CRRA) def derivative(self,m): ''' Evaluate the derivative of the marginal value function at given levels of market resources m; this is the marginal marginal value function. Parameters ---------- m : float or np.array Market resources (normalized by permanent income) whose marginal marginal value is to be found. Returns ------- vPP : float or np.array Marginal marginal lifetime value of beginning this period with market resources m; has same size as input m. ''' c, MPC = self.cFunc.eval_with_derivative(m) return MPC*utilityPP(c,gam=self.CRRA) class MargValueFunc2D(HARKobject): ''' A class for representing a marginal value function in models where the standard envelope condition of dvdm(m,H) = u'(c(m,H)) holds (with CRRA utility). ''' distance_criteria = ['cFunc', 'CRRA'] def __init__(self, cFunc, CRRA): ''' Constructor for a new marginal value function object. Parameters ---------- cFunc : function A real function representing the marginal value function composed with the inverse marginal utility function, defined on normalized individual market resources and normalized habit stocks: uP_inv(vPfunc(m,H)). Called cFunc because when standard envelope condition applies, uP_inv(vPfunc(m,H)) = cFunc(m,H). CRRA : float Coefficient of relative risk aversion. Returns ------- new instance of MargValueFunc ''' self.cFunc = deepcopy(cFunc) self.CRRA =
2])) cases[-1]['casedir'] = 'design-48-32a' cases.append(defaultCase(48, 3, 7, [4, 3, 2, 2, 2, 2, 2])) cases.append( defaultCase(48, 3, 14, [4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-48-42a-t3' cases.append(defaultCase(48, 3, 25, [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-48-2a-t3' if allcases: cases.append(defaultCase(54, 3, 4, [6, 3, 3, 3])) cases.append(defaultCase(54, 3, 7, [2, 3, 3, 3, 3, 3, 3])) cases.append(defaultCase(54, 3, 6, [3, 3, 3, 3, 3, 3])) cases.append(defaultCase(56, 3, 5, [14, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-56-142a-t3' cases.append(defaultCase(56, 3, 7, [7, 2, 2, 2, 2, 2, 2])) cases.append(defaultCase(56, 3, 32, [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-56-2a-t3' cases.append(defaultCase(60, 3, 4, [5, 3, 2, 2])) cases.append(defaultCase(64, 3, 5, [16, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-64-162a-t3' cases.append(defaultCase(64, 3, 4, [8, 4, 2, 2])) cases.append(defaultCase(64, 3, 9, [8, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-64-82' cases.append(defaultCase(64, 3, 7, [4, 4, 4, 4, 4, 4, 4])) cases.append(defaultCase(64, 3, 8, [4, 4, 4, 4, 4, 4, 2, 2])) if allcases: cases.append(defaultCase(64, 3, 9, [4, 4, 4, 4, 4, 2, 2, 2, 2])) cases.append(defaultCase(64, 3, 11, [4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2])) cases.append( defaultCase(64, 3, 13, [4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases.append( defaultCase(64, 3, 18, [4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-64-442a-t3' cases.append( defaultCase(64, 3, 17, [4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-64-42a-t3' cases.append(defaultCase(64, 3, 35, [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-64-2a-t3' if allcases: cases.append(defaultCase(72, 3, 4, [4, 3, 3, 2])) cases.append( defaultCase(72, 3, 15, [3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-72-332a-t3' cases.append(defaultCase(72, 3, 9, [9, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-72-92a-t3' if allcases: cases.append(defaultCase(72, 3, 5, [6, 6, 2, 2, 2])) cases.append(defaultCase(72, 3, 9, [6, 3, 2, 2, 2, 2, 2, 2, 2])) cases.append(defaultCase(80, 3, 10, [5, 4, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-80-542a-t3' cases.append(defaultCase(80, 3, 10, [2, 2, 2, 2, 2, 2, 2, 2])) cases.append(defaultCase(81, 3, 6, [9, 3, 3, 3, 3, 3])) cases[-1]['casedir'] = 'design-81-93a-t3' cases.append(defaultCase(81, 3, 12, [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3])) cases[-1]['casedir'] = 'design-81-3a-t3' if allcases: cases.append(defaultCase(84, 3, 4, [7, 3, 2, 2])) cases.append(defaultCase(88, 3, 14, [2])) cases.append(defaultCase(90, 3, 4, [5, 3, 3, 2])) cases.append(defaultCase(96, 3, 14, [2])) cases.append(defaultCase(96, 3, 14, [3, 2])) cases.append(defaultCase(100, 3, 4, [5, 5, 2, 2])) cases.append(defaultCase(104, 3, 14, [2])) cases.append(defaultCase(108, 3, 4, [3, 3, 2, 2])) cases[-1]['casedir'] = 'design-108-3322-t3' cases.append(defaultCase(108, 3, 5, [3, 3, 3, 2, 2])) cases[-1]['casedir'] = 'design-108-33322-t3' cases.append(defaultCase(108, 3, 4, [6, 3, 3, 2])) cases[-1]['casedir'] = 'design-108-6332-t3' cases.append(defaultCase(112, 3, 4, [7, 4, 2, 2])) cases[-1]['casedir'] = 'design-112-7422-t3' cases.append(defaultCase(120, 3, 4, [5, 4, 3, 2])) cases[-1]['casedir'] = 'design-120-5432-t3' cases.append(defaultCase(120, 3, 4, [6, 5, 2, 2])) cases[-1]['casedir'] = 'design-120-6522-t3' cases.append(defaultCase(150, 3, 4, [5, 5, 3, 2])) cases[-1]['casedir'] = 'design-150-5532a-t3' cases.append(defaultCase(176, 3, 14, [2])) cases.append(defaultCase(16, 4, 6, [2, 2, 2, 2, 2, 2])) if allcases: cases.append(defaultCase(32, 4, 6, [4, 2, 2, 2, 2, 2])) cases.append(defaultCase(32, 4, 7, [2, 2, 2, 2, 2, 2, 2])) cases.append(defaultCase(48, 4, 5, [6, 2, 2, 2, 2])) cases.append(defaultCase(48, 4, 7, [3, 2, 2, 2, 2, 2, 2])) cases.append(defaultCase(48, 4, 6, [2, 2, 2, 2, 2, 2])) cases.append(defaultCase(64, 4, 5, [8, 2, 2, 2, 2])) cases.append(defaultCase(64, 4, 5, [4, 4, 2, 2, 2])) cases.append(defaultCase(64, 4, 8, [4, 2, 2, 2, 2, 2, 2, 2])) cases.append(defaultCase(64, 4, 9, [2, 2, 2, 2, 2, 2, 2, 2, 2])) cases.append(defaultCase(72, 4, 5, [3, 3, 2, 2, 2])) cases.append(defaultCase(80, 4, 6, [5, 2, 2, 2, 2, 2])) if allcases: cases.append(defaultCase(80, 4, 6, [2, 2, 2, 2, 2, 2])) cases.append(defaultCase(81, 4, 5, [3, 3, 3, 3, 3])) cases.append(defaultCase(96, 4, 6, [6, 4, 2, 2, 2, 2])) cases.append(defaultCase(96, 4, 7, [6, 2, 2, 2, 2, 2, 2])) cases.append(defaultCase(96, 4, 6, [4, 3, 2, 2, 2, 2])) cases.append(defaultCase(96, 4, 8, [4, 2, 2, 2, 2, 2, 2, 2])) cases.append(defaultCase(96, 4, 9, [3, 2, 2, 2, 2, 2, 2, 2, 2])) cases.append(defaultCase(96, 4, 8, [2, 2, 2, 2, 2, 2, 2, 2])) cases.append(defaultCase(108, 4, 5, [3, 3, 3, 2, 2])) cases.append(defaultCase(112, 4, 6, [7, 2, 2, 2, 2, 2])) cases.append(defaultCase(112, 4, 6, [2, 2, 2, 2, 2, 2])) cases.append(defaultCase(120, 4, 5, [5, 3, 2, 2, 2])) cases.append(defaultCase(128, 4, 6, [16, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-128-162a-t4' cases.append(defaultCase(128, 4, 12, [8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-128-82a-t4' cases.append(defaultCase(128, 4, 12, [8, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-128-842a' cases.append(defaultCase(128, 4, 8, [4, 4, 4, 2, 2, 2, 2, 2])) cases.append(defaultCase(128, 4, 9, [4, 4, 2, 2, 2, 2, 2, 2, 2])) cases.append( defaultCase(128, 4, 16, [4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-128-42a' cases.append( defaultCase(128, 4, 18, [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-128-2a' cases.append(defaultCase(144, 4, 11, [9, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-144-92a' cases.append(defaultCase(144, 4, 11, [6, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-144-662a' if allcases: cases.append(defaultCase(144, 4, 6, [6, 2, 2, 2, 2, 2])) cases.append(defaultCase(144, 4, 6, [6, 3, 2, 2, 2, 2])) cases.append(defaultCase(144, 4, 5, [4, 3, 3, 2, 2])) cases.append(defaultCase(144, 4, 10, [3, 3, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-144-332a-t4' cases.append(defaultCase(144, 4, 8, [3, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-144-32a' cases.append( defaultCase(144, 4, 12, [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-144-2a' cases.append(defaultCase(160, 4, 7, [10, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-160-102a-t4' cases.append(defaultCase(160, 4, 8, [5, 4, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-160-542a-t4' cases.append( defaultCase(160, 4, 11, [4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-160-42a-t4' cases.append(defaultCase(160, 4, 10, [5, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-160-52a-t4' cases.append(defaultCase(160, 4, 11, [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-160-2a-t4' if allcases: cases.append(defaultCase(162, 4, 6, [3, 3, 3, 3, 3, 3])) cases.append(defaultCase(162, 4, 6, [3, 3, 3, 3, 3, 2])) cases.append(defaultCase(162, 4, 5, [3, 3, 3, 3, 2])) cases.append(defaultCase(168, 4, 5, [7, 3, 2, 2, 2])) cases.append(defaultCase(176, 4, 14, [2])) cases.append(defaultCase(180, 4, 5, [5, 3, 3, 2, 2])) cases.append(defaultCase(200, 4, 5, [5, 5, 2, 2, 2])) cases.append(defaultCase(216, 4, 5, [4, 3, 3, 3, 2])) cases.append(defaultCase(216, 4, 5, [6, 3, 3, 2, 2])) cases.append(defaultCase(252, 4, 5, [7, 3, 3, 2, 2])) cases.append(defaultCase(256, 4, 6, [4, 4, 4, 4, 4, 4])) cases[-1]['casedir'] = 'design-256-4a-t4' cases.append(defaultCase(216, 4, 6, [3, 3, 3, 2, 2, 2])) cases[-1]['casedir'] = 'design-216-3332a-t4' cases.append( defaultCase(256, 4, 14, [4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2])) cases[-1]['casedir'] = 'design-256-444442a-t4' # strength 5 and higher # cases.append(defaultCase(16, 4, 5, [ 2,2,2,2,2 ])) cases.append(defaultCase(32, 5, 7, [2, 2, 2, 2, 2, 2, 2])) cases.append(defaultCase(64, 5, 8, [2, 2,
import tensorflow as tf import numpy as np import datetime import pickle from music_parser import * def get_time(): return datetime.datetime.now().strftime("%m-%d--%H-%M") def get_batch(songs_parsed, one_hot_length, num_keys, batch_size, num_timesteps): # create test data # loop = np.array([ # [0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0], # [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1], # [0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0], # [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0], # [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0], # [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0], # [0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0], # [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0] # ]) # loop_10 = np.concatenate([loop for x in range(10)], axis=0) # create lists to hold data, 0-dimension is batch X_batch = [] y_batch = [] # iterate for batch size for x in range(batch_size): song = songs_parsed[np.random.randint(0, len(songs_parsed))] # pick random starting index random_starting_index = np.random.randint(0, len(song) - num_timesteps) # y data is X shifted forward 1 timestep X = song[random_starting_index:random_starting_index + num_timesteps] y = song[random_starting_index + 1:random_starting_index + num_timesteps + 1] # append batch list X_batch.append(X) y_batch.append(y) X_batch = np.array(X_batch).reshape(batch_size, num_timesteps, one_hot_length*num_keys) y_batch = np.array(y_batch).reshape(batch_size, num_timesteps, one_hot_length*num_keys) return X_batch, y_batch ### WIP function for adding time indices to data # def get_batch_with_time_index(songs_parsed, time_index_dict, time_index, one_hot_length, num_keys, batch_size, num_timesteps): # # create lists to hold data, 0-dimension is batch # X_batch = [] # y_batch = [] # # time_index_dict_length = len(time_index_dict) # # # iterate for batch size # for x in range(batch_size): # song = songs_parsed[np.random.randint(0, len(songs_parsed))] # # # pick random starting index # random_starting_index = np.random.randint(0, len(song) - num_timesteps) # # X_and_y = song[random_starting_index:random_starting_index + num_timesteps + 1] # # # y data is X shifted forward 1 timestep # # X = song[random_starting_index:random_starting_index + num_timesteps] # for Xy_time_index in range(len(X_and_y)): # X_and_y[time_index] = np.append(X_and_y[time_index], time_index_dict[(Xy_time_index + time_index) % time_index_dict_length]) # # X = X_and_y[:-1] # y = X_and_y[1:] # # # append batch list # X_batch.append(X) # y_batch.append(y) # # # add the time index vectors if necessary # if time_index_dict != {}: # X_batch = np.array(X_batch).reshape(batch_size, num_timesteps, one_hot_length*num_keys + time_index_dict_length) # y_batch = np.array(y_batch).reshape(batch_size, num_timesteps, one_hot_length*num_keys + time_index_dict_length) # else: # X_batch = np.array(X_batch).reshape(batch_size, num_timesteps, one_hot_length*num_keys) # y_batch = np.array(y_batch).reshape(batch_size, num_timesteps, one_hot_length*num_keys) # # return X_batch, y_batch def build_graph(ONEHOT_LENGTH, NUM_TIMESTEPS, NUM_NOTES, LEARNING_RATE, NETWORK_LAYERS): # vanilla initializer init = tf.global_variables_initializer() # input for X and y data notes_in_placeholder = tf.placeholder(tf.float32, [None, NUM_TIMESTEPS, NUM_NOTES * ONEHOT_LENGTH]) notes_out_placeholder = tf.placeholder(tf.float32, [None, NUM_TIMESTEPS, NUM_NOTES * ONEHOT_LENGTH]) cells = [tf.contrib.rnn.BasicLSTMCell(num_units=n, activation=tf.nn.tanh) for n in NETWORK_LAYERS] stacked_rnn_cell = tf.contrib.rnn.MultiRNNCell(cells) # wrap stacked lstm into dynamic_rnn wrapper lstm_output, lstm_states = tf.nn.dynamic_rnn(stacked_rnn_cell, notes_in_placeholder, dtype=tf.float32) # print lstm output # lstm_output_p = tf.Print(lstm_output, [lstm_output], summarize=100) # split_one_hots = tf.split(input_placeholder, one_hot_template, -1) split_one_hots = tf.split(lstm_output, NUM_NOTES, -1) # split_one_hots_p = tf.Print(split_one_hots, [split_one_hots], summarize=100) # stack em up split_one_hots_as_list = [split_one_hots[index] for index in range(NUM_NOTES)] stacked_one_hots = tf.stack(split_one_hots_as_list, axis=-2) # stacked_one_hots_p = tf.Print(stacked_one_hots, [stacked_one_hots], summarize=100) # split