input
stringlengths
2.65k
237k
output
stringclasses
1 value
1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0], [1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0], [1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0], [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0], [1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1], [1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0], [0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1], [1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0], [1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0], [1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1], [0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0], [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1], [1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0], [1, 1, 1, 0,
#!/usr/bin/env python3 import argparse import requests import urllib3 import sys import json import re import time # The purpose of this script is to facilitate backup/restore of settings in RP4VMs # The script exclusively uses the new RESTful API in RP4VMs 5.3 # Author - <NAME> <<EMAIL>> # Version 1 - April 2021 # Copyright [2021] [<NAME>] # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. urllib3.disable_warnings() def get_args(): # Get command line args from the user parser = argparse.ArgumentParser( description='Script to backup and restore settings in RecoverPoint for VMs') parser.add_argument('-s', '--server', required=True, action='store', help='RP4VMs Plugin Server DNS name or IP') parser.add_argument('-cfile', '--credsfile', required=True, action='store', help='Path to credentials file') parser.add_argument('-a', '--action', required=True, choices=['backup', 'restore'], help='Choose to backup or restore settings') parser.add_argument('-file', '--file', required=True, action='store', help='Path to file for backup/restore') parser.add_argument('-vc', "--vcenter", required=('new-vc' in sys.argv), action='store', help='Provide vCenter DNS name or IP') parser.add_argument('-cpairs', '--clusterpairs', required=False, action='store', help='Provide RP4VMs cluster pairing in format of oldcl1,newcl1,oldcl12,newcl2') parser.add_argument('-nmonitor', '--no-monitor', required=False, action='store_true', dest='nmonitor', default=False, help='Optionally prevents monitoring of protection process') args = parser.parse_args() return args def init_rest_call(calltype, uri, user, password, payload=None): # BETA refactor call to initiate rest calls code = 200 headers = {'Content-Type': 'application/json'} verify = False try: if calltype.lower() == "get": response = requests.get(uri, headers=headers, auth=(user, password), verify=verify) else: response = requests.calltype(uri, headers=headers, data=payload , auth=(user, password), verify=verify) response.raise_for_status() except requests.exceptions.ConnectionError as err: print('Error Connecting to {}: {}'.format(uri, err)) sys.exit(1) except requests.exceptions.Timeout as err: print('Connection timed out {}: {}'.format(urllib3, err)) sys.exit(1) except requests.exceptions.RequestException as err: print("The call {} {} failed with exception:{}".format(response.request.method, response.url, err)) if (response.status_code != code): raise Exception('Failed to query {}, code: {}, body: {}'.format(uri, response.status_code, response.text)) return response.json() def get_clusters(uri, user, password): # Gets list of RP4VMs clusters headers = {'Content-Type': 'application/json'} suffix = "/rp-clusters" uri += suffix try: response = requests.get(uri, headers=headers, auth=(user, password), verify=False) response.raise_for_status() except requests.exceptions.RequestException as err: print("The call {} {} failed with exception:{}".format(response.request.method, response.url, err)) if (response.status_code != 200): raise Exception('Failed to query {}, code: {}, body: {}'.format( uri, response.status_code, response.text)) return response.json() def get_creds(credsfile, uri): # Gets and validates credentials file = open(credsfile, 'r') credstring = file.read().rstrip() file.close() user, password = credstring.split(' ') suffixurl = "/version" uri += suffixurl headers = {'Content-Type': 'application/json'} try: response = requests.get(uri, headers=headers, auth=(user, password),verify=False) response.raise_for_status() except requests.exceptions.ConnectionError as err: print('Error Connecting to {}: {}'.format(uri, err)) sys.exit(1) except requests.exceptions.Timeout as err: print('Connection timed out {}: {}'.format(urllib3, err)) sys.exit(1) except requests.exceptions.RequestException as err: print("The call {} {} failed with exception:{}".format(response.request.method, response.url, err)) sys.exit(1) if (response.status_code != 200): raise Exception('Invalid credentials, code: {}, body: {}'.format( response.status_code, response.text)) return user, password def backup_general(uri, user, password, file): # Backs up general config data like CGs, VMs, Group Sets, VCs, etc. suffixlist = "/groups", "/vms", "/group-sets", "/vcs", "/licenses", "/rp-clusters" headers = {'Content-Type': 'application/json'} fileh = open(file, 'w') for suffix in suffixlist: nuri = uri + suffix try: response = requests.get(nuri, headers=headers, auth=(user, password), verify=False) response.raise_for_status() except requests.exceptions.RequestException as err: print("The call {} {} failed with exception:{}".format(response.request.method, response.url, err)) if (response.status_code != 200): raise Exception('Failed to query {}, code: {}, body: {}'.format( uri, response.status_code, response.text)) if (suffix == "/groups"): groups = response.json() fileh.write(response.request.method + ' ' + response.url + "\n") fileh.write(str(response.json())) fileh.write("\nEND\n") fileh.close() return groups def get_all_copies(groups): # Get all copies for all CGs copies = [] for group in groups: for copy in group["copyIds"]: copies.append("/groups/{}/copies/{}".format(group["name"], copy)) return copies def load_json(data): # Align data and convert to JSON if (isinstance(data, dict)): for copyid in data: data[copyid] = data[copyid].replace("\'", "\"") data[copyid] = data[copyid].replace("True", "true") data[copyid] = data[copyid].replace("False", "false") data[copyid] = json.loads(data[copyid]) else: data = data.replace("\'", "\"") data = data.replace("True", "true") data = data.replace("False", "false") data = json.loads(data) return data def backup_groups(uri, user, password, file, copies): # Backs up per-CG and per-Copy specific settings headers = {'Content-Type': 'application/json'} suffixlist = "/", "/journals", "/re-ip" payload = None method = "GET" fileh = open(file, 'a') for copy in copies: for suffix in suffixlist: nuri = uri + copy + suffix response = init_rest_call(method, nuri, user, password, payload) fileh.write(method + ' ' + nuri + "\n") fileh.write(str(response)) fileh.write("\nEND\n") fileh.close() return None def validate_cluster_pairs(cpairs): # Validates the cluster pairs parameter if cpairs: if (cpairs.find(',') < 1): clusters = get_clusters(uri, user, password) print("Incorrect format of the cluster pairs parameter, existing") sys.argv(1) else: cpairs = cpairs.split(',') if (len(cpairs) % 2 != 0): print("Incorrect format of the cluster pairs parameter, existing") sys.argv(1) else: return cpairs else: return None def extract_backup_data(file): # Extract backup information from backup file fileh = open(file, 'r') data = {} copies = {} copyparams = 'copies', 'journals', 're-ip' for param in copyparams: copies[param] = {} for line in fileh: if line.startswith("GET"): check = re.search("/v1/(.*)$", line).groups()[0] if "copies" in check: match = re.search("/groups/(.*)/copies/(\w+)/(.*?)$", line) group, copyid = match.groups()[0], match.groups()[1] if not match.groups()[2]: check = "copies" else: check = match.groups()[2] elif line.startswith("END"): check = None else: if check in copyparams: copies[check][copyid] = line else: data[check] = line fileh.close() return data, copies def merge_group_data(groups, vms, copysettings, journals, reip): # Add protected VMs to the their respective CG for group in groups: vmlist = [] prodvmcounter = 0 copylist = [] for vm in vms: if vm["groupId"] == group["id"]: vmlist.append(vm) group.update({'vms': [vmlist]}) for vm in vmlist: if "PRODUCTION" in vm["role"]: prodvmcounter += 1 group.update({'prodvmcount': prodvmcounter}) for copyid in journals: if (group["id"] in copyid): group.update({'journals': journals[copyid]}) for copyid in reip: if (group["id"] in copyid): group.update({'re-ip': reip[copyid]}) for copyid in copysettings: if (group["id"] in copyid): copylist.append(copysettings[copyid]) group.update({'copies': '{}'.format(json.dumps(copylist))}) return groups def check_rep_topology(group): if len(group["copyIds"]) == 2: return True else: return False def determine_rpcluster(uri, user, password, group, cpairs): # Gets the desired RP4VMs cluster clusters = get_clusters(uri, user, password) if cpairs: for counter in range(len(cpairs)-1): if group["prodRpClusterName"] == cpairs[counter]: rpcluster = cpairs[counter+1] else: counter += 1 else: if clusters[0]["isRegistered"]: rpcluster = clusters[0]["name"] else: rpcluster = clusters[1]["name"] return rpcluster def get_candidates(uri, user, password, name): # Gets candidate VMs for replication suffixurl = "/vms/protect/candidates" uri += suffixurl headers = {'Content-Type': 'application/json'} filter = '' bfilter = filter if name != None: filter += name params = {'vms': filter} try: response = requests.get(uri, headers=headers, params=params, auth=(user, password), verify=False) response.raise_for_status() except requests.exceptions.RequestException as err: print("The call {} {} failed with exception:{}".format(response.request.method, response.url, err)) if (response.status_code != 200): raise Exception('Failed to query {}, code: {}, body: {}'.format( uri, response.status_code, response.text)) exactresult = response.json() vms = [] if (response.status_code == 200 and response.json() == [] and name != None): params = {'vms': bfilter} try: response = requests.get(uri, headers=headers, params=params, auth=(user, password), verify=False) response.raise_for_status() except requests.exceptions.RequestException as err: print("The call {} {} failed with exception:{}".format(response.request.method, response.url, err)) if (response.status_code != 200): raise Exception('Failed to query {}, code: {}, body: {}'.format( uri, response.status_code, response.text)) for vm in response.json(): if re.match(name.lower(),vm['name'].lower()): vms.append(vm) if vms: return vms return exactresult def determine_journal(group): # Checks if non-default journal size is used for replica copy totaljournal = 0 for journal in group["journals"]: if journal["copyId"] != group["prodCopyId"]: totaljournal += journal["sizeInMB"] return totaljournal def exclude_disks(defaults, group): # Determines whether to exclude disks or not excludeddisks = {} for vm in group["vms"][0]: for disk in vm["vmdks"]: if not disk["included"]: excludeddisks[vm["id"]] = [] excludeddisks[vm["id"]].append(disk["path"]) if len(excludeddisks) == 0: return defaults else: if len(group["vms"] == 1): for disk in defaults["protectedVmdks"]: for excludeddisk in excludeddisk[defaults["vm"]]: if disk == excludeddisk: defaults["protectedVmdks"].remove(disk) else: for vms in defaults["vms"]: for disk in vm["protectedVmdks"]: for excludeddisk in excludeddisk[vm["vm"]]: if disk == excludeddisk: vm["protectedVmdks"].remove(disk) return defaults def get_defaults(uri, user, password, group, rpcluster): # Gets recommended replication parameters suffixurl = "/vms/protect/defaults" suffixurl2 = "/vms/protect-to-single-group/defaults" vms = group["vms"] headers = {'Content-Type': 'application/json'} if group["prodvmcount"] == 0: print("no VMs found for group: {}, exiting".format(group["name"])) sys.exit(1) else: vmlist = [] vmdict = {} for vm in vms[0]: if "PRODUCTION"
import json import pathlib import urllib3 import dash from dash.dependencies import Input, Output, State, ALL, ClientsideFunction from dash.exceptions import PreventUpdate from dash.dash import no_update import dash_html_components as html import dash_bootstrap_components as dbc from flask import flash, get_flashed_messages from flask_caching import Cache from data import dev import preprocessing from settings import ( SECRET_KEY, DB_URL, DEBUG, MANAGE_DB, SKIP_TS, SC_FILTERS, USE_DUMMY_DATA, CACHE_CONFIG, MAX_WARNINGS, MAX_INFOS, ) import scenario import graphs from models import db, get_model_options, Filter, Colors, Labels urllib3.disable_warnings() APP_PATH = str(pathlib.Path(__file__).parent.resolve()) # Initialize app app = dash.Dash( __name__, meta_tags=[ {"name": "viewport", "content": "width=device-width, initial-scale=4.0"}, ], external_stylesheets=[dbc.themes.BOOTSTRAP], ) server = app.server server.secret_key = SECRET_KEY # Database server.config["SQLALCHEMY_DATABASE_URI"] = DB_URL server.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False db.init_app(server) # Cache cache = Cache() cache.init_app(server, config=CACHE_CONFIG) # Layout if not MANAGE_DB: from layout import ( DEFAULT_LAYOUT, IMPRINT_LAYOUT, PRIVACY_LAYOUT, get_layout, get_graph_options, get_error_and_warnings_div, ) app.layout = DEFAULT_LAYOUT app.validation_layout = html.Div( [ DEFAULT_LAYOUT, get_layout(app, scenarios=scenario.get_scenarios()), IMPRINT_LAYOUT, PRIVACY_LAYOUT, ] ) # Multiple pages @app.callback( dash.dependencies.Output("page-content", "children"), [dash.dependencies.Input("url", "pathname")], ) def display_page(pathname): if pathname == "/imprint": return IMPRINT_LAYOUT elif pathname == "/privacy": return PRIVACY_LAYOUT else: return get_layout(app, scenarios=scenario.get_scenarios()) @cache.memoize() def get_scenario_data(scenario_id, table): app.logger.info(f"Loading scenario data #{scenario_id} (not cached)...") if USE_DUMMY_DATA: return dev.get_dummy_data(scenario_id, table) return scenario.get_scenario_data(scenario_id, table) @cache.memoize() def get_multiple_scenario_data(*scenario_ids, table): app.logger.info("Merging scenario data (not cached)...") scenarios = [get_scenario_data(scenario_id, table) for scenario_id in scenario_ids] merged = scenario.merge_scenario_data(scenarios) app.logger.info("Merged scenario data") return merged @cache.memoize() def get_scenario_filters(scenario_id): app.logger.info(f"Loading scenario data #{scenario_id} (not cached)...") if USE_DUMMY_DATA: return dev.get_dummy_filters(scenario_id) return scenario.get_scenario_filters(scenario_id) @cache.memoize() def get_multiple_scenario_filters(*scenario_ids): app.logger.info("Merging scenario data (not cached)...") scenarios = [ get_scenario_filters(scenario_id) for scenario_id in scenario_ids ] merged = scenario.merge_scenario_data(scenarios) app.logger.info("Merged scenario data") return merged @app.callback( Output(component_id="dd_scenario", component_property="options"), Input("scenario_reload", "n_clicks"), ) def reload_scenarios(_): scenarios = scenario.get_scenarios() return [ {"label": f"{sc['id']}, {sc['scenario']}, {sc['source']}", "value": sc["id"],} for sc in scenarios ] app.clientside_callback( ClientsideFunction(namespace="clientside", function_name="update_refresh_elements"), Output(component_id="refresh_scalars", component_property="className"), [ Input("dd_scenario", "value"), Input(component_id="order_by", component_property="value"), Input(component_id="aggregation_group_by", component_property="value"), Input({"name": ALL, "type": "filters"}, "value"), Input({"name": ALL, "type": "unit-dropdown"}, "value"), Input({"name": ALL, "type": "graph_scalars_option"}, "value"), Input("load_filters", "value"), Input("load_colors", "value"), Input("load_labels", "value"), ], prevent_initial_call=True, ) @app.callback( [ Output(component_id="load_filters", component_property="options"), Output(component_id="save_filters_name", component_property="value"), ], Input("save_filters", "n_clicks"), [ State(component_id="save_filters_name", component_property="value"), State(component_id="graph_scalars_options", component_property="children"), State(component_id="graph_timeseries_options", component_property="children"), State(component_id="order_by", component_property="value"), State(component_id="aggregation_group_by", component_property="value"), State(component_id="filters", component_property="children"), ], ) def save_filters( _, name, graph_scalars_options, graph_timeseries_options, order_by, agg_group_by, filter_div, ): if not name: raise PreventUpdate filters = preprocessing.extract_filters("scalars", filter_div) filters["order_by"] = order_by filters["agg_group_by"] = agg_group_by scalar_graph_options = preprocessing.extract_graph_options(graph_scalars_options) ts_graph_options = preprocessing.extract_graph_options(graph_timeseries_options) db_filter = Filter( name=name, filters=filters, scalar_graph_options=scalar_graph_options, ts_graph_options=ts_graph_options, ) db.session.add(db_filter) db.session.commit() return get_model_options(Filter), "" @app.callback( [ Output(component_id="load_colors", component_property="options"), Output(component_id="save_colors_name", component_property="value"), Output(component_id="colors_error", component_property="children"), ], Input("save_colors", "n_clicks"), [ State(component_id="save_colors_name", component_property="value"), State(component_id="colors", component_property="value"), ], ) def save_colors(_, name, str_colors): if not name: raise PreventUpdate try: colors = json.loads(str_colors) except json.JSONDecodeError as je: flash( f"Could not read color mapping. Input must be valid JSON. (Error: {je})", "error", ) return get_model_options(Colors), "", show_logs() db_colors = Colors(name=name, colors=colors,) db.session.add(db_colors) db.session.commit() return get_model_options(Colors), "", show_logs() @app.callback( [ Output(component_id="load_labels", component_property="options"), Output(component_id="save_labels_name", component_property="value"), Output(component_id="labels_error", component_property="children"), ], Input("save_labels", "n_clicks"), [ State(component_id="save_labels_name", component_property="value"), State(component_id="labels", component_property="value"), ], ) def save_labels(_, name, str_labels): if not name: raise PreventUpdate try: labels = json.loads(str_labels) except json.JSONDecodeError as je: flash( f"Could not read labels. Input must be valid JSON. (Error: {je})", "error" ) return get_model_options(Labels), "", show_logs() db_labels = Labels(name=name, labels=labels,) db.session.add(db_labels) db.session.commit() return get_model_options(Labels), "", show_logs() # @app.callback( # [ # Output(component_id="view-dashboard_sclar", component_property="className"), # Output(component_id="view-dashboard-data", component_property="className"), # ], # [ # Input("view-dashboard", "n_clicks"), # Input("view-dashboard-data", "n_clicks"), # ], # prevent_initial_call=True, # ) # def show_data(_, __): # ctx = dash.callback_context # if "view-dashboard-data" in ctx.triggered[0]["prop_id"]: # return "view view--dashboard", "view view--dashboard-data active" # else: # return "view view--dashboard active", "view view--dashboard-data" @app.callback( [ Output(component_id="graph_scalars_plot_switch", component_property="value"), Output(component_id="graph_timeseries_plot_switch", component_property="value"), Output(component_id="order_by", component_property="value"), Output(component_id="aggregation_group_by", component_property="value"), ] + [ Output( component_id={"name": filter_, "type": "filter-dropdown"}, component_property="value", ) for filter_ in SC_FILTERS ] + [Output(component_id="save_load_errors", component_property="children")], Input("load_filters", "value"), State(component_id="dd_scenario", component_property="value"), prevent_initial_call=True, ) def load_filters(name, scenarios): if not name: raise PreventUpdate if not scenarios: flash("No scenario selected - cannot load filters without scenario", "error") return ( no_update, no_update, no_update, *([no_update] * len(SC_FILTERS)), show_logs(), ) db_filter = Filter.query.filter_by(name=name).first() filters = [db_filter.filters.get(filter_, None) for filter_ in SC_FILTERS] flash("Successfully loaded filters", "info") return ( db_filter.scalar_graph_options["type"], db_filter.ts_graph_options["type"], db_filter.filters.get("order_by", []), db_filter.filters["agg_group_by"], *filters, show_logs(), ) @app.callback( Output(component_id="colors", component_property="value"), Input("load_colors", "value"), prevent_initial_call=True, ) def load_colors(name): if not name: raise PreventUpdate db_colors = Colors.query.filter_by(name=name).first() return json.dumps(db_colors.colors) @app.callback( Output(component_id="labels", component_property="value"), Input("load_labels", "value"), prevent_initial_call=True, ) def load_labels(name): if not name: raise PreventUpdate db_labels = Labels.query.filter_by(name=name).first() return json.dumps(db_labels.labels) @app.callback( [ Output( component_id={"name": filter_, "type": "filter-dropdown"}, component_property="options", ) for filter_ in SC_FILTERS ], [Input(component_id="dd_scenario", component_property="value")], ) def load_scenario(scenarios): if scenarios is None: raise PreventUpdate scenarios = scenarios if isinstance(scenarios, list) else [scenarios] filters = get_multiple_scenario_filters(*scenarios) app.logger.info("Data successfully loaded") return preprocessing.get_filter_options(filters) @app.callback( [Output(component_id="graph_scalars_options", component_property="children")], [ Input(component_id="graph_scalars_plot_switch", component_property="value"), Input("load_filters", "value"), ], prevent_initial_call=True, ) def toggle_scalar_graph_options(plot_type, name): # Have to use "callback_context" as every component can only have one output callback ctx = dash.callback_context if ctx.triggered[0]["prop_id"] == "graph_scalars_plot_switch.value": graph_scalar_options = get_graph_options("scalars", plot_type) else: if not name: raise PreventUpdate db_filter = Filter.query.filter_by(name=name).first() graph_scalar_options = get_graph_options( "scalars", db_filter.scalar_graph_options["type"], db_filter.scalar_graph_options["options"], ) return (graph_scalar_options,) @app.callback( [Output(component_id="graph_timeseries_options", component_property="children")], [ Input(component_id="graph_timeseries_plot_switch", component_property="value"), Input("load_filters", "value"), ], prevent_initial_call=True, ) def toggle_timeseries_graph_options(plot_type, name): # Have to use "callback_context" as every component can only have one output callback ctx = dash.callback_context if ctx.triggered[0]["prop_id"] == "graph_timeseries_plot_switch.value": graph_timeseries_options = get_graph_options("timeseries", plot_type) else: if not name: raise PreventUpdate db_filter = Filter.query.filter_by(name=name).first() graph_timeseries_options = get_graph_options( "timeseries", db_filter.ts_graph_options["type"], db_filter.ts_graph_options["options"], ) return (graph_timeseries_options,) @app.callback( [ Output(component_id="graph_scalars", component_property="figure"), Output(component_id="table_scalars", component_property="data"), Output(component_id="table_scalars", component_property="columns"), Output(component_id="graph_scalars_error", component_property="children"), Output(component_id="tab_scalars_error", component_property="labelClassName"), Output(component_id="view-dashboard_scalars", component_property="className"), Output(component_id="view-dashboard-data_scalars", component_property="className"), Output(component_id="table_div_scalars", component_property="style"), ], [ Input(component_id="refresh_scalars", component_property="n_clicks"), Input(component_id="view-dashboard_scalars", component_property="n_clicks"), Input(component_id="view-dashboard-data_scalars", component_property="n_clicks"), ], [ State(component_id="view-dashboard-data_scalars", component_property="className"), State(component_id="units", component_property="children"), State(component_id="graph_scalars_options", component_property="children"), State(component_id="filters", component_property="children"), State(component_id="colors", component_property="value"), State(component_id="labels", component_property="value"), State(component_id="order_by", component_property="value"), State(component_id="aggregation_group_by", component_property="value"), State(component_id="dd_scenario", component_property="value"), ], prevent_initial_call=True, ) def scalar_graph( _, __, ___, show_data_cls, units_div, graph_scalars_options, filter_div, colors, labels, order_by, agg_group_by, scenarios, ): if scenarios is None: raise PreventUpdate # Check if data shall be shown: show_data = show_data_cls and "active" in show_data_cls data_div_cls = no_update, no_update, no_update ctx = dash.callback_context if "view-dashboard-data" in ctx.triggered[0]["prop_id"]: if show_data: raise PreventUpdate show_data = True data_div_cls = "view view--dashboard", "view view--dashboard-data active", {} elif "view-dashboard" in ctx.triggered[0]["prop_id"]: if not show_data: raise PreventUpdate show_data = False data_div_cls = "view view--dashboard active", "view view--dashboard-data", {"display": "none"} data = get_multiple_scenario_data(*scenarios, table="oed_scalars") filters = preprocessing.extract_filters("scalars", filter_div) units = preprocessing.extract_unit_options(units_div) graph_options = preprocessing.extract_graph_options(graph_scalars_options) colors = preprocessing.extract_colors(colors) graph_options["options"]["color_discrete_map"] = colors labels = preprocessing.extract_labels(labels) try: preprocessed_data = preprocessing.prepare_scalars( data, order_by, agg_group_by, units, filters, labels ) except preprocessing.PreprocessingError: log_div, log_level = show_logs() return graphs.get_empty_fig(), [], [], log_div, log_level, *data_div_cls if preprocessed_data.empty: flash("No data for current filter settings", "warning") log_div, log_level = show_logs() return graphs.get_empty_fig(), [], [], log_div, log_level, *data_div_cls try: fig = graphs.get_scalar_plot(preprocessed_data, graph_options) except graphs.PlottingError: log_div, log_level = show_logs() return graphs.get_empty_fig(), [], [], log_div, log_level, *data_div_cls if show_data: columns = [{"name": i, "id": i} for i in preprocessed_data.columns] data_table = preprocessed_data.applymap(str).to_dict("records") else: columns = [] data_table = [] log_div, log_level = show_logs() return fig, data_table, columns, log_div, log_level, *data_div_cls @app.callback( [ Output(component_id="graph_timeseries", component_property="figure"), Output(component_id="table_timeseries", component_property="data"), Output(component_id="table_timeseries", component_property="columns"), Output(component_id="graph_timeseries_error", component_property="children"), Output(component_id="tab_timeseries_error", component_property="labelClassName"), Output(component_id="view-dashboard_timeseries", component_property="className"), Output(component_id="view-dashboard-data_timeseries", component_property="className"), Output(component_id="table_div_timeseries", component_property="style"), ], [ Input(component_id="refresh_timeseries", component_property="n_clicks"), Input(component_id="view-dashboard_timeseries", component_property="n_clicks"), Input(component_id="view-dashboard-data_timeseries", component_property="n_clicks"), ], [ State(component_id="view-dashboard-data_timeseries", component_property="className"), State(component_id="units", component_property="children"), State(component_id="graph_timeseries_options", component_property="children"), State(component_id="filters", component_property="children"), State(component_id="colors", component_property="value"), State(component_id="labels", component_property="value"), State(component_id="order_by", component_property="value"), State(component_id="aggregation_group_by", component_property="value"), State(component_id="dd_scenario", component_property="value"), ], prevent_initial_call=True, ) def timeseries_graph( _, __, ___, show_data_cls, units_div, graph_timeseries_options, filter_div, colors, labels, order_by, agg_group_by, scenarios, ): if scenarios is None or SKIP_TS: raise PreventUpdate # Check if data shall be shown: show_data = show_data_cls and "active" in show_data_cls data_div_cls = no_update, no_update, no_update ctx = dash.callback_context if "view-dashboard-data" in ctx.triggered[0]["prop_id"]: if show_data: raise PreventUpdate data_div_cls = "view view--dashboard", "view view--dashboard-data active", {} elif "view-dashboard" in ctx.triggered[0]["prop_id"]: if not show_data: raise PreventUpdate show_data = False data_div_cls = "view view--dashboard active", "view view--dashboard-data", {"display": "none"} data = get_multiple_scenario_data(*scenarios, table="oed_timeseries") filters = preprocessing.extract_filters("timeseries", filter_div) units = preprocessing.extract_unit_options(units_div) graph_options = preprocessing.extract_graph_options(graph_timeseries_options) colors = preprocessing.extract_colors(colors) graph_options["options"]["color_discrete_map"] = colors labels = preprocessing.extract_labels(labels) try: preprocessed_data = preprocessing.prepare_timeseries( data, order_by, agg_group_by, units, filters, labels ) except preprocessing.PreprocessingError: log_div, log_level = show_logs() return graphs.get_empty_fig(), [], [], log_div, log_level, *data_div_cls if preprocessed_data.empty: flash("No data for current filter settings", "warning") log_div, log_level = show_logs() return graphs.get_empty_fig(), [], [], log_div, log_level, *data_div_cls try: fig = graphs.get_timeseries_plot(preprocessed_data, graph_options) except graphs.PlottingError: log_div, log_level = show_logs() return graphs.get_empty_fig(), [], [], log_div, log_level, *data_div_cls if show_data: columns = [{"name": i, "id": i} for i in preprocessed_data.columns] data_table = preprocessed_data.applymap(str).to_dict("records") else: columns = [] data_table = [] log_div, log_level = show_logs() return fig, data_table, columns, log_div, log_level, *data_div_cls def show_logs(): errors = get_flashed_messages(category_filter=["error"]) warnings = get_flashed_messages(category_filter=["warning"]) if len(warnings) > MAX_WARNINGS: warnings = warnings[:MAX_WARNINGS] warnings.append( f"Too many warnings (>{MAX_WARNINGS}) - Skipping further warnings..." ) infos = get_flashed_messages(category_filter=["info"]) if len(infos) > MAX_INFOS: infos = infos[:MAX_INFOS] infos.append(f"Too