and stack the y data to match stacked_one_hots notes_out_tensor = tf.convert_to_tensor(notes_out_placeholder) notes_out_split = tf.split(notes_out_tensor, NUM_NOTES, -1) notes_out_stacked = tf.stack(notes_out_split, axis=-2) # softmax with cross entropy is used for calculating loss during training softmax_notes_with_CE = tf.nn.softmax_cross_entropy_with_logits(labels=notes_out_stacked, logits=stacked_one_hots) # softmax output is used during softmax_notes_output = tf.nn.softmax(stacked_one_hots) # average output of softmax with cross entropy, optimize with Adam loss = tf.reduce_mean(softmax_notes_with_CE) optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE) train = optimizer.minimize(loss) return init, train, loss, notes_in_placeholder, notes_out_placeholder, softmax_notes_output # training with real parsed music data def train(PARSED_SONGS_PKL, MODEL_SAVE_DIR): # network hyper parameters NUM_NOTES = 60 ONEHOT_LENGTH = 7 NUM_TIMESTEPS = 64 BATCH_SIZE = 5 LEARNING_RATE = 0.001 NETWORK_LAYERS = [200, 200, ONEHOT_LENGTH*NUM_NOTES] NUM_SAMPLES_TO_TRAIN = 10*1000000 SAVE_EVERY = 50000 ### Needed if adding time index vectors # if time_index_length != 0: # # creates dictionary of one-hot vectors: # # 0: [1, 0, 0, ...] # # 1: [0, 1, 0, ...] # # 2: [0, 0, 1, ...] # time_index_dict = {i:[(0 if j != i else 1) for j in range(time_index_length)] for i in range(time_index_length)} # else: # time_index_dict = {} # load parsed songs with open(PARSED_SONGS_PKL, 'rb') as f: songs_parsed = pickle.load(f) # build graph init, train, loss, notes_in_placeholder, notes_out_placeholder, softmax_notes_output = \ build_graph(ONEHOT_LENGTH, NUM_TIMESTEPS, NUM_NOTES, LEARNING_RATE, NETWORK_LAYERS) # for saving the model saver = tf.train.Saver(max_to_keep=100) # start session with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print("Starting training at: " + get_time()) # create loss summary log_filename = "../logs/test_more_bigger_layers_" + get_time() print("saving loss to: " + log_filename) writer = tf.summary.FileWriter(log_filename, sess.graph) loss_summary = tf.summary.scalar('Loss', loss) samples_trained = 0 while samples_trained < NUM_SAMPLES_TO_TRAIN: # begin training routine if (samples_trained % (SAVE_EVERY/10)) < BATCH_SIZE: print("Trained " + str(samples_trained) + " samples: " + get_time()) X, y = get_batch(songs_parsed, ONEHOT_LENGTH, NUM_NOTES, BATCH_SIZE, NUM_TIMESTEPS) # run graph and get batch loss batch_loss, note_predictions, _ = sess.run([loss_summary, softmax_notes_output, train], feed_dict={notes_in_placeholder: X, notes_out_placeholder: y}) # add summary to tensorboard logs writer.add_summary(batch_loss, samples_trained) # save model at increments if samples_trained % SAVE_EVERY == 0: variables_save_file = MODEL_SAVE_DIR + "test_more_bigger_layers_" + get_time() print("saving model to: " + variables_save_file) saver.save(sess, variables_save_file) samples_trained += BATCH_SIZE writer.close() def generate(model_path_and_name, TEMP=0.08): # network hyper parameters NUM_NOTES = 60 ONEHOT_LENGTH = 7 NUM_TIMESTEPS = 64 BATCH_SIZE = 5 LEARNING_RATE = 0.001 NETWORK_LAYERS = [200, 200, ONEHOT_LENGTH*NUM_NOTES] TIMESTEPS_TO_SAMPLE = 250 # load parsed songs to get some starter PARSED_SONGS_PKL = "../data/7songs.pkl" with open(PARSED_SONGS_PKL, 'rb') as f: songs_parsed = pickle.load(f) # build graph init, train, loss, notes_in_placeholder, notes_out_placeholder, softmax_notes_output = \ build_graph(ONEHOT_LENGTH, NUM_TIMESTEPS, NUM_NOTES, LEARNING_RATE, NETWORK_LAYERS) # for loading the model saver = tf.train.Saver(max_to_keep=100) # start session with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # restore our model saver.restore(sess, model_path_and_name) parser = MusicParser() # use the beginning of a song as the starter X, y = get_batch(songs_parsed, ONEHOT_LENGTH, NUM_NOTES, BATCH_SIZE, NUM_TIMESTEPS) # the written_song variable will hold the starting notes and predicted notes written_song = X[0] timesteps_sampled = 0 while timesteps_sampled < TIMESTEPS_TO_SAMPLE: timesteps_sampled += 1 feed_in = written_song[-NUM_TIMESTEPS:, :] # run graph and get batch loss note_predictions = sess.run([softmax_notes_output], feed_dict={notes_in_placeholder: [feed_in]}) # grab last timestep last_timestep = note_predictions[0][0][-1][:].reshape(-1) # sample from timestep for index_divided in range(int(len(last_timestep) / 7)): starting_index = index_divided * 7 ending_index = starting_index + 7 distribution = last_timestep[starting_index:ending_index] chosen_index = sample_note_from_softmax(distribution, temp=TEMP) + starting_index for index in range(starting_index, ending_index): if index == chosen_index: last_timestep[index] = 1 else: last_timestep[index] = 0 # append sampled last timestep written_song = np.append(written_song, last_timestep).reshape(-1, ONEHOT_LENGTH*NUM_NOTES) # time_series_to_midi(self, time_series, min_note, filepath): parser.time_series_to_midi(written_song[:-1, :], 30, "../gen") def sample_note_from_softmax(distribution, temp=0): if temp != 0: exp_sum = sum([np.exp(i/temp) for i in distribution]) distribution = [np.exp(i/temp)/exp_sum for i in distribution] random_num = np.random.uniform(0, 1, 1) curr_index = 0 curr_sum = distribution[curr_index] while curr_sum < random_num: curr_index += 1 curr_sum += distribution[curr_index] return curr_index # train(PARSED_SONGS_PKL="../data/50songs.pkl", MODEL_SAVE_DIR="../test_more_bigger_layers/") generate("../test_more_bigger_layers/test_more_bigger_layers_12-21--08-35", TEMP=0.08) # MusicParser.midis_to_time_series_pickle("../50_midis/", "../data/50songs") """ TO DO: - re-rewrite sample function to actually sample - sample before feeding back in - get good starting notes: just used part of another song - clean up code & push (why are there 2 "training" functions?) - it doesnt know where it is in the bar... what if we attached a "counting" one-hot vector at the end of note (UPDATE: this is a huge pain with tf.stack b/c you must stack [7, 7, 7, 16] which is illegal) - search for hyperparameters: num layers, num nodes, sample size / song choices 12/17/18 - where were we? - most recent model: "../fifty_songs_models/data_set_search_10-04--21-42" - we were screwing with hyper parameters, like training set, num timesteps, - we found: - more songs the merrier (we had just compiled 50) - 64 timesteps looked good - idk if we messed with num layers and num nodes, lets test that: - currently: [7*60, 100, 7*60] - more layers: [7*60, 100, 100, 7*60] - more nodes: [7*60, 200, 7*60] - we were setting the parameter to 10M, but it was mostly finished at 1M: set to 2M hard this time (aint nobody got time for that) - train on dataset of 50 songs
<filename>NitroFE/time_based_features/moving_average_features/moving_average_features.py import pandas as pd import numpy as np from typing import Union, Callable from NitroFE.time_based_features.weighted_window_features.weighted_window_features import ( weighted_window_features, ) from NitroFE.time_based_features.weighted_window_features.weighted_windows import ( _equal_window, _identity_window, ) class ExponentialMovingFeature: """ Provided dataframe must be in ascending order. """ def __init__( self, alpha: float = None, operation: str = "mean", initialize_using_operation: bool = False, initialize_span: int = None, com: float = None, span: int = None, halflife: float = None, min_periods: int = 0, ignore_na: bool = False, axis: int = 0, times: str = None, ): """ Parameters ---------- alpha : float, optional Specify smoothing factor directly, by default None operation : str, {'mean','var','std'} operation to be performed for the moving feature,available operations are 'mean','var','std', by default 'mean' initialize_using_operation : bool, optional If True, then specified 'operation' is performed on the first 'initialize_span' values, and then the exponential moving average is calculated, by default False initialize_span : int, optional the span over which 'operation' would be performed for initialization, by default None com : float, optional Specify decay in terms of center of mass, by default None span : float, optional specify decay in terms of span , by default None halflife : float, optional Specify decay in terms of half-life, by default None min_periods : int, optional Minimum number of observations in window required to have a value (otherwise result is NA), by default 0 ignore_na : bool, optional Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior, by default False axis : int, optional The axis to use. The value 0 identifies the rows, and 1 identifies the columns, by default 0 times : str, optional Times corresponding to the observations. Must be monotonically increasing and datetime64[ns] dtype, by default None """ self.com = com self.span = span self.halflife = halflife self.alpha = alpha self.min_periods = min_periods if min_periods != None else 0 self.adjust = False self.ignore_na = ignore_na self.axis = axis self.times = times self.operation = operation self.last_values_from_previous_run = None self.initialize_using_operation = initialize_using_operation self.initialize_span = initialize_span def _perform_temp_operation(self, x): if self.operation == "mean": _return = x.mean() elif self.operation == "var": _return = x.var() elif self.operation == "std": _return = x.std() else: raise ValueError(f"Operation {self.operation} not supported") return _return def fit(self, dataframe: Union[pd.DataFrame, pd.Series], first_fit: bool = True): """ For your training/initial fit phase (very first fit) use fit_first=True, and for any production/test implementation pass fit_first=False Parameters ---------- dataframe : Union[pd.DataFrame, pd.Series] dataframe containing column values to create exponential moving feature over first_fit : bool, optional Moving features require past values for calculation. Use True, when calculating for training data (very first fit) Use False, when calculating for subsequent testing/production data { in which case the values, which were saved during the last phase, will be utilized for calculation }, by default True """ if not first_fit: if self.last_values_from_previous_run is None: raise ValueError( "First fit has not occured before. Kindly run first_fit=True for first fit instance," "and then proceed with first_fit=False for subsequent fits " ) self.adjust = False dataframe = pd.concat( [self.last_values_from_previous_run, dataframe], axis=0 ) else: if self.initialize_using_operation: self.min_periods = 0 if (self.initialize_span is None) and (self.span is None): raise ValueError( "For initialize_using_operation=True," "either initialize_span or span value is required" ) elif (self.initialize_span is None) and (self.span is not None): self.initialize_span = self.span first_frame = self._perform_temp_operation( dataframe[: self.initialize_span].rolling( window=self.initialize_span ) ) dataframe = pd.concat([first_frame, dataframe[self.initialize_span :]]) else: if self.initialize_span is not None: raise ValueError( "In order to use initialize_span, initialize_using_operation must be True" ) _dataframe = dataframe.ewm( com=self.com, span=self.span, halflife=self.halflife, alpha=self.alpha, min_periods=self.min_periods, adjust=self.adjust, ignore_na=self.ignore_na, axis=self.axis, times=self.times, ) _return = self._perform_temp_operation(_dataframe) if not first_fit: _return = _return.iloc[1:] self.last_values_from_previous_run = _return.iloc[-1:] return _return class HullMovingFeature: """ Provided dataframe must be in ascending order. """ def __init__( self, window: int = 4, min_periods: int = 1, operation: Callable = None ): """ Parameters ---------- window : int, optional Size of the rolling window, by default 3 min_periods : int, optional Minimum number of observations in window required to have a value, by default 1 operation : Callable, optional operation to perform over the weighted rolling window values, when None is passed, np.mean is used """ self.window = window self.min_periods = min_periods operation = np.mean if operation == None else operation self.operation = operation if self.window <= 1: raise ValueError(f"window size less than equal to 1 not supported") self.window_by_two, self.window_square_root = int( np.ceil(self.window / 2) ), int(np.ceil(np.sqrt(self.window))) def fit(self, dataframe: Union[pd.DataFrame, pd.Series], first_fit: bool = True): """ For your training/initial fit phase (very first fit) use fit_first=True, and for any production/test implementation pass fit_first=False Parameters ---------- dataframe : Union[pd.DataFrame,pd.Series] dataframe/series over which feature is to be constructed first_fit : bool, optional Moving features require past values for calculation. Use True, when calculating for training data (very first fit) Use False, when calculating for any subsequent testing/production data { in which case the values, which were saved during the last phase, will be utilized for calculation }, by default True """ if first_fit: self._window_size_weighted_moving_average_object = ( weighted_window_features() ) self._window_by_two_size_weighted_moving_average_object = ( weighted_window_features() ) self._hma_object = weighted_window_features() window_size_weighted_moving_average = self._window_size_weighted_moving_average_object.caluclate_weighted_moving_window_feature( dataframe=dataframe, first_fit=first_fit, window=self.window, min_periods=self.min_periods, operation=self.operation, ) window_by_two_size_weighted_moving_average = self._window_by_two_size_weighted_moving_average_object.caluclate_weighted_moving_window_feature( dataframe=dataframe, first_fit=first_fit, window=self.window_by_two, min_periods=self.min_periods, operation=self.operation, ) raw_hma = ( 2 * window_by_two_size_weighted_moving_average - window_size_weighted_moving_average ) hma = self._hma_object.caluclate_weighted_moving_window_feature( dataframe=raw_hma, first_fit=first_fit, window=self.window_square_root, min_periods=self.min_periods, operation=self.operation, ) return hma class _a_kaufman_efficiency: def __init__(self): pass def _calculate_kaufman_efficiency(self, x): up = np.abs(x.iloc[-1] - x.iloc[0]) down = np.abs(x.diff().fillna(0)).sum() if down == 0: return 0 else: return up / down def fit( self, dataframe: Union[pd.DataFrame, pd.Series], first_fit: bool = True, lookback_period: int = 4, min_periods: int = None, ): if first_fit: self._kaufman_efficiency_object = weighted_window_features() self.lookback_period = lookback_period self.min_periods = min_periods _kaufman_efficiency = ( self._kaufman_efficiency_object._template_feature_calculation( function_name="kaufman_efficiency", win_function=_identity_window, first_fit=first_fit, dataframe=dataframe, window=self.lookback_period, min_periods=self.min_periods, symmetric=None, operation=self._calculate_kaufman_efficiency, operation_args=(), ) ) return _kaufman_efficiency class KaufmanAdaptiveMovingAverage: """ Provided dataframe must be in ascending order. """ def __init__( self, kaufman_efficiency_lookback_period: int = 4, kaufman_efficiency_min_periods: int = None, fast_ema_span: int = 2, slow_ema_span: int = 5, ): """ Parameters ---------- kaufman_efficiency_lookback_period : int, optional Size of the rolling window of lookback for the caluculation of kaufman efficiency ratio , by default 4 kaufman_efficiency_min_periods : int, optional Minimum number of observations in window required to have a value for kaufman efficiency ratio, by default 1 fast_ema_span : int, optional fast span length, by default 2 slow_ema_span : int, optional slow span length, by default 5 """ self.kaufman_efficiency_lookback_period = kaufman_efficiency_lookback_period self.kaufman_efficiency_min_periods = kaufman_efficiency_min_periods self.fast_ema_span = fast_ema_span self.slow_ema_span = slow_ema_span def fit(self, dataframe: Union[pd.DataFrame, pd.Series], first_fit: bool = True): """ For your training/initial fit phase (very first fit) use fit_first=True, and for any production/test implementation pass fit_first=False Parameters ---------- dataframe : Union[pd.DataFrame, pd.Series] dataframe containing column values to create feature over first_fit : bool, optional Moving features require past values for calculation. Use True, when calculating for training data (very first fit) Use False, when calculating for subsequent testing/production data { in which case the values, which were saved during the last phase, will be utilized for calculation }, by default True """ if first_fit: self._kaufman_object = _a_kaufman_efficiency() if isinstance(dataframe, pd.Series): dataframe = dataframe.to_frame() kma = pd.DataFrame( np.zeros(dataframe.shape), columns=dataframe.columns, index=dataframe.index ) if first_fit: kma = pd.concat( [pd.DataFrame(np.zeros((1, kma.shape[1])), columns=kma.columns), kma] ) if self.kaufman_efficiency_min_periods == None: _first_pervious = self.kaufman_efficiency_lookback_period - 2 elif self.kaufman_efficiency_min_periods > 1: _first_pervious = self.kaufman_efficiency_min_periods - 2 else: _first_pervious = 0 else: kma = pd.concat([self.values_from_last_run, kma]) _first_pervious = -1 kma["_iloc"] = np.arange(len(kma)) _kaufman_efficiency = self._kaufman_object.fit( dataframe=dataframe, first_fit=first_fit, lookback_period=self.kaufman_efficiency_lookback_period, min_periods=self.kaufman_efficiency_min_periods, ) ll = [x for x in kma.columns if x != "_iloc"] SC = ( _kaufman_efficiency.copy() * (2 / (self.fast_ema_span + 1) - 2 / (self.slow_ema_span + 1)) + 2 / (self.slow_ema_span + 1) ) ** 2 if first_fit: SC.iloc[_first_pervious] = [0] * SC.shape[1] for r1, r2, r3 in zip( dataframe[(_first_pervious + 1) :].iterrows(), kma[(1 + _first_pervious + 1) :].iterrows(), SC[(_first_pervious + 1) :].iterrows(), ): previous_kama = kma[kma["_iloc"] == (r2[1]["_iloc"] - 1)][ll] kma.loc[kma["_iloc"] == r2[1]["_iloc"], ll] = ( previous_kama +
#!/usr/bin/env python3 """ Base class for Face Detector plugins Plugins should inherit from this class See the override methods for which methods are required. For each source frame, the plugin must pass a dict to finalize containing: {"filename": <filename of source frame>, "image": <source image>, "detected_faces": <list of BoundingBoxes>} (Class defined in /lib/faces_detect) """ import logging import os import traceback from io import StringIO import cv2 from lib.faces_detect import BoundingBox from lib.gpu_stats import GPUStats from lib.utils import rotate_landmarks, GetModel from plugins.extract._config import Config logger = logging.getLogger(__name__) # pylint: disable=invalid-name def get_config(plugin_name): """ Return the config for the requested model """ return Config(plugin_name).config_dict class Detector(): """ Detector object """ def __init__(self, loglevel, git_model_id=None, model_filename=None, rotation=None, min_size=0): logger.debug("Initializing %s: (loglevel: %s, git_model_id: %s, model_filename: %s, " "rotation: %s, min_size: %s)", self.__class__.__name__, loglevel, git_model_id, model_filename, rotation, min_size) self.config = get_config(".".join(self.__module__.split(".")[-2:])) self.loglevel = loglevel self.rotation = self.get_rotation_angles(rotation) self.min_size = min_size self.parent_is_pool = False self.init = None self.error = None # The input and output queues for the plugin. # See lib.queue_manager.QueueManager for getting queues self.queues = {"in": None, "out": None} # Path to model if required self.model_path = self.get_model(git_model_id, model_filename) # Target image size for passing images through the detector # Set to tuple of dimensions (x, y) or int of pixel count self.target = None # Approximate VRAM used for the set target. Used to calculate # how many parallel processes / batches can be run. # Be conservative to avoid OOM. self.vram = None # For detectors that support batching, this should be set to # the calculated batch size that the amount of available VRAM # will support. It is also used for holding the number of threads/ # processes for parallel processing plugins self.batch_size = 1 logger.debug("Initialized _base %s", self.__class__.__name__) # <<< OVERRIDE METHODS >>> # def initialize(self, *args, **kwargs): """ Inititalize the detector Tasks to be run before any detection is performed. Override for specific detector """ logger.debug("initialize %s (PID: %s, args: %s, kwargs: %s)", self.__class__.__name__, os.getpid(), args, kwargs) self.init = kwargs.get("event", False) self.error = kwargs.get("error", False) self.queues["in"] = kwargs["in_queue"] self.queues["out"] = kwargs["out_queue"] def detect_faces(self, *args, **kwargs): """ Detect faces in rgb image Override for specific detector Must return a list of BoundingBox's""" try: if not self.init: self.initialize(*args, **kwargs) except ValueError as err: logger.error(err) exit(1) logger.debug("Detecting Faces (args: %s, kwargs: %s)", args, kwargs) # <<< GET MODEL >>> # @staticmethod def get_model(git_model_id, model_filename): """ Check if model is available, if not, download and unzip it """ if model_filename is None: logger.debug("No model_filename specified. Returning None") return None if git_model_id is None: logger.debug("No git_model_id specified. Returning None") return None cache_path = os.path.join(os.path.dirname(__file__), ".cache") model = GetModel(model_filename, cache_path, git_model_id) return model.model_path # <<< DETECTION WRAPPER >>> # def run(self, *args, **kwargs): """ Parent detect process. This should always be called as the entry point so exceptions are passed back to parent. Do not override """ try: logger.debug("Executing detector run function") self.detect_faces(*args, **kwargs) except Exception as err: # pylint: disable=broad-except logger.error("Caught exception in child process: %s: %s", os.getpid(), str(err)) # Display traceback if in initialization stage if not self.init.is_set(): logger.exception("Traceback:") tb_buffer = StringIO() traceback.print_exc(file=tb_buffer) logger.trace(tb_buffer.getvalue()) exception = {"exception": (os.getpid(), tb_buffer)} self.queues["out"].put(exception) exit(1) # <<< FINALIZE METHODS>>> # def finalize(self, output): """ This should be called as the final task of each plugin Performs fianl processing and puts to the out queue """ if isinstance(output, dict): logger.trace("Item out: %s", {key: val for key, val in output.items() if key != "image"}) if self.min_size > 0 and output.get("detected_faces", None): output["detected_faces"] = self.filter_small_faces(output["detected_faces"]) else: logger.trace("Item out: %s", output) self.queues["out"].put(output) def filter_small_faces(self, detected_faces): """ Filter out any faces smaller than the min size threshold """ retval = list() for face in detected_faces: face_size = (face.width ** 2 + face.height ** 2) ** 0.5 if face_size < self.min_size: logger.debug("Removing detected face: (face_size: %s, min_size: %s", face_size, self.min_size) continue retval.append(face) return retval # <<< DETECTION IMAGE COMPILATION METHODS >>> # def compile_detection_image(self, input_image, is_square=False, scale_up=False, to_rgb=False, to_grayscale=False): """ Compile the detection image """ image = input_image.copy() if to_rgb: image = image[:, :, ::-1] elif to_grayscale: image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # pylint: disable=no-member scale = self.set_scale(image, is_square=is_square, scale_up=scale_up) image = self.scale_image(image, scale) return [image, scale] def set_scale(self, image, is_square=False, scale_up=False): """ Set the scale factor for incoming image """ height, width = image.shape[:2] if is_square: if isinstance(self.target, int): dims = (self.target ** 0.5, self.target ** 0.5) self.target = dims source = max(height, width) target = max(self.target) else: source = (width * height) ** 0.5 if isinstance(self.target, tuple): self.target = self.target[0] * self.target[1] target = self.target ** 0.5 if scale_up or target < source: scale = target / source else: scale = 1.0 logger.trace("Detector scale: %s", scale) return scale @staticmethod def scale_image(image, scale): """ Scale the image """ # pylint: disable=no-member if scale == 1.0: return image height, width = image.shape[:2] interpln = cv2.INTER_LINEAR if scale > 1.0 else cv2.INTER_AREA dims = (int(width * scale), int(height * scale)) if scale < 1.0: logger.trace("Resizing image from %sx%s to %s.", width, height, "x".join(str(i) for i in dims)) image = cv2.resize(image, dims, interpolation=interpln) return image # <<< IMAGE ROTATION METHODS >>> # @staticmethod def get_rotation_angles(rotation): """ Set the rotation angles. Includes backwards compatibility for the 'on' and 'off' options: - 'on' - increment 90 degrees - 'off' - disable - 0 is prepended to the list, as whatever happens, we want to scan the image in it's upright state """ rotation_angles = [0] if not rotation or rotation.lower() == "off": logger.debug("Not setting rotation angles") return rotation_angles if rotation.lower() == "on": rotation_angles.extend(range(90, 360, 90)) else: passed_angles = [int(angle) for angle in rotation.split(",")] if len(passed_angles) == 1: rotation_step_size = passed_angles[0] rotation_angles.extend(range(rotation_step_size, 360, rotation_step_size)) elif len(passed_angles) > 1: rotation_angles.extend(passed_angles) logger.debug("Rotation Angles: %s", rotation_angles) return rotation_angles def rotate_image(self, image, angle): """ Rotate the image by given angle and return Image with rotation matrix """ if angle == 0: return image, None return self.rotate_image_by_angle(image, angle) @staticmethod def rotate_rect(bounding_box, rotation_matrix): """ Rotate a BoundingBox based on the rotation_matrix""" logger.trace("Rotating BoundingBox") bounding_box = rotate_landmarks(bounding_box, rotation_matrix) return bounding_box @staticmethod def rotate_image_by_angle(image, angle, rotated_width=None, rotated_height=None): """ Rotate an image by a given angle. From: https://stackoverflow.com/questions/22041699 """ logger.trace("Rotating image: (angle: %s, rotated_width: %s, rotated_height: %s)", angle, rotated_width, rotated_height) height, width = image.shape[:2] image_center = (width/2, height/2) rotation_matrix = cv2.getRotationMatrix2D( # pylint: disable=no-member image_center, -1.*angle, 1.) if rotated_width is None or rotated_height is None: abs_cos = abs(rotation_matrix[0, 0]) abs_sin = abs(rotation_matrix[0, 1]) if rotated_width is None: rotated_width = int(height*abs_sin + width*abs_cos) if rotated_height is None: rotated_height = int(height*abs_cos + width*abs_sin) rotation_matrix[0, 2] += rotated_width/2 - image_center[0] rotation_matrix[1, 2] += rotated_height/2 - image_center[1] logger.trace("Rotated image: (rotation_matrix: %s", rotation_matrix) return (cv2.warpAffine(image, # pylint: disable=no-member rotation_matrix, (rotated_width, rotated_height)), rotation_matrix) # << QUEUE METHODS >> # def get_item(self): """ Yield one item from the queue """ item = self.queues["in"].get() if isinstance(item, dict): logger.trace("Item in: %s", item["filename"]) else: logger.trace("Item in: %s", item) if item == "EOF": logger.debug("In Queue Exhausted") # Re-put EOF into queue for other threads self.queues["in"].put(item) return item def get_batch(self): """ Get items from the queue in batches of self.batch_size First item in output tuple indicates whether the queue is exhausted. Second item is the batch Remember to put "EOF" to the out queue after processing the final batch """ exhausted = False batch = list() for _ in range(self.batch_size): item = self.get_item() if item == "EOF": exhausted = True break batch.append(item) logger.trace("Returning batch size: %s", len(batch)) return (exhausted, batch) # <<< MISC METHODS >>> # @staticmethod def get_vram_free(): """ Return free and total VRAM on card with most VRAM free""" stats = GPUStats() vram = stats.get_card_most_free() logger.verbose("Using device %s with %sMB free of %sMB", vram["device"], int(vram["free"]), int(vram["total"])) return int(vram["card_id"]), int(vram["free"]), int(vram["total"]) @staticmethod def set_predetected(width, height): """ Set a BoundingBox for predetected faces """ # Predetected_face is used for sort tool. # Landmarks should not be extracted again from predetected faces, # because face data is lost, resulting in a large