<filename>lectures/Python/9_Data_structures/PiRaP-2020-lecture-9.py # auxiliary function for cleaning the workspace def clear_all(): gl = globals().copy() for var in gl: if var[0] == '_': continue if 'func' in str(globals()[var]): continue if 'module' in str(globals()[var]): continue del globals()[var] # -------------------------------------------------------------------- # Basics # -------------------------------------------------------------------- # Importing modules # load modules import math # system module #import mylib # own module y = math.sin(math.pi) #z = mylib.myfun() # import single element from math import pi y = math.sin(pi) # import everything from math import * y = sin(pi) # alias import math as m y = m.sin(m.pi) # -------------------------------------------------------------------- # Functions # no return value def display(x): print(x) # return value def sqr(x): return x * x # function that does nothing def doNothing(): pass # conditional return def geoMean(x,y): if x < 0 or y < 0: return None else: return math.sqrt(x * y) b = display('abc') # b is None p = sqr(2) # p is 4 q = geoMean(2, 8) # q is 4 r = geoMean(-2, 8) # r is None # default and named arguments def fun(x, y=10, s='abc'): print(x,y,s) fun(0) # fun(0, 10, 'abc') fun(1, 3.14, 'xyz') fun(2, s='PS') # named argument - fun(2, 10, 'PS') fun(y=4, x=1) # named arguments - fun(1, 4, 'abc') fun(5, x=1) # error: x passed twice def fun2(x=1, y): # error: non-default follows default pass # -------------------------------------------------------------------- # Iterations # Iterate over collection V = ['a', 'b', 'c'] # list comprehension - creates a list from values for e in V: print(e) # Iterate over range (right excluded) for i in range(0,10): # [0, 1, ... 9] print(i) # while loop i = 10 while i > 0: print(i) i -= 1 # 100, 95, ...,5 for i in range(100, 0, -5): print(i) # reversed collection for e in reversed(V): print(e) # break, continue, loop-else for n in range(2, 10): for x in range(2, n): if n % x == 0: print(f'{n} = {x} * {n//x}') break else: # concerns for loop - executed when loop exited normally (not by break) print ('{} is a prime number'.format(n)) # -------------------------------------------------------------------- # String type # # - Immutable - you cannot alter the string, you can only create # a new one on the basis of the existing one. # - Assignment operator makes a copy. # - Indexing using slices: [begin:end:step]. # - 0-based, end is an element after the slice. clear_all() # Accessing elements s = 'Dog' c = s[1] # 'o' - get single character s0 = s[0:len(s)] # 'Dog' - copy entire string s1 = s[1:] # 'og' - copy all beside the first char s2 = s[:len(s)-1] # 'Do' - copy all beside the last char s3 = s[:-1] # 'Do' - -||- s4 = s[::2] # 'Dg' - copy every second character s[1] = 'a' # error: immutable s = s[0] + 'a' + s[2] # 'Dag' t = s * 2 # 'DagDag' # Capitalization s = 'Piotr' s = s.lower() # 'piotr' flag = s.islower() # True s = s.capitalize() # 'Piotr' # Finding substrings s = 'Ala ma kota' print(s.find('a')) # 2 - index of the first match print(s.find('ko')) # 7 - index of the first match print(s.find('a', 3)) # 5 - index of the first match starting from 3 print(s.rfind('a')) # 10 - index of the last match print(s.find('q')) # -1 - no match f1 = 'la' in s # True f2 = 'abc' in s # False # Checking characters s = '1234' print(s.isalnum()) print(s.isnumeric()) print(s.isalpha()) print('abc'.isalpha()) # Multi-line strings a = 'first line\nsecond line' # escape characters # Triple quoute string b = '''first line second line''' # Splitting s = '192.168.0.0' ip = s.split('.') # create list of strings lines = a.splitlines() # -------------------------------------------------------------------- # List type # # - Mutable - you can alter elements of the container. # - Assignment operator makes an alias. # - Can store elements of any type. # - Indexing using slices: [begin:end:step]. # - 0-based, end is an element after the slice. clear_all() # Accessing elements t = [1, 3.14, True, [2, 'xyz']] # list comprehension print(t) x = t[1] # x = 3.14 t[2] = False # ok – mutable type t[3][1] = 'abc' # ok 1 in t # True 2 in t # False – it is in sublist # Aliasing p = [1, 2, 3] q = p # q points to p (aliasing) q[1] = 10 # modify p as well print(p, '-', q) # 1 10 3 - 1 10 3 r = p[:] # explicit copy r[0:2] = ['a', 'b'] print(p, '-', r) # 1 100 3 - a b 3 # Adding elements t = list() # empty list (alternative syntax) t += ['a', 'b', 'c'] # modify - extend with sublist t.extend(['e', 'f']) # modify - extend with sublist t.append('d') # modify - add an element (character) t.append(['g']) # modify - add an element (sublist) t = t + ['k', 'i'] # create new and store in t u = t * 2 # create new # Removing elements x = t.pop(1) # remove 'b' and assign result to x del t[1] # remove'c' del t[4:6] # remove 'g' i 'h' t.append('a') t.remove('a') # remove first 'a' # Sorting elements t.sort() # -------------------------------------------------------------------- # Iterators # # - objects for iteration over collections # - allow creating iterable collections I = iter([1, 2, 3]) # list iterator print(I.__next__()) # 1 print(I.__next__()) # 2 print(I.__next__()) # 3 print(I.__next__()) # exception # loop using iterator I = iter([1, 2, 3]) # list iterator for i in I: print(i) # -------------------------------------------------------------------- # Generators # # - allow generation of values, # - lazy evaluation (values generated when needed), # - are iterable objects, # define generator object that creates characters from given range def genChars(c1, c2): for c in range(ord(c1), ord(c2)+1): yield chr(c) # preserve a state gen = genChars('a','z') # in a loop for x in gen: print(x) # does nothing - generator can be iterated through only once for x in gen: print(x) # range function also creates a generator # (from Python 3, in Python 2 xrange should be used) clear_all() N = 10000000 G = range(0,N) print(sum(G)) # passing iterable object to the function # unpacking generator to list L = [*G] M = [G] # a list with generator as an element # sum of squares of even numbers from the list V = [0,12,4,6,242,7,9] s = 0 for x in V: if x % 2 == 0: s = s + x*x print(s) # list L = [x*x for x in V if x % 2 == 0] print(sum(L)) print(L[2]) # generator – w/o list gen = (x*x for x in V if x % 2 == 0) print(sum(gen)) print(gen[2]) # error - cannot use subscriptfor generators # performance comparison - list vs generator import time N = 100000000 t = time.perf_counter() L = [x/N for x in range(0,N)] print(sum(L)) print("List:", time.perf_counter() - t) t = time.perf_counter() G = (x/N for x in range(0,N)) print(sum(G)) print("Generator:", time.perf_counter() - t) # -------------------------------------------------------------------- # Tuple type # # - Similar to list, but immutable. clear_all() t1 = 1, 2, 3 # declaration t2 = ('a', 'c', 'd') # parentheses () are optional t3 = 'q', # one-element tuple t4 = t2[1:3] # ('c', 'd') t5 = t4, 'e' # (('c', 'd'), 'e') t6 = t4 + t3 # ('c', 'd', 'q') t7 = t4 + ('a',) # ('c', 'd', 'a') t7[1] = 4; # error – immutable t1,t2 = t2,t1 # value swap # iteration over collection: index + value X = ['a', 'b', 'c'] for i, x in enumerate(X): print(f'X[{i}]={x}') # iteration over several collections (adjust to the shortest) Y = [0.4, 11, -10] Z = [True, False, False, True] for x, y, z in zip(X, Y, Z): print(x, y, z) # returning multiple values from a function def getFirstLast(L): return L[0], L[-1] L = [1, 2, 3, 4, 5, 6, 7, 8] f, l = getFirstLast(L) f_l = getFirstLast(L) print(f_l) # (1,8) # function with variable number of parameters def add(*args): s = 0 for e in args: s += e return s print(add(1, 2, 3, 4, 5)) # sum the parameters t = (9, 8, 7) L = [*t] # „unpacking" a tuple to list # sorting using multiple criteria names = ['Stan', 'Peter' , 'Alice'] salaries = [3000, 2000, 2000] zipped = [*zip(salaries, names)] # zip is an iterable object - it has to be unpacked to list zipped.sort() # sort list print(zipped) # [(2000, 'Alice'), (2000, 'Peter'), (3000, 'Stan')] # # # Powerpoint time... # # # -------------------------------------------------------------------- # Set type # # - Stores keys (immutable), # - implemented as hashtable (keys are not sorted) clear_all() S = set() S.add(1) S.add('pqr') S.add([33]) # error, lists are mutable - cannot be stored in set S.add((35,)) # ok, tuples are immutable S.add(1) # already exist S.remove('pqr') # ok, exists S.remove(55) # error, doesn't exist start = 1800 end = 2200 A = {x for x in range(start,end) if x % 4 == 0} # divisible by 4 (set comprehension) B = {x for x in range(start,end) if x % 100 == 0} # divisible by 100 C = {x for x
<reponame>ace-ecosystem/ace2-core # vim: ts=4:sw=4:et:cc=120 # import asyncio import os import os.path import tempfile import shutil import ace.analysis from ace.analysis import RootAnalysis, Observable, AnalysisModuleType, Analysis from ace.logging import get_logger from ace.constants import EVENT_ANALYSIS_ROOT_COMPLETED from ace.system.distributed import app from ace.system.events import EventHandler, Event from ace.module.base import AnalysisModule, MultiProcessAnalysisModule from ace.module.manager import AnalysisModuleManager, CONCURRENCY_MODE_PROCESS, CONCURRENCY_MODE_THREADED from tests.systems import RemoteACETestSystem import pytest @pytest.mark.asyncio @pytest.mark.system async def test_basic_analysis_async(manager): # basic analysis module class TestAsyncAnalysisModule(AnalysisModule): # define the type for this analysis module type = AnalysisModuleType("test", "") # define it as an async module async def execute_analysis(self, root, observable, analysis): analysis.set_details({"test": "test"}) analysis.add_observable("test", "hello") return True # create an instance of it module = TestAsyncAnalysisModule() # register the type to the core await manager.system.register_analysis_module_type(module.type) # submit a root for analysis so we create a new job root = manager.system.new_root() observable = root.add_observable("test", "test") await root.submit() manager.add_module(module) await manager.run_once() # check the results in the core root = await manager.system.get_root_analysis(root) observable = root.get_observable(observable) analysis = observable.get_analysis(module.type) assert analysis assert await analysis.get_details() == {"test": "test"} assert analysis.observables[0] == ace.analysis.Observable("test", "hello") class TestMultiProcessAnalysisModule(AnalysisModule): __test__ = False # define the type for this analysis module type = AnalysisModuleType("test", "") # mark it as multi process is_multi_process: bool = False async def execute_analysis(self, root, observable, analysis): analysis.set_details({"test": "test"}) analysis.add_observable("test", "hello") return True @pytest.mark.asyncio @pytest.mark.system async def test_basic_analysis_sync(manager): # create an instance of it module = TestMultiProcessAnalysisModule() # register the type to the core await manager.system.register_analysis_module_type(module.type) # submit a root for analysis so we create a new job root = manager.system.new_root() observable = root.add_observable("test", "test") await root.submit() # create a new manager to run our analysis modules manager.add_module(module) await manager.run_once() # check the results in the core root = await manager.system.get_root_analysis(root) observable = root.get_observable(observable) analysis = observable.get_analysis(module.type) assert analysis assert await analysis.get_details() == {"test": "test"} assert analysis.observables[0] == ace.analysis.Observable("test", "hello") @pytest.mark.asyncio @pytest.mark.integration async def test_force_stop_stuck_async_task(manager): control = asyncio.Event() class CustomAnalysisModule(AnalysisModule): async def execute_analysis(self, root, observable, analysis): nonlocal control control.set() # get stuck import sys await asyncio.sleep(sys.maxsize) # register the type to the core amt = AnalysisModuleType("test", "") await manager.system.register_analysis_module_type(amt) module = CustomAnalysisModule(amt) manager.add_module(module) root = manager.system.new_root() observable = root.add_observable("test", "test") await root.submit() async def _cancel(): nonlocal control nonlocal manager await control.wait() manager.force_stop() cancel_task = asyncio.get_event_loop().create_task(_cancel()) await manager.run() await cancel_task class StuckAnalysisModule(MultiProcessAnalysisModule): async def execute_analysis(self, root, observable, analysis): # get stuck import time, sys time.sleep(1000) @pytest.mark.asyncio @pytest.mark.integration async def test_force_stop_stuck_sync_task(manager): # there's nothing you can do when concurrency is threaded if manager.concurrency_mode == CONCURRENCY_MODE_THREADED: pytest.skip(f"cannot test in concurrency_mode {manager.concurrency_mode}") # register the type to the core amt = AnalysisModuleType("test", "") await manager.system.register_analysis_module_type(amt) module = StuckAnalysisModule(amt) manager.add_module(module) root = manager.system.new_root() observable = root.add_observable("test", "test") await root.submit() async def _cancel(): nonlocal manager manager.force_stop() manager_task = asyncio.get_event_loop().create_task(manager.run()) await asyncio.wait([manager_task], timeout=0.01) cancel_task = asyncio.get_event_loop().create_task(_cancel()) await manager_task await cancel_task @pytest.mark.asyncio @pytest.mark.integration async def test_raised_exception_during_async_analysis(manager): class CustomAnalysisModule(AnalysisModule): async def execute_analysis(self, root, observable, analysis): raise RuntimeError("failure") amt = AnalysisModuleType("test", "") await manager.system.register_analysis_module_type(amt) module = CustomAnalysisModule(amt) manager.add_module(module) root = manager.system.new_root() observable = root.add_observable("test", "test") await root.submit() await manager.run_once() root = await manager.system.get_root_analysis(root) observable = root.get_observable(observable) analysis = observable.get_analysis(amt) assert analysis.error_message == "testv1.0.0 failed analyzing type test value test: failure" assert analysis.stack_trace class FailingAnalysisModule(MultiProcessAnalysisModule): async def execute_analysis(self, root, observable, analysis): raise RuntimeError("failure") @pytest.mark.asyncio @pytest.mark.integration async def test_raised_exception_during_sync_analysis(manager): amt = AnalysisModuleType("test", "") await manager.system.register_analysis_module_type(amt) module = FailingAnalysisModule(amt) manager.add_module(module) root = manager.system.new_root() observable = root.add_observable("test", "test") await root.submit() await manager.run_once() root = await manager.system.get_root_analysis(root) observable = root.get_observable(observable) analysis = observable.get_analysis(amt) assert analysis.error_message == "testv1.0.0 failed analyzing type test value test: failure" assert analysis.stack_trace class CrashingAnalysisModule(MultiProcessAnalysisModule): async def execute_analysis(self, root, observable, analysis): import os, signal if observable.value == "crash": os.kill(os.getpid(), signal.SIGKILL) else: analysis.set_details({"test": "test"}) class SimpleSyncAnalysisModule(MultiProcessAnalysisModule): async def execute_analysis(self, root, observable, analysis): analysis.set_details({"test": "test"}) @pytest.mark.asyncio @pytest.mark.integration async def test_crashing_sync_analysis_module(manager): if manager.concurrency_mode == CONCURRENCY_MODE_THREADED: pytest.skip(f"cannot test in concurrency_mode {manager.concurrency_mode}") sync = asyncio.Event() class CustomEventHandler(EventHandler): async def handle_event(self, event: Event): sync.set() async def handle_exception(self, event: str, exception: Exception): pass # TODO when events are distributed modify this to use that await app.state.system.register_event_handler(EVENT_ANALYSIS_ROOT_COMPLETED, CustomEventHandler()) amt_crashing = AnalysisModuleType("crash_test", "") amt_ok = AnalysisModuleType("ok", "") await manager.system.register_analysis_module_type(amt_crashing) await manager.system.register_analysis_module_type(amt_ok) # this is only supported in CONCURRENCY_MODE_PROCESS crashing_module = CrashingAnalysisModule(amt_crashing) ok_module = SimpleSyncAnalysisModule(amt_ok) manager.add_module(crashing_module) manager.add_module(ok_module) root = manager.system.new_root() observable = root.add_observable("test", "crash") await root.submit() await manager.run_once() # wait for analysis to complete assert await sync.wait() root = await manager.system.get_root_analysis(root) observable = root.get_observable(observable) analysis = observable.get_analysis(amt_crashing) assert analysis.error_message == "crash_testv1.0.0 process crashed when analyzing type test value crash" assert analysis.stack_trace observable = root.get_observable(observable) analysis = observable.get_analysis(amt_ok) # # the behavior of what happens to the other analysis modules that happen to # be running in the same manager seems to be undefined, so there's really # no way to test for that # # assert ( # analysis.error_message == "okv1.0.0 process crashed when analyzing type test value crash" # and analysis.stack_trace # ) or await analysis.get_details() == {"test": "test"} @pytest.mark.asyncio @pytest.mark.integration async def test_upgraded_version_analysis_module(manager): # cannot test this in process concurrency mode because it requires shared events if manager.concurrency_mode == CONCURRENCY_MODE_PROCESS: pytest.skip(f"cannot test in concurrency_mode {manager.concurrency_mode}") # NOTE for this one we don't need to test both sync and async because # this check comes before analysis module execution (same for both) step_1 = asyncio.Event() class CustomAnalysisModule(MultiProcessAnalysisModule): async def execute_analysis(self, root, observable, analysis): nonlocal step_1 analysis.set_details({"version": self.type.version}) if not step_1.is_set(): step_1.set() return amt = AnalysisModuleType("test", "", version="1.0.0") await manager.system.register_analysis_module_type(amt) module = CustomAnalysisModule(type=amt) manager.add_module(module) root = manager.system.new_root() observable = root.add_observable("test", "test") await root.submit() root_2 = manager.system.new_root() observable_2 = root_2.add_observable("test", "test") async def _upgrade(): nonlocal step_1 nonlocal root_2 await step_1.wait() updated_amt = AnalysisModuleType("test", "", version="1.0.1") await manager.system.register_analysis_module_type(updated_amt) await root_2.submit() upgrade_task = asyncio.create_task(_upgrade()) await manager.run() await upgrade_task # in this case the version mismatch just causes the manger to exit root = await manager.system.get_root_analysis(root_2) observable = root.get_observable(observable) # so no analysis should be seen assert observable.get_analysis(amt) is None @pytest.mark.asyncio @pytest.mark.integration async def test_upgraded_extended_version_async_analysis_module(manager): """Tests the ability of an analysis module to update extended version data.""" # # in this case the first call to get_next_analysis_request fails # but the module.upgrade() is called # since the work task is not acquired it stays in the queue # until the event_loop comes back around with the correct extended version data # step_1 = asyncio.Event() step_2 = asyncio.Event() class CustomAnalysisModule(AnalysisModule): async def execute_analysis(self, root, observable, analysis): nonlocal step_1 analysis.set_details({"extended_version": self.type.extended_version}) if not step_1.is_set(): step_1.set() return step_2.set() async def upgrade(self): self.type.extended_version = {"intel": "v2"} amt = AnalysisModuleType("test", "", extended_version={"intel": "v1"}) await manager.system.register_analysis_module_type(amt) module = CustomAnalysisModule(type=amt) manager.add_module(module) root = manager.system.new_root() observable = root.add_observable("test", "test") await root.submit() root_2 = manager.system.new_root() observable_2 = root_2.add_observable("test", "test") async def _update_intel(): nonlocal step_1 nonlocal root_2 await step_1.wait() # update the extended version data for this module type updated_amt = AnalysisModuleType("test", "", extended_version={"intel": "v2"}) await manager.system.register_analysis_module_type(updated_amt) await root_2.submit() async def _shutdown(): nonlocal step_2 nonlocal manager await step_2.wait() manager.stop() upgrade_task = asyncio.create_task(_update_intel()) shutdown_task = asyncio.create_task(_shutdown()) await manager.run() await upgrade_task await shutdown_task root = await manager.system.get_root_analysis(root_2) observable = root.get_observable(observable) assert (await observable.get_analysis(amt).get_details())["extended_version"] == {"intel": "v2"} class UpgradableAnalysisModule(MultiProcessAnalysisModule): async def execute_analysis(self, root, observable, analysis): analysis.set_details({"extended_version": self.type.extended_version}) async def upgrade(self): self.type.extended_version = {"intel": "v2"} @pytest.mark.parametrize("concurrency_mode", [CONCURRENCY_MODE_THREADED, CONCURRENCY_MODE_PROCESS]) @pytest.mark.asyncio @pytest.mark.integration async def test_upgraded_extended_version_sync_analysis_module(concurrency_mode, redis_url, manager): """Tests the ability of a sync analysis module to update extended version data.""" # we want to bail after the first execution of the module class CustomAnalysisModuleManager(AnalysisModuleManager): async def execute_module(self, *args, **kwargs): try: result = await AnalysisModuleManager.execute_module(self, *args, **kwargs) finally: self.shutdown = True return result custom_manager = CustomAnalysisModuleManager( manager.system, RemoteACETestSystem, (manager.system.api.api_key,), concurrency_mode=concurrency_mode ) root_analysis_completed = asyncio.Event() class CustomEventHandler(EventHandler): async def handle_event(self, event: Event): root_analysis_completed.set() async def handle_exception(self, event: str, exception: Exception): pass # TODO when events are distributed modify this to use that await app.state.system.register_event_handler(EVENT_ANALYSIS_ROOT_COMPLETED, CustomEventHandler()) amt = AnalysisModuleType("test", "", extended_version={"intel": "v1"}) await custom_manager.system.register_analysis_module_type(amt) module = UpgradableAnalysisModule(type=amt) custom_manager.add_module(module) root = custom_manager.system.new_root() observable = root.add_observable("test", "test") async def _update_intel(): nonlocal custom_manager # wait for the event loop to start await custom_manager.event_loop_starting_event.wait() # update the extended version data for this module type updated_amt = AnalysisModuleType("test", "", extended_version={"intel": "v2"}) await custom_manager.system.register_analysis_module_type(updated_amt) # and then submit for analysis await root.submit() upgrade_task = asyncio.create_task(_update_intel()) await custom_manager.run() await upgrade_task await root_analysis_completed.wait() root = await custom_manager.system.get_root_analysis(root) observable = root.get_observable(observable) assert (await observable.get_analysis(amt).get_details())["extended_version"] == {"intel": "v2"} @pytest.mark.asyncio @pytest.mark.integration async def test_upgrade_analysis_module_failure(manager): amt = AnalysisModuleType("test", "", extended_version={"intel": "v1"}) await manager.system.register_analysis_module_type(amt) class CustomAnalysisModule(MultiProcessAnalysisModule): async
<reponame>Nicholas-7/cuml # # Copyright (c) 2020-2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import gc import pytest import cupy as cp import cudf import numpy as np import operator from copy import deepcopy from numba import cuda from cudf.core.buffer import Buffer from cuml.common.array import CumlArray from cuml.common.memory_utils import _get_size_from_shape from cuml.common.memory_utils import _strides_to_order from rmm import DeviceBuffer if sys.version_info < (3, 8): try: import pickle5 as pickle except ImportError: import pickle else: import pickle test_input_types = [ 'numpy', 'numba', 'cupy', 'series', None ] test_output_types = { 'numpy': np.ndarray, 'cupy': cp.ndarray, 'numba': None, 'series': cudf.Series, 'dataframe': cudf.DataFrame, 'cudf': None } test_dtypes_all = [ np.float16, np.float32, np.float64, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64 ] test_dtypes_output = [ np.float16, np.float32, np.float64, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64 ] test_shapes = [10, (10,), (10, 1), (10, 5), (1, 10)] test_slices = [0, 5, 'left', 'right', 'both', 'bool_op'] unsupported_cudf_dtypes = [np.uint8, np.uint16, np.uint32, np.uint64, np.float16] @pytest.mark.parametrize('input_type', test_input_types) @pytest.mark.parametrize('dtype', test_dtypes_all) @pytest.mark.parametrize('shape', test_shapes) @pytest.mark.parametrize('order', ['F', 'C']) def test_array_init(input_type, dtype, shape, order): if input_type == 'series': if dtype in unsupported_cudf_dtypes or \ shape in [(10, 5), (1, 10)]: pytest.skip("Unsupported cuDF Series parameter") inp, ary, ptr = create_ary_init_tests(input_type, dtype, shape, order) if shape == (10, 5): assert ary.order == order if shape == 10: assert ary.shape == (10,) assert len(ary) == 10 elif input_type == 'series': # cudf Series make their shape (10,) from (10, 1) if shape == (10, 1): assert ary.shape == (10,) else: assert ary.shape == shape assert ary.dtype == np.dtype(dtype) if (input_type == "numpy"): assert isinstance(ary._owner, cp.ndarray) truth = cp.asnumpy(inp) del inp assert ary.ptr == ptr data = ary.to_output('numpy') assert np.array_equal(truth, data) else: helper_test_ownership(ary, inp, False) @pytest.mark.parametrize('input_type', test_input_types) def test_ownership_with_gc(input_type): # garbage collection slows down the test suite significantly, we only # need to test for each input type, not for shapes/dtypes/etc. if input_type == 'numpy': pytest.skip("test not valid for numpy input") inp, ary, ptr = create_ary_init_tests(input_type, np.float32, (10, 10), 'F') helper_test_ownership(ary, inp, True) def create_ary_init_tests(ary_type, dtype, shape, order): if ary_type is not None: inp = create_input(ary_type, dtype, shape, order) ary = CumlArray(data=inp) ptr = ary.ptr else: inp = create_input('cupy', dtype, shape, order) ptr = inp.__cuda_array_interface__['data'][0] ary = CumlArray(data=ptr, owner=inp, dtype=inp.dtype, shape=inp.shape, order=order) return (inp, ary, ptr) def get_owner(curr): if (isinstance(curr, CumlArray)): return curr._owner elif (isinstance(curr, cp.ndarray)): return curr.data.mem._owner else: return None def helper_test_ownership(ary, inp, garbage_collect): found_owner = False # Make sure the input array is in the ownership chain curr_owner = ary while (curr_owner is not None): if (curr_owner is inp): found_owner = True break curr_owner = get_owner(curr_owner) assert found_owner, "GPU input arrays must be in the owner chain" inp_copy = deepcopy(cp.asarray(inp)) # testing owner reference keeps data of ary alive del inp if garbage_collect: # Force GC just in case it lingers gc.collect() assert cp.all(cp.asarray(ary._owner) == cp.asarray(inp_copy)) @pytest.mark.parametrize('data_type', [bytes, bytearray, memoryview]) @pytest.mark.parametrize('dtype', test_dtypes_all) @pytest.mark.parametrize('shape', test_shapes) @pytest.mark.parametrize('order', ['F', 'C']) def test_array_init_from_bytes(data_type, dtype, shape, order): dtype = np.dtype(dtype) bts = bytes(_get_size_from_shape(shape, dtype)[0]) if data_type != bytes: bts = data_type(bts) ary = CumlArray(bts, dtype=dtype, shape=shape, order=order) if shape == (10, 5): assert ary.order == order if shape == 10: assert ary.shape == (10,) else: assert ary.shape == shape assert ary.dtype == dtype cp_ary = cp.zeros(shape, dtype=dtype) assert cp.all(cp.asarray(cp_ary) == cp_ary) @pytest.mark.parametrize('input_type', test_input_types) @pytest.mark.parametrize('dtype', test_dtypes_all) @pytest.mark.parametrize('shape', test_shapes) @pytest.mark.parametrize('order', ['F', 'C']) def test_array_init_bad(input_type, dtype, shape, order): """ This test ensures that we assert on incorrect combinations of arguments when creating CumlArray """ if input_type == 'series': if dtype == np.float16: pytest.skip("Skipping due to cuDF issue #9065") inp = create_input(input_type, dtype, shape, 'C') else: inp = create_input(input_type, dtype, shape, order) # Ensure the array is creatable cuml_ary = CumlArray(inp) with pytest.raises(AssertionError): CumlArray(inp, dtype=cuml_ary.dtype) with pytest.raises(AssertionError): CumlArray(inp, shape=cuml_ary.shape) with pytest.raises(AssertionError): CumlArray(inp, order=_strides_to_order(cuml_ary.strides, cuml_ary.dtype)) assert cp.all(cp.asarray(inp) == cp.asarray(cuml_ary)) @pytest.mark.parametrize('slice', test_slices) @pytest.mark.parametrize('order', ['C', 'F']) def test_get_set_item(slice, order): if order == 'F' and slice != 'both': pytest.skip("See issue https://github.com/rapidsai/cuml/issues/2412") inp = create_input('numpy', 'float32', (10, 10), order) ary = CumlArray(data=inp) if isinstance(slice, int): assert np.array_equal(inp[slice], ary[slice].to_output('numpy')) inp[slice] = 1.0 ary[slice] = 1.0 elif slice == 'left': assert np.array_equal(inp[5:], ary[5:].to_output('numpy')) inp[5:] = 1.0 ary[5:] = 1.0 elif slice == 'right': assert np.array_equal(inp[:5], ary[:5].to_output('numpy')) inp[:5] = 1.0 ary[:5] = 1.0 elif slice == 'both': assert np.array_equal(inp[:], ary[:].to_output('numpy')) inp[:] = 1.0 ary[:] = 1.0 else: pytest.skip("not implemented logical indexing, unless we need it") assert np.array_equal(inp, ary.to_output('numpy')) @pytest.mark.parametrize('shape', test_shapes) @pytest.mark.parametrize('dtype', test_dtypes_all) @pytest.mark.parametrize('order', ['C', 'F']) def test_create_empty(shape, dtype, order): ary = CumlArray.empty(shape=shape, dtype=dtype, order=order) assert isinstance(ary.ptr, int) if shape == 10: assert ary.shape == (shape,) else: assert ary.shape == shape assert ary.dtype == np.dtype(dtype) assert isinstance(ary._owner.data.mem._owner, DeviceBuffer) @pytest.mark.parametrize('shape', test_shapes) @pytest.mark.parametrize('dtype', test_dtypes_all) @pytest.mark.parametrize('order', ['F', 'C']) def test_create_zeros(shape, dtype, order): ary = CumlArray.zeros(shape=shape, dtype=dtype, order=order) test = cp.zeros(shape).astype(dtype) assert cp.all(test == cp.asarray(ary)) @pytest.mark.parametrize('shape', test_shapes) @pytest.mark.parametrize('dtype', test_dtypes_all) @pytest.mark.parametrize('order', ['F', 'C']) def test_create_ones(shape, dtype, order): ary = CumlArray.ones(shape=shape, dtype=dtype, order=order) test = cp.ones(shape).astype(dtype) assert cp.all(test == cp.asarray(ary)) @pytest.mark.parametrize('shape', test_shapes) @pytest.mark.parametrize('dtype', test_dtypes_all) @pytest.mark.parametrize('order', ['F', 'C']) def test_create_full(shape, dtype, order): value = cp.array([cp.random.randint(100)]).astype(dtype) ary = CumlArray.full(value=value[0], shape=shape, dtype=dtype, order=order) test = cp.zeros(shape).astype(dtype) + value[0] assert cp.all(test == cp.asarray(ary)) @pytest.mark.parametrize('output_type', test_output_types) @pytest.mark.parametrize('dtype', test_dtypes_output) @pytest.mark.parametrize('out_dtype', test_dtypes_output) @pytest.mark.parametrize('order', ['F', 'C']) @pytest.mark.parametrize('shape', test_shapes) def test_output(output_type, dtype, out_dtype, order, shape): inp = create_input('numpy', dtype, shape, order) ary = CumlArray(inp) if dtype in unsupported_cudf_dtypes and \ output_type in ['series', 'dataframe', 'cudf']: with pytest.raises(ValueError): res = ary.to_output(output_type) elif shape in [(10, 5), (1, 10)] and output_type == 'series': with pytest.raises(ValueError): res = ary.to_output(output_type) else: res = ary.to_output(output_type) # using correct numba ndarray check if output_type == 'numba': assert cuda.devicearray.is_cuda_ndarray(res) elif output_type == 'cudf': if shape in [(10, 5), (1, 10)]: assert isinstance(res, cudf.DataFrame) else: assert isinstance(res, cudf.Series) else: assert isinstance(res, test_output_types[output_type]) if output_type == 'numpy': assert np.all(inp == ary.to_output('numpy')) elif output_type == 'cupy': assert cp.all(cp.asarray(inp) == ary.to_output('cupy')) elif output_type == 'numba': assert cp.all(cp.asarray(cuda.to_device(inp)) == cp.asarray(res)) elif output_type == 'series': comp = cudf.Series(np.ravel(inp)) == res assert np.all(comp.to_array()) elif output_type == 'dataframe': if len(inp.shape) == 1: inp = inp.reshape(inp.shape[0], 1) comp = cudf.DataFrame(inp) comp = comp == res assert np.all(comp.as_gpu_matrix().copy_to_host()) # check for e2e cartesian product: if output_type not in ['dataframe', 'cudf']: res2 = CumlArray(res) res2 = res2.to_output('numpy') if output_type == 'series' and shape == (10, 1): assert np.all(inp.reshape((1, 10)) == res2) else: assert np.all(inp == res2) @pytest.mark.parametrize('output_type', test_output_types) @pytest.mark.parametrize('dtype', [ np.float32, np.float64, np.int8, np.int16, np.int32, np.int64, ]) @pytest.mark.parametrize('out_dtype', [ np.float32, np.float64, np.int8, np.int16, np.int32, np.int64, ]) @pytest.mark.parametrize('shape', test_shapes) def test_output_dtype(output_type, dtype, out_dtype, shape): inp = create_input('numpy', dtype, shape, order="F") ary = CumlArray(inp) if dtype in unsupported_cudf_dtypes and \ output_type in ['series', 'dataframe', 'cudf']: with pytest.raises(ValueError): res = ary.to_output( output_type=output_type, output_dtype=out_dtype ) elif shape in [(10, 5), (1, 10)] and output_type == 'series': with pytest.raises(ValueError): res = ary.to_output( output_type=output_type, output_dtype=out_dtype ) else: res = ary.to_output(output_type=output_type, output_dtype=out_dtype) if isinstance(res, cudf.DataFrame): res.values.dtype == out_dtype else: res.dtype == out_dtype @pytest.mark.parametrize('dtype', test_dtypes_all) @pytest.mark.parametrize('shape', test_shapes) @pytest.mark.parametrize('order', ['F', 'C']) def test_cuda_array_interface(dtype, shape, order): inp = create_input('numba', dtype, shape, 'F') ary = CumlArray(inp) if isinstance(shape, tuple): assert ary.__cuda_array_interface__['shape'] == shape else: assert ary.__cuda_array_interface__['shape'] == (shape,) assert ary.__cuda_array_interface__['strides'] == inp.strides assert ary.__cuda_array_interface__['typestr'] == inp.dtype.str assert ary.__cuda_array_interface__['data'] == \ (inp.device_ctypes_pointer.value, False) assert ary.__cuda_array_interface__['version'] == 2 # since our test array is small, its faster to transfer it to numpy to # square rather than a numba cuda kernel truth = np.sqrt(inp.copy_to_host()) result = cp.sqrt(ary) assert np.all(truth == cp.asnumpy(result)) return True @pytest.mark.parametrize('input_type', test_input_types) def test_serialize(input_type): if input_type == 'series': inp = create_input(input_type, np.float32, (10, 1), 'C') else: inp = create_input(input_type, np.float32, (10, 5), 'F') ary = CumlArray(data=inp) header, frames = ary.serialize() ary2 = CumlArray.deserialize(header, frames) assert pickle.loads(header['type-serialized']) is CumlArray assert all(isinstance(f, Buffer) for f in frames) if input_type == 'numpy': assert np.all(inp == ary2.to_output('numpy')) elif input_type == 'series': assert np.all(inp == ary2.to_output('series')) else: assert cp.all(inp == cp.asarray(ary2)) assert ary.__cuda_array_interface__['shape'] == \ ary2.__cuda_array_interface__['shape'] assert ary.__cuda_array_interface__['strides'] == \ ary2.__cuda_array_interface__['strides'] assert ary.__cuda_array_interface__['typestr'] == \ ary2.__cuda_array_interface__['typestr'] if input_type != 'series': # skipping one dimensional ary order test assert ary.order == ary2.order @pytest.mark.parametrize('input_type', test_input_types) @pytest.mark.parametrize('protocol', [4, 5]) def test_pickle(input_type, protocol): if protocol > pickle.HIGHEST_PROTOCOL: pytest.skip( f"Trying to test with pickle
<filename>test/test_scrambling.py # # SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # try: import sionna except ImportError as e: import sys sys.path.append("../") import unittest import numpy as np import tensorflow as tf gpus = tf.config.list_physical_devices('GPU') print('Number of GPUs available :', len(gpus)) if gpus: gpu_num = 0 # Number of the GPU to be used try: tf.config.set_visible_devices(gpus[gpu_num], 'GPU') print('Only GPU number', gpu_num, 'used.') tf.config.experimental.set_memory_growth(gpus[gpu_num], True) except Runtime as e: print(e) from sionna.fec.scrambling import Descrambler, Scrambler from sionna.utils import BinarySource class TestScrambler(unittest.TestCase): def test_sequence_dimension(self): """Test against correct dimensions of the sequence""" seq_lengths = [1, 100, 256, 1000, 1e4] batch_sizes = [1, 100, 256, 1000, 1e4] # keep_State=True for seq_length in seq_lengths: # init new scrambler for new sequence size; # only different batch_sizes are allowed in this mode s = Scrambler(binary=False) for batch_size in batch_sizes: llr = tf.random.uniform([tf.cast(batch_size, dtype=tf.int32), tf.cast(seq_length, dtype=tf.int32)]) # build scrambler x = s(llr).numpy() self.assertTrue(np.array_equal(np.array(x.shape), [int(batch_size), int(seq_length)])) # keep_State=False s = Scrambler(binary=False, keep_state=False) for seq_length in seq_lengths: for batch_size in batch_sizes: llr = tf.random.uniform([tf.cast(batch_size, dtype=tf.int32), tf.cast(seq_length, dtype=tf.int32)]) # build scrambler x = s(llr).numpy() self.assertTrue(np.array_equal(np.array(x.shape), [int(batch_size), int(seq_length)])) def test_sequence_offset(self): """Test that scrambling sequence has no offset, i.e., equal likely 0s and 1s""" seq_length = int(1e4) batch_size = int(1e2) for seed in (None, 1337, 1234, 1003): # test some initial seeds for keep_state in (False, True): s = Scrambler(seed=seed, keep_state=keep_state, binary=True) llr = tf.random.uniform([tf.cast(batch_size, dtype=tf.int32), tf.cast(seq_length, dtype=tf.int32)]) # build scrambler s(llr) # generate a random sequence x = s(tf.zeros_like(llr)) self.assertAlmostEqual(np.mean(x), 0.5, places=2) def test_sequence_batch(self): """Test that scrambling sequence is random per batch sample iff keep_batch_dims=True.""" seq_length = int(1e6) batch_size = int(1e1) llr = tf.random.uniform([tf.cast(batch_size, dtype=tf.int32), tf.cast(seq_length, dtype=tf.int32)]) for keep_state in (False, True): s = Scrambler(keep_batch_constant=False, keep_state=keep_state, binary=True) # generate a random sequence x = s(tf.zeros_like(llr)) for i in range(batch_size-1): for j in range(i+1,batch_size): # each batch sample must be different self.assertAlmostEqual(np.mean(np.abs(x[i,:]-x[j,:])), 0.5, places=2) # test that the pattern is the same of option keep_batch_constant==True for keep_state in (False, True): s = Scrambler(keep_batch_constant=True, keep_state=keep_state, binary=True) # generate a random sequence x = s(tf.zeros_like(llr)) for i in range(batch_size-1): for j in range(i+1,batch_size): # each batch sample is the same self.assertTrue(np.sum(np.abs(x[i,:]-x[j,:]))==0) def test_sequence_realization(self): """Test that scrambling sequences are random for each new realization. """ seq_length = int(1e5) batch_size = int(1e2) s = Scrambler(keep_state=False, binary=True) llr = tf.random.uniform([tf.cast(batch_size, dtype=tf.int32), tf.cast(seq_length, dtype=tf.int32)]) # generate a random sequence x1 = s(tf.zeros_like(llr)) x2 = s(tf.zeros_like(llr)) self.assertAlmostEqual(np.mean(np.abs(x1-x2)), 0.5, places=3) def test_inverse(self): """Test that scrambling can be inverted/removed. 2x scrambling must result in the original sequence (for binary and LLRs). """ seq_length = int(1e5) batch_size = int(1e2) #check binary scrambling b = tf.random.uniform([tf.cast(batch_size, dtype=tf.int32), tf.cast(seq_length, dtype=tf.int32)], minval=0, maxval=1) for keep_batch in (False, True): s = Scrambler(binary=True, keep_batch_constant=keep_batch, keep_state=True) # only works if keep_state=True b = tf.cast(tf.greater(0.5, b), dtype=tf.float32) x = s(b) x = s(x) self.assertIsNone(np.testing.assert_array_equal(x.numpy(), b.numpy())) #check soft-value scrambling (flip sign) s = Scrambler(binary=False, keep_batch_constant=keep_batch, keep_state=True) llr = tf.random.uniform([tf.cast(batch_size, dtype=tf.int32), tf.cast(seq_length, dtype=tf.int32)]) x = s(llr) x = s(x) self.assertIsNone(np.testing.assert_array_equal(x.numpy(), llr.numpy())) def test_llr(self): """Test that scrambling works for soft-values (sign flip).""" s = Scrambler(binary=False, seed=12345) b = tf.ones([100,200]) x = s(b) s2 = Scrambler(binary=True, seed=12345) res = -2. * s2(tf.zeros_like(x)) + 1 self.assertIsNone(np.testing.assert_array_equal(x.numpy(), res.numpy())) def test_keep_state(self): """Test that keep_state works as expected. Iff keep_state==True, the scrambled sequences must be constant.""" seq_length = int(1e5) batch_size = int(1e2) llr = tf.random.uniform([tf.cast(batch_size, dtype=tf.int32), tf.cast(seq_length, dtype=tf.int32)], minval=-100, maxval=100) S = Scrambler(binary=True, keep_state=True) res1 = S(tf.zeros_like(llr)) res2 = S(tf.zeros_like(llr)) self.assertTrue(np.array_equal(res1.numpy(), res2.numpy())) # also check that the sequence is unique with keep_state=False S = Scrambler(binary=True, keep_state=False) _ = S(llr) res1 = S(tf.zeros_like(llr)) _ = S(llr) res2 = S(tf.zeros_like(llr)) self.assertFalse(np.array_equal(res1.numpy(), res2.numpy())) def test_keras(self): """Test that Keras model can be compiled (supports dynamic shapes).""" bs = 10 k = 100 source = BinarySource() inputs = tf.keras.Input(shape=(k), dtype=tf.float32) x = Scrambler()(inputs) model = tf.keras.Model(inputs=inputs, outputs=x) # test that output batch dim is none self.assertTrue(model.output_shape[0] is None) # test that model can be called b = source([bs,k]) model(b) # call twice to see that bs can change b2 = source([bs+1,k]) model(b2) model.summary() def test_tf_fun(self): """Test that graph mode and XLA works as expected""" @tf.function() def run_graph(llr): return s(llr) @tf.function(jit_compile=True) def run_graph_xla(llr): return s(llr) for keep_state in (False, True): s = Scrambler(keep_state=keep_state) b = tf.ones([100,200]) x1 = run_graph(b) x2 = run_graph_xla(b) # again with different batch_size b = tf.ones([101,200]) x1 = run_graph(b) x2 = run_graph_xla(b) # and different sequence length b = tf.ones([101,201]) x1 = run_graph(b) x2 = run_graph_xla(b) self.assertTrue(np.any(np.not_equal(x1.numpy(),b.numpy()))) self.assertTrue(np.any(np.not_equal(x2.numpy(),b.numpy()))) def test_seed(self): """Test that seed generates reproducible results.""" seq_length = int(1e5) batch_size = int(1e2) b = tf.zeros([batch_size, seq_length]) s1 = Scrambler(seed=1337, binary=True, keep_state=False) res_s1_1 = s1(b) res_s1_2 = s1(b) # new realization per call self.assertFalse(np.array_equal(res_s1_1.numpy(), res_s1_2.numpy())) # if keep_state=True, the same seed should lead to the same sequence s2 = Scrambler(seed=1337, binary=True, keep_state=True) res_s2_1 = s2(b) s3 = Scrambler(seed=1337) res_s3_1 = s3(b) # same seed lead to same sequence self.assertTrue(np.array_equal(res_s2_1.numpy(), res_s3_1.numpy())) # but with random seed it gives a new sequence for each init s4 = Scrambler(seed=None, binary=True, keep_state=True) res_s4_1 = s2(b) s5 = Scrambler(seed=None) res_s5_1 = s5(b) # same seed lead to same sequence self.assertFalse(np.array_equal(res_s4_1.numpy(), res_s5_1.numpy())) # for keep_State=False, even the same seed leads to new results s6 = Scrambler(seed=1337, binary=True, keep_state=False) res_s6_1 = s6(b) # different seed generates new sequence self.assertFalse(np.array_equal(res_s6_1.numpy(), res_s2_1.numpy())) # init with same seed as previous random seed s7 = Scrambler(seed=None, binary=True, keep_state=True) res_s7_1 = s7(b) s8 = Scrambler(seed=s7.seed, binary=True, keep_state=True) res_s8_1 = s8(b) # same seed lead to same sequence self.assertTrue(np.array_equal(res_s7_1.numpy(), res_s8_1.numpy())) # test that seed can be also provided to call seed = 987654 s9 = Scrambler(seed=45234, keep_state=False) s10 = Scrambler(seed=76543, keep_state=True) x1 = s9([b, seed]).numpy() x2 = s9([b, seed+1]).numpy() x3 = s9([b, seed]).numpy() x4 = s10([b, seed]).numpy() self.assertFalse(np.array_equal(x1, x2)) # different seed self.assertTrue(np.array_equal(x1, x3)) # same seed self.assertTrue(np.array_equal(x1, x4)) # same seed (keep_state=f) # test that random seed allows inverse x5 = s9([b, seed]) x6 = s9([b, seed]).numpy() # same seed self.assertTrue(np.array_equal(x5, x6)) # identity # different seed x7 = s9([b, seed+1]) self.assertFalse(np.array_equal(x5, x7)) # identity # same seed again x8 = s9([b, seed+1]) self.assertTrue(np.array_equal(x7, x8)) # identity def test_dtype(self): """Test that variable dtypes are supported.""" seq_length = int(1e1) batch_size = int(1e2) dt_supported = [tf.float16, tf.float32, tf.float64] for dt in dt_supported: for dt_in in dt_supported: for dt_out in dt_supported: b = tf.zeros([batch_size, seq_length], dtype=dt_in) s1 = Scrambler(dtype=dt) s2 = Descrambler(s1, dtype=dt_out) x = s1(b) y = s2(x) assert (x.dtype==dt) assert (y.dtype==dt_out) def test_descrambler(self): """"Test that descrambler works as expected.""" seq_length = int(1e2) batch_size = int(1e1) b = tf.zeros([batch_size, seq_length]) s1 = Scrambler() s2 = Descrambler(s1) x = s1(b) y = s2(x) assert (np.array_equal(b.numpy(), y.numpy())) x = s1([b, 1234]) y = s2(x) assert (not np.array_equal(b.numpy(), y.numpy())) # check if seed is correctly retrieved from scrambler s3 = Scrambler(seed=12345) s4 = Descrambler(s3) x = s3(b) y = s4(x) assert (np.array_equal(b.numpy(), y.numpy())) def test_descrambler_nonbin(self): """"Test that descrambler works with non-binary.""" seq_length = int(1e2) batch_size = int(1e1) b = tf.zeros([batch_size, seq_length]) # scrambler binary, but descrambler non-binary scrambler = Scrambler(seed=1235456, binary=True) descrambler = Descrambler(scrambler, binary=False) # with explicit seed s = 8764 y = scrambler([b, s]) z = descrambler([2*y-1, s]) # bspk z = 1 + z # remove bpsk assert (np.array_equal(b.numpy(), z.numpy())) #without explicit seed y = scrambler(b) z = descrambler(2*y-1) # bspk z = 1 + z # remove bpsk assert (np.array_equal(b.numpy(), z.numpy())) # scrambler non-binary, but descrambler scrambler = Scrambler(seed=1235456, binary=False) descrambler = Descrambler(scrambler, binary=True) s = 546342 y = scrambler([2*b-1, s]) # bspk y = 0.5*(1 + y) # remove bpsk z = descrambler([y, s]) assert (np.array_equal(b.numpy(), z.numpy())) #without explicit seed y = scrambler(2*b-1) # bspk y = 0.5*(1 + y) # remove bpsk z = descrambler(y) y = 1 + y # remove bpsk assert (np.array_equal(b.numpy(), z.numpy())) def test_scrambler_binary(self): """test that binary flag can be used as input""" seq_length = int(1e2) batch_size = int(1e1) b = tf.ones([batch_size, seq_length]) # scrambler binary, but descrambler non-binary scrambler = Scrambler(seed=1245, binary=True) s = 1234
__init__(self): super(Pce.TopologySummary.StatsTopologyUpdate, self).__init__() self.yang_name = "stats-topology-update" self.yang_parent_name = "topology-summary" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([]) self._leafs = OrderedDict([ ('num_nodes_added', YLeaf(YType.uint32, 'num-nodes-added')), ('num_nodes_deleted', YLeaf(YType.uint32, 'num-nodes-deleted')), ('num_links_added', YLeaf(YType.uint32, 'num-links-added')), ('num_links_deleted', YLeaf(YType.uint32, 'num-links-deleted')), ('num_prefixes_added', YLeaf(YType.uint32, 'num-prefixes-added')), ('num_prefixes_deleted', YLeaf(YType.uint32, 'num-prefixes-deleted')), ]) self.num_nodes_added = None self.num_nodes_deleted = None self.num_links_added = None self.num_links_deleted = None self.num_prefixes_added = None self.num_prefixes_deleted = None self._segment_path = lambda: "stats-topology-update" self._absolute_path = lambda: "Cisco-IOS-XR-infra-xtc-oper:pce/topology-summary/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(Pce.TopologySummary.StatsTopologyUpdate, ['num_nodes_added', 'num_nodes_deleted', 'num_links_added', 'num_links_deleted', 'num_prefixes_added', 'num_prefixes_deleted'], name, value) class TunnelInfos(Entity): """ Tunnel database in XTC .. attribute:: tunnel_info Tunnel information **type**\: list of :py:class:`TunnelInfo <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.Pce.TunnelInfos.TunnelInfo>` """ _prefix = 'infra-xtc-oper' _revision = '2017-08-24' def __init__(self): super(Pce.TunnelInfos, self).__init__() self.yang_name = "tunnel-infos" self.yang_parent_name = "pce" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([("tunnel-info", ("tunnel_info", Pce.TunnelInfos.TunnelInfo))]) self._leafs = OrderedDict() self.tunnel_info = YList(self) self._segment_path = lambda: "tunnel-infos" self._absolute_path = lambda: "Cisco-IOS-XR-infra-xtc-oper:pce/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(Pce.TunnelInfos, [], name, value) class TunnelInfo(Entity): """ Tunnel information .. attribute:: peer_address (key) Peer Address **type**\: union of the below types: **type**\: str **pattern:** (([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])\\.){3}([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])(%[\\p{N}\\p{L}]+)? **type**\: str **pattern:** ((\:\|[0\-9a\-fA\-F]{0,4})\:)([0\-9a\-fA\-F]{0,4}\:){0,5}((([0\-9a\-fA\-F]{0,4}\:)?(\:\|[0\-9a\-fA\-F]{0,4}))\|(((25[0\-5]\|2[0\-4][0\-9]\|[01]?[0\-9]?[0\-9])\\.){3}(25[0\-5]\|2[0\-4][0\-9]\|[01]?[0\-9]?[0\-9])))(%[\\p{N}\\p{L}]+)? .. attribute:: plsp_id (key) PCEP LSP ID **type**\: int **range:** \-2147483648..2147483647 .. attribute:: tunnel_name (key) Tunnel name **type**\: str **pattern:** [\\w\\\-\\.\:,\_@#%$\\+=\\\|;]+ .. attribute:: pcc_address PCC address **type**\: str **pattern:** (([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])\\.){3}([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])(%[\\p{N}\\p{L}]+)? .. attribute:: tunnel_name_xr Tunnel Name **type**\: str .. attribute:: brief_lsp_information Brief LSP information **type**\: list of :py:class:`BriefLspInformation <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.Pce.TunnelInfos.TunnelInfo.BriefLspInformation>` """ _prefix = 'infra-xtc-oper' _revision = '2017-08-24' def __init__(self): super(Pce.TunnelInfos.TunnelInfo, self).__init__() self.yang_name = "tunnel-info" self.yang_parent_name = "tunnel-infos" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['peer_address','plsp_id','tunnel_name'] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([("brief-lsp-information", ("brief_lsp_information", Pce.TunnelInfos.TunnelInfo.BriefLspInformation))]) self._leafs = OrderedDict([ ('peer_address', YLeaf(YType.str, 'peer-address')), ('plsp_id', YLeaf(YType.int32, 'plsp-id')), ('tunnel_name', YLeaf(YType.str, 'tunnel-name')), ('pcc_address', YLeaf(YType.str, 'pcc-address')), ('tunnel_name_xr', YLeaf(YType.str, 'tunnel-name-xr')), ]) self.peer_address = None self.plsp_id = None self.tunnel_name = None self.pcc_address = None self.tunnel_name_xr = None self.brief_lsp_information = YList(self) self._segment_path = lambda: "tunnel-info" + "[peer-address='" + str(self.peer_address) + "']" + "[plsp-id='" + str(self.plsp_id) + "']" + "[tunnel-name='" + str(self.tunnel_name) + "']" self._absolute_path = lambda: "Cisco-IOS-XR-infra-xtc-oper:pce/tunnel-infos/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(Pce.TunnelInfos.TunnelInfo, ['peer_address', 'plsp_id', 'tunnel_name', 'pcc_address', 'tunnel_name_xr'], name, value) class BriefLspInformation(Entity): """ Brief LSP information .. attribute:: source_address Source address **type**\: str **pattern:** (([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])\\.){3}([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])(%[\\p{N}\\p{L}]+)? .. attribute:: destination_address Destination address **type**\: str **pattern:** (([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])\\.){3}([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])(%[\\p{N}\\p{L}]+)? .. attribute:: tunnel_id Tunnel ID **type**\: int **range:** 0..4294967295 .. attribute:: lspid LSP ID **type**\: int **range:** 0..4294967295 .. attribute:: binding_sid Binding SID **type**\: int **range:** 0..4294967295 .. attribute:: lsp_setup_type LSP Setup Type **type**\: :py:class:`LspSetup <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.LspSetup>` .. attribute:: operational_state Operational state **type**\: :py:class:`PcepLspState <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.PcepLspState>` .. attribute:: administrative_state Admin state **type**\: :py:class:`LspState <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.LspState>` """ _prefix = 'infra-xtc-oper' _revision = '2017-08-24' def __init__(self): super(Pce.TunnelInfos.TunnelInfo.BriefLspInformation, self).__init__() self.yang_name = "brief-lsp-information" self.yang_parent_name = "tunnel-info" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([]) self._leafs = OrderedDict([ ('source_address', YLeaf(YType.str, 'source-address')), ('destination_address', YLeaf(YType.str, 'destination-address')), ('tunnel_id', YLeaf(YType.uint32, 'tunnel-id')), ('lspid', YLeaf(YType.uint32, 'lspid')), ('binding_sid', YLeaf(YType.uint32, 'binding-sid')), ('lsp_setup_type', YLeaf(YType.enumeration, 'lsp-setup-type')), ('operational_state', YLeaf(YType.enumeration, 'operational-state')), ('administrative_state', YLeaf(YType.enumeration, 'administrative-state')), ]) self.source_address = None self.destination_address = None self.tunnel_id = None self.lspid = None self.binding_sid = None self.lsp_setup_type = None self.operational_state = None self.administrative_state = None self._segment_path = lambda: "brief-lsp-information" def __setattr__(self, name, value): self._perform_setattr(Pce.TunnelInfos.TunnelInfo.BriefLspInformation, ['source_address', 'destination_address', 'tunnel_id', 'lspid', 'binding_sid', 'lsp_setup_type', 'operational_state', 'administrative_state'], name, value) class PeerDetailInfos(Entity): """ Detailed peers database in XTC .. attribute:: peer_detail_info Detailed PCE peer information **type**\: list of :py:class:`PeerDetailInfo <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.Pce.PeerDetailInfos.PeerDetailInfo>` """ _prefix = 'infra-xtc-oper' _revision = '2017-08-24' def __init__(self): super(Pce.PeerDetailInfos, self).__init__() self.yang_name = "peer-detail-infos" self.yang_parent_name = "pce" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([("peer-detail-info", ("peer_detail_info", Pce.PeerDetailInfos.PeerDetailInfo))]) self._leafs = OrderedDict() self.peer_detail_info = YList(self) self._segment_path = lambda: "peer-detail-infos" self._absolute_path = lambda: "Cisco-IOS-XR-infra-xtc-oper:pce/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(Pce.PeerDetailInfos, [], name, value) class PeerDetailInfo(Entity): """ Detailed PCE peer information .. attribute:: peer_address (key) Peer Address **type**\: union of the below types: **type**\: str **pattern:** (([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])\\.){3}([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])(%[\\p{N}\\p{L}]+)? **type**\: str **pattern:** ((\:\|[0\-9a\-fA\-F]{0,4})\:)([0\-9a\-fA\-F]{0,4}\:){0,5}((([0\-9a\-fA\-F]{0,4}\:)?(\:\|[0\-9a\-fA\-F]{0,4}))\|(((25[0\-5]\|2[0\-4][0\-9]\|[01]?[0\-9]?[0\-9])\\.){3}(25[0\-5]\|2[0\-4][0\-9]\|[01]?[0\-9]?[0\-9])))(%[\\p{N}\\p{L}]+)? .. attribute:: detail_pcep_information Detailed PCE protocol information **type**\: :py:class:`DetailPcepInformation <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.Pce.PeerDetailInfos.PeerDetailInfo.DetailPcepInformation>` .. attribute:: peer_address_xr Peer address **type**\: str **pattern:** (([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])\\.){3}([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])(%[\\p{N}\\p{L}]+)? .. attribute:: peer_protocol Protocol between PCE and peer **type**\: :py:class:`PceProto <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.PceProto>` """ _prefix = 'infra-xtc-oper' _revision = '2017-08-24' def __init__(self): super(Pce.PeerDetailInfos.PeerDetailInfo, self).__init__() self.yang_name = "peer-detail-info" self.yang_parent_name = "peer-detail-infos" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['peer_address'] self._child_container_classes = OrderedDict([("detail-pcep-information", ("detail_pcep_information", Pce.PeerDetailInfos.PeerDetailInfo.DetailPcepInformation))]) self._child_list_classes = OrderedDict([]) self._leafs = OrderedDict([ ('peer_address', YLeaf(YType.str, 'peer-address')), ('peer_address_xr', YLeaf(YType.str, 'peer-address-xr')), ('peer_protocol', YLeaf(YType.enumeration, 'peer-protocol')), ]) self.peer_address = None self.peer_address_xr = None self.peer_protocol = None self.detail_pcep_information = Pce.PeerDetailInfos.PeerDetailInfo.DetailPcepInformation() self.detail_pcep_information.parent = self self._children_name_map["detail_pcep_information"] = "detail-pcep-information" self._children_yang_names.add("detail-pcep-information") self._segment_path = lambda: "peer-detail-info" + "[peer-address='" + str(self.peer_address) + "']" self._absolute_path = lambda: "Cisco-IOS-XR-infra-xtc-oper:pce/peer-detail-infos/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(Pce.PeerDetailInfos.PeerDetailInfo, ['peer_address', 'peer_address_xr', 'peer_protocol'], name, value) class DetailPcepInformation(Entity): """ Detailed PCE protocol information .. attribute:: brief_pcep_information Brief PCE protocol information **type**\: :py:class:`BriefPcepInformation <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.Pce.PeerDetailInfos.PeerDetailInfo.DetailPcepInformation.BriefPcepInformation>` .. attribute:: last_error_rx Last PCError received **type**\: :py:class:`LastErrorRx <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.Pce.PeerDetailInfos.PeerDetailInfo.DetailPcepInformation.LastErrorRx>` .. attribute:: last_error_tx Last PCError sent **type**\: :py:class:`LastErrorTx <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.Pce.PeerDetailInfos.PeerDetailInfo.DetailPcepInformation.LastErrorTx>` .. attribute:: error Error (for display only) **type**\: str .. attribute:: speaker_id Speaker Entity ID **type**\: str .. attribute:: pcep_up_time PCEP Up Time **type**\: int **range:** 0..4294967295 .. attribute:: keepalives Keepalive count **type**\: int **range:** 0..4294967295 .. attribute:: md5_enabled MD5 Authentication Enabled **type**\: bool .. attribute:: keychain_enabled Keychain based Authentication Enabled **type**\: bool .. attribute:: negotiated_local_keepalive Negotiated KA **type**\: int **range:** 0..4294967295 .. attribute:: negotiated_remote_keepalive Negotiated KA **type**\: int **range:** 0..4294967295 .. attribute:: negotiated_dead_time Negotiated DT **type**\: int **range:** 0..4294967295 .. attribute:: pce_request_rx PCEReq Rx **type**\: int **range:** 0..4294967295 .. attribute:: pce_request_tx PCEReq Tx **type**\: int **range:** 0..4294967295 .. attribute:: pce_reply_rx PCERep Rx **type**\: int **range:** 0..4294967295 .. attribute:: pce_reply_tx PCERep Tx **type**\: int **range:** 0..4294967295 .. attribute:: pce_error_rx PCEErr Rx **type**\: int **range:** 0..4294967295 .. attribute:: pce_error_tx PCEErr Tx **type**\: int **range:** 0..4294967295 .. attribute:: pce_open_tx PCEOpen Tx **type**\: int **range:** 0..4294967295 .. attribute:: pce_open_rx PCEOpen Rx **type**\: int **range:** 0..4294967295 .. attribute:: pce_report_rx PCERpt Rx **type**\: int **range:** 0..4294967295 .. attribute:: pce_report_tx PCERpt Tx **type**\: int **range:** 0..4294967295 .. attribute:: pce_update_rx PCEUpd Rx **type**\: int **range:** 0..4294967295 .. attribute:: pce_update_tx PCEUpd Tx **type**\: int **range:** 0..4294967295 .. attribute:: pce_initiate_rx PCEInit Rx **type**\: int **range:** 0..4294967295 .. attribute:: pce_initiate_tx PCEInit Tx **type**\: int **range:** 0..4294967295 .. attribute:: pce_keepalive_tx PCE Keepalive Tx **type**\: int **range:** 0..18446744073709551615 .. attribute:: pce_keepalive_rx PCE Keepalive Rx **type**\: int **range:** 0..18446744073709551615 .. attribute:: local_session_id Local PCEP session ID **type**\: int **range:** 0..255 .. attribute:: remote_session_id Remote PCEP session ID **type**\: int **range:** 0..255 .. attribute:: minimum_keepalive_interval Minimum keepalive interval for the peer **type**\: int **range:** 0..255 .. attribute:: maximum_dead_interval Maximum dead interval for the peer **type**\: int **range:** 0..255 """ _prefix = 'infra-xtc-oper' _revision = '2017-08-24' def __init__(self): super(Pce.PeerDetailInfos.PeerDetailInfo.DetailPcepInformation, self).