do nothing else: if not common.isNum(value): raise MeterException('weight values must be numbers') try: totalRatio = self._numerator / self._denominator except TypeError: raise MeterException( 'Something wrong with the type of ' + 'this numerator %s %s or this denominator %s %s' % (self._numerator, type(self._numerator), self._denominator, type(self._denominator))) for mt in self._partition: # for mt in self: partRatio = mt._numerator / mt._denominator mt.weight = value * (partRatio / totalRatio) # mt.weight = (partRatio/totalRatio) #* totalRatio # environLocal.printDebug(['setting weight based on part, total, weight', # partRatio, totalRatio, mt.weight]) @property def numerator(self): return self._numerator @property def denominator(self): return self._denominator def _getFlatList(self): '''Return a flat version of this MeterSequence as a list of MeterTerminals. This return a list and not a new MeterSequence b/c MeterSequence objects are generally immutable and thus it does not make sense to concatenate them. >>> a = meter.MeterSequence('3/4') >>> a.partition(3) >>> b = a._getFlatList() >>> len(b) 3 >>> a[1] = a[1].subdivide(4) >>> a <music21.meter.core.MeterSequence {1/4+{1/16+1/16+1/16+1/16}+1/4}> >>> len(a) 3 >>> b = a._getFlatList() >>> len(b) 6 >>> a[1][2] = a[1][2].subdivide(4) >>> a <music21.meter.core.MeterSequence {1/4+{1/16+1/16+{1/64+1/64+1/64+1/64}+1/16}+1/4}> >>> b = a._getFlatList() >>> len(b) 9 ''' mtList = [] for obj in self._partition: if not isinstance(obj, MeterSequence): mtList.append(obj) else: # its a meter sequence mtList += obj._getFlatList() return mtList @property def flat(self): ''' Return a new MeterSequence composed of the flattened representation. >>> ms = meter.MeterSequence('3/4', 3) >>> b = ms.flat >>> len(b) 3 >>> ms[1] = ms[1].subdivide(4) >>> b = ms.flat >>> len(b) 6 >>> ms[1][2] = ms[1][2].subdivide(4) >>> ms <music21.meter.core.MeterSequence {1/4+{1/16+1/16+{1/64+1/64+1/64+1/64}+1/16}+1/4}> >>> b = ms.flat >>> len(b) 9 ''' post = MeterSequence() post.load(self._getFlatList()) return post @property def flatWeight(self): ''' Return a list of flat weight values ''' post = [] for mt in self._getFlatList(): post.append(mt.weight) return post @property def depth(self): ''' Return how many unique levels deep this part is This should be optimized to store values unless the structure has changed. ''' depth = 0 # start with 0, will count this level lastMatch = None while True: test = self.getLevelList(depth) if test != lastMatch: depth += 1 lastMatch = test else: break return depth def isUniformPartition(self, *, depth=0): # noinspection PyShadowingNames ''' Return True if the top-level partitions (if depth=0) or a lower-level section has equal durations >>> ms = meter.MeterSequence('3/8+2/8+3/4') >>> ms.isUniformPartition() False >>> ms = meter.MeterSequence('4/4') >>> ms.isUniformPartition() True >>> ms.partition(4) >>> ms.isUniformPartition() True >>> ms[0] = ms[0].subdivideByCount(2) >>> ms[1] = ms[1].subdivideByCount(4) >>> ms.isUniformPartition() True >>> ms.isUniformPartition(depth=1) False >>> ms = meter.MeterSequence('2/4+2/4') >>> ms.isUniformPartition() True >>> ms = meter.MeterSequence('5/8', 5) >>> ms.isUniformPartition() True >>> ms.partition(2) >>> ms.isUniformPartition() False Changed in v7 -- depth is keyword only ''' n = [] d = [] for ms in self.getLevelList(depth): if ms.numerator not in n: n.append(ms.numerator) if ms.denominator not in d: d.append(ms.denominator) # as soon as we have more than on entry, we do not have uniform if len(n) > 1 or len(d) > 1: return False return True # -------------------------------------------------------------------------- # alternative representations def getLevelList(self, levelCount, flat=True): ''' Recursive utility function that gets everything at a certain level. >>> b = meter.MeterSequence('4/4', 4) >>> b[1] = b[1].subdivide(2) >>> b[3] = b[3].subdivide(2) >>> b[3][0] = b[3][0].subdivide(2) >>> b <music21.meter.core.MeterSequence {1/4+{1/8+1/8}+1/4+{{1/16+1/16}+1/8}}> >>> b.getLevelList(0) [<music21.meter.core.MeterTerminal 1/4>, <music21.meter.core.MeterTerminal 1/4>, <music21.meter.core.MeterTerminal 1/4>, <music21.meter.core.MeterTerminal 1/4>] >>> meter.MeterSequence(b.getLevelList(0)) <music21.meter.core.MeterSequence {1/4+1/4+1/4+1/4}> >>> meter.MeterSequence(b.getLevelList(1)) <music21.meter.core.MeterSequence {1/4+1/8+1/8+1/4+1/8+1/8}> >>> meter.MeterSequence(b.getLevelList(2)) <music21.meter.core.MeterSequence {1/4+1/8+1/8+1/4+1/16+1/16+1/8}> >>> meter.MeterSequence(b.getLevelList(3)) <music21.meter.core.MeterSequence {1/4+1/8+1/8+1/4+1/16+1/16+1/8}> ''' cacheKey = (levelCount, flat) try: # check in cache return self._levelListCache[cacheKey] except KeyError: pass mtList = [] for i in range(len(self._partition)): # environLocal.printDebug(['getLevelList weight', i, self[i].weight]) if not isinstance(self._partition[i], MeterSequence): mt = self[i] # a meter terminal mtList.append(mt) else: # its a sequence if levelCount > 0: # retain this sequence but get lower level # reduce level by 1 when recursing; do not # change levelCount here mtList += self._partition[i].getLevelList( levelCount - 1, flat) else: # level count is at zero if flat: # make sequence into a terminal mt = MeterTerminal('%s/%s' % ( self._partition[i].numerator, self._partition[i].denominator)) # set weight to that of the sequence mt.weight = self._partition[i].weight mtList.append(mt) else: # its not a terminal, its a meter sequence mtList.append(self._partition[i]) # store in cache self._levelListCache[cacheKey] = mtList return mtList def getLevel(self, level=0, flat=True): ''' Return a complete MeterSequence with the same numerator/denominator relationship but that represents any partitions found at the requested level. A sort of flatness with variable depth. >>> b = meter.MeterSequence('4/4', 4) >>> b[1] = b[1].subdivide(2) >>> b[3] = b[3].subdivide(2) >>> b[3][0] = b[3][0].subdivide(2) >>> b <music21.meter.core.MeterSequence {1/4+{1/8+1/8}+1/4+{{1/16+1/16}+1/8}}> >>> b.getLevel(0) <music21.meter.core.MeterSequence {1/4+1/4+1/4+1/4}> >>> b.getLevel(1) <music21.meter.core.MeterSequence {1/4+1/8+1/8+1/4+1/8+1/8}> >>> b.getLevel(2) <music21.meter.core.MeterSequence {1/4+1/8+1/8+1/4+1/16+1/16+1/8}> ''' return MeterSequence(self.getLevelList(level, flat)) def getLevelSpan(self, level=0): ''' For a given level, return the time span of each terminal or sequence >>> b = meter.MeterSequence('4/4', 4) >>> b[1] = b[1].subdivide(2) >>> b[3] = b[3].subdivide(2) >>> b[3][0] = b[3][0].subdivide(2) >>> b <music21.meter.core.MeterSequence {1/4+{1/8+1/8}+1/4+{{1/16+1/16}+1/8}}> >>> b.getLevelSpan(0) [(0.0, 1.0), (1.0, 2.0), (2.0, 3.0), (3.0, 4.0)] >>> b.getLevelSpan(1) [(0.0, 1.0), (1.0, 1.5), (1.5, 2.0), (2.0, 3.0), (3.0, 3.5), (3.5, 4.0)] >>> b.getLevelSpan(2) [(0.0, 1.0), (1.0, 1.5), (1.5, 2.0), (2.0, 3.0), (3.0, 3.25), (3.25, 3.5), (3.5, 4.0)] ''' ms = self.getLevelList(level, flat=True) mapping = [] pos = 0.0 for i in range(len(ms)): start = pos end = opFrac(pos + ms[i].duration.quarterLength) mapping.append((start, end)) pos = end return mapping def getLevelWeight(self, level=0): ''' The weightList is an array of weights found in the components. The MeterSequence has a ._weight attribute, but it is not used here >>> a = meter.MeterSequence('4/4', 4) >>> a.getLevelWeight() [0.25, 0.25, 0.25, 0.25] >>> b = meter.MeterSequence('4/4', 4) >>> b.getLevelWeight(0) [0.25, 0.25, 0.25, 0.25] >>> b[1] = b[1].subdivide(2) >>> b[3] = b[3].subdivide(2) >>> b.getLevelWeight(0) [0.25, 0.25, 0.25, 0.25] >>> b[3][0] = b[3][0].subdivide(2) >>> b <music21.meter.core.MeterSequence {1/4+{1/8+1/8}+1/4+{{1/16+1/16}+1/8}}> >>> b.getLevelWeight(0) [0.25, 0.25, 0.25, 0.25] >>> b.getLevelWeight(1) [0.25, 0.125, 0.125, 0.25, 0.125, 0.125] >>> b.getLevelWeight(2) [0.25, 0.125, 0.125, 0.25, 0.0625, 0.0625, 0.125] ''' post = [] for mt in self.getLevelList(level): post.append(mt.weight) return post def setLevelWeight(self, weightList, level=0): ''' The `weightList` is an array of weights to be applied to a single level of the MeterSequence. >>> a = meter.MeterSequence('4/4', 4) >>> a.setLevelWeight([1, 2, 3, 4]) >>> a.getLevelWeight() [1, 2, 3, 4] >>> b = meter.MeterSequence('4/4', 4) >>> b.setLevelWeight([2, 3]) >>> b.getLevelWeight(0) [2, 3, 2, 3] >>> b[1] = b[1].subdivide(2) >>> b[3] = b[3].subdivide(2) >>> b.getLevelWeight(0) [2, 3.0, 2, 3.0] >>> b[3][0] = b[3][0].subdivide(2) >>> b <music21.meter.core.MeterSequence {1/4+{1/8+1/8}+1/4+{{1/16+1/16}+1/8}}> >>> b.getLevelWeight(0) [2, 3.0, 2, 3.0] >>> b.getLevelWeight(1) [2, 1.5, 1.5, 2, 1.5, 1.5] >>> b.getLevelWeight(2) [2, 1.5, 1.5, 2, 0.75, 0.75, 1.5] ''' levelObjs = self.getLevelList(level) for i in range(len(levelObjs)): mt = levelObjs[i] mt.weight = weightList[i % len(weightList)] # -------------------------------------------------------------------------- # given a quarter note position, return the active index def offsetToIndex(self, qLenPos, includeCoincidentBoundaries=False) -> int: ''' Given an offset in quarterLengths (0.0 through self.duration.quarterLength), return the index of the active MeterTerminal or MeterSequence >>> a = meter.MeterSequence('4/4') >>> a.offsetToIndex(0.5) 0 >>> a.offsetToIndex(3.5) 0 >>> a.partition(4) >>> a.offsetToIndex(0.5) 0 >>> a.offsetToIndex(3.5) 3 >>> a.partition([1, 2, 1]) >>> len(a) 3 >>> a.offsetToIndex(2.9) 1 >>> a[a.offsetToIndex(2.9)] <music21.meter.core.MeterTerminal 2/4> >>> a = meter.MeterSequence('4/4') >>> a.offsetToIndex(5.0) Traceback (most recent call last): music21.exceptions21.MeterException: cannot access from qLenPos 5.0 where total duration is 4.0 Negative numbers also raise an exception: >>> a.offsetToIndex(-0.5) Traceback (most recent call last): music21.exceptions21.MeterException: cannot access from qLenPos -0.5 where total duration is 4.0 ''' if qLenPos >= self.duration.quarterLength or qLenPos < 0: raise MeterException( f'cannot access from qLenPos {qLenPos} ' + f'where total duration is {self.duration.quarterLength}' ) qPos = 0 match = None for i in range(len(self)): start = qPos end = opFrac(qPos + self[i].duration.quarterLength) # if adjoining ends are permitted, first match is found if includeCoincidentBoundaries: if start <= qLenPos <= end: match = i break else: # note that this is >=, meaning that the first boundary # is coincident if start <= qLenPos < end: match = i break qPos = opFrac(qPos + self[i].duration.quarterLength) return match def offsetToAddress(self, qLenPos, includeCoincidentBoundaries=False):