__init__() self.yang_name = "detail-pcep-information" self.yang_parent_name = "peer-detail-info" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_container_classes = OrderedDict([("brief-pcep-information", ("brief_pcep_information", Pce.PeerDetailInfos.PeerDetailInfo.DetailPcepInformation.BriefPcepInformation)), ("last-error-rx", ("last_error_rx", Pce.PeerDetailInfos.PeerDetailInfo.DetailPcepInformation.LastErrorRx)), ("last-error-tx", ("last_error_tx", Pce.PeerDetailInfos.PeerDetailInfo.DetailPcepInformation.LastErrorTx))]) self._child_list_classes = OrderedDict([]) self._leafs = OrderedDict([ ('error', YLeaf(YType.str, 'error')), ('speaker_id', YLeaf(YType.str, 'speaker-id')), ('pcep_up_time', YLeaf(YType.uint32, 'pcep-up-time')), ('keepalives', YLeaf(YType.uint32, 'keepalives')), ('md5_enabled', YLeaf(YType.boolean, 'md5-enabled')),
'1f236': {'canonical_name': 'X', 'aliases': ['u6709']}, # '1f21a': {'canonical_name': 'X', 'aliases': ['u7121']}, # '1f238': {'canonical_name': 'X', 'aliases': ['u7533']}, # '1f23a': {'canonical_name': 'X', 'aliases': ['u55b6']}, # '1f237': {'canonical_name': 'X', 'aliases': ['u6708']}, '2734': {'canonical_name': 'eight_pointed_star', 'aliases': []}, '1f19a': {'canonical_name': 'vs', 'aliases': []}, '1f4ae': {'canonical_name': 'white_flower', 'aliases': []}, # '1f250': {'canonical_name': 'X', 'aliases': ['ideograph_advantage']}, # japanese character # '3299': {'canonical_name': 'X', 'aliases': ['secret']}, # '3297': {'canonical_name': 'X', 'aliases': ['congratulations']}, # '1f234': {'canonical_name': 'X', 'aliases': ['u5408']}, # '1f235': {'canonical_name': 'X', 'aliases': ['u6e80']}, # '1f239': {'canonical_name': 'X', 'aliases': ['u5272']}, # '1f232': {'canonical_name': 'X', 'aliases': ['u7981']}, '1f170': {'canonical_name': 'a', 'aliases': []}, '1f171': {'canonical_name': 'b', 'aliases': []}, '1f18e': {'canonical_name': 'ab', 'aliases': []}, '1f191': {'canonical_name': 'cl', 'aliases': []}, '1f17e': {'canonical_name': 'o', 'aliases': []}, '1f198': {'canonical_name': 'sos', 'aliases': []}, # Symbols/105 seems like a better x, and looks more like the other letters '274c': {'canonical_name': 'cross_mark', 'aliases': ['incorrect', 'wrong']}, '2b55': {'canonical_name': 'circle', 'aliases': []}, '1f6d1': {'canonical_name': 'stop_sign', 'aliases': ['octagonal_sign']}, '26d4': {'canonical_name': 'no_entry', 'aliases': ['wrong_way']}, '1f4db': {'canonical_name': 'name_badge', 'aliases': []}, '1f6ab': {'canonical_name': 'prohibited', 'aliases': ['not_allowed']}, '1f4af': {'canonical_name': '100', 'aliases': ['hundred']}, '1f4a2': {'canonical_name': 'anger', 'aliases': ['bam', 'pow']}, '2668': {'canonical_name': 'hot_springs', 'aliases': []}, '1f6b7': {'canonical_name': 'no_pedestrians', 'aliases': []}, '1f6af': {'canonical_name': 'do_not_litter', 'aliases': []}, '1f6b3': {'canonical_name': 'no_bicycles', 'aliases': []}, '1f6b1': {'canonical_name': 'non-potable_water', 'aliases': []}, '1f51e': {'canonical_name': 'underage', 'aliases': ['nc17']}, '1f4f5': {'canonical_name': 'no_phones', 'aliases': []}, '1f6ad': {'canonical_name': 'no_smoking', 'aliases': []}, '2757': {'canonical_name': 'exclamation', 'aliases': []}, '2755': {'canonical_name': 'grey_exclamation', 'aliases': []}, '2753': {'canonical_name': 'question', 'aliases': []}, '2754': {'canonical_name': 'grey_question', 'aliases': []}, '203c': {'canonical_name': 'bangbang', 'aliases': ['double_exclamation']}, '2049': {'canonical_name': 'interrobang', 'aliases': []}, '1f505': {'canonical_name': 'low_brightness', 'aliases': ['dim']}, '1f506': {'canonical_name': 'brightness', 'aliases': ['high_brightness']}, '303d': {'canonical_name': 'part_alternation', 'aliases': []}, '26a0': {'canonical_name': 'warning', 'aliases': ['caution', 'danger']}, '1f6b8': {'canonical_name': 'children_crossing', 'aliases': ['school_crossing', 'drive_with_care']}, '1f531': {'canonical_name': 'trident', 'aliases': []}, '269c': {'canonical_name': 'fleur_de_lis', 'aliases': []}, '1f530': {'canonical_name': 'beginner', 'aliases': []}, '267b': {'canonical_name': 'recycle', 'aliases': []}, # seems like the best check '2705': {'canonical_name': 'check', 'aliases': ['all_good', 'approved']}, # '1f22f': {'canonical_name': 'X', 'aliases': ['u6307']}, # stock_market seemed more useful '1f4b9': {'canonical_name': 'stock_market', 'aliases': []}, '2747': {'canonical_name': 'sparkle', 'aliases': []}, '2733': {'canonical_name': 'eight_spoked_asterisk', 'aliases': []}, '274e': {'canonical_name': 'x', 'aliases': []}, '1f310': {'canonical_name': 'www', 'aliases': ['globe']}, '1f4a0': {'canonical_name': 'cute', 'aliases': ['kawaii', 'diamond_with_a_dot']}, '24c2': {'canonical_name': 'metro', 'aliases': ['m']}, '1f300': {'canonical_name': 'cyclone', 'aliases': ['hurricane', 'typhoon']}, '1f4a4': {'canonical_name': 'zzz', 'aliases': []}, '1f3e7': {'canonical_name': 'atm', 'aliases': []}, '1f6be': {'canonical_name': 'wc', 'aliases': ['water_closet']}, '267f': {'canonical_name': 'accessible', 'aliases': ['wheelchair', 'disabled']}, '1f17f': {'canonical_name': 'parking', 'aliases': ['p']}, # '1f233': {'canonical_name': 'X', 'aliases': ['u7a7a']}, # '1f202': {'canonical_name': 'X', 'aliases': ['sa']}, '1f6c2': {'canonical_name': 'passport_control', 'aliases': ['immigration']}, '1f6c3': {'canonical_name': 'customs', 'aliases': []}, '1f6c4': {'canonical_name': 'baggage_claim', 'aliases': []}, '1f6c5': {'canonical_name': 'locker', 'aliases': ['locked_bag']}, '1f6b9': {'canonical_name': 'mens', 'aliases': []}, '1f6ba': {'canonical_name': 'womens', 'aliases': []}, # seems more in line with the surrounding bathroom symbols '1f6bc': {'canonical_name': 'baby_change_station', 'aliases': ['nursery']}, '1f6bb': {'canonical_name': 'restroom', 'aliases': []}, '1f6ae': {'canonical_name': 'put_litter_in_its_place', 'aliases': []}, '1f3a6': {'canonical_name': 'cinema', 'aliases': ['movie_theater']}, '1f4f6': {'canonical_name': 'cell_reception', 'aliases': ['signal_strength', 'signal_bars']}, # '1f201': {'canonical_name': 'X', 'aliases': ['koko']}, '1f523': {'canonical_name': 'symbols', 'aliases': []}, '2139': {'canonical_name': 'info', 'aliases': []}, '1f524': {'canonical_name': 'abc', 'aliases': []}, '1f521': {'canonical_name': 'abcd', 'aliases': ['alphabet']}, '1f520': {'canonical_name': 'capital_abcd', 'aliases': ['capital_letters']}, '1f196': {'canonical_name': 'ng', 'aliases': []}, # from unicode/gemoji. Saving ok for People/111 '1f197': {'canonical_name': 'squared_ok', 'aliases': []}, # from unicode, and to parallel Symbols/135. Saving up for Symbols/171 '1f199': {'canonical_name': 'squared_up', 'aliases': []}, '1f192': {'canonical_name': 'cool', 'aliases': []}, '1f195': {'canonical_name': 'new', 'aliases': []}, '1f193': {'canonical_name': 'free', 'aliases': []}, '0030-20e3': {'canonical_name': 'zero', 'aliases': []}, '0031-20e3': {'canonical_name': 'one', 'aliases': []}, '0032-20e3': {'canonical_name': 'two', 'aliases': []}, '0033-20e3': {'canonical_name': 'three', 'aliases': []}, '0034-20e3': {'canonical_name': 'four', 'aliases': []}, '0035-20e3': {'canonical_name': 'five', 'aliases': []}, '0036-20e3': {'canonical_name': 'six', 'aliases': []}, '0037-20e3': {'canonical_name': 'seven', 'aliases': []}, '0038-20e3': {'canonical_name': 'eight', 'aliases': []}, '0039-20e3': {'canonical_name': 'nine', 'aliases': []}, '1f51f': {'canonical_name': 'ten', 'aliases': []}, '1f522': {'canonical_name': '1234', 'aliases': ['numbers']}, '0023-20e3': {'canonical_name': 'hash', 'aliases': []}, '002a-20e3': {'canonical_name': 'asterisk', 'aliases': []}, '25b6': {'canonical_name': 'play', 'aliases': []}, '23f8': {'canonical_name': 'pause', 'aliases': []}, '23ef': {'canonical_name': 'play_pause', 'aliases': []}, # stop taken by People/118 '23f9': {'canonical_name': 'stop_button', 'aliases': []}, '23fa': {'canonical_name': 'record', 'aliases': []}, '23ed': {'canonical_name': 'next_track', 'aliases': ['skip_forward']}, '23ee': {'canonical_name': 'previous_track', 'aliases': ['skip_back']}, '23e9': {'canonical_name': 'fast_forward', 'aliases': []}, '23ea': {'canonical_name': 'rewind', 'aliases': ['fast_reverse']}, '23eb': {'canonical_name': 'double_up', 'aliases': ['fast_up']}, '23ec': {'canonical_name': 'double_down', 'aliases': ['fast_down']}, '25c0': {'canonical_name': 'play_reverse', 'aliases': []}, '1f53c': {'canonical_name': 'upvote', 'aliases': ['up_button', 'increase']}, '1f53d': {'canonical_name': 'downvote', 'aliases': ['down_button', 'decrease']}, '27a1': {'canonical_name': 'right', 'aliases': ['east']}, '2b05': {'canonical_name': 'left', 'aliases': ['west']}, '2b06': {'canonical_name': 'up', 'aliases': ['north']}, '2b07': {'canonical_name': 'down', 'aliases': ['south']}, '2197': {'canonical_name': 'upper_right', 'aliases': ['north_east']}, '2198': {'canonical_name': 'lower_right', 'aliases': ['south_east']}, '2199': {'canonical_name': 'lower_left', 'aliases': ['south_west']}, '2196': {'canonical_name': 'upper_left', 'aliases': ['north_west']}, '2195': {'canonical_name': 'up_down', 'aliases': []}, '2194': {'canonical_name': 'left_right', 'aliases': ['swap']}, '21aa': {'canonical_name': 'forward', 'aliases': ['right_hook']}, '21a9': {'canonical_name': 'reply', 'aliases': ['left_hook']}, '2934': {'canonical_name': 'heading_up', 'aliases': []}, '2935': {'canonical_name': 'heading_down', 'aliases': []}, '1f500': {'canonical_name': 'shuffle', 'aliases': []}, '1f501': {'canonical_name': 'repeat', 'aliases': []}, '1f502': {'canonical_name': 'repeat_one', 'aliases': []}, '1f504': {'canonical_name': 'counterclockwise', 'aliases': ['return']}, '1f503': {'canonical_name': 'clockwise', 'aliases': []}, '1f3b5': {'canonical_name': 'music', 'aliases': []}, '1f3b6': {'canonical_name': 'musical_notes', 'aliases': []}, '2795': {'canonical_name': 'plus', 'aliases': ['add']}, '2796': {'canonical_name': 'minus', 'aliases': ['subtract']}, '2797': {'canonical_name': 'division', 'aliases': ['divide']}, '2716': {'canonical_name': 'multiplication', 'aliases': ['multiply']}, '1f4b2': {'canonical_name': 'dollars', 'aliases': []}, # There is no other exchange, so might as well generalize this '1f4b1': {'canonical_name': 'exchange', 'aliases': []}, '2122': {'canonical_name': 'tm', 'aliases': ['trademark']}, '3030': {'canonical_name': 'wavy_dash', 'aliases': []}, '27b0': {'canonical_name': 'loop', 'aliases': []}, # https://emojipedia.org/double-curly-loop/ '27bf': {'canonical_name': 'double_loop', 'aliases': ['voicemail']}, '1f51a': {'canonical_name': 'end', 'aliases': []}, '1f519': {'canonical_name': 'back', 'aliases': []}, '1f51b': {'canonical_name': 'on', 'aliases': []}, '1f51d': {'canonical_name': 'top', 'aliases': []}, '1f51c': {'canonical_name': 'soon', 'aliases': []}, '2714': {'canonical_name': 'check_mark', 'aliases': []}, '2611': {'canonical_name': 'checkbox', 'aliases': []}, '1f518': {'canonical_name': 'radio_button', 'aliases': []}, '26aa': {'canonical_name': 'white_circle', 'aliases': []}, '26ab': {'canonical_name': 'black_circle', 'aliases': []}, '1f534': {'canonical_name': 'red_circle', 'aliases': []}, '1f535': {'canonical_name': 'blue_circle', 'aliases': []}, '1f53a': {'canonical_name': 'red_triangle_up', 'aliases': []}, '1f53b': {'canonical_name': 'red_triangle_down', 'aliases': []}, '1f538': {'canonical_name': 'small_orange_diamond', 'aliases': []}, '1f539': {'canonical_name': 'small_blue_diamond', 'aliases': []}, '1f536': {'canonical_name': 'large_orange_diamond', 'aliases': []}, '1f537': {'canonical_name': 'large_blue_diamond', 'aliases': []}, '1f533': {'canonical_name': 'black_and_white_square', 'aliases': []}, '1f532': {'canonical_name': 'white_and_black_square', 'aliases': []}, '25aa': {'canonical_name': 'black_small_square', 'aliases': []}, '25ab': {'canonical_name': 'white_small_square', 'aliases': []}, '25fe': {'canonical_name': 'black_medium_small_square', 'aliases': []}, '25fd': {'canonical_name': 'white_medium_small_square', 'aliases': []}, '25fc': {'canonical_name': 'black_medium_square', 'aliases': []}, '25fb': {'canonical_name': 'white_medium_square', 'aliases': []}, '2b1b': {'canonical_name': 'black_large_square', 'aliases': []}, '2b1c': {'canonical_name': 'white_large_square', 'aliases': []}, '1f508': {'canonical_name': 'speaker', 'aliases': []}, '1f507': {'canonical_name': 'mute', 'aliases': ['no_sound']}, '1f509': {'canonical_name': 'softer', 'aliases': []}, '1f50a': {'canonical_name': 'louder', 'aliases': ['sound']}, '1f514': {'canonical_name': 'notifications', 'aliases': ['bell']}, '1f515': {'canonical_name': 'mute_notifications', 'aliases': []}, '1f4e3': {'canonical_name': 'megaphone', 'aliases': ['shout']}, '1f4e2': {'canonical_name': 'loudspeaker', 'aliases': ['bullhorn']}, '1f4ac': {'canonical_name': 'umm', 'aliases': ['speech_balloon']}, '1f5e8': {'canonical_name': 'speech_bubble', 'aliases': []}, '1f4ad': {'canonical_name': 'thought', 'aliases': ['dream']}, '1f5ef': {'canonical_name': 'anger_bubble', 'aliases': []}, '2660': {'canonical_name': 'spades', 'aliases': []}, '2663': {'canonical_name': 'clubs', 'aliases': []}, '2665': {'canonical_name': 'hearts', 'aliases': []}, '2666': {'canonical_name': 'diamonds', 'aliases': []}, '1f0cf': {'canonical_name': 'joker', 'aliases': []}, '1f3b4': {'canonical_name': 'playing_cards', 'aliases': []}, '1f004': {'canonical_name': 'mahjong', 'aliases': []}, # The only use I can think of for so many clocks is to be able to use them # to vote on times and such in emoji reactions. But a) the experience is # not that great (the images are too small), b) there are issues with # 24-hour time (used in many countries), like what is 00:30 or 01:00 # called, c) it's hard to make the compose typeahead experience great, and # d) we should have a dedicated time voting widget that takes care of # timezone and locale issues, and uses a digital representation. # '1f550': {'canonical_name': 'X', 'aliases': ['clock1']}, # '1f551': {'canonical_name': 'X', 'aliases': ['clock2']}, # '1f552': {'canonical_name': 'X', 'aliases': ['clock3']}, # '1f553': {'canonical_name': 'X', 'aliases': ['clock4']}, # '1f554': {'canonical_name': 'X', 'aliases': ['clock5']}, # '1f555': {'canonical_name': 'X', 'aliases': ['clock6']}, # '1f556': {'canonical_name': 'X', 'aliases': ['clock7']}, # seems like the best choice for time '1f557': {'canonical_name': 'time', 'aliases': ['clock']}, # '1f558': {'canonical_name': 'X', 'aliases': ['clock9']}, # '1f559': {'canonical_name': 'X', 'aliases': ['clock10']}, # '1f55a': {'canonical_name': 'X', 'aliases': ['clock11']}, # '1f55b': {'canonical_name': 'X', 'aliases': ['clock12']}, # '1f55c': {'canonical_name': 'X', 'aliases': ['clock130']}, # '1f55d': {'canonical_name': 'X', 'aliases': ['clock230']},
<gh_stars>0 import json import numpy as np from PIL import Image from django.http import JsonResponse from apps.face_element_swapping import get_faces_landmarks from apps.face_element_swapping.change_faces import ChangeFaceElement from ..db_func import DBFunc from ..helpers import convert_img_to_base64, \ convert_base64_to_pil, \ convert_rgb_array_to_text, \ convert_text_to_rgb_array, \ remove_prefix_from_base64, \ set_mode_of_pil, \ correct_size, resize_img from ..settings import MESSAGES_REGARDING_MORE_OR_LESS_THAN_ONE_FACE, \ MESSAGES_REGARDING_EXACTLY_ONE_FACE, LANDMARKS_FUNCTIONS, MINIMUM_VALUE_OF_THE_ALPHA_CHANNEL, \ DEFAULT_PIL_MODE, PIL_MODE_OF_TRANSPARENT_PHOTOS, CORRECT_NUMBER_OF_CHANNELS_PER_PIXEL, \ INDEX_OF_THE_NUMBER_OF_CHANNELS_PER_PIXEL, INDEX_OF_THE_VALUE_OF_ALPHA_CHANNEL, PARTS_OF_THE_FACE_WITH_THE_CUT_FIELD class ProcessUserPhoto: def __init__(self, input_photo, part_of_face, face_id): self._input_photo = input_photo self._part_of_face = part_of_face self._face_id = face_id self._photo_in_base64 = None self._src_rgb_array = None self._dst_rgb_array = None self._src_endpoints = None self._dst_endpoints = None self._transparent_pixels = [] self._number_of_detected_faces = None self._more_or_less_than_one_photo = None @staticmethod def prepare_params_to_face_swapping(part_of_face, landmarks): """ :param part_of_face: a specific part of the face :type part_of_face: string - str :param landmarks: characteristic points for the specific parts of a face. The landmarks should comes from calling one of the functions included in the 'LANDMARKS_FUNCTIONS' dictionary (from the file '..settings'). :type landmarks: dictionary - {} :return: dictionary with the keys: 'polygon' and 'cut_field' :rtype: dictionary - {} """ endpoints = {} if part_of_face.lower() in map(str.lower, PARTS_OF_THE_FACE_WITH_THE_CUT_FIELD): endpoints["polygon"] = landmarks["four_endpoints"] endpoints["cut_field"] = landmarks["six_endpoints"] else: endpoints["polygon"] = landmarks endpoints["cut_field"] = None return endpoints @staticmethod def more_or_less_than_one_face_info(number_of_detected_faces, json_format=True): """ :param number_of_detected_faces: number of detected faces in an image :type number_of_detected_faces: integer - int :param json_format: param indicates if returned dictionary should be converted into a JSON object :type json_format: bool (True or False) :return dictionary where the number of detected faces is assigned to the key named 'number_of_detected_faces' and False (bool) is assigned to the key named 'face_detected_successfully'. :rtype dictionary - {} or dictionary converted into a JSON object (type - django.http.response.JsonResponse) It depends on the parameter 'json_format'. """ data = MESSAGES_REGARDING_MORE_OR_LESS_THAN_ONE_FACE data["number_of_detected_faces"] = number_of_detected_faces if json_format: return JsonResponse(data) return data @staticmethod def processed_img_info(swapped_part_of_face, json_format=True): """ This function converts 'swapped_part_of_face' to Base64 and returns a dictionary with data. The dictionary may be converted into a JSON object. :param swapped_part_of_face: an RGB image converted into a numpy array (the array has following shape(y, x, 3)) The image shows a face with a part from a different face. :type swapped_part_of_face: numpy.ndarray (https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html) :param json_format: param indicates if returned dictionary should be converted into a JSON object :type json_format: bool (True or False) :return dictionary: { "face_detected_successfully": True, "number_of_detected_faces": 1, "img_src": 'swapped_part_of_face' converted to Base64 } :rtype dictionary - {} or dictionary converted into a JSON object (type - django.http.response.JsonResponse) It depends on the parameter 'json_format'. """ data = MESSAGES_REGARDING_EXACTLY_ONE_FACE data["img_src"] = convert_img_to_base64(img=swapped_part_of_face) if json_format: return JsonResponse(data) return data @staticmethod def prepare_endpoints_from_db(face_landmarks, part_of_face, json_format=True): """ :param face_landmarks: characteristic points for specific parts of a face :type face_landmarks: dictionary - {} or dictionary converted into a JSON object (it depends on the parameter 'json_format') :param part_of_face: a specific part of the face whose data will be searched in the dictionary(face_landmarks) :type part_of_face: string - str :param json_format: param indicates if the passed dictionary('face_landmarks') was converted into a JSON object :type json_format: bool (True or False) :return result of calling the function 'prepare_params_to_face_swapping' from this class. (dictionary with the keys: 'polygon' and 'cut_field') :rtype dictionary - {} """ if json_format: face_landmarks = json.loads(face_landmarks)[part_of_face] return ProcessUserPhoto.prepare_params_to_face_swapping(part_of_face=part_of_face, landmarks=face_landmarks) @staticmethod def get_landmarks_of_parts_of_face(face_landmarks): """ :param face_landmarks: landmarks of a single face generated by the function 'face_landmarks' from the module named 'face_recognition' (link to the module named 'face_recognition' - https://pypi.org/project/face_recognition/) :type face_landmarks: dictionary - {} :return characteristic points for the specific parts of a face. Each part of the face contained in the 'LANDMARKS_FUNCTIONS' dictionary has a function generating the characteristic points for given part of the face. :rtype dictionary - {} """ landmarks_of_parts_of_face = {} for part_of_face in LANDMARKS_FUNCTIONS: landmarks_of_parts_of_face[part_of_face] = LANDMARKS_FUNCTIONS[part_of_face](face_landmarks) return landmarks_of_parts_of_face @staticmethod def prepare_transparent_pixels(rgba_array): """ This function looks for the pixels, whose alpha channel value is less than the value of 'MINIMUM_VALUE_OF_ALPHA_CHANNEL'. :param rgba_array: an RGBA image converted into a numpy array (the array has following shape(y, x, 4)) :type rgba_array: numpy.ndarray (https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html) :return: list of dictionaries. Each of these dictionaries has the following keys: 'row_idx', 'column_idx', 'value'. The key 'row_idx' represent the index of a pixel's row (integer - int). The key 'column_idx' represent the index of a pixel's column (integer - int). The key 'value' represent the RGBA color of a pixel(list which contains four integers). :rtype: list - [] """ if rgba_array.shape[INDEX_OF_THE_NUMBER_OF_CHANNELS_PER_PIXEL] != CORRECT_NUMBER_OF_CHANNELS_PER_PIXEL: error_info = "The passed image has the incorret number of channels per pixel. " \ "The correct number is equal to {correct_number_of_channels_per_pixel}.".format( correct_number_of_channels_per_pixel=CORRECT_NUMBER_OF_CHANNELS_PER_PIXEL) raise ValueError(error_info) transparent_pixels = [] rows, cols, _ = np.where( rgba_array[:, :, [INDEX_OF_THE_VALUE_OF_ALPHA_CHANNEL]] < MINIMUM_VALUE_OF_THE_ALPHA_CHANNEL) for i in range(len(rows)): row_idx = int(rows[i]) column_idx = int(cols[i]) pixel_value = rgba_array[row_idx][column_idx].tolist() pixel_dictionary = {"row_idx": row_idx, "column_idx": column_idx, "value": pixel_value} transparent_pixels.append(pixel_dictionary) return transparent_pixels @staticmethod def add_transparent_pixels_to_an_rgb_image(rgb_array, transparent_pixels): """ This function converts 'rgb_array' into an RGBA numpy array. Then the pixels included in the passed list ('transparent_pixels') will be placed in this array. :param rgb_array: an RGB image converted into a numpy array (the array has following shape(y, x, 3)) :type rgb_array: numpy.ndarray (https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html) :param transparent_pixels: list of dictionaries. Each of these dictionaries has the following keys: 'row_idx', 'column_idx', 'value'. The key 'row_idx' represent the index of a pixel's row (integer - int). The key 'column_idx' represent the index of a pixel's column (integer - int). The key 'value' represent the RGBA color of a pixel(list which contains four integers). This parameter should comes from calling the function 'prepare_transparent_pixels' contained in this class. :rtype: list - [] :return: 'rgb_array' converted into an RGBA numpy array. The array possess the values of pixels included in the passed list('transparent_pixels'). :rtype: numpy.ndarray (https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html) """ pil = Image.fromarray(rgb_array) pil_rgba = set_mode_of_pil(pil=pil, mode=PIL_MODE_OF_TRANSPARENT_PHOTOS) rgba_array = np.array(pil_rgba, dtype=np.uint8) for pixel in transparent_pixels: for channel_idx in range(len(pixel["value"])): rgba_array[pixel["row_idx"]][pixel["column_idx"]][channel_idx] = pixel["value"][channel_idx] return rgba_array def _process_existing_image(self): """ This function looks for the necessary parameters to swap the same part of the face. In this case the user image has been saved previously in our database. If the number of detected faces in the image is not equal to 1 the variable 'self._more_or_less_than_one_photo' will be set to 'True' otherwise the following variables: 'self._src_rgb_array', 'self._src_endpoints', 'self._dst_rgb_array', 'self._dst_endpoints'. will have appropriate values and the variable 'self._more_or_less_than_one_photo' will be set to 'False'. """ photo_from_db = DBFunc.get_user_photo_data(photo_in_base64=self._photo_in_base64) self._number_of_detected_faces = photo_from_db.number_of_detected_faces if self._number_of_detected_faces != 1: self._more_or_less_than_one_photo = True else: self._more_or_less_than_one_photo = False self._dst_rgb_array = convert_text_to_rgb_array(text=photo_from_db.rgb_array) src_face = DBFunc.get_example_photo_data(part_of_face=self._part_of_face, row_id=self._face_id) self._src_endpoints = ProcessUserPhoto.prepare_endpoints_from_db(face_landmarks=src_face.face_landmarks, part_of_face=self._part_of_face) self._src_rgb_array = convert_text_to_rgb_array(text=src_face.rgb_array) self._dst_endpoints = ProcessUserPhoto.prepare_endpoints_from_db( face_landmarks=photo_from_db.face_landmarks, part_of_face=self._part_of_face) self._transparent_pixels = json.loads(photo_from_db.transparent_pixels) def _save_info_on_a_new_image(self, faces_landmarks): """ This function saves informations about a new image into our database. :param faces_landmarks: landmarks of a single face generated by the function 'face_landmarks' from the module named 'face_recognition'. (link to the module named 'face_recognition' - https://pypi.org/project/face_recognition/) :type face_landmarks: dictionary - {} """ landmarks = ProcessUserPhoto.get_landmarks_of_parts_of_face(face_landmarks=faces_landmarks) DBFunc.save_user_photo(photo_in_base64=self._photo_in_base64, number_of_detected_faces=self._number_of_detected_faces, rgb_array=convert_rgb_array_to_text(rgb_array=self._dst_rgb_array), transparent_pixels=json.dumps(self._transparent_pixels), face_landmarks=json.dumps(landmarks)) def _process_new_image(self): """ This function looks for the necessary parameters to swap the same part of the face. In this case the user image is a completely new one. If the number of detected faces in the image is not equal to 1 the variable 'self._more_or_less_than_one_photo' will be set to 'True' and informations about this image will be saved into our database. In another case, the following variables: 'self._src_rgb_array', 'self._src_endpoints', 'self._dst_rgb_array', 'self._dst_endpoints'. will have appropriate values, the variable 'self._more_or_less_than_one_photo' will be set to 'False' and informations about this image will be saved in our database. """ dst_img_pil = convert_base64_to_pil(photo_in_base64=self._photo_in_base64) if not correct_size(img=dst_img_pil): dst_img_pil = resize_img(img=dst_img_pil) if dst_img_pil.mode != DEFAULT_PIL_MODE: dst_rgba_array = np.array(set_mode_of_pil(pil=dst_img_pil, mode=PIL_MODE_OF_TRANSPARENT_PHOTOS), dtype=np.uint8) self._transparent_pixels = ProcessUserPhoto.prepare_transparent_pixels(rgba_array=dst_rgba_array) dst_img_pil = set_mode_of_pil(pil=dst_img_pil, mode=DEFAULT_PIL_MODE) self._dst_rgb_array = np.array(dst_img_pil, dtype=np.uint8) faces_landmarks = get_faces_landmarks(rgb_array=self._dst_rgb_array) self._number_of_detected_faces = len(faces_landmarks) if self._number_of_detected_faces != 1: DBFunc.save_user_photo(photo_in_base64=self._photo_in_base64, number_of_detected_faces=self._number_of_detected_faces) self._more_or_less_than_one_photo = True else: landmarks_of_the_part_of_face = LANDMARKS_FUNCTIONS[self._part_of_face](faces_landmarks[0]) src_face = DBFunc.get_example_photo_data(part_of_face=self._part_of_face, row_id=self._face_id) self._src_endpoints = ProcessUserPhoto.prepare_endpoints_from_db(face_landmarks=src_face.face_landmarks, part_of_face=self._part_of_face) self._dst_endpoints = ProcessUserPhoto.prepare_params_to_face_swapping(part_of_face=self._part_of_face, landmarks=landmarks_of_the_part_of_face) self._src_rgb_array = convert_text_to_rgb_array(text=src_face.rgb_array) self._more_or_less_than_one_photo = False self._save_info_on_a_new_image(faces_landmarks=faces_landmarks[0]) def _swap_part_of_face(self): """ :return result of calling the function 'change_face_element' from the class 'ChangeFaceElement' (The class is located in 'apps.face_element_swapping.change_faces').
import codecs import json import os from typing import Dict, Tuple, List from nltk.tokenize import word_tokenize def load_tokens_from_factrueval2016_by_paragraphs(text_file_name: str, tokens_file_name: str) -> \ Tuple[Dict[int, Tuple[int, int, str]], str, tuple]: source_text = '' start_pos = 0 tokens_and_their_bounds = dict() line_idx = 1 bounds_of_paragraphs = [] texts_of_paragraphs = [] with codecs.open(text_file_name, mode='r', encoding='utf-8', errors='ignore') as fp: cur_line = fp.readline() while len(cur_line) > 0: prep_line = cur_line.strip() if len(prep_line) > 0: texts_of_paragraphs.append(prep_line.lower()) cur_line = fp.readline() paragraph_idx = 0 paragraph_pos = 0 with codecs.open(tokens_file_name, mode='r', encoding='utf-8', errors='ignore') as fp: cur_line = fp.readline() while len(cur_line) > 0: prep_line = cur_line.strip() if len(prep_line) > 0: err_msg = 'File `{0}`: line {1} is wrong!'.format(tokens_file_name, line_idx) parts_of_line = prep_line.split() if len(parts_of_line) != 4: raise ValueError(err_msg) try: token_id = int(parts_of_line[0]) except: token_id = -1 if token_id < 0: raise ValueError(err_msg) try: token_start = int(parts_of_line[1]) except: token_start = -1 if token_start < len(source_text): raise ValueError(err_msg) try: token_len = int(parts_of_line[2]) except: token_len = -1 if token_len < 0: raise ValueError(err_msg) token_text = parts_of_line[3].strip() if len(token_text) != token_len: raise ValueError(err_msg) if token_id in tokens_and_their_bounds: raise ValueError(err_msg) while len(source_text) < token_start: source_text += ' ' source_text += token_text tokens_and_their_bounds[token_id] = ( token_start, token_start + token_len, token_text ) found_idx_in_paragraph = texts_of_paragraphs[paragraph_idx][paragraph_pos:].find(token_text.lower()) if found_idx_in_paragraph < 0: paragraph_idx += 1 paragraph_pos = 0 while paragraph_idx < len(texts_of_paragraphs): if len(bounds_of_paragraphs) == 0: bounds_of_paragraphs.append((0, start_pos)) else: bounds_of_paragraphs.append((bounds_of_paragraphs[-1][1], start_pos)) found_idx_in_paragraph = texts_of_paragraphs[paragraph_idx].find(token_text.lower()) if found_idx_in_paragraph >= 0: break paragraph_idx += 1 if paragraph_idx >= len(texts_of_paragraphs): raise ValueError(err_msg) else: paragraph_pos += (found_idx_in_paragraph + len(token_text)) start_pos = len(source_text) cur_line = fp.readline() line_idx += 1 if len(texts_of_paragraphs) > 0: if len(bounds_of_paragraphs) > 0: bounds_of_paragraphs.append((bounds_of_paragraphs[-1][1], start_pos)) else: bounds_of_paragraphs.append((0, start_pos)) bounds_of_paragraphs_after_strip = [] for cur_bounds in bounds_of_paragraphs: if cur_bounds[0] < cur_bounds[1]: source_paragraph_text = source_text[cur_bounds[0]:cur_bounds[1]] paragraph_text_after_strip = source_paragraph_text.strip() found_idx = source_paragraph_text.find(paragraph_text_after_strip) if found_idx > 0: paragraph_start = cur_bounds[0] + found_idx else: paragraph_start = cur_bounds[0] paragraph_end = paragraph_start + len(paragraph_text_after_strip) bounds_of_paragraphs_after_strip.append((paragraph_start, paragraph_end)) else: bounds_of_paragraphs_after_strip.append(cur_bounds) return tokens_and_their_bounds, source_text, tuple(bounds_of_paragraphs_after_strip) def load_tokens_from_factrueval2016_by_sentences(tokens_file_name: str) -> \ Tuple[Dict[int, Tuple[int, int, str]], str, tuple]: source_text = '' tokens_and_their_bounds = dict() line_idx = 1 bounds_of_sentences = [] sentence_start = -1 sentence_end = -1 with codecs.open(tokens_file_name, mode='r', encoding='utf-8', errors='ignore') as fp: cur_line = fp.readline() while len(cur_line) > 0: prep_line = cur_line.strip() if len(prep_line) > 0: err_msg = 'File `{0}`: line {1} is wrong!'.format(tokens_file_name, line_idx) parts_of_line = prep_line.split() if len(parts_of_line) != 4: raise ValueError(err_msg) try: token_id = int(parts_of_line[0]) except: token_id = -1 if token_id < 0: raise ValueError(err_msg) try: token_start = int(parts_of_line[1]) except: token_start = -1 if token_start < len(source_text): raise ValueError(err_msg) try: token_len = int(parts_of_line[2]) except: token_len = -1 if token_len < 0: raise ValueError(err_msg) token_text = parts_of_line[3].strip() if len(token_text) != token_len: raise ValueError(err_msg) if token_id in tokens_and_their_bounds: raise ValueError(err_msg) while len(source_text) < token_start: source_text += ' ' source_text += token_text tokens_and_their_bounds[token_id] = ( token_start, token_start + token_len, token_text ) if sentence_start < 0: sentence_start = token_start sentence_end = token_start + token_len else: if (sentence_start >= 0) and (sentence_end >= 0): bounds_of_sentences.append((sentence_start, sentence_end)) sentence_start = -1 sentence_end = -1 cur_line = fp.readline() line_idx += 1 if (sentence_start >= 0) and (sentence_end >= 0): bounds_of_sentences.append((sentence_start, sentence_end)) return tokens_and_their_bounds, source_text, tuple(bounds_of_sentences) def load_spans_from_factrueval2016(spans_file_name: str, tokens_dict: Dict[int, Tuple[int, int, str]]) -> Dict[int, List[int]]: spans = dict() line_idx = 1 with codecs.open(spans_file_name, mode='r', encoding='utf-8', errors='ignore') as fp: cur_line = fp.readline() while len(cur_line) > 0: prep_line = cur_line.strip() if len(prep_line) > 0: err_msg = 'File `{0}`: line {1} is wrong!'.format(spans_file_name, line_idx) parts_of_line = prep_line.split() if len(parts_of_line) < 9: raise ValueError(err_msg) try: span_id = int(parts_of_line[0]) except: span_id = -1 if span_id < 0: raise ValueError(err_msg) if span_id not in spans: try: found_idx = parts_of_line.index('#') except: found_idx = -1 if found_idx < 0: raise ValueError(err_msg) if (len(parts_of_line) - 1 - found_idx) < 2: raise ValueError(err_msg) if (len(parts_of_line) - 1 - found_idx) % 2 != 0: raise ValueError(err_msg) n = (len(parts_of_line) - 1 - found_idx) // 2 token_IDs = [] try: for idx in range(found_idx + 1, found_idx + n + 1): new_token_ID = int(parts_of_line[idx]) if new_token_ID in token_IDs: token_IDs = [] break if new_token_ID not in tokens_dict: token_IDs = [] break token_IDs.append(new_token_ID) if token_IDs[-1] < 0: token_IDs = [] break except: token_IDs = [] if len(token_IDs) == 0: raise ValueError(err_msg) spans[span_id] = token_IDs del token_IDs cur_line = fp.readline() line_idx += 1 return spans def load_objects_from_factrueval2016(objects_file_name: str, spans_dict: Dict[int, List[int]]) -> Dict[int, Tuple[str, List[int]]]: objects = dict() line_idx = 1 with codecs.open(objects_file_name, mode='r', encoding='utf-8', errors='ignore') as fp: cur_line = fp.readline() while len(cur_line) > 0: prep_line = cur_line.strip() if len(prep_line) > 0: err_msg = 'File `{0}`: line {1} is wrong!'.format(objects_file_name, line_idx) parts_of_line = prep_line.split() if len(parts_of_line) < 5: raise ValueError(err_msg) try: object_id = int(parts_of_line[0]) if object_id in objects: object_id = -1 except: object_id = -1 if object_id < 0: raise ValueError(err_msg) ne_type = parts_of_line[1].upper() if ne_type in {'PERSON', 'LOCATION', 'ORG', 'LOCORG'}: if ne_type == 'LOCORG': ne_type = 'LOCATION' try: found_idx = parts_of_line.index('#') except: found_idx = -1 if found_idx < 3: raise ValueError(err_msg) span_IDs = [] try: for idx in range(2, found_idx): new_span_ID = int(parts_of_line[idx]) if new_span_ID < 0: span_IDs = [] break if new_span_ID not in spans_dict: span_IDs = [] break if new_span_ID in span_IDs: span_IDs = [] break span_IDs.append(new_span_ID) except: span_IDs = [] if len(span_IDs) == 0: raise ValueError(err_msg) objects[object_id] = (ne_type, span_IDs) del span_IDs cur_line = fp.readline() line_idx += 1 return objects def check_factrueval_tokenization(src_dir_name: str, split_by_paragraphs: bool): factrueval_files = dict() for cur_file_name in os.listdir(src_dir_name): if cur_file_name.endswith('.objects'): base_name = cur_file_name[:-len('.objects')] elif cur_file_name.endswith('.spans'): base_name = cur_file_name[:-len('.spans')] elif cur_file_name.endswith('.tokens'): base_name = cur_file_name[:-len('.tokens')] else: base_name = None if base_name is not None: if base_name in factrueval_files: assert cur_file_name not in factrueval_files[base_name] factrueval_files[base_name].append(cur_file_name) else: factrueval_files[base_name] = [cur_file_name] for base_name in factrueval_files: if len(factrueval_files[base_name]) != 3: raise ValueError('Files list for `{0}` is wrong!'.format(base_name)) text_file_name = os.path.join(src_dir_name, base_name + '.txt') if not os.path.isfile(text_file_name): raise ValueError('File `{0}` does not exist!'.format(text_file_name)) factrueval_files[base_name].append(text_file_name) factrueval_files[base_name] = sorted(factrueval_files[base_name]) n_good = 0 n_total = 0 for base_name in sorted(list(factrueval_files.keys())): if split_by_paragraphs: tokens, text, paragraphs = load_tokens_from_factrueval2016_by_paragraphs( os.path.join(src_dir_name, base_name + '.txt'), os.path.join(src_dir_name, base_name + '.tokens') ) else: tokens, text, paragraphs = load_tokens_from_factrueval2016_by_sentences( os.path.join(src_dir_name, base_name + '.tokens') ) tokens_by_tokenizer = [] for paragraph_start, paragraph_end in paragraphs: tokens_by_tokenizer += word_tokenize(text[paragraph_start:paragraph_end]) tokens_by_factrueval = [] for token_id in sorted(list(tokens.keys())): tokens_by_factrueval.append(tokens[token_id][2]) tokens_by_tokenizer = tuple(tokens_by_tokenizer) tokens_by_factrueval = tuple(tokens_by_factrueval) if tokens_by_tokenizer == tokens_by_factrueval: print('') print('{0}'.format(base_name)) print('All right!') print('') n_good += 1 else: print('') print('{0}'.format(base_name)) print('') print('true tokens:') print('{0}'.format(tokens_by_factrueval)) print('') print('calculated tokens:') print('{0}'.format(tokens_by_tokenizer)) print('') n_total += 1 print('') print('Total number of texts is {0}.'.format(n_total)) print('Number of correctly tokenized texts is {0}.'.format(n_good)) def factrueval2016_to_json(src_dir_name: str, dst_json_name: str, split_by_paragraphs: bool=True): factrueval_files = dict() for cur_file_name in os.listdir(src_dir_name): if cur_file_name.endswith('.objects'): base_name = cur_file_name[:-len('.objects')] elif cur_file_name.endswith('.spans'): base_name = cur_file_name[:-len('.spans')] elif cur_file_name.endswith('.tokens'): base_name = cur_file_name[:-len('.tokens')] else: base_name = None if base_name is not None: if base_name in factrueval_files: assert cur_file_name not in factrueval_files[base_name] factrueval_files[base_name].append(cur_file_name) else: factrueval_files[base_name] = [cur_file_name] for base_name in factrueval_files: if len(factrueval_files[base_name]) != 3: raise ValueError('Files list for `{0}` is wrong!'.format(base_name)) text_file_name = os.path.join(src_dir_name, base_name + '.txt') if not os.path.isfile(text_file_name): raise ValueError('File `{0}` does not exist!'.format(text_file_name)) factrueval_files[base_name].append(text_file_name) factrueval_files[base_name] = sorted(factrueval_files[base_name]) train_data = [] for base_name in sorted(list(factrueval_files.keys())): if split_by_paragraphs: tokens, text, paragraphs = load_tokens_from_factrueval2016_by_paragraphs( os.path.join(src_dir_name, base_name + '.txt'), os.path.join(src_dir_name, base_name + '.tokens') ) else: tokens, text, paragraphs = load_tokens_from_factrueval2016_by_sentences( os.path.join(src_dir_name, base_name + '.tokens') ) spans = load_spans_from_factrueval2016(os.path.join(src_dir_name, base_name + '.spans'), tokens) objects = load_objects_from_factrueval2016(os.path.join(src_dir_name, base_name + '.objects'), spans) named_entities = dict() if len(objects) > 0: for object_ID in objects: ne_type = objects[object_ID][0] tokens_of_ne = set() spans_of_ne = objects[object_ID][1] for span_ID in spans_of_ne: tokens_of_ne |= set(spans[span_ID]) tokens_of_ne = sorted(list(tokens_of_ne)) if len(tokens_of_ne) > 0: token_ID = tokens_of_ne[0] ne_start = tokens[token_ID][0] ne_end = tokens[token_ID][1] for token_ID in tokens_of_ne[1:]: if tokens[token_ID][0] < ne_start: ne_start = tokens[token_ID][0] if tokens[token_ID][1] > ne_end: ne_end = tokens[token_ID][1] if ne_type in named_entities: named_entities[ne_type].append((ne_start, ne_end)) else: named_entities[ne_type] = [(ne_start, ne_end)] train_data.append({'text': text, 'named_entities': named_entities, 'paragraph_bounds': paragraphs, 'base_name': base_name}) with codecs.open(dst_json_name, mode='w', encoding='utf-8', errors='ignore') as fp: json.dump(train_data, fp, indent=4, ensure_ascii=False) def recognized_factrueval2016_to_json(gold_dir_name: str, recognized_dir_name: str, dst_json_name: str): factrueval_files = dict() for cur_file_name in os.listdir(gold_dir_name): if cur_file_name.endswith('.objects'): base_name =
oranges_r(self): cname = "oranges_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "oranges.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def oranges_3(self): cname = "oranges_3" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "oranges_3.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def oranges_3_r(self): cname = "oranges_3_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "oranges_3.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def oranges_4(self): cname = "oranges_4" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "oranges_4.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def oranges_4_r(self): cname = "oranges_4_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "oranges_4.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def oranges_5(self): cname = "oranges_5" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "oranges_5.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def oranges_5_r(self): cname = "oranges_5_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "oranges_5.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def oranges_6(self): cname = "oranges_6" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "oranges_6.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def oranges_6_r(self): cname = "oranges_6_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "oranges_6.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def oranges_7(self): cname = "oranges_7" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "oranges_7.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def oranges_7_r(self): cname = "oranges_7_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "oranges_7.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def oranges_8(self): cname = "oranges_8" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "oranges_8.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def oranges_8_r(self): cname = "oranges_8_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "oranges_8.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def oranges_9(self): cname = "oranges_9" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "oranges_9.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def oranges_9_r(self): cname = "oranges_9_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "oranges_9.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def orrd(self): cname = "orrd" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "orrd.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def orrd_r(self): cname = "orrd_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "orrd.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def orrd_3(self): cname = "orrd_3" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "orrd_3.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def orrd_3_r(self): cname = "orrd_3_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "orrd_3.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def orrd_4(self): cname = "orrd_4" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "orrd_4.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def orrd_4_r(self): cname = "orrd_4_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "orrd_4.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def orrd_5(self): cname = "orrd_5" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "orrd_5.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def orrd_5_r(self): cname = "orrd_5_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "orrd_5.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def orrd_6(self): cname = "orrd_6" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "orrd_6.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def orrd_6_r(self): cname = "orrd_6_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "orrd_6.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def orrd_7(self): cname = "orrd_7" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "orrd_7.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def orrd_7_r(self): cname = "orrd_7_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "orrd_7.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def orrd_8(self): cname = "orrd_8" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "orrd_8.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def orrd_8_r(self): cname = "orrd_8_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "orrd_8.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def orrd_9(self): cname = "orrd_9" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "orrd_9.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def orrd_9_r(self): cname = "orrd_9_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "orrd_9.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired(self): cname = "paired" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_r(self): cname = "paired_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_10(self): cname = "paired_10" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_10.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_10_r(self): cname = "paired_10_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_10.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_11(self): cname = "paired_11" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_11.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_11_r(self): cname = "paired_11_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_11.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_12(self): cname = "paired_12" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_12.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_12_r(self): cname = "paired_12_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_12.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_3(self): cname = "paired_3" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_3.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_3_r(self): cname = "paired_3_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_3.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_4(self): cname = "paired_4" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_4.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_4_r(self): cname = "paired_4_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_4.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_5(self): cname = "paired_5" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_5.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_5_r(self): cname = "paired_5_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_5.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_6(self): cname = "paired_6" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_6.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_6_r(self): cname = "paired_6_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_6.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_7(self): cname = "paired_7" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_7.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_7_r(self): cname = "paired_7_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_7.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_8(self): cname = "paired_8" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_8.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_8_r(self): cname = "paired_8_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "paired_8.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def paired_9(self): cname = "paired_9" if
<gh_stars>10-100 """Base destructors and destructor mixins.""" from __future__ import division, print_function import logging import warnings from abc import abstractmethod from builtins import super from copy import deepcopy from functools import wraps import numpy as np from sklearn.base import BaseEstimator, TransformerMixin, clone from sklearn.exceptions import DataConversionWarning, NotFittedError from sklearn.utils import check_array, check_random_state from sklearn.utils.validation import check_is_fitted # noinspection PyProtectedMember from .utils import (_INF_SPACE, _UNIT_SPACE, check_X_in_interval, get_domain_or_default, get_support_or_default) logger = logging.getLogger(__name__) class ScoreMixin(object): """Mixin for :func:`score` that returns mean of :func:`score_samples`.""" def score(self, X, y=None): """Return the mean log likelihood (or log(det(Jacobian))). Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. y : None, default=None Not used but kept for compatibility. Returns ------- log_likelihood : float Mean log likelihood data points in X. """ return np.mean(self.score_samples(X, y)) class DestructorMixin(ScoreMixin, TransformerMixin): """Mixin helper class to add universal destructor methods. Adds ``sample``, ``get_domain``, and ``score`` *if* the destructor defines the ``density_`` attribute after fitting. (Also, if the destructor defines the attribute ``n_features_``, no sampling is required to determine the number of features, see note below.) Note that this finds the data dimension by looking sequentally for the fitted ``n_features_`` attribute, the ``density_.n_features_`` attribute, and finally attempting to call `self.density_.sample(1)` and determine the dimension from the density sample. """ def sample(self, n_samples=1, random_state=None): """Generate random samples from this density/destructor. Parameters ---------- n_samples : int, default=1 Number of samples to generate. Defaults to 1. random_state : int, RandomState instance or None, optional (default=None) If int, `random_state` is the seed used by the random number generator; If :class:`~numpy.random.RandomState` instance, `random_state` is the random number generator; If None, the random number generator is the :class:`~numpy.random.RandomState` instance used by :mod:`numpy.random`. Returns ------- X : array, shape (n_samples, n_features) Randomly generated sample. """ rng = check_random_state(random_state) U = rng.rand(n_samples, self._get_n_features()) X = self.inverse_transform(U) return X # Utility method to attempt to automatically determine the number of dimensions. def _get_n_features(self): return get_n_features(self) def get_n_features(destructor, try_destructor_sample=False): """Get the number of features for a fitted destructor. Attempt to find ``n_features`` either from ``destructor.n_features_``, ``destructor.density_.n_features_``, or via density sampling ``destructor.density_.sample(1, random_state=0).shape[1]``. Parameters ---------- destructor : estimator The (fitted) destructor from which to extract the number of features. try_destructor_sample : bool, optional, default=False If ``True``, additionally attempt ``destructor.sample(1, random_state=0).shape[ 1]``. This option could cause infinite recursion since :class:`~ddl.base.DestructorMixin` uses :func:`get_n_features` in order to sample but this can be avoided if the destructor reimplements sample without :func:`get_n_features` such as in the :class:`ddl.base.CompositeDestructor`. """ n_features = np.nan if hasattr(destructor, 'n_features_'): n_features = destructor.n_features_ elif hasattr(destructor, 'density_') and hasattr(destructor.density_, 'n_features_'): n_features = destructor.density_.n_features_ elif hasattr(destructor, 'density_') and hasattr(destructor.density_, 'sample'): warnings.warn('Because `destructor.n_features_` does not exist and' ' `destructor.density_.n_features_` does not exist' ' we attempt to determine the dimension by sampling' ' from destructor.density_, which may be computationally' ' demanding. Add destructor.n_features_ to reduce time if necessary.', _NumDimWarning) n_features = np.array(destructor.density_.sample(n_samples=1, random_state=0)).shape[1] else: if try_destructor_sample: # Attempt to sample from destructor if hasattr(destructor, 'sample'): try: n_features = np.array( destructor.sample(n_samples=1, random_state=0) ).shape[1] except RuntimeError: err = True else: err = False else: err = True if err: raise RuntimeError( 'Could not find n_features in destructor.n_features_, ' 'destructor.density_.n_features_, ' 'destructor.density_.sample(1).shape[1], or destructor.sample(' '1).shape[1]. ' ) else: raise RuntimeError('Could not find n_features in destructor or density.' 'Checked destructor.n_features_, destructor.density_.n_features_, ' 'and ' ' attempted to sample from destructor.density_ to determine' ' n_features but failed in all cases.') return n_features class BoundaryWarning(DataConversionWarning): """Warning that data is on the boundary of the required set. Warning when data is on the boundary of the domain or range and is converted to data that lies inside the boundary. For example, if the domain is (0,inf) rather than [0,inf), values of 0 will be made a small epsilon above 0. """ class _NumDimWarning(UserWarning): """Warning about the number of dimensions. Warning that we have to use 1 sample in order to determine the number of dimensions. (Because `trans.n_features_` does not exist and ``trans.density_.n_features_` does not exist we attempt to determine the dimension by sampling from self.density_, which may be computationally demanding. Add self.n_features_ to reduce time if necessary.) """ class BaseDensityDestructor(BaseEstimator, DestructorMixin): """Abstract destructor derived from an explicit underlying density. This should be used if the destructor is based on an *explicit* underlying density such as a ``TreeDestructor`` or ``IndepedentDestructor``. The only methods that need to be implemented in this case are ``get_density_estimator``, ``transform`` and ``inverse_transform``. Attributes ---------- density_ : estimator Fitted underlying density. """ @abstractmethod def _get_density_estimator(self): """(Abstract) Get density estimator.""" raise NotImplementedError() @abstractmethod def transform(self, X, y=None): """[Placeholder]. Parameters ---------- X : y : """ raise NotImplementedError() @abstractmethod def inverse_transform(self, X, y=None): """[Placeholder]. Parameters ---------- X : y : """ raise NotImplementedError() def fit(self, X, y=None, density_fit_params=None): """[Placeholder]. Parameters ---------- X : y : density_fit_params : Returns ------- obj : object """ if density_fit_params is None: density_fit_params = {} density = clone(self._get_density_estimator()).fit(X, y, **density_fit_params) self.fit_from_density(density) return self def fit_from_density(self, density): """[Placeholder]. Parameters ---------- density : Returns ------- obj : object """ self.density_ = density return self def score_samples(self, X, y=None): """Compute log-likelihood (or log(det(Jacobian))) for each sample. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. y : None, default=None Not used but kept for compatibility. Returns ------- log_likelihood : array, shape (n_samples,) Log likelihood of each data point in X. """ self._check_is_fitted() X = check_array(X, ensure_min_samples=0) X = check_X_in_interval(X, get_domain_or_default(self)) return self.density_.score_samples(X) def get_domain(self): """Get the domain of this destructor. Returns ------- domain : array-like, shape (2,) or shape (n_features, 2) If shape is (2, ), then ``domain[0]`` is the minimum and ``domain[1]`` is the maximum for all features. If shape is (`n_features`, 2), then each feature's domain (which could be different for each feature) is given similar to the first case. """ # Either get from the density estimator parameter # or fitted density attribute try: self._check_is_fitted() except NotFittedError: return get_support_or_default(self._get_density_estimator()) else: return get_support_or_default(self.density_) def _check_is_fitted(self): check_is_fitted(self, ['density_']) class IdentityDestructor(BaseDensityDestructor): """Identity destructor/transform. This assumes a canonical uniform density on the unit hypercube and has a domain of [0, 1]. Attributes ---------- density_ : estimator Fitted underlying density. See Also -------- UniformDensity """ @classmethod def create_fitted(cls, n_features): destructor = cls() destructor.density_ = UniformDensity.create_fitted(n_features) return destructor def _get_density_estimator(self): """Get the *unfitted* density associated with this destructor. NOTE: The returned estimator is NOT fitted but is a clone or new instantiation of the underlying density estimator. This is just a helper function that needs to be overridden by subclasses of :class:`~ddl.base.BaseDensityDestructor`. Returns ------- density : estimator The *unfitted* density estimator associated wih this destructor. """ return UniformDensity() def transform(self, X, y=None, copy=True): """[Placeholder]. Parameters ---------- X : y : copy : Returns ------- obj : object """ self._check_is_fitted() X = check_array(X, ensure_min_samples=0) X = check_X_in_interval(X, get_domain_or_default(self)) self._check_dim(X) if copy: X = X.copy() return X def inverse_transform(self, X, y=None, copy=True): """[Placeholder]. Parameters ---------- X : y : copy : Returns ------- obj : object """ self._check_is_fitted() X = check_array(X, ensure_min_samples=0) X = check_X_in_interval(X, np.array([0, 1])) self._check_dim(X) if copy: X = X.copy() return X def get_domain(self): """Get the domain of this destructor. Returns ------- domain : array-like, shape (2,) or shape (n_features, 2) If shape is (2, ), then ``domain[0]`` is the minimum and ``domain[1]`` is the maximum for all features. If shape is (`n_features`, 2), then each feature's domain (which could be different for each feature) is given similar to the first case. """ return np.array([0, 1]) def _check_dim(self, X): if X.shape[1] != self.density_.n_features_: raise ValueError('Dimension of input does not match dimension of the original ' 'training data.') class UniformDensity(BaseEstimator, ScoreMixin): """Uniform density estimator. Only the ``n_features_`` attribute needs fitting. This nearly trivial density is used as the underlying density for the ``IdentityDestructor``. Attributes ---------- n_features_ : int Number of features of the training data. See Also -------- IdentityDestructor """ def __init__(self): pass def fit(self, X, y=None): """Fit estimator to X. Parameters ----------
Only attributes that are assignable to this type are returned. inherit: Specifies whether to search this member's inheritance chain to find the attributes. Returns: An array of custom attributes applied to this member, or an array with zero (0) elements if no attributes have been applied. """ pass def GetDefaultMembers(self): """ GetDefaultMembers(self: _Type) -> Array[MemberInfo] Provides COM objects with version-independent access to the System.Type.GetDefaultMembers method. Returns: An array of System.Reflection.MemberInfo objects representing all default members of the current System.Type.-or- An empty array of type System.Reflection.MemberInfo, if the current System.Type does not have default members. """ pass def GetElementType(self): """ GetElementType(self: _Type) -> Type Provides COM objects with version-independent access to the System.Type.GetElementType method. Returns: The System.Type of the object encompassed or referred to by the current array, pointer or reference type.-or- null if the current System.Type is not an array or a pointer, or is not passed by reference, or represents a generic type or a type parameter of a generic type or method definition. """ pass def GetEvent(self, name, bindingAttr=None): """ GetEvent(self: _Type, name: str) -> EventInfo Provides COM objects with version-independent access to the System.Type.GetEvent(System.String) method. name: A bitmask comprised of one or more System.Reflection.BindingFlags that specify how the search is conducted.-or- Zero, to return null. Returns: An array of System.Reflection.EventInfo objects representing all events that are declared or inherited by the current System.Type that match the specified binding constraints.-or- An empty array of type System.Reflection.EventInfo, if the current System.Type does not have events, or if none of the events match the binding constraints. GetEvent(self: _Type, name: str, bindingAttr: BindingFlags) -> EventInfo Provides COM objects with version-independent access to the System.Type.GetEvent(System.String,System.Reflection.BindingFlags) method. name: The System.String containing the name of an event that is declared or inherited by the current System.Type. bindingAttr: A bitmask comprised of one or more System.Reflection.BindingFlags that specify how the search is conducted.-or- Zero, to return null. Returns: The System.Reflection.EventInfo object representing the specified event that is declared or inherited by the current System.Type, if found; otherwise, null. """ pass def GetEvents(self, bindingAttr=None): """ GetEvents(self: _Type, bindingAttr: BindingFlags) -> Array[EventInfo] Provides COM objects with version-independent access to the System.Type.GetEvents(System.Reflection.BindingFlags) method. bindingAttr: A bitmask comprised of one or more System.Reflection.BindingFlags that specify how the search is conducted.-or- Zero, to return null. Returns: An array of System.Reflection.EventInfo objects representing all events that are declared or inherited by the current System.Type that match the specified binding constraints.-or- An empty array of type System.Reflection.EventInfo, if the current System.Type does not have events, or if none of the events match the binding constraints. GetEvents(self: _Type) -> Array[EventInfo] Provides COM objects with version-independent access to the System.Type.GetEvents method. Returns: An array of System.Reflection.EventInfo objects representing all the public events that are declared or inherited by the current System.Type.-or- An empty array of type System.Reflection.EventInfo, if the current System.Type does not have public events. """ pass def GetField(self, name, bindingAttr=None): """ GetField(self: _Type, name: str) -> FieldInfo Provides COM objects with version-independent access to the System.Type.GetField(System.String) method. name: The System.String containing the name of the data field to get. Returns: A System.Reflection.FieldInfo object representing the public field with the specified name, if found; otherwise, null. GetField(self: _Type, name: str, bindingAttr: BindingFlags) -> FieldInfo Provides COM objects with version-independent access to the System.Type.GetField(System.String,System.Reflection.BindingFlags) method. name: The System.String containing the name of the data field to get. bindingAttr: A bitmask comprised of one or more System.Reflection.BindingFlags that specify how the search is conducted.-or- Zero, to return null. Returns: A System.Reflection.FieldInfo object representing the field that matches the specified requirements, if found; otherwise, null. """ pass def GetFields(self, bindingAttr=None): """ GetFields(self: _Type) -> Array[FieldInfo] Provides COM objects with version-independent access to the System.Type.GetFields method. Returns: An array of System.Reflection.FieldInfo objects representing all the public fields defined for the current System.Type.-or- An empty array of type System.Reflection.FieldInfo, if no public fields are defined for the current System.Type. GetFields(self: _Type, bindingAttr: BindingFlags) -> Array[FieldInfo] Provides COM objects with version-independent access to the System.Type.GetFields(System.Reflection.BindingFlags) method. bindingAttr: A bitmask comprised of one or more System.Reflection.BindingFlags that specify how the search is conducted.-or- Zero, to return null. Returns: An array of System.Reflection.FieldInfo objects representing all fields defined for the current System.Type that match the specified binding constraints.-or- An empty array of type System.Reflection.FieldInfo, if no fields are defined for the current System.Type, or if none of the defined fields match the binding constraints. """ pass def GetHashCode(self): """ GetHashCode(self: _Type) -> int Provides COM objects with version-independent access to the System.Type.GetHashCode method. Returns: An System.Int32 containing the hash code for this instance. """ pass def GetIDsOfNames(self, riid, rgszNames, cNames, lcid, rgDispId): """ GetIDsOfNames(self: _Type, riid: Guid, rgszNames: IntPtr, cNames: UInt32, lcid: UInt32, rgDispId: IntPtr) -> Guid Maps a set of names to a corresponding set of dispatch identifiers. riid: Reserved for future use. Must be IID_NULL. rgszNames: Passed-in array of names to be mapped. cNames: Count of the names to be mapped. lcid: The locale context in which to interpret the names. rgDispId: Caller-allocated array that receives the IDs corresponding to the names. """ pass def GetInterface(self, name, ignoreCase=None): """ GetInterface(self: _Type, name: str) -> Type Provides COM objects with version-independent access to the System.Type.GetInterface(System.String) method. name: The System.String containing the name of the interface to get. For generic interfaces, this is the mangled name. Returns: A System.Type object representing the interface with the specified name, implemented or inherited by the current System.Type, if found; otherwise, null. GetInterface(self: _Type, name: str, ignoreCase: bool) -> Type Provides COM objects with version-independent access to the System.Type.GetInterface(System.String,System.Boolean) method. name: The System.String containing the name of the interface to get. For generic interfaces, this is the mangled name. ignoreCase: true to perform a case-insensitive search for name.-or- false to perform a case-sensitive search for name. Returns: A System.Type object representing the interface with the specified name, implemented or inherited by the current System.Type, if found; otherwise, null. """ pass def GetInterfaceMap(self, interfaceType): """ GetInterfaceMap(self: _Type, interfaceType: Type) -> InterfaceMapping Provides COM objects with version-independent access to the System.Type.GetInterfaceMap(System.Type) method. interfaceType: The System.Type of the interface of which to retrieve a mapping. Returns: An System.Reflection.InterfaceMapping object representing the interface mapping for interfaceType. """ pass def GetInterfaces(self): """ GetInterfaces(self: _Type) -> Array[Type] Provides COM objects with version-independent access to the System.Type.GetInterfaces method. Returns: An array of System.Type objects representing all the interfaces implemented or inherited by the current System.Type.-or- An empty array of type System.Type, if no interfaces are implemented or inherited by the current System.Type. """ pass def GetMember(self, name, *__args): """ GetMember(self: _Type, name: str) -> Array[MemberInfo] Provides COM objects with version-independent access to the System.Type.GetMember(System.String) method. name: The System.String containing the name of the public members to get. Returns: An array of System.Reflection.MemberInfo objects representing the public members with the specified name, if found; otherwise, an empty array. GetMember(self: _Type, name: str, bindingAttr: BindingFlags) -> Array[MemberInfo] Provides COM objects with version-independent access to the System.Type.GetMember(System.String,System.Reflection.BindingFlags) method. name: The System.String containing the name of the members to get.