import numpy as np import pandas as pd import os def generate_x(x_file): with open(x_file) as f: container = f.readlines() result = [] for line in container: tmp1 = line.strip() tmp2 = tmp1.replace(' ', ' ') # print tmp2 tmp_ary = map(float, tmp2.split(' ')) # nan_count = sum(math.isnan(x) for x in tmp_ary) # if (tmp_ary[243] != 0.0) & (nan_count < 10): if (tmp_ary[243] != 0.0): result.append(tmp_ary) return np.array(result) def sel_columns_raw(df): # Raw denotes lower body sensor data. # See 'def sel_columns_lower(df)'. knee_1 = df[[1, 2, 3]].values.flatten() knee_2 = df[[19, 20, 21]].values.flatten() hip = df[[4, 5, 6]].values.flatten() left_1 = df[[102, 103, 104]].values.flatten() left_2 = df[[105, 106, 107]].values.flatten() left_3 = df[[108, 109, 110]].values.flatten() left_4 = df[[111, 112, 113]].values.flatten() left_5 = df[[114, 115, 116]].values.flatten() right_1 = df[[118, 119, 120]].values.flatten() right_2 = df[[121, 122, 123]].values.flatten() right_3 = df[[124, 125, 126]].values.flatten() right_4 = df[[127, 128, 129]].values.flatten() right_5 = df[[130, 131, 132]].values.flatten() data = np.concatenate((knee_1, knee_2, hip, left_1, left_2, left_3, left_4, left_5, right_1, right_2, right_3, right_4, right_5)) # print data.shape return data def sel_columns_upper(df): lua_up = df[[7, 8, 9]] lua_bottom = df[[28, 29, 30]] lua_1 = df[[76, 77, 78]] lua_2 = df[[79, 80, 81]] lua_3 = df[[82, 83, 84]] lla_1 = df[[89, 90, 91]] lla_2 = df[[92, 93, 94]] lla_3 = df[[95, 96, 97]] lwr = df[[31, 32, 33]] lh = df[[13, 14, 15]] rua_up = df[[25, 26, 27]] rua_bottom = df[[10, 11, 12]] rua_1 = df[[50, 51, 52]] rua_2 = df[[53, 54, 55]] rua_3 = df[[56, 57, 58]] rla_1 = df[[63, 64, 65]] rla_2 = df[[66, 67, 68]] rla_3 = df[[69, 70, 71]] #rwr = df[[22, 23, 24]] #rh = df[[34, 35, 36]] lua_up_mean = np.mean(lua_up, axis=0) lua_up_std = np.std(lua_up, axis=0) lua_up_min = np.min(lua_up, axis=0) lua_up_max = np.max(lua_up, axis=0) lua_bottom_mean = np.mean(lua_bottom, axis=0) lua_bottom_std = np.std(lua_bottom, axis=0) lua_bottom_min = np.min(lua_bottom, axis=0) lua_bottom_max = np.max(lua_bottom, axis=0) lua_1_mean = np.mean(lua_1, axis=0) lua_1_std = np.std(lua_1, axis=0) lua_1_min = np.min(lua_1, axis=0) lua_1_max = np.max(lua_1, axis=0) lua_2_mean = np.mean(lua_2, axis=0) lua_2_std = np.std(lua_2, axis=0) lua_2_min = np.min(lua_2, axis=0) lua_2_max = np.max(lua_2, axis=0) lua_3_mean = np.mean(lua_3, axis=0) lua_3_std = np.std(lua_3, axis=0) lua_3_min = np.min(lua_3, axis=0) lua_3_max = np.max(lua_3, axis=0) lla_1_mean = np.mean(lla_1, axis=0) lla_1_std = np.std(lla_1, axis=0) lla_1_min = np.min(lla_1, axis=0) lla_1_max = np.max(lla_1, axis=0) lla_2_mean = np.mean(lla_2, axis=0) lla_2_std = np.std(lla_2, axis=0) lla_2_min = np.min(lla_2, axis=0) lla_2_max = np.max(lla_2, axis=0) lla_3_mean = np.mean(lla_3, axis=0) lla_3_std = np.std(lla_3, axis=0) lla_3_min = np.min(lla_3, axis=0) lla_3_max = np.max(lla_3, axis=0) lwr_mean = np.mean(lwr, axis=0) lwr_std = np.std(lwr, axis=0) lwr_min = np.min(lwr, axis=0) lwr_max = np.max(lwr, axis=0) lh_mean = np.mean(lh, axis=0) lh_std = np.std(lh, axis=0) lh_min = np.min(lh, axis=0) lh_max = np.max(lh, axis=0) rua_up_mean = np.mean(rua_up, axis=0) rua_up_std = np.std(rua_up, axis=0) rua_up_min = np.min(rua_up, axis=0) rua_up_max = np.max(rua_up, axis=0) rua_bottom_mean = np.mean(rua_bottom, axis=0) rua_bottom_std = np.std(rua_bottom, axis=0) rua_bottom_min = np.min(rua_bottom, axis=0) rua_bottom_max = np.max(rua_bottom, axis=0) rua_1_mean = np.mean(rua_1, axis=0) rua_1_std = np.std(rua_1, axis=0) rua_1_min = np.min(rua_1, axis=0) rua_1_max = np.max(rua_1, axis=0) rua_2_mean = np.mean(rua_2, axis=0) rua_2_std = np.std(rua_2, axis=0) rua_2_min = np.min(rua_2, axis=0) rua_2_max = np.max(rua_2, axis=0) rua_3_mean = np.mean(rua_3, axis=0) rua_3_std = np.std(rua_3, axis=0) rua_3_min = np.min(rua_3, axis=0) rua_3_max = np.max(rua_3, axis=0) rla_1_mean = np.mean(rla_1, axis=0) rla_1_std = np.std(rla_1, axis=0) rla_1_min = np.min(rla_1, axis=0) rla_1_max = np.max(rla_1, axis=0) rla_2_mean = np.mean(rla_2, axis=0) rla_2_std = np.std(rla_2, axis=0) rla_2_min = np.min(rla_2, axis=0) rla_2_max = np.max(rla_2, axis=0) rla_3_mean = np.mean(rla_3, axis=0) rla_3_std = np.std(rla_3, axis=0) rla_3_min = np.min(rla_3, axis=0) rla_3_max = np.max(rla_3, axis=0) #rwr_mean = np.mean(rwr, axis=0) #rwr_std = np.std(rwr, axis=0) #rwr_min = np.min(rwr, axis=0) #rwr_max = np.max(rwr, axis=0) #rh_mean = np.mean(rh, axis=0) #rh_std = np.std(rh, axis=0) #rh_min = np.min(rh, axis=0) #rh_max = np.max(rh, axis=0) data = np.concatenate((lua_up_mean, lua_up_std, lua_up_min, lua_up_max, lua_bottom_mean, lua_bottom_std, lua_bottom_min, lua_bottom_max, lua_1_mean, lua_1_std, lua_1_min, lua_1_max, lua_2_mean, lua_2_std, lua_2_min, lua_2_max, lua_3_mean, lua_3_std, lua_3_min, lua_3_max, lla_1_mean, lla_1_std, lla_1_min, lla_1_max, lla_2_mean, lla_2_std, lla_2_min, lla_2_max, lla_3_mean, lla_3_std, lla_3_min, lla_3_max, lwr_mean, lwr_std, lwr_min, lwr_max, lh_mean, lh_std, lh_min, lh_max, rua_up_mean, rua_up_std, rua_up_min, rua_up_max, rua_bottom_mean, rua_bottom_std, rua_bottom_min, rua_bottom_max, rua_1_mean, rua_1_std, rua_1_min, rua_1_max, rua_2_mean, rua_2_std, rua_2_min, rua_2_max, rua_3_mean, rua_3_std, rua_3_min, rua_3_max, rla_1_mean, rla_1_std, rla_1_min, rla_1_max, rla_2_mean, rla_2_std, rla_2_min, rla_2_max, rla_3_mean, rla_3_std, rla_3_min, rla_3_max, #rwr_mean, rwr_std, rwr_min, rwr_max, #rh_mean, rh_std, rh_min, rh_max )) ''' The following three features were removed due to many missing values. rwr : right wrist rh : right hand Executed the following command to find missing value features/sensors: > nan_valid = np.argwhere(np.isnan(X_valid)) > np.unique(nan[:, 1]) ''' # print data.shape return data def sel_columns_lower(df): knee_1 = df[[1, 2, 3]] knee_2 = df[[19, 20, 21]] hip = df[[4, 5, 6]] left_1 = df[[102, 103, 104]] left_2 = df[[105, 106, 107]] left_3 = df[[108, 109, 110]] left_4 = df[[111, 112, 113]] left_5 = df[[114, 115, 116]] right_1 = df[[118, 119, 120]] right_2 = df[[121, 122, 123]] right_3 = df[[124, 125, 126]] right_4 = df[[127, 128, 129]] right_5 = df[[130, 131, 132]] knee_1_mean = np.mean(knee_1, axis=0) knee_1_std = np.std(knee_1, axis=0) knee_1_min = np.min(knee_1, axis=0) knee_1_max = np.max(knee_1, axis=0) knee_2_mean = np.mean(knee_2, axis=0) knee_2_std = np.std(knee_2, axis=0) knee_2_min = np.min(knee_2, axis=0) knee_2_max = np.max(knee_2, axis=0) hip_mean = np.mean(hip, axis=0) hip_std = np.std(hip, axis=0) hip_min = np.min(hip, axis=0) hip_max = np.max(hip, axis=0) left_1_mean = np.mean(left_1, axis=0) left_1_std = np.std(left_1, axis=0) left_1_min = np.min(left_1, axis=0) left_1_max = np.max(left_1, axis=0) left_2_mean = np.mean(left_2, axis=0) left_2_std = np.std(left_2, axis=0) left_2_min = np.min(left_2, axis=0) left_2_max = np.max(left_2, axis=0) left_3_mean = np.mean(left_3, axis=0) left_3_std = np.std(left_3, axis=0) left_3_min = np.min(left_3, axis=0) left_3_max = np.max(left_3, axis=0) left_4_mean = np.mean(left_4, axis=0) left_4_std = np.std(left_4, axis=0) left_4_min = np.min(left_4, axis=0) left_4_max = np.max(left_4, axis=0) left_5_mean = np.mean(left_5, axis=0) left_5_std = np.std(left_5, axis=0) left_5_min = np.min(left_5, axis=0) left_5_max = np.max(left_5, axis=0) right_1_mean = np.mean(right_1, axis=0) right_1_std = np.std(right_1, axis=0) right_1_min = np.min(right_1, axis=0) right_1_max = np.max(right_1, axis=0) right_2_mean = np.mean(right_2, axis=0) right_2_std = np.std(right_2, axis=0) right_2_min = np.min(right_2, axis=0) right_2_max = np.max(right_2, axis=0) right_3_mean = np.mean(right_3, axis=0) right_3_std = np.std(right_3, axis=0) right_3_min = np.min(right_3, axis=0) right_3_max = np.max(right_3, axis=0) right_4_mean = np.mean(right_4, axis=0) right_4_std = np.std(right_4, axis=0) right_4_min = np.min(right_4, axis=0) right_4_max = np.max(right_4, axis=0) right_5_mean = np.mean(right_5, axis=0) right_5_std = np.std(right_5, axis=0) right_5_min = np.min(right_5, axis=0) right_5_max = np.max(right_5, axis=0) data = np.concatenate((knee_1_mean, knee_1_std, knee_1_min, knee_1_max, knee_2_mean, knee_2_std, knee_2_min, knee_2_max, hip_mean, hip_std, hip_min, hip_max, right_1_mean, right_1_std, right_1_min, right_1_max, right_2_mean, right_2_std, right_2_min, right_2_max, right_3_mean, right_3_std, right_3_min, right_3_max, right_4_mean, right_4_std, right_4_min, right_4_max, right_5_mean, right_5_std, right_5_min, right_5_max, left_1_mean, left_1_std, left_1_min, left_1_max, left_2_mean, left_2_std, left_2_min, left_2_max, left_3_mean, left_3_std, left_3_min, left_3_max, left_4_mean, left_4_std, left_4_min, left_4_max, left_5_mean, left_5_std, left_5_min, left_5_max)) # print data.shape return data # Make new directory under '../data/OpportunityUCIDataset' folder processed_dir = "../data/OpportunityUCIDataset/processed" if not os.path.exists(processed_dir): os.makedirs(processed_dir) # Generate training / validation / test data # files_drill = ['S1-Drill.dat', 'S2-Drill.dat', 'S3-Drill.dat'] # We do not use Drill data. files_train = ['S2-ADL1.dat', 'S2-ADL2.dat', 'S3-ADL1.dat', 'S3-ADL2.dat', 'S1-ADL1.dat', 'S1-ADL2.dat', 'S1-ADL3.dat'] files_valid = ['S2-ADL3.dat', 'S3-ADL3.dat', 'S1-ADL4.dat', 'S1-ADL5.dat'] files_test = ['S2-ADL4.dat', 'S2-ADL5.dat', 'S3-ADL4.dat', 'S3-ADL5.dat'] data_type = ["raw", "upper", "lower"] file_type = {"train": files_train, "valid": files_valid, "test": files_test} dir_in = "/home/hcilab/Documents/HAR/Opportunity/OpportunityUCIDataset/dataset/" dir_out = "../data/OpportunityUCIDataset/processed/" for data_type_sel in data_type: print "------ {} data ------".format(data_type_sel) for k, v in file_type.iteritems(): X = pd.DataFrame() y = pd.Series() for in_file in v: data = generate_x(dir_in + in_file) X = X.append(pd.DataFrame(data)) print X.shape # print X.columns X_1 = X.loc[X[243] == 1.0] print "{}_101:".format(k), X_1.shape X_2 = X.loc[X[243] == 2.0] print "{}_102:".format(k), X_2.shape X_3 = X.loc[X[243] == 4.0] print "{}_104:".format(k), X_3.shape X_4 = X.loc[X[243] == 5.0] print "{}_105:".format(k), X_4.shape X_1 = X_1.fillna(method='ffill') # print X_1.isnull().sum().values X_2 = X_2.fillna(method='ffill') # print X_1.isnull().sum().values X_3 = X_3.fillna(method='ffill') # print X_1.isnull().sum().values X_4 = X_4.fillna(method='ffill') # print X_1.isnull().sum().values four_activities_data = [X_1, X_2, X_3, X_4] window = 15 sliding = 7 data_container = [] label_container = [] for activity in four_activities_data: for i in range(activity.shape[0] / sliding): df = activity.iloc[range((0 + i), (window + i))] label = df[243].astype(int).values label_container.append(label[-1]) if data_type_sel is "raw": data_container.append(sel_columns_raw(df)) if data_type_sel is "upper": data_container.append(sel_columns_upper(df)) if data_type_sel is "lower": data_container.append(sel_columns_lower(df)) i = i + sliding print "{}_data:".format(k), np.asarray(data_container).shape print "{}_label:".format(k), np.asarray(label_container).shape np.save(dir_out + "{}_{}_X.npy".format(data_type_sel, k), np.asarray(data_container)) np.save(dir_out + "{}_{}_y.npy".format(data_type_sel, k), np.asarray(label_container)) # Note that raw indicates raw 'lower' body data. ''' /usr/bin/python2.7 /home/hcilab/Documents/OSS/sensors2018cnnhar/opp/generate_data.py ------
<gh_stars>0 #!/usr/bin/env python # Copyright (c) 2017,2018, F5 Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from f5_cccl import bigip from f5.bigip import ManagementRoot import json from mock import Mock, patch import pytest class MockNode(): """A mock BIG-IP node.""" def __init__(self, name, **kwargs): """Initialize the object.""" self.name = name for key in kwargs: setattr(self, key, kwargs[key]) self.raw = self.__dict__ def modify(self, **kwargs): """Placeholder: This will be mocked.""" pass def update(self, **kwargs): """Placeholder: This will be mocked.""" pass def create(self, partition=None, name=None, **kwargs): """Create the node object.""" pass def delete(self): """Delete the node object.""" pass def load(self, name=None, partition=None): """Load the node object.""" return MockNode(name) class Pool(): """A mock BIG-IP Pool.""" def __init__(self, name, **kwargs): """Initialize the object.""" self.name = name for key in kwargs: setattr(self, key, kwargs[key]) self.raw = self.__dict__ def modify(self, **kwargs): """Placeholder: This will be mocked.""" pass def update(self, **kwargs): """Placeholder: This will be mocked.""" pass def create(self, partition=None, name=None, **kwargs): """Create the pool object.""" pass def delete(self): """Delete the pool object.""" pass def load(self, name=None, partition=None): """Load the pool object.""" return Pool(name) class Policy(): """A mock BIG-IP Policy.""" def __init__(self, name, **kwargs): """Initialize the object.""" self.name = name for key in kwargs: setattr(self, key, kwargs[key]) self.raw = self.__dict__ def modify(self, **kwargs): """Placeholder: This will be mocked.""" pass def update(self, **kwargs): """Placeholder: This will be mocked.""" pass def create(self, partition=None, name=None, **kwargs): """Create the policy object.""" pass def delete(self): """Delete the policy object.""" pass def load(self, name=None, partition=None): """Load the policy object.""" return Policy(name) class IRule(): """A mock BIG-IP iRule.""" def __init__(self, name, **kwargs): """Initialize the object.""" self.name = name for key in kwargs: setattr(self, key, kwargs[key]) self.raw = self.__dict__ def modify(self, **kwargs): """Placeholder: This will be mocked.""" pass def update(self, **kwargs): """Placeholder: This will be mocked.""" pass def create(self, partition=None, name=None, **kwargs): """Create the iRule object.""" pass def delete(self): """Delete the iRule object.""" pass def load(self, name=None, partition=None): """Load the iRule object.""" return IRule(name) class VirtualAddress(): """A mock BIG-IP VirtualAddress.""" def __init__(self, name, **kwargs): """Initialize the object.""" self.name = name for key in kwargs: setattr(self, key, kwargs[key]) self.raw = self.__dict__ def modify(self, **kwargs): """Placeholder: This will be mocked.""" pass def update(self, **kwargs): """Placeholder: This will be mocked.""" pass def create(self, partition=None, name=None, **kwargs): """Create the virtual address object.""" pass def delete(self): """Delete the virtual address object.""" pass def load(self, name=None, partition=None): """Load the virtual address object.""" return VirtualAddress(name) class Member(): """A mock BIG-IP Pool Member.""" def __init__(self, name, **kwargs): """Initialize the object.""" self.name = name self.session = kwargs.get('session', None) if kwargs.get('state', None) == 'user-up': self.state = 'up' else: self.state = 'user-down' def modify(self, **kwargs): """Placeholder: This will be mocked.""" pass class Profiles(): """A container of Virtual Server Profiles.""" def __init__(self, **kwargs): """Initialize the object.""" self.profiles = kwargs.get('profiles', []) def exists(self, name, partition): """Check for the existance of a profile.""" for p in self.profiles: if p['name'] == name and p['partition'] == partition: return True return False def create(self, name, partition): """Placeholder: This will be mocked.""" pass class ProfileSet(): """A set of Virtual Server Profiles.""" def __init__(self, **kwargs): """Initialize the object.""" self.profiles = Profiles(**kwargs) class Policies(): """A container of Virtual Server Policies.""" def __init__(self, **kwargs): """Initialize the object.""" self.policies = kwargs.get('policies', []) def exists(self, name, partition): """Check for the existance of a policy.""" for p in self.policies: if p['name'] == name and p['partition'] == partition: return True return False def create(self, name, partition): """Placeholder: This will be mocked.""" pass class PolicySet(): """A set of Virtual Server Policies.""" def __init__(self, **kwargs): """Initialize the object.""" self.policies = Policies(**kwargs) class Virtual(): """A mock BIG-IP Virtual Server.""" def __init__(self, name, **kwargs): """Initialize the object.""" self.profiles_s = ProfileSet(**kwargs) self.policies_s = PolicySet(**kwargs) self.name = name for key in kwargs: setattr(self, key, kwargs[key]) self.raw = self.