""" Implementation of the method proposed in the paper: 'Adversarial Attacks on Graph Neural Networks via Meta Learning' by <NAME>, <NAME> Published at ICLR 2019 in New Orleans, USA. Copyright (C) 2019 <NAME> Technical University of Munich """ import tensorflow.compat.v1 as tf import numpy as np from metattack import utils import scipy.sparse as sp from tensorflow.keras.initializers import glorot_uniform tf.disable_v2_behavior() try: from tqdm import tqdm except ImportError: tqdm = lambda x, desc=None: x class GNNAttack: """ Base class for attacks on GNNs. """ def __init__(self, adjacency_matrix, attribute_matrix, labels_onehot, hidden_sizes, train_iters=100, gpu_id=None, attack_features=False, dtype=tf.float32): """ Parameters ---------- adjacency_matrix: np.array [N,N] Unweighted, symmetric adjacency matrix where N is the number of nodes. attribute_matrix: sp.spmatrix or np.array [N,D] Attribute matrix where D is the number of attributes per node. labels_onehot: np.array [N,K] One-hot matrix of class labels, where N is the number of nodes. Labels of the unlabeled nodes should come from self-training using only the labels of the labeled nodes. hidden_sizes: list of ints List that defines the number of hidden units per hidden layer. Input and output layers not included. train_iters: int The number of 'inner' training steps of the GCN gpu_id: int or None GPU to use. None means CPU-only attack_features: bool Whether to also attack the node attributes (in addition to the graph structure). """ self.N, self.D = attribute_matrix.shape self.K = labels_onehot.shape[1] self.hidden_sizes = hidden_sizes self.graph = tf.Graph() self.train_iters = train_iters self.dtype = dtype with self.graph.as_default(): self.labels_onehot = labels_onehot self.idx_labeled = tf.placeholder(dtype=tf.int32, shape=[None, ], name="Labeled_Idx") self.idx_unlabeled = tf.placeholder(dtype=tf.int32, shape=[None, ], name="Unlabeled_Idx") self.idx_attack = tf.placeholder(dtype=tf.int32, shape=[None, ], name="Attack_Idx") self.attack_features = attack_features if sp.issparse(adjacency_matrix): adjacency_matrix = adjacency_matrix.toarray() assert np.allclose(adjacency_matrix, adjacency_matrix.T) self.sparse_attributes = sp.issparse(attribute_matrix) if attack_features: if self.sparse_attributes: attrs_unique = np.unique(attribute_matrix.toarray()) # convert attributes to dense to make them attackable attribute_matrix = attribute_matrix.toarray() self.sparse_attributes = False else: attrs_unique = np.unique(attribute_matrix) if len(attrs_unique) > 2 or not np.allclose(attrs_unique, [0, 1]): raise ValueError("Attacks on the node features are currently only supported for binary attributes.") w_init = glorot_uniform weights = [] biases = [] velocities = [] bias_velocities = [] previous_size = self.D for ix, layer_size in enumerate(self.hidden_sizes): weight = tf.get_variable(f"W_{ix + 1}", shape=[previous_size, layer_size], dtype=self.dtype, initializer=w_init()) bias = tf.get_variable(f"b_{ix + 1}", shape=[layer_size], dtype=self.dtype, initializer=w_init()) w_velocity = tf.Variable(np.zeros(weight.shape), dtype=self.dtype, name=f"Velocity_{ix + 1}") b_velocity = tf.Variable(np.zeros(bias.shape), dtype=self.dtype, name=f"b_Velocity_{ix + 1}") weights.append(weight) velocities.append(w_velocity) bias_velocities.append(b_velocity) biases.append(bias) previous_size = layer_size output_weight = tf.get_variable(f"W_{len(self.hidden_sizes) + 1}", shape=[previous_size, self.K], dtype=self.dtype, initializer=w_init()) output_bias = tf.get_variable(f"b_{len(self.hidden_sizes) + 1}", shape=[self.K], dtype=self.dtype, initializer=w_init()) output_velocity = tf.Variable(np.zeros(output_weight.shape), dtype=self.dtype, name=f"Velocity_{len(self.hidden_sizes) + 1}") output_bias_velocity = tf.Variable(np.zeros(output_bias.shape), dtype=self.dtype, name=f"b_Velocity_{len(self.hidden_sizes) + 1}") weights.append(output_weight) velocities.append(output_velocity) biases.append(output_bias) bias_velocities.append(output_bias_velocity) with tf.name_scope("input"): self.adjacency_orig = tf.constant(adjacency_matrix, dtype=self.dtype, name="Adjacency") # The variable storing the changes to the adjacency matrix. Shape [N*N] self.adjacency_changes = tf.Variable(np.zeros(adjacency_matrix.size), dtype=self.dtype, name="Adjacency_delta") # reshape to [N, N] and set the diagonal to 0 tf_adjacency_square = tf.matrix_set_diag(tf.reshape(self.adjacency_changes, adjacency_matrix.shape), tf.zeros(adjacency_matrix.shape[0], dtype=self.dtype)) # Symmetrize and clip to [-1,1] tf_adjacency_delta_symm = tf.clip_by_value(tf_adjacency_square + tf.transpose(tf_adjacency_square), -1, 1) self.modified_adjacency = self.adjacency_orig + tf_adjacency_delta_symm adj_selfloops = tf.add(self.modified_adjacency, tf.diag(tf.ones([self.N], dtype=self.dtype))) inv_degrees = tf.pow(tf.reduce_sum(adj_selfloops, axis=0), -0.5) self.adj_norm = tf.multiply(tf.multiply(adj_selfloops, inv_degrees[:, None]), inv_degrees[None, :], name="normalized_adjacency") if attack_features: self.attributes_orig = tf.constant(attribute_matrix, name="Original_attributes", dtype=self.dtype) self.attribute_changes = tf.Variable(np.zeros(attribute_matrix.size), dtype=self.dtype) tf_attributes_reshaped = tf.reshape(tf.clip_by_value(self.attribute_changes, 0, 1), attribute_matrix.shape) self.attributes = tf.clip_by_value(self.attributes_orig + tf_attributes_reshaped, 0, 1, name="Modified_attributes") else: if self.sparse_attributes: self.attributes = tf.SparseTensor(np.array(attribute_matrix.nonzero()).T, attribute_matrix[attribute_matrix.nonzero()].A1, attribute_matrix.shape) self.attributes = tf.cast(self.attributes, dtype=dtype, name="Attributes_sparse") else: self.attributes = tf.constant(attribute_matrix, name="Attribute_matrix", dtype=self.dtype) self.all_weights = [[w for w in weights]] self.all_biases = [[b for b in biases]] self.all_velocities = [[w for w in velocities]] self.all_velocities_bias = [[w for w in bias_velocities]] if gpu_id is None: config = tf.ConfigProto( device_count={'GPU': 0} ) else: gpu_options = tf.GPUOptions(visible_device_list='{}'.format(gpu_id), allow_growth=True) config = tf.ConfigProto(gpu_options=gpu_options) session = tf.Session(config=config) self.session = session def filter_potential_singletons(self): """ Computes a mask for entries potentially leading to singleton nodes, i.e. one of the two nodes corresponding to the entry have degree 1 and there is an edge between the two nodes. Returns ------- tf.Tensor shape [N, N], float with ones everywhere except the entries of potential singleton nodes, where the returned tensor has value 0. """ degrees = tf.reduce_sum(self.modified_adjacency, axis=0) degree_one = tf.equal(degrees, 1, name="degree_equals_one") resh = tf.reshape(tf.tile(degree_one, [self.N]), [self.N, self.N], name="degree_one_square") l_and = tf.logical_and(resh, tf.equal(self.modified_adjacency, 1)) logical_and_symmetric = tf.logical_or(l_and, tf.transpose(l_and)) flat_mask = tf.cast(tf.logical_not(tf.reshape(logical_and_symmetric, [-1])), self.dtype) return flat_mask def log_likelihood_constraint(self, ll_cutoff): """ Computes a mask for entries that, if the edge corresponding to the entry is added/removed, would lead to the log likelihood constraint to be violated. Parameters ---------- ll_cutoff: float Cutoff value for the unnoticeability constraint. Smaller means stricter constraint. 0.004 corresponds to a p-value of 0.95 in the Chi-square distribution with one degree of freedom. Returns ------- allowed_mask: tf.Tensor shape [N, N], dtype float ones everywhere except the entries that, if an edge is added/removed, would violate the log likelihood constraint. There, the returned tensor has value 0. current_ratio: tf.Tensor, scalar, dtype float current value of the Chi-square test. """ t_d_min = tf.constant(2, dtype=self.dtype) t_possible_edges = tf.constant(np.array(np.triu(np.ones((self.N, self.N)), k=1).nonzero()).T, dtype=tf.uint16) allowed_mask, current_ratio = utils.likelihood_ratio_filter(t_possible_edges, self.modified_adjacency, self.adjacency_orig, t_d_min, ll_cutoff) return allowed_mask, current_ratio class GNNMetaApprox(GNNAttack): """ Class for attacking GNNs with approximate meta gradients. """ def __init__(self, adjacency_matrix, attribute_matrix, labels_onehot, hidden_sizes, train_iters=100, gpu_id=None, _lambda=0.5, dtype=tf.float32): """ Parameters ---------- adjacency_matrix: np.array [N,N] Unweighted, symmetric adjacency matrix where N is the number of nodes. attribute_matrix: sp.spmatrix or np.array [N,D] Attribute matrix where D is the number of attributes per node. labels_onehot: np.array [N,K] One-hot matrix of class labels, where N is the number of nodes. Labels of the unlabeled nodes should come from self-training using only the labels of the labeled nodes. hidden_sizes: list of ints List that defines the number of hidden units per hidden layer. Input and output layers not included. train_iters: int The number of 'inner' training steps of the GCN gpu_id: int or None GPU to use. None means CPU-only _lambda: float between 0 and 1 (inclusive) Weighting of the gradients of the losses of the labeled and unlabeled nodes. _lambda=1 corresponds to only considering the loss on the labeled nodes, _lambda=0 only unlabeled nodes. """ super().__init__(adjacency_matrix, attribute_matrix, labels_onehot, hidden_sizes, train_iters, gpu_id, False, dtype) self.lambda_ = _lambda self.logits = None self.classification_loss = None self.optimizer = None self.train_op = None self.grad_sum = None self.adjacency_grad = None self.grad_sum_add = None self.grad_sum_mod = None self.adjacency_update = None self.ll_ratio = None def build(self, with_relu=False, learning_rate=1e-2, with_bias=False): """ Construct the model and create the weight variables. Parameters ---------- with_relu: bool Whether to use the ReLU activation in the hidden layers learning_rate: float Learning rate for training. with_bias: bool Whether to use the bias terms during the attack. """ with self.graph.as_default(): weights = self.all_weights[-1] bias = self.all_biases[-1] hidden = self.attributes for ix, w in enumerate(weights): b = bias[ix]*float(with_bias) if ix == 0 and self.sparse_attributes: if self.dtype != tf.float32: # sparse matmul is unfortunately not implemented for float16 hidden = self.adj_norm @ tf.cast(tf.sparse_tensor_dense_matmul(tf.cast(hidden, tf.float32), tf.cast(w, tf.float32)), self.dtype) + b else: hidden = self.adj_norm @ tf.sparse_tensor_dense_matmul(hidden, w) + b else: hidden = self.adj_norm @ hidden @ w + b if with_relu: hidden = tf.nn.relu(hidden) self.logits = hidden labels_gather = tf.gather(self.labels_onehot, self.idx_labeled) logits_gather = tf.gather(self.logits, self.idx_labeled) self.classification_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels_gather, logits=logits_gather)) epsilon = 1e-8 if self.dtype == tf.float16: epsilon = 1e-4 # improve numerical stability for half precision self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, epsilon=epsilon) self.train_op = self.optimizer.minimize(self.classification_loss, var_list=[*self.all_weights[0], *self.all_biases[0]]) def make_loss(self, ll_constraint=True, ll_cutoff=0.004): """ Construct the update of the adjacency matrix based on the (approximate) meta gradients. Parameters ---------- ll_constraint: bool Whether to enforce the unnoticeability constraint on the degree distribution. ll_cutoff: float Cutoff value for the unnoticeability constraint. Smaller means stricter constraint. 0.004 corresponds to a p-value of 0.95 in the Chi-square distribution with one degree of freedom. """ with self.graph.as_default(): logits_labeled = tf.gather(self.logits, self.idx_labeled) labels_train = tf.gather(self.labels_onehot, self.idx_labeled) logits_unlabeled = tf.gather(self.logits, self.idx_unlabeled) labels_selftrain = tf.gather(self.labels_onehot, self.idx_unlabeled) loss_labeled = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits_labeled, labels=labels_train)) loss_unlabeled = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits_unlabeled, labels=labels_selftrain)) if self.lambda_ == 1: attack_loss = loss_labeled elif self.lambda_ == 0: attack_loss = loss_unlabeled else: attack_loss = self.lambda_ * loss_labeled + (1 - self.lambda_) * loss_unlabeled # This variable "stores" the gradients of every inner training step. self.grad_sum = tf.Variable(np.zeros(self.N
# SPDX-FileCopyrightText: 2021 <NAME> # SPDX-License-Identifier: MIT """ LED glasses mappings """ # Maps to link IS31FL3741 LEDs to pixels # Full LED glasses 18 x 5 matrix glassesmatrix_ledmap = ( 65535, 65535, 65535, # (0,0) (clipped, corner) 10, 8, 9, # (0,1) / right ring pixel 20 13, 11, 12, # (0,2) / 19 16, 14, 15, # (0,3) / 18 4, 2, 3, # (0,4) / 17 217, 215, 216, # (1,0) / right ring pixel #21 220, 218, 219, # (1,1) 223, 221, 222, # (1,2) 226, 224, 225, # (1,3) 214, 212, 213, # (1,4) 187, 185, 186, # (2,0) 190, 188, 189, # (2,1) 193, 191, 192, # (2,2) 196, 194, 195, # (2,3) 184, 182, 183, # (2,4) 37, 35, 36, # (3,0) 40, 38, 39, # (3,1) 43, 41, 42, # (3,2) 46, 44, 45, # (3,3) 34, 32, 33, # (3,4) 67, 65, 66, # (4,0) 70, 68, 69, # (4,1) 73, 71, 72, # (4,2) 76, 74, 75, # (4,3) 64, 62, 63, # (4,4) 97, 95, 96, # (5,0) 100, 98, 99, # (5,1) 103, 101, 102, # (5,2) 106, 104, 105, # (5,3) 94, 92, 93, # (5,4) 127, 125, 126, # (6,0) / right ring pixel 3 130, 128, 129, # (6,1) 133, 131, 132, # (6,2) 136, 134, 135, # (6,3) 124, 122, 123, # (6,4) 157, 155, 156, # (7,0) 160, 158, 159, # (7,1) 163, 161, 162, # (7,2) / right ring pixel 5 166, 164, 165, # (7,3) / 6 244, 242, 243, # (7,4) / 7 247, 245, 246, # (8,0) 250, 248, 249, # (8,1) 253, 251, 252, # (8,2) 256, 254, 255, # (8,3) 65535, 65535, 65535, # (8,4) (clipped, nose bridge) 345, 347, 346, # (9,0) 342, 344, 343, # (9,1) 267, 269, 268, # (9,2) 263, 265, 264, # (9,3) 65535, 65535, 65535, # (9,4) (clipped, nose bridge) 336, 338, 337, # (10,0) 333, 335, 334, # (10,1) 237, 239, 238, # (10,2) / left ring pixel 19 233, 235, 234, # (10,3) / 18 348, 262, 349, # (10,4) / 17 327, 329, 328, # (11,0) / left ring pixel 21 324, 326, 325, # (11,1) 207, 209, 208, # (11,2) 203, 205, 204, # (11,3) 330, 202, 331, # (11,4) 318, 320, 319, # (12,0) 315, 317, 316, # (12,1) 177, 179, 178, # (12,2) 173, 175, 174, # (12,3) 321, 172, 322, # (12,4) 309, 311, 310, # (13,0) 306, 308, 307, # (13,1) 147, 149, 148, # (13,2) 143, 145, 144, # (13,3) 312, 142, 313, # (13,4) 300, 302, 301, # (14,0) 297, 299, 298, # (14,1) 117, 119, 118, # (14,2) 113, 115, 114, # (14,3) 303, 112, 304, # (14,4) 291, 293, 292, # (15,0) 288, 290, 289, # (15,1) 87, 89, 88, # (15,2) 83, 85, 84, # (15,3) 294, 82, 295, # (15,4) 282, 284, 283, # (16,0) / left ring pixel 3 279, 281, 280, # (16,1) 57, 59, 58, # (16,2) 53, 55, 54, # (16,3) 285, 52, 286, # (16,4) 65535, 65535, 65535, # (17,0) (clipped, corner) 270, 272, 271, # (17,1) / left ring pixel 4 27, 29, 28, # (17,2) / 5 23, 25, 24, # (17,3) / 6 276, 22, 277, # (17,4) / 7 ) # LED glasses 18 x 5 matrix but excluding LEDs shared with the eye rings glassesmatrix_ledmap_no_ring = ( 65535, 65535, 65535, # (0,0) (clipped, corner) 65535, 65535, 65535, # (0,1) / right ring pixel 20 65535, 65535, 65535, # (0,2) / 19 65535, 65535, 65535, # (0,3) / 18 65535, 65535, 65535, # (0,4) / 17 65535, 65535, 65535, # (1,0) / right ring pixel #21 220, 218, 219, # (1,1) 223, 221, 222, # (1,2) 226, 224, 225, # (1,3) 214, 212, 213, # (1,4) 187, 185, 186, # (2,0) 190, 188, 189, # (2,1) 193, 191, 192, # (2,2) 196, 194, 195, # (2,3) 184, 182, 183, # (2,4) 37, 35, 36, # (3,0) 40, 38, 39, # (3,1) 43, 41, 42, # (3,2) 46, 44, 45, # (3,3) 34, 32, 33, # (3,4) 67, 65, 66, # (4,0) 70, 68, 69, # (4,1) 73, 71, 72, # (4,2) 76, 74, 75, # (4,3) 64, 62, 63, # (4,4) 97, 95, 96, # (5,0) 100, 98, 99, # (5,1) 103, 101, 102, # (5,2) 106, 104, 105, # (5,3) 94, 92, 93, # (5,4) 127, 125, 126, # (6,0) / right ring pixel 3 130, 128, 129, # (6,1) 133, 131, 132, # (6,2) 136, 134, 135, # (6,3) 124, 122, 123, # (6,4) 157, 155, 156, # (7,0) 160, 158, 159, # (7,1) 163, 161, 162, # (7,2) / right ring pixel 5 166, 164, 165, # (7,3) / 6 244, 242, 243, # (7,4) / 7 247, 245, 246, # (8,0) 250, 248, 249, # (8,1) 253, 251, 252, # (8,2) 256, 254, 255, # (8,3) 65535, 65535, 65535, # (8,4) (clipped, nose bridge) 345, 347, 346, # (9,0) 342, 344, 343, # (9,1) 267, 269, 268, # (9,2) 263, 265, 264, # (9,3) 65535, 65535, 65535, # (9,4) (clipped, nose bridge) 336, 338, 337, # (10,0) 333, 335, 334, # (10,1) 237, 239, 238, # (10,2) / left ring pixel 19 233, 235, 234, # (10,3) / 18 348, 262, 349, # (10,4) / 17 327, 329, 328, # (11,0) / left ring pixel 21 324, 326, 325, # (11,1) 207, 209, 208, # (11,2) 203, 205, 204, # (11,3) 330, 202, 331, # (11,4) 318, 320, 319, # (12,0) 315, 317, 316, # (12,1) 177, 179, 178, # (12,2) 173, 175, 174, # (12,3) 321, 172, 322, # (12,4) 309, 311, 310, # (13,0) 306, 308, 307, # (13,1) 147, 149, 148, # (13,2) 143, 145, 144, # (13,3) 312, 142, 313, # (13,4) 300, 302, 301, # (14,0) 297, 299, 298, # (14,1) 117, 119, 118, # (14,2) 113, 115, 114, # (14,3) 303, 112, 304, # (14,4) 291, 293, 292, # (15,0) 288, 290, 289, # (15,1) 87, 89, 88, # (15,2) 83, 85, 84, # (15,3) 294, 82, 295, # (15,4) 65535, 65535, 65535, # (16,0) / left ring pixel 3 279, 281, 280, # (16,1) 57, 59, 58, # (16,2) 53, 55, 54, # (16,3) 285, 52, 286, # (16,4) 65535, 65535, 65535, # (17,0) (clipped, corner) 65535, 65535, 65535, # (17,1) / left ring pixel 4 65535, 65535, 65535, # (17,2) / 5 65535, 65535, 65535, # (17,3) / 6 65535, 65535, 65535, # (17,4) / 7 ) # Left LED glasses eye ring left_ring_map = ( 341, 210, 211, # 0 332, 180, 181, # 1 323, 150, 151, # 2 127, 125, 126, # 3 154, 152, 153, # 4 163, 161, 162, # 5 166, 164, 165, # 6 244, 242, 243, # 7 259, 257, 258, # 8 169, 167, 168, # 9 139, 137, 138, # 10 109, 107, 108, # 11 79, 77, 78, # 12 49, 47, 48, # 13 199, 197, 198, # 14 229, 227, 228, # 15 19, 17, 18, # 16 4, 2, 3, # 17 16, 14, 15, # 18 13, 11, 12, # 19 10, 8, 9, # 20 217, 215, 216, # 21 7, 5, 6, # 22 350, 240, 241, # 23 ) # Left LED glasses eye ring excluding inner LEDs shared with the 18 x 5 matrix left_ring_map_no_inner = ( 341, 210, 211, # 0 332, 180, 181, # 1 323, 150, 151, # 2 65535, 65535, 65535, # 3 65535, 65535, 65535, # 4 65535, 65535, 65535, # 5 65535, 65535, 65535, # 6 65535, 65535, 65535, # 7 259, 257, 258, # 8 169, 167, 168, # 9 139, 137, 138, # 10 109,
# -*- coding: utf-8 -*- """ Q02 from First assignment letter (c) Backpropagation, Stochastic with Delta Rule and Momentum Term Class Deep Learning UFPB Mar, 31 2018. <NAME> GitHub @rafaelmm """ #################################### # IMPORTANT THINGS HERE # # #################################### import numpy as np from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt from sklearn.utils import shuffle # ----------------------------------- # Dataset Generator # ----------------------------------- def dataset_generator(n_tra, n_val=0, n_tes=0): """ Generates a dataset that represents the ternary message system. @params: n_tra - the number of training examples to be generated n_val - the number of validation examples in dataset n_tes - the number of test examples in dataset returns a tuple of NumPy arrays in the format of (training inputs, training targets, validation input, ... validation target, test input, test targets) """ total = n_tra + n_val + n_tes # Each example needs to be a randomly vector of three positions # with binary (0,1) number. Also, it has additive noise # of radialy 0.1 decimals. The target needs to be a eigth position # one hot encoded vector with binary (-1 , 1) without noise. allset_in = np.random.randint(2, size=(total, 3)) allset_noise = np.random.rand(total, 3) * 0.2 - 0.1 allset_target = np.full((total, 8), -1) # allset_target adjust bin to one_hot_binary for x in range(total): # obtaining the position bin to dec p = int(''.join(str(y) for y in allset_in[x]), 2) allset_target[x, p] = 1 # adding noise to dataset allset_in = np.add(allset_in, allset_noise) # scattering the dataset tra_in = allset_in[0:n_tra, :] tra_out = allset_target[0:n_tra, :] val_in = allset_in[n_tra:(n_tra+n_val), :] val_out = allset_target[n_tra:(n_tra+n_val), :] tes_in = allset_in[(total-n_tes):total, :] tes_out = allset_target[(total-n_tes):total, :] return (tra_in, tra_out, val_in, val_out, tes_in, tes_out) # ----------------------------------- # Plot Error Viewer # ----------------------------------- def plot_error(error_vector): """ Function to show the progress of the error vector """ plt.figure() plt.plot(range(len(error_vector)), error_vector) plt.title('Error value evolution') plt.xlabel('Number of Epochs') plt.ylabel('Error value') plt.show() # ----------------------------------- # Weights Structure Creator # ----------------------------------- def weights_init(net_arc): """ Function that initialize the weights randomly using the numpy library. @Param: w - weightsvalues """ num_layers = np.shape(net_arc)[0] max_neu = np.max(net_arc) w = np.zeros(shape=([num_layers-1, max_neu, max_neu+1])) for layer in range(num_layers-1): for neuron in range(net_arc[layer+1]): for conexion in range(net_arc[layer]+1): w[layer][neuron][conexion] = np.random.random() - 0.5 return w # ----------------------------------- # Activation Functions # ----------------------------------- def activation_func(func_type, z): """ Implements the different kind of activation functions including: line - linear function sigm - sigmoidal tanh - hyperbolic tangent ptanh - smothly hyperbolic tangent relu - Rectfied step - Heavside (binary step 0 or 1) """ if func_type == 'line': return z if func_type == 'sigm': return (1 / (1 + np.exp(-z))) if func_type == 'tanh': return (np.tanh(z)) if func_type == 'ptanh': a = 1.7159 b = 2/3 return (a*np.tanh(b*z)) if func_type == 'relu': return np.max(np.array([0, z])) if func_type == 'step': return (1 if z > 0.5 else 0) # ----------------------------------- # Derivated Activation Functions # ----------------------------------- def deriv_activation_func(func_type, z): """ Implements the different kind of derivated activation functions including: line - linear function sigm - sigmoidal tanh - hyperbolic tangent ptanh - smothly hyperbolic tangent relu - Rectfied step - Heavside (binary step 0 or 1) """ if func_type == 'line': return 1 if func_type == 'sigm': return (1 / (1 + np.exp(-z))) - ((1 / (1 + np.exp(-z))) ** 2) if func_type == 'tanh': return (1/((np.cosh(z) ** 2))) if func_type == 'ptanh': a = 1.7159 b = 2/3 return (a*b*(1-(np.tanh(b*z)**2))) if func_type == 'relu': return np.max(np.array([0, z])) if func_type == 'step': return (1 if z > 0.5 else 0) # ----------------------------------- # Activation Functions Plotter # ----------------------------------- def visualizeActivationFunc(func_type, z): """ Makes a plot of the activation function with input z """ fz = [] for i in range(len(z)): fz.append(activation_func(func_type, z[i])) plt.figure() plt.plot(z, fz) plt.xlabel('Input') plt.ylabel('Output Values') plt.show() # ----------------------------------- # Derivated Activation Functions Plotter # ----------------------------------- def visualizeDerivActivationFunc(func_type, z): """ Makes a plot of the activation function with input z """ fz = [] for i in range(len(z)): fz.append(deriv_activation_func(func_type, z[i])) plt.figure() plt.plot(z, fz) plt.xlabel('Input') plt.ylabel('Output Values') plt.show() # ----------------------------------- # Forward Step of Neural Net # ----------------------------------- def forward(net_arc, net_func, w, b, X): """ The forward pathway of the mlp neural net, it calculates the result of the structure considering the X input. It passthroug each neuron of each layer. """ num_layers = np.shape(net_arc)[0] max_neu = np.max(net_arc) Y = np.zeros(shape=([num_layers, max_neu])) for layer in range(num_layers): if layer == 0: for neuron in range(net_arc[layer]): Y[layer, neuron] = X[neuron] else: for neuron in range(net_arc[layer]): act_sum = np.dot(w[layer-1, neuron, 1:(net_arc[layer-1]+1)], Y[layer-1, 0:net_arc[layer-1]]) + \ w[layer-1, neuron, 0]*b Y[layer, neuron] = activation_func(net_func[layer], act_sum) # returning the output layer, the last one return Y[num_layers-1, 0:(net_arc[num_layers-1])] # ----------------------------------- # Predict Limiar Output # ----------------------------------- def predict(output): """ It's just to round prediction of the perceptron to making results more conforming with the real target value """ y_pred = [1 if x >= 0 else -1 for x in output] return y_pred # ----------------------------------- # Training Function Stochastic (shuffling all dataset on each epoch) # ----------------------------------- def training_net_delta_mom(net_arc, net_func, w, b, data_in, target, learn_rate, alfa, num_epochs, err_max=0.0001): """ This function execute the algorithm of weights adjustes following the steps of measure the error and changing the w structure by its gradient @args w - weights structure data_in - training dataset target - training targets of dataset num_epochs - the total overall loopings to adjuste the w learn_rate - the coefficient that ponderate the changes in w alfa - momentum term err_max - a specified value for maximum error acepted in training """ # num of layers num_layers = np.shape(net_arc)[0] # max num of neurons on any layer max_neu = np.max(net_arc) # num of examples in input dataset num_examples = np.shape(data_in)[0] # output size (last network layer size) out_size = net_arc[len(net_arc)-1] # local error for each example (or instantaneous error) err_local = np.zeros(shape=(num_examples, 1)) # The value of output for each neuron for an especific example Y = np.zeros(shape=([num_layers, max_neu])) # The value of soma(the accumulator vefore the activator function) soma = np.zeros(shape=([num_layers, max_neu])) # The result of gardient descendent for each neuron gradi = np.zeros(shape=([num_layers, max_neu])) # auxiliar temporary weights oldw = np.copy(w) # the vector error to total epohcs (mean squarred error) err_vec = np.zeros((num_epochs, 1)) # Starting the trainning loop for ep in range(num_epochs): # cleaning local error and mse for each epoch err_local = np.zeros(shape=(num_examples, 1)) ms_error = 0 # for each example # Stochastic - shuffle in each epoch for example in list(shuffle(range(num_examples))): # for example in range(num_examples): # ---------------- # 1 - Forward Step # ---------------- for layer in range(num_layers): if layer == 0: for neuron in range(net_arc[layer]): Y[layer, neuron] = data_in[example, neuron] else: for neuron in range(net_arc[layer]): soma[layer, neuron] = np.dot(w[layer-1, neuron, 1:(net_arc[layer-1]+1)], Y[layer-1, 0:net_arc[layer-1]]) + w[layer-1, neuron, 0]*b Y[layer, neuron] = activation_func(net_func[layer], soma[layer, neuron]) # --------------------- # 2 - Error Measurement # --------------------- # to calculate example squared error err_example = np.zeros(shape=(out_size, 1)) for neuron in range(out_size): err_example[neuron] = target[example, neuron] - Y[num_layers-1, neuron] # err_example = err_example ** 2 err_local[example] = np.sum(err_example ** 2) / 2 # --------------------- # 3 - Backpropagation # --------------------- # Just last and hidden layers (not input layer) for layer in range(num_layers-1, 0, -1): # if last layer if layer == (num_layers - 1): for neuron in range(out_size): gradi[layer, neuron] = err_example[neuron] * deriv_activation_func(net_func[layer], soma[layer, neuron]) # bias update deltaw = learn_rate * b * gradi[layer, neuron] aux = w[layer-1, neuron, 0] mom = alfa * (aux - oldw[layer-1, neuron, 0]) w[layer-1, neuron, 0] = aux + deltaw + mom oldw[layer-1, neuron, 0] = aux # other weights for weight in range(net_arc[layer-1]): deltaw = learn_rate * gradi[layer, neuron] * Y[layer-1, weight] aux = w[layer-1, neuron, weight+1] mom = alfa * (aux - oldw[layer-1, neuron, weight+1]) w[layer-1, neuron, weight+1] = aux + deltaw + mom oldw[layer-1, neuron, weight+1] = aux # if hidden layer (not last) else: for neuron in range(net_arc[layer]): soma_gradi = 0 # for each neuron on step ahead layer for kneuron in range(net_arc[layer+1]): soma_gradi += gradi[layer+1, kneuron] * oldw[layer, kneuron, neuron+1] gradi[layer, neuron] = soma_gradi * deriv_activation_func(net_func[layer], soma[layer, neuron]) # bias update deltaw = learn_rate * b * gradi[layer, neuron]
<gh_stars>0 import sys import os import json import re # --- re_pattern_package_fullname = r"([A-Za-z0-9_-]+)::([A-Za-z0-9_-]+)" re_pattern_account_id = r"([0-9]+)" re_pattern_stock_package_name = r"(abstract_rtsp_media_source|hdmi_data_sink)" re_pattern_interface_fullname = r"([A-Za-z0-9_-]+)::([A-Za-z0-9_-]+)\.