__dict__ def modify(self, **kwargs): """Placeholder: This will be mocked.""" pass def create(self, name=None, partition=None, **kwargs): """Create the virtual object.""" pass def delete(self): """Delete the virtual object.""" pass def load(self, name=None, partition=None): """Load the virtual object.""" return Virtual(name) class HealthCheck(): """A mock BIG-IP Health Monitor.""" def __init__(self, name, **kwargs): """Initialize the object.""" self.name = name self.interval = kwargs.get('interval', None) self.timeout = kwargs.get('timeout', None) self.send = kwargs.get('send', None) self.partition = kwargs.get('partition', None) def modify(self, **kwargs): """Placeholder: This will be mocked.""" pass def delete(self): """Delete the healthcheck object.""" pass class Arp(): """A mock BIG-IP Arp entry.""" def __init__(self, name, **kwargs): """Initialize the object.""" self.name = name for key in kwargs: setattr(self, key, kwargs[key]) self.raw = self.__dict__ def modify(self, **kwargs): """Placeholder: This will be mocked.""" pass def create(self, name=None, partition=None, **kwargs): """Create the ARP object.""" pass def delete(self): """Delete the ARP object.""" pass def load(self, name=None, partition=None): """Load the ARP object.""" return Arp(name) class FDBTunnel(): """A mock BIG-IP FDB tunnel entry.""" def __init__(self, name, **kwargs): """Initialize the object.""" self.name = name for key in kwargs: setattr(self, key, kwargs[key]) self.raw = self.__dict__ def modify(self, **kwargs): """Placeholder: This will be mocked.""" pass def update(self, **kwargs): """Placeholder: This will be mocked.""" pass def create(self, name=None, partition=None, **kwargs): """Create the FDB tunnel object.""" pass def delete(self): """Delete the FDB tunnel object.""" pass def load(self, name=None, partition=None): """Load the FDB tunnel object.""" return FDBTunnel(name) class Partition(): """A mock BIG-IP Partition.""" def __init__(self, name, **kwargs): """Initialize the object.""" self.name = name if kwargs.get('default-route-domain') is not None: self.defaultRouteDomain = kwargs.get('default-route-domain') else: self.defaultRouteDomain = 0 for key in kwargs: setattr(self, key, kwargs[key]) self.raw = self.__dict__ def modify(self, **kwargs): """Placeholder: This will be mocked.""" pass def create(self, name=None, **kwargs): """Create the partition object.""" pass def delete(self): """Delete the partition object.""" pass def load(self, name=None): """Load the partition object.""" return Partition(name) class MockPartitions(): """A mock Auth partitions object.""" def __init__(self): """Initialize the object.""" self.partition = Partition('test') def get_collection(self): """Get collection of partitions.""" pass class MockService(): """A mock Services service object.""" def __init__(self): """Initialize the object.""" pass def load(self, name, partition): """Load a mock iapp.""" return MockService() def create(self, name=None, template=None, partition=None, variables=None, tables=None, trafficGroup=None, description=None): """Create a mock iapp.""" pass def update(self, **properties): """Update a mock iapp.""" pass def delete(self): """Delete the iapp object.""" pass class MockServices(): """A mock Application services object.""" def __init__(self): """Initialize the object.""" self.service = MockService() def get_collection(self): """Get collection of iapps.""" return [] class MockApplication(): """A mock Sys application object.""" def __init__(self): """Initialize the object.""" self.services = MockServices() class MockFolders(): """A mock Sys folders object.""" def __init__(self): """Initialize the object.""" def get_collection(self): """Get collection of partitions.""" pass class MockSys(): """A mock BIG-IP sys object.""" def __init__(self): """Initialize the object.""" self.application = MockApplication() self.folders = MockFolders() class Iapp(): """A mock BIG-IP iapp object.""" def __init__(self, name=None, **kwargs): """Initialize the object.""" self.name = name for key in kwargs: setattr(self, key, kwargs[key]) self.raw = self.__dict__ def delete(self): """Mock delete method.""" pass def update(self, executeAction=None, name=None, partition=None, variables=None, tables=None, **kwargs): """Mock update method.""" pass class InternalDataGroup(): """A mock BIG-IP data_group internal.""" def __init__(self, name, **kwargs): """Initialize the object.""" self.name = name #self.partition = partition for key in kwargs: setattr(self, key, kwargs[key]) self.raw = self.__dict__ def modify(self, **kwargs): """Placeholder: This will be mocked.""" pass def update(self, **kwargs): """Placeholder: This will be mocked.""" pass def create(self, partition=None, name=None, **kwargs): """Create the iRule object.""" pass def delete(self): """Delete the iRule object.""" pass def load(self, name=None, partition=None): """Load the iRule object.""" return InternalDataGroup(name, partition) class MockFolder(): """A mock BIG-IP folder object.""" def __init__(self, name): """Initialize the object.""" self.name = name class MockHttp(): """A mock Http http object.""" def __init__(self, name=None, **kwargs): """Initialize the object.""" self.name = name for key in kwargs: setattr(self, key, kwargs[key]) self.raw = self.__dict__ def create(self, partition=None, **kwargs): """Create a http healthcheck object.""" pass def delete(self): """Delete the monitor object.""" pass def load(self, name=None,
<filename>train.py import argparse import os import shutil import time import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models import pyramidnet as PYRM import utils import numpy as np import torchvision.utils from torchvision.utils import save_image import warnings from matplotlib import pyplot as plt import matplotlib.gridspec as gridspec from function import calc_mean_std from torch.utils.tensorboard import SummaryWriter import net_cutmix import net_mixup from function import adaptive_instance_normalization, coral import torch.nn.functional as F from IPython import embed from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True from datetime import datetime warnings.filterwarnings("ignore") model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) parser = argparse.ArgumentParser(description='StyleMix CIFAR-10, CIFAR-100 training code') parser.add_argument('--net_type', default='pyramidnet', type=str, help='networktype: pyramidnet') parser.add_argument('-j', '--workers', default=40, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--epochs', default=300, type=int, metavar='N', help='number of total epochs to run') # 250 parser.add_argument('-b', '--batch_size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--lr', '--learning-rate', default=0.25, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--print-freq', '-p', default=1, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--depth', default=18, type=int, help='depth of the network (default: 32)') parser.add_argument('--no-bottleneck', dest='bottleneck', action='store_false', help='to use basicblock for CIFAR datasets (default: bottleneck)') parser.add_argument('--dataset', dest='dataset', default='cifar100', type=str, help='dataset (options: cifar10, cifar100)') parser.add_argument('--no-verbose', dest='verbose', action='store_false', help='to print the status at every iteration') parser.add_argument('--alpha', default=200, type=float, help='number of new channel increases per depth (default: 200)') parser.add_argument('--expname', default='PyraNet200', type=str, help='name of experiment') parser.add_argument('--vgg', type=str, default='./models/vgg_normalised.pth') parser.add_argument('--decoder', type=str, default='./models/decoder.pth.tar') parser.add_argument('--prob', default=0.5, type=float) parser.add_argument('--r', default=0.7, type=float) parser.add_argument('--alpha1', default=1.0, type=float) parser.add_argument('--alpha2', default=1.0, type=float) parser.add_argument('--delta', default=3.0, type=float) parser.add_argument('--method', type=str, default='StyleCutMix_Auto_Gamma', help='StyleCutMix_Auto_Gamma, StyleCutMix, StyleMix') parser.add_argument('--save_dir', type=str, default='/write/your/save/dir') parser.add_argument('--data_dir', type=str, default='/write/your/data/dir') parser.set_defaults(bottleneck=True) parser.set_defaults(verbose=True) best_err1 = 100 best_err5 = 100 def main(): global args, best_err1, best_err5, styleDistanceMatrix, writer args = parser.parse_args() writer = SummaryWriter(args.save_dir+'/writer/'+args.method) if args.method == 'StyleCutMix_Auto_Gamma' : if args.dataset == 'cifar100': styleDistanceMatrix = torch.load('styleDistanceMatrix100.pt', map_location='cuda:0') elif args.dataset == 'cifar10': styleDistanceMatrix = torch.load('styleDistanceMatrix10.pt', map_location='cuda:0') else : raise Exception('unknown dataset: {}'.format(args.dataset)) styleDistanceMatrix = styleDistanceMatrix.cpu() ind = torch.arange(styleDistanceMatrix.shape[1]) styleDistanceMatrix[ind, ind] += 2 # Prevent diagonal lines from zero global decoder, vgg, pretrained, network_E, network_D if args.method.startswith('Style'): if args.method.startswith('StyleCutMix'): decoder = net_cutmix.decoder vgg = net_cutmix.vgg print("select network StyleCutMix") network_E = net_cutmix.Net_E(vgg) network_D = net_cutmix.Net_D(vgg, decoder) elif args.method == 'StyleMix': decoder = net_mixup.decoder vgg = net_mixup.vgg print("select network StyleMix") network_E = net_mixup.Net_E(vgg) network_D = net_mixup.Net_D(vgg, decoder) else : raise Exception('unknown method: {}'.format(args.method)) decoder.eval() vgg.eval() decoder.load_state_dict(torch.load(args.decoder)) vgg.load_state_dict(torch.load(args.vgg)) vgg = nn.Sequential(*list(vgg.children())[:31]) vgg.cuda() decoder.cuda() network_E.eval() network_D.eval() network_E = torch.nn.DataParallel(network_E).cuda() network_D = torch.nn.DataParallel(network_D).cuda() if args.dataset.startswith('cifar'): normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]]) transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) transform_test = transforms.Compose([ transforms.ToTensor(), normalize ]) if args.dataset == 'cifar100': train_loader = torch.utils.data.DataLoader( datasets.CIFAR100(args.data_dir+'/dataCifar100/', train=True, download=True, transform=transform_train), batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) val_loader = torch.utils.data.DataLoader( datasets.CIFAR100(args.data_dir+'/dataCifar100/', train=False, transform=transform_test), batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) numberofclass = 100 elif args.dataset == 'cifar10': train_loader = torch.utils.data.DataLoader( datasets.CIFAR10(args.data_dir+'/dataCifar10/', train=True, download=True, transform=transform_train), batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) val_loader = torch.utils.data.DataLoader( datasets.CIFAR10(args.data_dir+'/dataCifar10/', train=False, transform=transform_test), batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) numberofclass = 10 else: raise Exception('unknown dataset: {}'.format(args.dataset)) else: raise Exception('unknown dataset: {}'.format(args.dataset)) print("=> creating model '{}'".format(args.net_type)) if args.net_type == 'pyramidnet': model = PYRM.PyramidNet(args.dataset, args.depth, args.alpha, numberofclass, args.bottleneck) else: raise Exception('unknown network architecture: {}'.format(args.net_type)) model = torch.nn.DataParallel(model).cuda() print(model) print('the number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()]))) # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=True) cudnn.benchmark = True for epoch in range(0, args.epochs): adjust_learning_rate(optimizer, epoch) # train for one epoch train_loss = train(train_loader, model, criterion, optimizer, epoch) # evaluate on validation set err1, err5, val_loss = validate(val_loader, model, criterion, epoch) writer.add_scalar('train_loss', train_loss, epoch+1) writer.add_scalar('val_loss', val_loss, epoch+1) writer.add_scalar('err1', err1, epoch+1) writer.add_scalar('err5', err5, epoch+1) # remember best prec@1 and save checkpoint is_best = err1 <= best_err1 best_err1 = min(err1, best_err1) if is_best: best_err5 = err5 print('Current best accuracy (top-1 and 5 error):', best_err1, best_err5) save_checkpoint({ 'epoch': epoch, 'arch': args.net_type, 'state_dict': model.state_dict(), 'best_err1': best_err1, 'best_err5': best_err5, 'optimizer': optimizer.state_dict(), }, is_best, args.save_dir, args.dataset) print('Best accuracy (top-1 and 5 error):', best_err1, best_err5) def train(train_loader, model, criterion, optimizer, epoch): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to train mode model.train() start = time.time() end = time.time() current_LR = get_learning_rate(optimizer)[0] print("current_LR : ",current_LR) for i, (input, target) in enumerate(train_loader): data_time.update(time.time() - end) input = input.cuda() target = target.cuda() prob = np.random.rand(1) if prob < args.prob: rand_index = torch.randperm(input.size()[0]).cuda() target_1 = target target_2 = target[rand_index] if args.method.startswith('StyleCutMix'): if args.method == 'StyleCutMix_Auto_Gamma' : styleDistance = styleDistanceMatrix[target_1, target_2] gamma = torch.tanh(styleDistance/args.delta) else : gamma = np.random.beta(args.alpha2, args.alpha2) u = nn.Upsample(size=(224, 224), mode='bilinear') x1 = u(input) x2 = x1[rand_index] rs = np.random.beta(args.alpha1, args.alpha1) M = torch.zeros(1,1,224,224).float() lam_temp = np.random.beta(args.alpha1, args.alpha1) bbx1, bby1, bbx2, bby2 = rand_bbox(M.size(), 1.-lam_temp) with torch.no_grad(): x1_feat = network_E(x1) mixImage = network_D(x1, x2, x1_feat, x1_feat[rand_index], rs, gamma, bbx1, bby1, bbx2, bby2) lam = ((bbx2 - bbx1)*(bby2-bby1)/(224.*224.)) uinv = nn.Upsample(size=(32,32), mode='bilinear') output = model(uinv(mixImage)) log_preds = F.log_softmax(output, dim=-1) # dimension [batch_size, numberofclass] a_loss = -log_preds[torch.arange(output.shape[0]),target_1] # cross-entropy for A b_loss = -log_preds[torch.arange(output.shape[0]),target_2] # cross-entropy for B if args.method == 'StyleCutMix_Auto_Gamma': gamma = gamma.cuda() lam_s = gamma * lam + (1.0 - gamma) * rs loss_c = a_loss * (lam) + b_loss * (1. - lam) loss_s = a_loss * (lam_s) + b_loss * (1. - lam_s) r = args.r loss = (r * loss_c + (1.0 - r) * loss_s).mean() elif args.method == 'StyleMix': u = nn.Upsample(size=(224, 224), mode='bilinear') x1 = u(input) x2 = x1[rand_index] rc = np.random.beta(args.alpha1, args.alpha1) rs = np.random.beta(args.alpha1, args.alpha1) with torch.no_grad(): x1_feat = network_E(x1) mixImage = network_D(x1_feat, x1_feat[rand_index], rc, rs) uinv = nn.Upsample(size=(32,32), mode='bilinear') output = model(uinv(mixImage)) loss_c = rc * criterion(output, target_1) + (1.0 - rc) * criterion(output, target_2) loss_s = rs * criterion(output, target_1) + (1.0 - rs) * criterion(output, target_2) r = args.r loss = r * loss_c + (1.0-r) * loss_s else: output = model(input) loss = criterion(output, target) # measure accuracy and record loss err1, err5 = accuracy(output.data, target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(err1.item(), input.size(0)) top5.update(err5.item(), input.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0 and args.verbose == True: print('Epoch: [{0}/{1}][{2}/{3}]\t' 'LR: {LR:.6f}\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Top 1-err {top1.val:.4f} ({top1.avg:.4f})\t' 'Top 5-err {top5.val:.4f} ({top5.avg:.4f})'.format( epoch, args.epochs, i, len(train_loader), LR=current_LR, batch_time=batch_time, data_time=data_time, loss=losses, top1=top1, top5=top5)) print("Time taken for 1 epoch : ",time.time()-start) print('* Epoch: [{0}/{1}]\t Top 1-err {top1.avg:.3f} Top 5-err {top5.avg:.3f}\t Train Loss {loss.avg:.3f}'.format( epoch, args.epochs, top1=top1, top5=top5, loss=losses)) return losses.avg def rand_bbox(size, lam): W = size[2] H = size[3] cut_rat = np.sqrt(1. - lam) cut_w = np.int(W * cut_rat) cut_h = np.int(H * cut_rat) # uniform cx = np.random.randint(W) cy = np.random.randint(H) bbx1 = np.clip(cx - cut_w // 2, 0, W) bby1 = np.clip(cy - cut_h // 2, 0, H) bbx2 = np.clip(cx + cut_w // 2, 0, W) bby2 = np.clip(cy + cut_h // 2, 0, H) return bbx1, bby1, bbx2, bby2 def validate(val_loader, model, criterion, epoch): batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to evaluate mode model.eval() end = time.time() for i, (input, target) in enumerate(val_loader): target = target.cuda() output = model(input) loss = criterion(output, target) # measure accuracy and record loss err1, err5 = accuracy(output.data, target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(err1.item(), input.size(0)) top5.update(err5.item(), input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0 and args.verbose == True: print('Test (on val set): [{0}/{1}][{2}/{3}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Top 1-err {top1.val:.4f} ({top1.avg:.4f})\t' 'Top 5-err {top5.val:.4f} ({top5.avg:.4f})'.format( epoch, args.epochs, i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1, top5=top5)) print('* Epoch: [{0}/{1}]\t Top 1-err {top1.avg:.3f} Top 5-err {top5.avg:.3f}\t Test Loss {loss.avg:.3f}'.format( epoch, args.epochs, top1=top1, top5=top5, loss=losses)) return top1.avg, top5.avg, losses.avg def save_checkpoint(state, is_best, save_dir, dataset, filename='checkpoint.pth.tar'): directory = save_dir+"/model/"+dataset+"/"+str(args.method)+"/%s/" % (args.expname) if not os.path.exists(directory): os.makedirs(directory) filename = directory + filename torch.save(state, filename) if is_best: shutil.copyfile(filename, save_dir+"/model/"+dataset+"/"+str(args.method)+'/%s/' % (args.expname) + 'model_best.pth.tar') class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count =
<filename>covid19_stats/engine/viz.py import os, sys, numpy, titlecase, time, pandas, zipfile, mutagen.mp4 import subprocess, tempfile, shutil, datetime, logging, copy import pathos.multiprocessing as multiprocessing from itertools import chain from multiprocessing import Value, Manager import cartopy.feature as cfeature import cartopy.crs as ccrs from matplotlib.axes import Axes from matplotlib.patches import Polygon from matplotlib.cm import ScalarMappable from matplotlib.colors import LogNorm, Normalize, to_rgba from matplotlib.figure import Figure from matplotlib.backends.backend_agg import FigureCanvasAgg from mpl_toolkits.axes_grid1 import make_axes_locatable from distutils.spawn import find_executable from nprstuff.core import autocrop_image # from covid19_stats.engine import gis, core, get_string_commas_num, find_plausible_maxnum def my_colorbar( mappable, ax, **kwargs ): """ secret saucing (explanation is incomprehensible) from https://joseph-long.com/writing/colorbars. I do not understand how it works the way it does, but it does! I shamelessly copy the method description from the :py:meth:`colorbar method <matplotlib.pyplot.colorbar>`. I have also updated this thing to `this website <https://stackoverflow.com/questions/30030328/correct-placement-of-colorbar-relative-to-geo-axes-cartopy>`_ that now works on :py:class:`GeoAxes <cartopy.mpl.geoaxes.GeoAxes>`. :param mappable: a :py:class:`ScalarMappable <matplotlib.cm.ScalarMappable>` described by this colorbar. :param ax: the parent :py:class:`Axes <matplotlib.axes.Axes>` from whose space a new colorbar axes will be stolen. :returns: the underlying :py:class:`Colorbar <matplotlib.colorbar.Colorbar>`. :rtype: :py:class:`Colorbar <matplotlib.colorbar.Colorbar>` """ fig = ax.figure divider = make_axes_locatable( ax ) cax = divider.append_axes("right", size="5%", pad=0.05, axes_class = Axes ) cbar = fig.colorbar(mappable, cax=cax, **kwargs) return cbar def create_and_draw_fromfig( fig, bbox, river_linewidth = 5, river_alpha = 0.3, coast_linewidth = 2, coast_alpha = 0.4, drawGrid = True, mult_bounds_lat = 1.05, mult_bounds_lng = 1.05, rows = 1, cols = 1, num = 1 ): """ This creates an :py:class:`GeoAxes <cartopy.mpl.geoaxes.GeoAxes>`, with lots of physical geographic features, and optional (but turned on by default) latitude and longitude gridding, of a region specified by a bounding box. This uses `stereographic projection`_. For example, here is the :py:class:`GeoAxes <cartopy.mpl.geoaxes.GeoAxes>` displaying the CONUS_. .. _viz_create_and_draw_fromfig_conus: .. figure:: /_static/viz/viz_create_and_draw_fromfig_conus.png :width: 100% :align: left Demonstrations of this functionality, which underlies (or overlays?) the geographical features for visualizing COVID-19 cases and deaths. Here are the arguments. :param fig: the :py:class:`Figure <matplotlib.figure.Figure>` onto which to create a :py:class:`GeoAxes <cartopy.mpl.geoaxes.GeoAxes>` containing geographic features. Last three arguments -- ``rows``, ``cols``, and ``num`` -- describe the relative placement of the created :py:class:`GeoAxes <cartopy.mpl.geoaxes.GeoAxes>`. See :py:meth:`add_subplot <matplotlib.figure.Figure.add_subplot>` for those three arguments' meanings. :param tuple bbox: a four-element :py:class:`tuple`. Elements in order are *minimum* longitude, *minimum* latitude, *maximum* longitude, and *maximum* latitude. :param int river_linewidth: the width, in pixels, of river geographical features. :param float river_alpha: the color alpha of river geographical features. :param int coast_linewidth: the width, in pixels, of the coast lines. :param float coast_alpha: the color alpha of coast lines. :param bool drawGrid: if ``True``, then overlay the latitude and longitude grid lines. Otherwise do not. Default is ``True``. :param float mult_bounds_lat: often times, especially with geographic regions that cover a significant area of the earth, we need to put a multiplier :math:`> 1` on the *latitudinal* extent of the plot, so that *all* features can be seen. By default this value is 1.05, but it must be :math:`\ge 1`. :param float mult_bounds_lng: often times, especially with geographic regions that cover a significant area of the earth, we need to put a multiplier :math:`> 1` on the *longitudinal* extent of the plot, so that *all* features can be seen. By default this value is 1.05, but it must be :math:`\ge 1`. :param int rows: the number of rows for axes in the :py:class:`Figure <matplotlib.figure.Figure>` grid. Must be :math:`\ge 1`, and by default is 1. :param int cols: the number of columns for axes in the :py:class:`Figure <matplotlib.figure.Figure>` grid. Must be :math:`\ge 1`, and by default is 1. :param int num: the plot number of the :py:class:`GeoAxes <cartopy.mpl.geoaxes.GeoAxes>` in this :py:class:`Figure <matplotlib.figure.Figure>` grid. Must be :math:`\ge 1` and :math:`\le`\ ``rows`` times ``columns``. Its default is 1. Look at :py:meth:`add_subplot <matplotlib.figure.Figure.add_subplot>` for its meaning. :rtype: :py:class:`GeoAxes <cartopy.mpl.geoaxes.GeoAxes>` .. _`stereographic projection`: https://en.wikipedia.org/wiki/Stereographic_projection """ assert( mult_bounds_lat >= 1.0 ) assert( mult_bounds_lng >= 1.0 ) assert( rows >= 1 ) assert( cols >= 1 ) assert( num >= 1 ) assert( num <= rows * cols ) # min_lng, min_lat, max_lng, max_lat = bbox lng_center = 0.5 * ( min_lng + max_lng ) lat_center = 0.5 * ( min_lat + max_lat ) lng_delta = mult_bounds_lng * ( max_lng - min_lng ) * 0.5 lat_delta = mult_bounds_lat * ( max_lat - min_lat ) * 0.5 # ax = fig.add_subplot( rows, cols, num, projection = ccrs.Stereographic( central_latitude = lat_center, central_longitude = lng_center ) ) # ## now set the extent ax.set_extent( ( lng_center - lng_delta, lng_center + lng_delta, lat_center - lat_delta, lat_center + lat_delta ) ) # ## draw the grid lines if selected if drawGrid: ax.gridlines( draw_labels = True ) # ## coastlines, linewidth = coast_linewidth, alpha = coast_alpha, is black ax.coastlines( linewidth = coast_linewidth, color = numpy.array([ 0.0, 0.0, 0.0, coast_alpha ]) ) # ## rivers with linewidth = river_linewidth, alpha = river_alpha riverf = cfeature.NaturalEarthFeature( 'physical', 'rivers_lake_centerlines', cfeature.auto_scaler, edgecolor = numpy.concatenate([ cfeature.COLORS['water'], [ river_alpha, ] ] ), facecolor='never', linewidth = river_linewidth ) ax.add_feature( riverf ) # ## lakes with alpha = river_alpha lakef = cfeature.NaturalEarthFeature( 'physical', 'lakes', cfeature.auto_scaler, edgecolor = 'face', facecolor = numpy.concatenate([ cfeature.COLORS['water'], [ river_alpha, ] ]) ) ax.add_feature( lakef ) return ax def display_fips_geom( fips_data, fig, **kwargs ): """ Demonstrative plot, returning a :py:class:`GeoAxes <cartopy.mpl.geoaxes.GeoAxes>`, of a FIPS data collection. For example, for the NYC Metro Area, this is, .. _viz_display_fips_geom_nyc: .. figure:: /_static/viz/viz_display_fips_geom_nyc.png :width: 100% :align: left Demonstration of this method showing the counties in the NYC Metro Area. One can extract the patches in this object to manually change the colors of these county polygons. Here are the arguments. :param dict fips_data: the :py:class:`dict` of FIPS geographic data. This has keys of ``prefix``, ``fips``, and ``population``. Look at :ref:`the St. Louis FIPS region data <stlouis_msa_example_data>` for its structure. :param fig: the :py:class:`Figure <matplotlib.figure.Figure>` onto which to draw this :py:class:`GeoAxes <cartopy.mpl.geoaxes.GeoAxes>`. :rtype: :py:class:`GeoAxes <cartopy.mpl.geoaxes.GeoAxes>` """ bdict = core.get_boundary_dict( fips_data[ 'fips' ] ) bbox = gis.calculate_total_bbox( chain.from_iterable( bdict.values( ) ) ) ax = create_and_draw_fromfig( fig, bbox, **kwargs ) fc = list( to_rgba( '#1f77b4' ) ) fc[-1] = 0.25 for fips in bdict: for shape in bdict[ fips ]: poly = Polygon( shape, closed = True, edgecolor = 'k', linewidth = 2.0, linestyle = 'dashed', facecolor = tuple(fc), alpha = 1.0, transform = ccrs.PlateCarree( ) ) ax.add_patch( poly ) return ax def display_fips( collection_of_fips, fig, **kwargs ): """ Method that is very similar to :py:meth:`display_fips_geom <covid19_stats.engine.viz.display_fips_geom>`, except this *also* displays the FIPS code of each county. For example, for `Rhode Island`_, this is. .. _viz_display_fips_rhodeisland: .. figure:: /_static/viz/viz_display_fips_rhodeisland.png :width: 100% :align: left Demonstration of this method showing the counties in `Rhode Island`_. The FIPS code of each county is shown in red. One can extract the patches in this object to manually change the colors of these county polygons. Here are the arguments. :param collection_of_fips: can be a :py:class:`list`, :py:class:`set`, or other iterable of FIPS codes to visualize and label. :param fig: the :py:class:`Figure <matplotlib.figure.Figure>` onto which to draw this :py:class:`GeoAxes <cartopy.mpl.geoaxes.GeoAxes>`. :rtype: :py:class:`GeoAxes <cartopy.mpl.geoaxes.GeoAxes>` .. _`Rhode Island`: https://en.wikipedia.org/wiki/Rhode_Island """ bdict = core.get_boundary_dict( collection_of_fips ) bbox = gis.calculate_total_bbox( chain.from_iterable( bdict.values( ) ) ) ax = create_and_draw_fromfig( fig, bbox, **kwargs ) fc = list( to_rgba( '#1f77b4' ) ) fc[-1] = 0.25 for fips in sorted( bdict ): for shape in bdict[ fips ]: poly = Polygon( shape, closed = True, edgecolor = 'k', linewidth = 2.0, linestyle = 'dashed', facecolor = tuple( fc ), alpha = 1.0, transform = ccrs.PlateCarree( ) ) ax.add_patch( poly ) lng_cent = shape[:,0].mean( ) lat_cent = shape[:,1].mean( ) ax.text( lng_cent, lat_cent, fips, fontsize = 10, fontweight = 'bold', color = 'red', transform = ccrs.PlateCarree( ) ) return ax def display_msa( msaname, fig, doShow = False, **kwargs ): """ Convenience method that visualizes and labels, by FIPS code, the counties in a `Metropolitan Statistical Area <msa_>`_. It can optionally save the output to a file, ``msa_<msaname>_counties.png``. Here is an example of the NYC Metro Area. .. _viz_display_msa_nyc: .. figure:: /_static/viz/viz_display_msa_nyc.png
False **units**\: byte """ _prefix = 'pbr-vservice-mgr-oper' _revision = '2017-05-01' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.Sfp.Term, self).__init__() self.yang_name = "term" self.yang_parent_name = "sfp" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('terminated_pkts', (YLeaf(YType.uint64, 'terminated-pkts'), ['int'])), ('terminated_bytes', (YLeaf(YType.uint64, 'terminated-bytes'), ['int'])), ]) self.terminated_pkts = None self.terminated_bytes = None self._segment_path = lambda: "term" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.Sfp.Term, ['terminated_pkts', 'terminated_bytes'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_pbr_vservice_mgr_oper as meta return meta._meta_table['GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.Sfp.Term']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_pbr_vservice_mgr_oper as meta return meta._meta_table['GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.Sfp']['meta_info'] class SpiSi(_Entity_): """ SPI SI stats .. attribute:: processed_pkts Number of packets processed **type**\: int **range:** 0..18446744073709551615 **config**\: False .. attribute:: processed_bytes Total bytes processed **type**\: int **range:** 0..18446744073709551615 **config**\: False **units**\: byte """ _prefix = 'pbr-vservice-mgr-oper' _revision = '2017-05-01' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.SpiSi, self).__init__() self.yang_name = "spi-si" self.yang_parent_name = "data" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('processed_pkts', (YLeaf(YType.uint64, 'processed-pkts'), ['int'])), ('processed_bytes', (YLeaf(YType.uint64, 'processed-bytes'), ['int'])), ]) self.processed_pkts = None self.processed_bytes = None self._segment_path = lambda: "spi-si" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.SpiSi, ['processed_pkts', 'processed_bytes'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_pbr_vservice_mgr_oper as meta return meta._meta_table['GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.SpiSi']['meta_info'] class Term(_Entity_): """ Terminate stats .. attribute:: terminated_pkts Number of terminated packets **type**\: int **range:** 0..18446744073709551615 **config**\: False .. attribute:: terminated_bytes Total bytes terminated **type**\: int **range:** 0..18446744073709551615 **config**\: False **units**\: byte """ _prefix = 'pbr-vservice-mgr-oper' _revision = '2017-05-01' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.Term, self).__init__() self.yang_name = "term" self.yang_parent_name = "data" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('terminated_pkts', (YLeaf(YType.uint64, 'terminated-pkts'), ['int'])), ('terminated_bytes', (YLeaf(YType.uint64, 'terminated-bytes'), ['int'])), ]) self.terminated_pkts = None self.terminated_bytes = None self._segment_path = lambda: "term" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.Term, ['terminated_pkts', 'terminated_bytes'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_pbr_vservice_mgr_oper as meta return meta._meta_table['GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.Term']['meta_info'] class Sf(_Entity_): """ Service function stats .. attribute:: processed_pkts Number of packets processed **type**\: int **range:** 0..18446744073709551615 **config**\: False .. attribute:: processed_bytes Total bytes processed **type**\: int **range:** 0..18446744073709551615 **config**\: False **units**\: byte """ _prefix = 'pbr-vservice-mgr-oper' _revision = '2017-05-01' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.Sf, self).__init__() self.yang_name = "sf" self.yang_parent_name = "data" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('processed_pkts', (YLeaf(YType.uint64, 'processed-pkts'), ['int'])), ('processed_bytes', (YLeaf(YType.uint64, 'processed-bytes'), ['int'])), ]) self.processed_pkts = None self.processed_bytes = None self._segment_path = lambda: "sf" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.Sf, ['processed_pkts', 'processed_bytes'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_pbr_vservice_mgr_oper as meta return meta._meta_table['GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.Sf']['meta_info'] class Sff(_Entity_): """ Service function forwarder stats .. attribute:: processed_pkts Number of packets processed **type**\: int **range:** 0..18446744073709551615 **config**\: False .. attribute:: processed_bytes Total bytes processed **type**\: int **range:** 0..18446744073709551615 **config**\: False **units**\: byte """ _prefix = 'pbr-vservice-mgr-oper' _revision = '2017-05-01' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.Sff, self).__init__() self.yang_name = "sff" self.yang_parent_name = "data" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('processed_pkts', (YLeaf(YType.uint64, 'processed-pkts'), ['int'])), ('processed_bytes', (YLeaf(YType.uint64, 'processed-bytes'), ['int'])), ]) self.processed_pkts = None self.processed_bytes = None self._segment_path = lambda: "sff" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.Sff, ['processed_pkts', 'processed_bytes'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_pbr_vservice_mgr_oper as meta return meta._meta_table['GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.Sff']['meta_info'] class SffLocal(_Entity_): """ Local service function forwarder stats .. attribute:: malformed_err_pkts Number of packets with invalid NSH header **type**\: int **range:** 0..18446744073709551615 **config**\: False .. attribute:: lookup_err_pkts Number of packets with unknown spi\-si **type**\: int **range:** 0..18446744073709551615 **config**\: False .. attribute:: malformed_err_bytes Total bytes with invalid NSH header **type**\: int **range:** 0..18446744073709551615 **config**\: False **units**\: byte .. attribute:: lookup_err_bytes Total bytes with unknown spi\-si **type**\: int **range:** 0..18446744073709551615 **config**\: False **units**\: byte """ _prefix = 'pbr-vservice-mgr-oper' _revision = '2017-05-01' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.SffLocal, self).__init__() self.yang_name = "sff-local" self.yang_parent_name = "data" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('malformed_err_pkts', (YLeaf(YType.uint64, 'malformed-err-pkts'), ['int'])), ('lookup_err_pkts', (YLeaf(YType.uint64, 'lookup-err-pkts'), ['int'])), ('malformed_err_bytes', (YLeaf(YType.uint64, 'malformed-err-bytes'), ['int'])), ('lookup_err_bytes', (YLeaf(YType.uint64, 'lookup-err-bytes'), ['int'])), ]) self.malformed_err_pkts = None self.lookup_err_pkts = None self.malformed_err_bytes = None self.lookup_err_bytes = None self._segment_path = lambda: "sff-local" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.SffLocal, ['malformed_err_pkts', 'lookup_err_pkts', 'malformed_err_bytes', 'lookup_err_bytes'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_pbr_vservice_mgr_oper as meta return meta._meta_table['GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data.SffLocal']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_pbr_vservice_mgr_oper as meta return meta._meta_table['GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.Data']['meta_info'] class SiArr(_Entity_): """ SI array in case of detail stats .. attribute:: data Stats counter for this index **type**\: :py:class:`Data <ydk.models.cisco_ios_xr.Cisco_IOS_XR_pbr_vservice_mgr_oper.GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr.Data>` **config**\: False .. attribute:: si Service index **type**\: int **range:** 0..255 **config**\: False """ _prefix = 'pbr-vservice-mgr-oper' _revision = '2017-05-01' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr, self).__init__() self.yang_name = "si-arr" self.yang_parent_name = "sf-name" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([("data", ("data", GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr.Data))]) self._leafs = OrderedDict([ ('si', (YLeaf(YType.uint8, 'si'), ['int'])), ]) self.si = None self.data = GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr.Data() self.data.parent = self self._children_name_map["data"] = "data" self._segment_path = lambda: "si-arr" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr, ['si'], name, value) class Data(_Entity_): """ Stats counter for this index .. attribute:: spi_si SF/SFF stats **type**\: :py:class:`SpiSi <ydk.models.cisco_ios_xr.Cisco_IOS_XR_pbr_vservice_mgr_oper.GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr.Data.SpiSi>` **config**\: False .. attribute:: term Terminate stats **type**\: :py:class:`Term <ydk.models.cisco_ios_xr.Cisco_IOS_XR_pbr_vservice_mgr_oper.GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr.Data.Term>` **config**\: False .. attribute:: type type **type**\: :py:class:`VsNshStats <ydk.models.cisco_ios_xr.Cisco_IOS_XR_pbr_vservice_mgr_oper.VsNshStats>` **config**\: False """ _prefix = 'pbr-vservice-mgr-oper' _revision = '2017-05-01' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr.Data, self).__init__() self.yang_name = "data" self.yang_parent_name = "si-arr" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([("spi-si", ("spi_si", GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr.Data.SpiSi)), ("term", ("term", GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr.Data.Term))]) self._leafs = OrderedDict([ ('type', (YLeaf(YType.enumeration, 'type'), [('ydk.models.cisco_ios_xr.Cisco_IOS_XR_pbr_vservice_mgr_oper', 'VsNshStats', '')])), ]) self.type = None self.spi_si = GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr.Data.SpiSi() self.spi_si.parent = self self._children_name_map["spi_si"] = "spi-si" self.term = GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr.Data.Term() self.term.parent = self self._children_name_map["term"] = "term" self._segment_path = lambda: "data" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr.Data, ['type'], name, value) class SpiSi(_Entity_): """ SF/SFF stats .. attribute:: processed_pkts Number of packets processed **type**\: int **range:** 0..18446744073709551615 **config**\: False .. attribute:: processed_bytes Total bytes processed **type**\: int **range:** 0..18446744073709551615 **config**\: False **units**\: byte """ _prefix = 'pbr-vservice-mgr-oper' _revision = '2017-05-01' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr.Data.SpiSi, self).__init__() self.yang_name = "spi-si" self.yang_parent_name = "data" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('processed_pkts', (YLeaf(YType.uint64, 'processed-pkts'), ['int'])), ('processed_bytes', (YLeaf(YType.uint64, 'processed-bytes'), ['int'])), ]) self.processed_pkts = None self.processed_bytes = None self._segment_path = lambda: "spi-si" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr.Data.SpiSi, ['processed_pkts', 'processed_bytes'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_pbr_vservice_mgr_oper as meta return meta._meta_table['GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr.Data.SpiSi']['meta_info'] class Term(_Entity_): """ Terminate stats .. attribute:: terminated_pkts Number of terminated packets **type**\: int **range:** 0..18446744073709551615 **config**\: False .. attribute:: terminated_bytes Total bytes terminated **type**\: int **range:** 0..18446744073709551615 **config**\: False **units**\: byte """ _prefix = 'pbr-vservice-mgr-oper' _revision = '2017-05-01' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr.Data.Term, self).__init__() self.yang_name = "term" self.yang_parent_name = "data" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('terminated_pkts', (YLeaf(YType.uint64, 'terminated-pkts'), ['int'])), ('terminated_bytes', (YLeaf(YType.uint64, 'terminated-bytes'), ['int'])), ]) self.terminated_pkts = None self.terminated_bytes = None self._segment_path = lambda: "term" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(GlobalServiceFunctionChaining.ServiceFunction.SfNames.SfName.SiArr.Data.Term, ['terminated_pkts', 'terminated_bytes'], name, value) @staticmethod def _meta_info(): from