([A-Za-z0-9_-]+)" re_pattern_edge_fullname = r"([A-Za-z0-9_-]+)\.([A-Za-z0-9_-]+)" re_pattern_edge_parameter_node_name = r"([A-Za-z0-9_-]+)" # --- def load_json_file(filepath): with open(filepath) as fd: return json.load(fd) # --- class PackageBase: pass class JsonPackage(PackageBase): def __init__( self, filepath ): self.d = load_json_file(filepath) class AbstractRtspMediaSourcePackage(PackageBase): def __init__(self): self.d = { "nodePackage" : { "envelopeVersion": "2021-01-01", "name": "abstract_rtsp_media_source", "version": "1.0", "description": "", "assets" : [ # placeholder information for stock package { "name": "rtsp_v1_asset", "implementations": [ { "type": "system", "assetUri":"source/video/camera/rtsp/source_rtsp" } ] } ], "interfaces" : [ { "name": "rtsp_v1_interface", "category": "media_source", "asset": "rtsp_v1_asset", "outputs": [ { "name": "video_out", "type": "media", }, ], }, ], } } class HdmiDataSinkPackage(PackageBase): def __init__(self): self.d = { "nodePackage" : { "envelopeVersion": "2021-01-01", "name": "hdmi_data_sink", "version": "1.0", "description": "", "assets" : [ # placeholder information for stock package { "name": "hdmi0_asset", "implementations": [ { "type": "data_sink", "assetUri": "", "descriptorUri": "" } ] } ], "interfaces" : [ { "name": "hdmi0", "category": "data_sink", "asset": "hdmi0_asset", "inputs": [ { "name": "video_in", "type": "media", }, ], }, ], } } # --- class Node: def __init__(self): pass class PackagedNode(Node): def __init__( self, interface_elm, asset_elm ): Node.__init__(self) self.interface_elm = interface_elm self.asset_elm = asset_elm def lookup_input_output( self, list_name, name ): for elm in self.interface_elm[list_name]: if elm["name"] == name: return elm interface_name = self.interface_elm["name"] raise ValueError( f"'{name}' not found in interface '{interface_name}.{list_name}'" ) class BusinessLogicContainerNode(PackagedNode): def __init__( self, interface_elm, asset_elm ): PackagedNode.__init__( self, interface_elm, asset_elm ) self.inputs = {} self.outputs = {} def connect_producer( self, input_name, producer_node, producer_output_name ): print( "Connecting producer", input_name, producer_node, producer_output_name ) if isinstance( producer_node, PackagedNode ): input_elm = self.lookup_input_output( "inputs", input_name ) output_elm = producer_node.lookup_input_output( "outputs", producer_output_name ) input_type = input_elm["type"] output_type = output_elm["type"] if input_type != output_type: raise ValueError( f"Interface input/output types mismatch {input_type} != {output_type}" ) self.inputs[input_name] = producer_node def connect_consumer( self, output_name, consumer_node, consumer_input_name ): if isinstance( consumer_node, PackagedNode ): output_elm = self.lookup_input_output( "outputs", output_name ) input_elm = consumer_node.lookup_input_output( "inputs", consumer_input_name ) input_type = input_elm["type"] output_type = output_elm["type"] if input_type != output_type: raise ValueError( f"Interface input/output types mismatch {input_type} != {output_type}" ) self.outputs[output_name] = consumer_node class ModelNode(PackagedNode): def __init__( self, interface_elm, asset_elm ): PackagedNode.__init__( self, interface_elm, asset_elm ) class MediaSourceRtspCameraNode(PackagedNode): def __init__( self, interface_elm, asset_elm ): PackagedNode.__init__( self, interface_elm, asset_elm ) class HdmiDataSinkNode(PackagedNode): def __init__( self, interface_elm, asset_elm ): PackagedNode.__init__( self, interface_elm, asset_elm ) class ParameterNode(Node): def __init__( self, node_elm ): t = node_elm["interface"] v = node_elm["value"] types = { "float32" : float, "int32" : int, "string" : str, "boolean" : bool, } if t not in types: raise ValueError( f"Unknown parameter type {t}" ) if not isinstance( v, types[t] ): raise TypeError( f"Expected type is {t} but value is {type(v)}" ) self.value = v self.node_elm = node_elm def lookup_input_output( self, list_name, name ): print( "self.node_elm", self.node_elm ) for elm in self.interface_elm[list_name]: if elm["name"] == name: return elm interface_name = self.interface_elm["name"] raise ValueError( f"'{name}' not found in interface '{interface_name}.{list_name}'" ) # --- class Graph: def __init__(self): self.packages = {} self.nodes = {} self.business_logic_node = None def load( self, app_dir_top, app_name ): self.app_dir_top = app_dir_top self.app_name = app_name graph_filepath = os.path.join( app_dir_top, "graphs", app_name, "graph.json" ) print( "Loading graph:", graph_filepath ) print( "" ) graph_json = load_json_file(graph_filepath) print( "Loading packages" ) # load dependent package JSON files, and descriptor JSON files for package_elm in graph_json["nodeGraph"]["packages"]: package_fullname = package_elm["name"] package_version = package_elm["version"] print( f"Processing {package_fullname}" ) re_result = re.match( re_pattern_package_fullname, package_fullname ) if re_result: account_id = re_result.group(1) package_name = re_result.group(2) if account_id == "panorama": if package_name=="abstract_rtsp_media_source": self.packages[package_name] = AbstractRtspMediaSourcePackage() elif package_name=="hdmi_data_sink": self.packages[package_name] = HdmiDataSinkPackage() else: raise ValueError( f"Unsupported stock package name : {package_name}" ) else: # FIXME : check if this matches actual account id. self.load_package_from_json( account_id, package_name, package_version ) else: raise ValueError( f"Package name didn't match the expected pattern : {package_fullname}" ) print( "Loaded packages:", self.packages.keys() ) print( "" ) print( "Creating nodes" ) # construct node graph data combining with already loaded package/asset data for node_elm in graph_json["nodeGraph"]["nodes"]: node_name = node_elm["name"] interface_fullname = node_elm["interface"] print( f"Processing {node_name}" ) re_result = re.match( re_pattern_interface_fullname, interface_fullname ) if re_result: account_id = re_result.group(1) # FIXME : check if this matches actual account id. package_name = re_result.group(2) interface_name = re_result.group(3) if account_id == "panorama": if package_name=="abstract_rtsp_media_source": pass elif package_name=="hdmi_data_sink": pass else: raise ValueError( f"Unsupported stock package name : {package_name}" ) else: # FIXME : check if this matches actual account id. pass interface_elm = self.lookup_interface_from_package( package_name, interface_name ) interface_category = interface_elm["category"] interface_asset_name = interface_elm["asset"] print( "package_name:", package_name ) print( "interface_name:", interface_name ) print( "interface_category:", interface_category ) print( "interface_asset_name:", interface_asset_name ) try: asset_elm = self.lookup_asset_from_package( package_name, interface_asset_name ) except KeyError as e: if interface_category == "business_logic": # In test-utility, we don't require asset for business logic. Use default information if missing. asset_elm = { "name": "code", "implementations": [ { "type": "container", "assetUri": "", "descriptorUri": "" } ] } else: raise asset_implementation_elm = asset_elm["implementations"][0] # FIXME : assuming "implementations" is always length=1 asset_implementation_type = asset_implementation_elm["type"] if interface_category=="business_logic": if asset_implementation_type == "container": print( "Creating BusinessLogicContainerNode:", node_name ) node = BusinessLogicContainerNode( interface_elm, asset_elm ) if self.business_logic_node: raise ValueError( "Multiple business logic nodes are not supported" ) self.business_logic_node = node self.nodes[ node_name ] = node else: raise ValueError( f"Unsupported asset type '{asset_implementation_type}' for interface category '{interface_category}'" ) elif interface_category=="ml_model": if asset_implementation_type == "model": print( "Creating ModelNode:", node_name ) node = ModelNode( interface_elm, asset_elm ) self.nodes[ node_name ] = node else: raise ValueError( f"Unsupported asset type '{asset_implementation_type}' for interface category '{interface_category}'" ) elif interface_category=="media_source": print("asset_implementation_type:", asset_implementation_type) if asset_implementation_type == "system": asset_implementation_uri = asset_implementation_elm["assetUri"] if asset_implementation_uri == "source/video/camera/rtsp/source_rtsp": print( "Creating MediaSourceRtspCameraNode:", node_name ) node = MediaSourceRtspCameraNode( interface_elm, asset_elm ) self.nodes[ node_name ] = node else: raise ValueError( f"Unsupported asset uri '{asset_implementation_uri}' for asset implementation type '{asset_implementation_type}'" ) else: raise ValueError( f"Unsupported asset type '{asset_implementation_type}' for interface category '{interface_category}'" ) elif interface_category=="data_sink": print( "Creating HdmiDataSinkNode:", node_name ) node = HdmiDataSinkNode( interface_elm, asset_elm ) self.nodes[ node_name ] = node else: raise ValueError( f"Unknown interface category '{interface_category}'" ) elif interface_fullname in ("boolean", "float32", "int32", "string"): print( "Creating ParameterNode:", node_name ) node = ParameterNode( node_elm ) self.nodes[ node_name ] = node else: raise ValueError( f"Interface name didn't match the expected pattern : {interface_fullname}" ) print( "Created nodes:", self.nodes.keys() ) print( "" ) print( "Connecting edges" ) # connect nodes using interfaces and edges for edge_elm in graph_json["nodeGraph"]["edges"]: print( "Resolving edge:", edge_elm ) edge_producer = edge_elm["producer"] edge_consumer = edge_elm["consumer"] re_result = re.match( re_pattern_edge_fullname, edge_producer ) if re_result: edge_producer_node_name = re_result.group(1) edge_producer_output_name = re_result.group(2) else: re_result = re.match( re_pattern_edge_parameter_node_name, edge_producer ) if re_result: edge_producer_node_name = re_result.group(1) edge_producer_output_name = None else: raise ValueError( f"Edge name didn't match the expected pattern : {edge_producer}" ) re_result = re.match( re_pattern_edge_fullname, edge_consumer ) if re_result: edge_consumer_node_name = re_result.group(1) edge_consumer_input_name = re_result.group(2) else: raise ValueError( f"Edge name didn't match the expected pattern : {edge_consumer}" ) producer_node = self.nodes[edge_producer_node_name] consumer_node = self.nodes[edge_consumer_node_name] if isinstance( consumer_node, BusinessLogicContainerNode ): consumer_node.connect_producer( edge_consumer_input_name, producer_node, edge_producer_output_name ) elif isinstance( producer_node, BusinessLogicContainerNode ): producer_node.connect_consumer( edge_producer_output_name, consumer_node, edge_consumer_input_name ) print( "Inputs/Outputs of business logic container:" ) print( "Inputs:", self.business_logic_node.inputs ) print( "Outputs:", self.business_logic_node.outputs ) def load_package_from_json( self, account_id, package_name, package_version ): package_dir = os.path.join( self.app_dir_top, "packages", f"{account_id}-{package_name}-{package_version}" ) package_filepath = os.path.join( package_dir, "package.json" ) print( "Loading package:", package_filepath ) package = JsonPackage( package_filepath ) #package.dump() # name fied in package.json is optional. check if it is same as graph.json if exists. if "name" in package.d["nodePackage"]: package_name_in_package = package.d["nodePackage"]["name"] if package_name_in_package != package_name: raise ValueError( f"Package name doesn't match : {package_name} != {package_name_in_package}" ) # version fied in package.json is optional. check if it is same as graph.json if exists. if "version" in package.d["nodePackage"]: package_version_in_package = package.d["nodePackage"]["version"] if package_version_in_package != package_version: raise ValueError( f"Package version doesn't match : {package_version} != {package_version_in_package}" ) self.packages[package_name]
# Copyright 2016 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Instalog plugin base. Defines plugin classes (buffer, input, output), and a PluginAPI interface for plugins to access. """ import inspect import logging import os import sys import time from cros.factory.instalog import log_utils from cros.factory.instalog.utils import arg_utils from cros.factory.instalog.utils import time_utils class LoadPluginError(Exception): """The plugin encountered an error while loading.""" class WaitException(Exception): """The plugin currently cannot perform the requested operation.""" class UnexpectedAccess(Exception): """The plugin is accessing data when it should be stopped.""" class StateCommandError(Exception): """A state command on the plugin sandbox could not be run.""" class EventStreamExpired(Exception): """The event stream in question is expired and can no longer be used.""" class PluginCallError(Exception): """An error occurred when calling a method on the plugin instance.""" class ConfigError(Exception): """An error occurred when loading the config file.""" class PluginAPI: """Defines an interface for plugins to call.""" def SaveStore(self, plugin): """See Plugin.SaveStore.""" raise NotImplementedError def GetDataDir(self, plugin): """See Plugin.GetDataDir.""" raise NotImplementedError def IsStopping(self, plugin): """See Plugin.IsStopping.""" raise NotImplementedError def IsFlushing(self, plugin): """See Plugin.IsStopping.""" raise NotImplementedError def Emit(self, plugin, events): """See InputPlugin.Emit.""" raise NotImplementedError def NewStream(self, plugin): """See OutputPlugin.NewStream.""" raise NotImplementedError def EventStreamNext(self, plugin, plugin_stream, timeout): """See BufferEventStream.Next.""" raise NotImplementedError def EventStreamCommit(self, plugin, plugin_stream): """See BufferEventStream.Commit.""" raise NotImplementedError def EventStreamAbort(self, plugin, plugin_stream): """See BufferEventStream.Abort.""" raise NotImplementedError class Plugin(log_utils.LoggerMixin): """Base class for a buffer plugin, input plugin, or output plugin in Instalog. This is a base class for BufferPlugin, InputPlugin and OutputPlugin. Plugins should subclass from these three classes. This base class processes plugin arguments set through the ARGS variable, and sets some shortcut functions to the logger. """ def __init__(self, config, logger_name, store, plugin_api): """Plugin constructor. Args: config: A dictionary representing arguments for this plugin. Will be validated against the specification in ARGS. logger: A reference to the logger for this plugin instance. store: A reference to the plugin's store dictionary. plugin_api: An instance of a class implementing PluginAPI. Raises: arg_utils.ArgError if the arguments fail to validate. """ # Try parsing the arguments according to the spec in ARGS. arg_spec = getattr(self, 'ARGS', []) self.args = arg_utils.Args(*arg_spec).Parse(config) # log_utils.LoggerMixin creates shortcut functions for convenience. self.logger = logging.getLogger(logger_name) # Plugin data store dictionary. self.store = store # Save the core API to a private instance variable. self._plugin_api = plugin_api def SetUp(self): """Sets up any connections or threads needed. This function should return to the caller after the plugin has been initialized. """ return def Main(self): """Main thread of the plugin, started by Instalog. Should regularly check self.IsStopping(). In the case that IsStopping() returns True, this thread should complete execution as soon as possible. """ return def TearDown(self): """Shuts down any extra threads and connections used by the plugin. This function should only return to the caller after all threads and extra processes used by the plugin have stopped. """ return def SaveStore(self): """Saves the data store dictionary to disk. Plugins may make many updates to the store (inefficient to write on every change), or might only want to write it to disk in certain situations to ensure atomicity. Thus the action of saving the store is exposed for the plugin to handle. """ return self._plugin_api.SaveStore(self) def GetDataDir(self): """Returns the data directory of this plugin. This directory is set aside by Instalog core for the plugin to store any data. Its value can be expected to be consistent across plugin restarts or Instalog restarts. Raises: UnexpectedAccess if the plugin instance is in some unexpected state and is trying to access core functionality that it should not. """ return self._plugin_api.GetDataDir(self) def GetNodeID(self): """Returns the node ID of this plugin. Raises: UnexpectedAccess if the plugin instance is in some unexpected state and is trying to access core functionality that it should not. """ return self._plugin_api.GetNodeID(self) def IsStopping(self): """Returns whether or not the plugin may continue running. If True is returned, the plugin should continue running as usual. If False is returned, the plugin should shut down as soon as it finishes its work. Should be checked regularly in the Main thread, as well as any other threads started by the plugin. Raises: UnexpectedAccess if the plugin instance is in some unexpected state and is trying to access core functionality that it should not. """ return self._plugin_api.IsStopping(self) def IsFlushing(self): """Returns whether or not the plugin is flushing. If True is returned, the plugin should continue running as usual. If False is returned, the plugin should process any remaining data, and not wait for further data to be included in the current "batch". Raises: UnexpectedAccess if the plugin instance is in some unexpected state and is trying to access core functionality that it should not. """ return self._plugin_api.IsFlushing(self) def Sleep(self, secs): """Suspends execution of the current thread for the given number of seconds. When a plugin is requested to stop, it might be in the middle of a time.sleep call. This provides an alternative sleep function, which will return immediately when a plugin changes to the STOPPING state. Should typically be used at the end of an iteration of a plugin's Main while loop. For example: while not self.IsStopping(): # ... do some work ... self.Sleep(self.args.interval) """ end_time = time_utils.MonotonicTime() + secs while (time_utils.MonotonicTime() < end_time and (not self.IsStopping() and not self.IsFlushing())): time.sleep(min(1, secs)) class BufferPlugin(Plugin): """Base class for a buffer plugin in Instalog.""" def AddConsumer(self, consumer_id): """Subscribes the specified consumer ID to the buffer. Args: consumer_id: Unique identifier of the consumer being added. """ raise NotImplementedError def RemoveConsumer(self, consumer_id): """Unsubscribes the specified consumer ID from the buffer. Args: consumer_id: Unique identifier of the consumer being removed. """ raise NotImplementedError def ListConsumers(self, details=0): """Returns information about consumers subscribed to the buffer. Returns: A dictionary, where keys are consumer IDs, and values are tuples of (completed_count, total_count) representing progress through Event processing. """ raise NotImplementedError def Produce(self, events): """Produces events to be stored into the buffer. Args: events: List of Event objects to be inserted into the buffer. Returns: True if successful, False otherwise. """ raise NotImplementedError def Consume(self, consumer_id): """Returns a BufferEventStream to consume events from the buffer. Args: consumer_id: ID of the consumer for which to create a BufferEventStream. Returns: True if successful, False otherwise. """ raise NotImplementedError class BufferEventStream: """Event stream interface that a buffer needs to implement. Objects implementing BufferEventStream should be returned when the buffer plugin's Consume method is called. """ def Next(self): """Returns the next available Event.""" raise NotImplementedError def Commit(self): """Marks this batch of Events as successfully processed. Marks this BufferEventStream as expired. Raises: EventStreamExpired if this BufferEventStream is expired. """ raise NotImplementedError def Abort(self): """Aborts processing this batch of Events. Marks this BufferEventStream as expired. This BufferEventStream's Events will still be returned on subsequent Next calls from other BufferEventStream objects. Raises: EventStreamExpired if this BufferEventStream is expired. """ raise NotImplementedError class InputPlugin(Plugin): """Base class for an input plugin in Instalog.""" def Emit(self, events): """Emits a set of Event objects to be passed to Instalog's buffer. Args: events: Either a single Event or a list of Event objects to be emitted. Returns: True on success, False on failure. In either case, the plugin is expected to deal appropriately with retrying, or letting its source know that a failure occurred. Raises: UnexpectedAccess if the plugin instance is in some unexpected state and is trying to access core functionality that it should not. """ try: return self._plugin_api.Emit(self, events) except WaitException: return False class OutputPlugin(InputPlugin): """Base class for an output plugin in Instalog. An output plugin may also Emit events, thus OutputPlugin inherits from InputPlugin as its parent class. """ def NewStream(self): """Gets a new EventStream object to retrieve output events. Returns: An EventStream object (see datatypes module). None if we currently do not have permission to create a new EventStream object (i.e. plugin is not in one of the allowed states), or if the data
service @property def id(self) -> int: return self._id @id.setter def id(self, id): self._id = id class Command: def __init__(self, needs_admin: bool = None, help_cmd: str = None, description: str = None, cmd: str = None, payload_type: Union[PayloadType, str] = None, operator: Union[Operator, str] = None, creation_time: str = None, version: int = None, is_exit: bool = None, id: int = None, apfell_version: int = None, params: List[Union['CommandParameters', Dict[str, str]]] = None, transforms: List[Union['CommandTransform', Dict[str, str]]] = None): self._needs_admin = needs_admin self._help_cmd = help_cmd self._description = description self._cmd = cmd if isinstance(payload_type, PayloadType) or payload_type is None: self._payload_type = payload_type else: self._payload_type = PayloadType(ptype=payload_type) if isinstance(operator, Operator) or operator is None: self._operator = operator else: self._operator = Operator(username=operator) self._creation_time = creation_time self._version = version self._is_exit = is_exit self._id = id self._apfell_version = apfell_version if params is not None and params != []: if isinstance(params, list): self._params = [CommandParameters(**x) if isinstance(x, Dict) else x for x in params] else: raise ValueError("params must be a list") else: self._params = None if transforms is not None and transforms != []: print(transforms) if isinstance(transforms, list): print(transforms) self._transforms = [CommandTransform(**x) if isinstance(x, Dict) else x for x in params] else: raise ValueError("transforms must be a list") else: self._transforms = None def to_json(self): r = {} for k in vars(self): if getattr(self, k) is not None: try: r[k[1:]] = getattr(self, k) except: r[k[1:]] = json.dumps(getattr(self, k), default=lambda o: o.to_json()) return r def __str__(self): return json.dumps(self.to_json()) def __eq__(self, other): """Overrides the default implementation""" if isinstance(other, Command): return (self._cmd == other.cmd and self._payload_type.ptype == other.payload_type.ptype) or (self._id is not None and other.id is not None and self._id == other.id) return False @property def needs_admin(self) -> bool: return self._needs_admin @needs_admin.setter def needs_admin(self, needs_admin): self._needs_admin = needs_admin @property def help_cmd(self) -> str: return self._help_cmd @help_cmd.setter def help_cmd(self, help_cmd): self._help_cmd = help_cmd @property def description(self) -> str: return self._description @description.setter def description(self, description): self._description = description @property def cmd(self) -> str: return self._cmd @cmd.setter def cmd(self, cmd): self._cmd = cmd @property def payload_type(self) -> PayloadType: return self._payload_type @payload_type.setter def payload_type(self, payload_type): if isinstance(payload_type, PayloadType) or payload_type is None: self._payload_type = payload_type else: self._payload_type = PayloadType(ptype=payload_type) @property def operator(self) -> Operator: return self._operator @operator.setter def operator(self, operator): if isinstance(operator, Operator) or operator is None: self._operator = operator else: self._operator = Operator(username=operator) @property def creation_time(self) -> str: return self._creation_time @creation_time.setter def creation_time(self, creation_time): self._creation_time = creation_time @property def version(self) -> int: return self._version @version.setter def version(self, version): self._version = version @property def is_exit(self) -> bool: return self._is_exit @is_exit.setter def is_exit(self, is_exit): self._is_exit = is_exit @property def id(self) -> int: return self._id @id.setter def id(self, id): self._id = id @property def apfell_version(self) -> int: return self._apfell_version @apfell_version.setter def apfell_version(self, apfell_version): self._apfell_version = apfell_version @property def params(self) -> List['CommandParameters']: return self._params @params.setter def params(self, params): if isinstance(params, list): self._params = [CommandParameters(**x) if isinstance(x, Dict) else x for x in params] elif params is None or params == []: self._params = None else: raise ValueError("params must be a list") @property def transforms(self) -> List['CommandTransform']: return self._transforms @transforms.setter def transforms(self, transforms): if isinstance(transforms, list): self._transforms = [CommandTransform(**x) if isinstance(x, Dict) else x for x in transforms] elif transforms is None or transforms == []: self._transforms = None else: raise ValueError("transforms must be a list") class CommandParameters: def __init__(self, command: Union[Command, int] = None, # database ID for the corresponding command cmd: str = None, # cmd string the command refers to (like shell) payload_type: Union[PayloadType, str] = None, name: str = None, type: str = None, hint: str = None, choices: Union[List[str], str] = None, required: bool = None, operator: Union[Operator, str] = None, id: int = None): if isinstance(command, Command) or command is None: self._command = command else: self._command = Command(id=command) self._cmd = cmd if isinstance(payload_type, PayloadType) or payload_type is None: self._payload_type = payload_type else: self._payload_type = PayloadType(ptype=payload_type) self._name = name self._type = type self._hint = hint if isinstance(choices, List) or choices is None: self._choices = choices else: self._choices = choices.split("\n") self._required = required if isinstance(operator, Operator) or operator is None: self._operator = operator else: self._operator = Operator(username=operator) self._id = id def to_json(self): r = {} for k in vars(self): if getattr(self, k) is not None: try: r[k[1:]] = getattr(self, k) except: r[k[1:]] = json.dumps(getattr(self, k), default=lambda o: o.to_json()) return r def __str__(self): return json.dumps(self.to_json()) def __eq__(self, other): """Overrides the default implementation""" if isinstance(other, CommandParameters): return (self._name == other.name and (self._command == other.command) or (self._cmd == other.cmd)) or (self._id is not None and other.id is not None and self._id == other.id) return False @property def command(self) -> Command: return self._command @command.setter def command(self, command): if isinstance(command, Command) or command is None: self._command = command else: self._command = Command(id=command) @property def name(self) -> str: return self._name @name.setter def name(self, name): self._name = name @property def type(self) -> str: return self._type @type.setter def type(self, type): self._type = type @property def hint(self) -> str: return self._hint @hint.setter def hint(self, hint): self._hint = hint @property def choices(self) -> List[str]: return self._choices @choices.setter def choices(self, choices): if isinstance(choices, List) or choices is None: self._choices = choices else: self._choices = choices.split("\n") @property def required(self) -> bool: return self._required @required.setter def required(self, required): self._required = required @property def operator(self) -> Operator: return self._operator @operator.setter def operator(self, operator): if isinstance(operator, Operator) or operator is None: self._operator = operator else: self._operator = Operator(username=operator) @property def id(self) -> int: return self._id @id.setter def id(self, id): self._id = id @property def cmd(self) -> str: return self._cmd @cmd.setter def cmd(self, cmd): self._cmd = cmd @property def payload_type(self) -> PayloadType: return self._payload_type @payload_type.setter def payload_type(self, payload_type): if isinstance(payload_type, PayloadType) or payload_type is None: self._payload_type = payload_type else: self._payload_type = PayloadType(ptype=payload_type) class CommandTransform: def __init__(self, command: Union[Command, str] = None, command_id: int = None, payload_type: Union[PayloadType, str] = None, name: str = None, operator: Union[Operator, str] = None, timestamp: str = None, order: int = None, parameter: str = None, operation: Union[Operation, str] = None, active: bool = None, id: int = None): if isinstance(command, Command) or command is None: self._command = command else: self.command = Command(cmd=command, id=command_id) self._command_id = command_id if isinstance(payload_type, PayloadType) or payload_type is None: self._payload_type = payload_type else: self._payload_type = PayloadType(ptype=payload_type) self._name = name if isinstance(operator, Operator) or operator is None: self._operator = operator else: self._operator = Operator(username=operator) self._timestamp = timestamp self._order = order self._parameter = parameter if isinstance(operation, Operation) or operation is None: self._operation = operation else: self._operation = Operation(name=operation) self._active = active self._id = id def to_json(self): r = {} for k in vars(self): if getattr(self, k) is not None: try: r[k[1:]] = getattr(self, k) except: r[k[1:]] = json.dumps(getattr(self, k), default=lambda o: o.to_json()) return r def __str__(self): return json.dumps(self.to_json()) def __eq__(self, other): """Overrides the default implementation""" if isinstance(other, CommandTransform): return self._id == other.id return False @property def command(self) -> Command: return self._command @command.setter def command(self, command): if isinstance(command, Command) or command is None: self._command = command else: self._command = Command(cmd=command, id=self._command_id) @property def command_id(self) -> int: return self._command_id @command_id.setter def command_id(self, command_id): self._command_id = command_id @property def payload_type(self) -> PayloadType: return self._payload_type @payload_type.setter def payload_type(self, payload_type): if isinstance(payload_type, PayloadType) or payload_type is None: self._payload_type = payload_type else: self._payload_type = PayloadType(ptype=payload_type) @property def name(self) -> str: return self._name @name.setter def name(self, name): self._name = name @property def operator(self) -> Operator: return self._operator @operator.setter def operator(self, operator): if isinstance(operator, Operator) or operator is None: self._operator = operator else: self._operator = Operator(username=operator) @property def timestamp(self) -> str: return self._timestamp @timestamp.setter def timestamp(self, timestamp): self._timestamp = timestamp @property def order(self) -> int: return self._order @order.setter def order(self, order): self._order = order @property def parameter(self) -> str: return self._parameter @parameter.setter def parameter(self, parameter): self._parameter = parameter @property def operation(self) -> Operation: return self._operation @operation.setter def operation(self, operation): if isinstance(operation, Operation) or operation is None: self._operation = operation else: self._operation = Operation(name=operation) @property def
a rank-3 tensor (3D array) with a vector using tensor product and tensor contraction. Parameters ---------- T: sp.Array of dimensions n x m x k v: sp.Array of dimensions k x 1 Returns ------- A: sp.Array of dimensions n x m Example ------- >>>T = sp.Array([[[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]], [[13, 16, 19, 22], [14, 17, 20, 23], [15, 18, 21, 24]]]) ⎡⎡1 4 7 10⎤ ⎡13 16 19 22⎤⎤ ⎢⎢ ⎥ ⎢ ⎥⎥ ⎢⎢2 5 8 11⎥ ⎢14 17 20 23⎥⎥ ⎢⎢ ⎥ ⎢ ⎥⎥ ⎣⎣3 6 9 12⎦ ⎣15 18 21 24⎦⎦ >>>v = sp.Array([1, 2, 3, 4]).reshape(4, 1) ⎡1⎤ ⎢ ⎥ ⎢2⎥ ⎢ ⎥ ⎢3⎥ ⎢ ⎥ ⎣4⎦ >>>tensor3_vector_product(T, v) ⎡⎡70⎤ ⎡190⎤⎤ ⎢⎢ ⎥ ⎢ ⎥⎥ ⎢⎢80⎥ ⎢200⎥⎥ ⎢⎢ ⎥ ⎢ ⎥⎥ ⎣⎣90⎦ ⎣210⎦⎦ """ import sympy as sp assert(T.rank() == 3) # reshape v to ensure 1D vector so that contraction do not contain x 1 # dimension v.reshape(v.shape[0], ) p = sp.tensorproduct(T, v) return sp.tensorcontraction(p, (2, 3)) def test_tensor_product(): T = sp.Array([[[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]], [[13, 16, 19, 22], [14, 17, 20, 23], [15, 18, 21, 24]]]) v = sp.Array([1, 2, 3, 4]).reshape(4, 1) display(T, v) display(tensor3_vector_product(T, v)) # test_tensor_product() def draw_ellipse(ax, xc, A, scale=1.0, show_axis=False): """Construct an ellipse representation of a 2x2 matrix. Parameters ---------- ax: plot axis xc: np.array 2 x 1 center of the ellipse mat: np.array 2 x 2 scale: float (default=1.0) scale factor of the principle axes """ eigen_values, eigen_vectors = np.linalg.eig(A) idx = np.abs(eigen_values).argsort()[::-1] eigen_values = eigen_values[idx] eigen_vectors = eigen_vectors[:, idx] phi = np.rad2deg(np.arctan2(eigen_vectors[1, 0], eigen_vectors[0, 0])) ellipse = patches.Ellipse(xy=(xc[0, 0], xc[1, 0]), width=2 * scale * eigen_values[0], height=2 * scale * eigen_values[1], angle=phi, linewidth=2, fill=False) ax.add_patch(ellipse) # axis if show_axis: x_axis = np.array([[xc[0, 0], xc[1, 0]], [xc[0, 0] + scale * np.abs(eigen_values[0]) * eigen_vectors[0, 0], xc[1, 0] + scale * np.abs(eigen_values[0]) * eigen_vectors[1, 0]]]) y_axis = np.array([[xc[0, 0], xc[1, 0]], [xc[0, 0] + scale * eigen_values[1] * eigen_vectors[0, 1], xc[1, 0] + scale * eigen_values[1] * eigen_vectors[1, 1]]]) ax.plot(x_axis[:, 0], x_axis[:, 1], '-r', label='x-axis') ax.plot(y_axis[:, 0], y_axis[:, 1], '-g', label='y-axis') return phi, eigen_values, eigen_vectors def test_ellipse(): fig, ax = plt.subplots() xc = vec([0, 0]) M = mat([[2, 1], [1, 2]]) # M = mat([[-2.75032375, -11.82938331], [-11.82938331, -53.5627191]]) print np.linalg.matrix_rank(M) phi, l, v = draw_ellipse(ax, xc, M, 1, True) print(phi, l, v) ax.set_xlabel('x') ax.set_ylabel('y') ax.axis('equal') ax.legend() fig.show() # test_ellipse() def calculate_feasible_muscle_set(feasible_muscle_set_analysis, base_name, t_start, t_end, dt, speed): """ Calculates the feasible muscle space of a simulation. Parameters ---------- feasible_muscle_set_analysis: FeasibleMuscleSetAnalysis base_name: base name of simulation files t_start: t start t_end: t end dt: time interval for reporting speed: speed of animation """ print('Calculating feasible muscle set ...') time = np.linspace(t_start, t_end, t_end / dt + 1, endpoint=True) for i, t in enumerate(tqdm(time)): visualize_feasible_muscle_set(feasible_muscle_set_analysis, t, base_name + str(i).zfill(6), 'png') command = 'convert -delay ' + \ str(speed * dt) + ' -loop 0 ' + base_name + \ '*.png ' + base_name + 'anim.gif' print(command) try: os.system(command) except: print('unable to execute command') def visualize_feasible_muscle_set(feasible_muscle_set_analysis, t, fig_name='fig/feasible_muscle_set', format='png'): """ Visualization of the feasible muscle space. Parameters ---------- feasible_muscle_set_analysis: FeasibleMuscleSetAnalysis t: time instance to evaluate the feasible fig_name: figure name for saving format: format (e.g. .png, .pdf, .eps) """ fig, ax = plt.subplots(1, 3, figsize=(15, 5)) feasible_muscle_set_analysis.visualize_simple_muscle(t, ax) fig.suptitle('t = ' + str(np.around(t, decimals=2)), y=1.00, fontsize=12, fontweight='bold') fig.tight_layout() fig.savefig(fig_name + '.' + format, format=format, dpi=300) fig.savefig(fig_name + '.pdf', format='pdf', dpi=300) fig.savefig(fig_name + '.eps', format='eps', dpi=300) def apply_generalized_force(f): """Applies a generalized force (f) in a manner that is consistent with Newton's 3rd law. Parameters ---------- f: generalized force """ n = len(f) tau = [] for i in range(0, n): if i == n - 1: tau.append(f[i]) else: tau.append(f[i] - f[i + 1]) return tau def custom_exponent(q, A, k, q_lim): """ Sympy representation of custom exponent function. f(q) = A e^(k (q - q_lim)) / (150) ** k """ return A * sp.exp(k * (q - q_lim)) / (148.42) ** k def coordinate_limiting_force(q, q_low, q_up, a, b): """A continuous coordinate limiting force for a rotational joint. It applies an exponential force when approximating a limit. The convention is that positive force is generated when approaching the lower limit and negative when approaching the upper. For a = 1, F ~= 1N at the limits. Parameters ---------- q: generalized coordinate q_low: lower limit q_up: upper limit a: force at limits b: rate of the slop Note: q, q_low, q_up must have the same units (e.g. rad) """ return custom_exponent(q_low + 5, a, b, q) - custom_exponent(q, a, b, q_up - 5) def test_limiting_force(): """ """ q = np.linspace(0, np.pi / 4, 100, endpoint=True) f = [coordinate_limiting_force(qq, 0, np.pi / 4, 1, 50) for qq in q] plt.plot(q, np.array(f)) plt.show() def gaussian(x, a, m, s): """Gaussian function. f(x) = a e^(-(x - m)^2 / (2 s ^2)) Parameters ---------- x: x a: peak m: mean s: standard deviation For a good approximation of an impulse at t = 0.3 [x, 1, 0.3, 0.01]. """ return a * np.exp(- (x - m) ** 2 / (2 * s ** 2)) def test_gaussian(): """ """ t = np.linspace(0, 2, 200) y = [gaussian(tt, 0.4, 0.4, 0.01) for tt in t] plt.plot(t, y) plt.show() def rotate(origin, point, angle): """Rotate a point counterclockwise by a given angle around a given origin. The angle should be given in radians. """ R = np.asmatrix([[np.cos(angle), - np.sin(angle)], [np.sin(angle), np.cos(angle)]]) q = origin + R * (point - origin) return q def sigmoid(t, t0, A, B): """Implementation of smooth sigmoid function. Parameters ---------- t: time to be evalutaed t0: delay A: magnitude B: slope Returns ------- (y, y', y'') """ return (A * (np.tanh(B * (t - t0)) + 1) / 2, A * B * (- np.tanh(B * (t - t0)) ** 2 + 1) / 2, - A * B ** 2 * (- np.tanh(B * (t - t0)) ** 2 + 1) * np.tanh(B * (t - t0))) def test_sigmoid(): """ """ t, A, B, t0 = sp.symbols('t A B t0') y = A / 2 * (sp.tanh(B * (t - t0 - 1)) + 1) yd = sp.diff(y, t) ydd = sp.diff(yd, t) print('\n', y, '\n', yd, '\n', ydd) tt = np.linspace(-2, 2, 100) yy = np.array([sigmoid(x, 0.5, 2, 5) for x in tt]) plt.plot(tt, yy) plt.show() def plot_corr_ellipses(data, ax=None, **kwargs): """For a given correlation matrix "data", plot the correlation matrix in terms of ellipses. parameters ---------- data: Pandas dataframe containing the correlation of the data (df.corr()) ax: axis (e.g. fig, ax = plt.subplots(1, 1)) kwards: keywords arguments (cmap="Greens") https://stackoverflow.com/questions/34556180/ how-can-i-plot-a-correlation-matrix-as-a-set-of-ellipses-similar-to-the-r-open """ M = np.array(data) if not M.ndim == 2: raise ValueError('data must be a 2D array') if ax is None: fig, ax = plt.subplots(1, 1, subplot_kw={'aspect': 'equal'}) ax.set_xlim(-0.5, M.shape[1] - 0.5) ax.set_ylim(-0.5, M.shape[0] - 0.5) # xy locations of each ellipse center xy = np.indices(M.shape)[::-1].reshape(2, -1).T # set the relative sizes of the major/minor axes according to the strength of # the positive/negative correlation w = np.ones_like(M).ravel() h = 1 - np.abs(M).ravel() a = 45 * np.sign(M).ravel() ec = EllipseCollection(widths=w, heights=h, angles=a, units='x', offsets=xy, transOffset=ax.transData, array=M.ravel(), **kwargs) ax.add_collection(ec) # if data is a DataFrame, use the row/column names as tick labels if isinstance(data, pd.DataFrame): ax.set_xticks(np.arange(M.shape[1])) ax.set_xticklabels(data.columns, rotation=90) ax.set_yticks(np.arange(M.shape[0])) ax.set_yticklabels(data.index) return ec def get_cmap(n, name='hsv'): """Returns a function that maps each index in 0, 1, ..., n-1 to a distinct RGB color; the keyword argument name must be a standard mpl colormap name. """ return plt.cm.get_cmap(name, n) def assert_if_same(A, B): """Assert whether two quantities (value, vector, matrix) are the same.""" assert np.isclose( np.array(A).astype(np.float64), np.array(B).astype(np.float64)).all() == True, 'quantities not equal' def christoffel_symbols(M, q, i, j, k): """ M [n x n]: inertia mass matrix q [n x 1]: generalized coordinates i, j, k : the indexies to be computed """ return sp.Rational(1, 2) * (sp.diff(M[i, j],
in enumerate(integer_coords)] sc = (sample_coords_minus1, sample_coords, sample_coords_plus1, sample_coords_plus2) quaternary_codes = [quaternary(n, n_dim) for n in range(4 ** n_dim)] sz = integer_coords[0].get_shape().as_list() batch_coords = tf.tile(tf.reshape(tf.range(sz[0]), [sz[0]] + [1] * (len(sz) - 1)), [1] + sz[1:]) def make_sample(code): return tf.gather_nd(params, tf.stack([batch_coords] + [sc[c][i] for i, c in enumerate(code)], -1)) samples = tf.stack([make_sample(code) for code in quaternary_codes]) # [64, n_batch, nx, ny, nz, 3] weights = tf.stack([tf.reduce_prod(tf.gather(b_spline_weights, code), axis=0) for code in quaternary_codes]) # [64, n_batch, nx, ny, nz, 3] ddfs = tf.reduce_sum(weights * samples, axis=0, name='ddfs') return tf.add(grid, ddfs, name='warped_grid_ffd'), ddfs class SpatialTransformer(tf.keras.layers.Layer): """ N-D Spatial Transformer Tensorflow / Keras Layer The Layer can handle both affine and dense transforms. Both transforms are meant to give a 'shift' from the current position. Therefore, a dense transform gives displacements (not absolute locations) at each voxel, and an affine transform gives the *difference* of the affine matrix from the identity matrix. If you find this function useful, please cite: Unsupervised Learning for Fast Probabilistic Diffeomorphic Registration <NAME>, <NAME>, <NAME>, <NAME> MICCAI 2018. Originally, this code was based on voxelmorph code, which was in turn transformed to be dense with the help of (affine) STN code via https://github.com/kevinzakka/spatial-transformer-network Since then, we've re-written the code to be generalized to any dimensions, and along the way wrote grid and interpolation functions ToDo: The sampling coordinates in this version are defined in the atlas space. Need to modify such that the sampling coordinates are defined in the target space. """ def __init__(self, interp_method='linear', indexing='ij', single_transform=False, **kwargs): """ Parameters: interp_method: 'linear' or 'nearest' single_transform: whether a single transform supplied for the whole batch indexing (default: 'ij'): 'ij' (matrix) or 'xy' (cartesian) 'xy' indexing will have the first two entries of the flow (along last axis) flipped compared to 'ij' indexing """ self.interp_method = interp_method self.ndims = None self.inshape = None self.single_transform = single_transform assert indexing in ['ij', 'xy'], "indexing has to be 'ij' (matrix) or 'xy' (cartesian)" self.indexing = indexing super(self.__class__, self).__init__(**kwargs) def build(self, input_shape): """ input_shape should be a list for two inputs: input1: image. input2: transform Tensor if affine: should be a N x N+1 matrix *or* a N*(N+1) tensor (which will be reshape to N x (N+1) and an identity row added) if not affine: should be a *vol_shape x N """ if len(input_shape) > 2: raise Exception('Spatial Transformer must be called on a list of length 2.' 'First argument is the image, second is the transform.') # set up number of dimensions self.ndims = len(input_shape[0]) - 2 self.inshape = input_shape vol_shape = input_shape[0][1:-1] trf_shape = input_shape[1][1:] # the transform is an affine iff: # it's a 1D Tensor [dense transforms need to be at least ndims + 1] # it's a 2D Tensor and shape == [N+1, N+1]. # [dense with N=1, which is the only one that could have a transform shape of 2, would be of size Mx1] self.is_affine = len(trf_shape) == 1 or \ (len(trf_shape) == 2 and all([f == (self.ndims + 1) for f in trf_shape])) # check sizes if self.is_affine and len(trf_shape) == 1: ex = self.ndims * (self.ndims + 1) if trf_shape[0] != ex: raise Exception('Expected flattened affine of len %d but got %d' % (ex, trf_shape[0])) if not self.is_affine: if trf_shape[-1] != self.ndims: raise Exception('Offset flow field size expected: %d, found: %d' % (self.ndims, trf_shape[-1])) # confirm built self.built = True def call(self, inputs): """ Parameters inputs: list with two entries """ # check shapes assert len(inputs) == 2, "inputs has to be len 2, found: %d" % len(inputs) vol = inputs[0] trf = inputs[1] # necessary for multi_gpu models... vol = tf.reshape(vol, [-1, *self.inshape[0][1:]]) trf = tf.reshape(trf, [-1, *self.inshape[1][1:]]) # go from affine if self.is_affine: trf = tf.map_fn(lambda x: self._single_aff_to_shift(x, vol.shape[1:-1]), trf, dtype=tf.float32) # prepare location shift if self.indexing == 'xy': # shift the first two dimensions trf_split = tf.split(trf, trf.shape[-1], axis=-1) trf_lst = [trf_split[1], trf_split[0], *trf_split[2:]] trf = tf.concat(trf_lst, -1) # map transform across batch if self.single_transform: fn = lambda x: self._single_transform([x, trf[0, :]]) return tf.map_fn(fn, vol, dtype=tf.float32) else: return tf.map_fn(self._single_transform, [vol, trf], dtype=tf.float32) def _single_aff_to_shift(self, trf, volshape): if len(trf.shape) == 1: # go from vector to matrix trf = tf.reshape(trf, [self.ndims, self.ndims + 1]) # note this is unnecessarily extra graph since at every batch entry we have a tf.eye graph # trf += tf.eye(self.ndims + 1)[:self.ndims, :] # add identity, hence affine is a shift from identity return affine_to_shift(trf, volshape, shift_center=True) def _single_transform(self, inputs): return transform(inputs[0], inputs[1], interp_method=self.interp_method) class Resize(tf.keras.layers.Layer): """ N-D Resize Tensorflow / Keras Layer Note: this is not re-shaping an existing volume, but resizing, like scipy's "Zoom" If you find this function useful, please cite: Anatomical Priors in Convolutional Networks for Unsupervised Biomedical Segmentation,Dalca AV, <NAME>, Sabuncu MR CVPR 2018 Since then, we've re-written the code to be generalized to any dimensions, and along the way wrote grid and interpolation functions """ def __init__(self, zoom_factor, interp_method='linear', **kwargs): """ Parameters: interp_method: 'linear' or 'nearest' 'xy' indexing will have the first two entries of the flow (along last axis) flipped compared to 'ij' indexing """ self.zoom_factor = zoom_factor self.interp_method = interp_method self.ndims = None self.inshape = None super(Resize, self).__init__(**kwargs) def build(self, input_shape): """ input_shape should be an element of list of one inputs: input1: volume should be a *vol_shape x N """ if isinstance(input_shape[0], (list, tuple)) and len(input_shape) > 1: raise Exception('Resize must be called on a list of length 1.' 'First argument is the image, second is the transform.') if isinstance(input_shape[0], (list, tuple)): input_shape = input_shape[0] # set up number of dimensions self.ndims = len(input_shape) - 2 self.inshape = input_shape # confirm built self.built = True def call(self, inputs): """ Parameters inputs: volume of list with one volume """ # check shapes if isinstance(inputs, (list, tuple)): assert len(inputs) == 1, "inputs has to be len 1. found: %d" % len(inputs) vol = inputs[0] else: vol = inputs # necessary for multi_gpu models... vol = tf.reshape(vol, [-1, *self.inshape[1:]]) # map transform across batch return tf.map_fn(self._single_resize, vol, dtype=tf.float32) def compute_output_shape(self, input_shape): output_shape = [input_shape[0]] output_shape += [int(f * self.zoom_factor) for f in input_shape[1:-1]] output_shape += [input_shape[-1]] return tuple(output_shape) def _single_resize(self, inputs): return resize(inputs, self.zoom_factor, interp_method=self.interp_method) ####################################################################### # Helper functions ####################################################################### def b_spline(i, u): with tf.name_scope('b_spline'): if i == -1: return (1 - u) ** 3 / 6 elif i == 0: return (3 * u ** 3 - 6 * u ** 2 + 4) / 6 elif i == 1: return (-3 * u ** 3 + 3 * u ** 2 + 3 * u + 1) / 6 elif i == 2: return u ** 3 / 6 def quaternary(n, rank): nums = [] while n: n, r = divmod(n, 4) nums.append(r) nums += [0] * (rank - len(nums)) return list(reversed(nums)) ####################################################################### # random affine data augmentation ####################################################################### def random_affine_matrix(rot_std=np.pi / 12, scl_std=0.1, tra_std=0., she_std=0.1, name='random_affine_params'): """ Generate a random affine transformation matrix. :param rot_std: standard deviation of rotation parameters :param scl_std: standard deviation of scaling parameters :param tra_std: standard deviation of translation parameters :param she_std: standard deviation of shearing parameters :return: a tensor of shape [1, 12], composed of affine transformation parameters """ ax, ay, az = np.random.normal(0, rot_std, 3) sx, sy, sz = np.random.normal(1, scl_std, 3) p, q, r = np.random.normal(0, tra_std, 3) hxy, hxz, hyx, hyz, hzx, hzy = np.random.normal(0, she_std, 6) # Translation matrix Tr = np.asarray([[1, 0, 0, p], [0, 1, 0, q], [0, 0, 1, r], [0, 0, 0, 1]], dtype=np.float32) # Scaling matrix Sc = np.asarray([[sx, 0, 0, 0], [0, sy, 0, 0], [0, 0, sz, 0], [0, 0, 0, 1]], dtype=np.float32) # Shear matrix Sh = np.asarray([[1, hxy, hxz, 0], [hyx, 1, hyz, 0], [hzx, hzy, 1, 0], [0, 0, 0, 1]], dtype=np.float32) # Rotation matrix about each axis Rx = np.asarray([[1, 0, 0, 0], [0, np.cos(ax), -np.sin(ax), 0], [0, np.sin(ax), np.cos(ax), 0], [0,
grounding[GroundingIndex(2,0,"paragraphs of #REF")] = GroundingKey.make_table_grounding("Paragraphs") sparql_query = create_sparql_query_from_qdmr(qdmr, schema, rdf_graph, grounding) result_correct = QueryResult.execute_query_sql(sql_query, schema) result = QueryResult.execute_query_to_rdf(sparql_query, rdf_graph, schema, virtuoso_server=VIRTUOSO_SPARQL_SERVICE) equal, message = result.is_equal_to(result_correct, require_column_order=True, require_row_order=True, return_message=True) self.assertTrue(equal, message) class TestSpiderDev414(unittest.TestCase): @timeout(ONE_TEST_TIMEOUT) def test_spider_dev(self): """Test an entry from spider dataset """ split_name = "dev" i_query = 414 db_id = get_db_id(split_name, i_query) rdf_graph, schema = get_graph_and_schema(split_name, db_id) sql_query = get_sql_query(split_name, i_query) # SQL: # SELECT name , Level_of_membership FROM visitor WHERE Level_of_membership > 4 ORDER BY age DESC # Question: Find the name and membership level of the visitors whose membership level is higher than 4, and sort by their age from old to young. correct_sparql_query = textwrap.dedent("""\ SELECT ?Name ?Level_of_membership WHERE { ?visitor arc:visitor:Level_of_membership ?Level_of_membership. FILTER(?Level_of_membership > 4). ?visitor arc:visitor:Name ?Name. ?visitor arc:visitor:Age ?Age. } ORDER BY DESC(?Age)""") qdmr = get_qdmr_from_break(split_name, i_query) qdmr.args[-1] = ["#7", "#6", "from old to young"] # break_program: # SELECT['visitors'] # PROJECT['membership levels of #REF', '#1'] # COMPARATIVE['#1', '#2', 'is higher than 4'] # PROJECT['names of #REF', '#3'] # PROJECT['membership levels of #REF', '#3'] # PROJECT['ages of #REF', '#3'] # UNION['#4', '#5'] # SORT['#7', '#6', 'from old to young'] grounding = {} grounding[GroundingIndex(0,0,"visitors")] = GroundingKey.make_table_grounding("visitor") grounding[GroundingIndex(1,0,"membership levels of #REF")] = GroundingKey.make_column_grounding("visitor", "Level_of_membership") grounding[GroundingIndex(2,2,"is higher than 4")] = GroundingKey.make_comparative_grounding(">", "4") grounding[GroundingIndex(3,0,"names of #REF")] = GroundingKey.make_column_grounding("visitor", "Name") grounding[GroundingIndex(4,0,"membership levels of #REF")] = GroundingKey.make_column_grounding("visitor", "Level_of_membership") grounding[GroundingIndex(5,0,"ages of #REF")] = GroundingKey.make_column_grounding("visitor", "Age") grounding[GroundingIndex(7,2,"from old to young")] = GroundingKey.make_sortdir_grounding(ascending=False) sparql_query = create_sparql_query_from_qdmr(qdmr, schema, rdf_graph, grounding) result_correct = QueryResult.execute_query_sql(sql_query, schema) result = QueryResult.execute_query_to_rdf(sparql_query, rdf_graph, schema, virtuoso_server=VIRTUOSO_SPARQL_SERVICE) equal, message = result.is_equal_to(result_correct, require_column_order=True, require_row_order=True, return_message=True) self.assertTrue(equal, message) class TestSpiderDev426(unittest.TestCase): @timeout(ONE_TEST_TIMEOUT) def test_spider_dev(self): """Test an entry from spider dataset """ split_name = "dev" i_query = 426 db_id = get_db_id(split_name, i_query) rdf_graph, schema = get_graph_and_schema(split_name, db_id) sql_query = get_sql_query(split_name, i_query) # SQL: # SELECT t1.name FROM visitor AS t1 JOIN visit AS t2 ON t1.id = t2.visitor_id JOIN museum AS t3 ON t3.Museum_ID = t2.Museum_ID # WHERE t3.open_year < 2009 # INTERSECT # SELECT t1.name FROM visitor AS t1 JOIN visit AS t2 ON t1.id = t2.visitor_id JOIN museum AS t3 ON t3.Museum_ID = t2.Museum_ID WHERE # t3.open_year > 2011 # Question: What is the name of the visitor who visited both a museum opened before 2009 and a museum opened after 2011? correct_sparql_query = textwrap.dedent("""\ SELECT ?Name ?Level_of_membership WHERE { ?visitor arc:visitor:Level_of_membership ?Level_of_membership. FILTER(?Level_of_membership > 4). ?visitor arc:visitor:Name ?Name. ?visitor arc:visitor:Age ?Age. } ORDER BY DESC(?Age)""") qdmr = get_qdmr_from_break(split_name, i_query) # break_program: # #1: SELECT['museums'] # #2: FILTER['#1', 'that opened before 2009'] # #3: FILTER['#1', 'that opened after 2011'] # #4: PROJECT['the visitor of #REF', '#1'] # #5: INTERSECTION['#4', '#2', '#3'] # #6: PROJECT['name of #REF', '#5'] grounding = {} grounding[GroundingIndex(0,0,"museums")] = GroundingKey.make_table_grounding("museum") grounding[GroundingIndex(1,1,"that opened before 2009")] = GroundingKey.make_comparative_grounding("<", "2009", GroundingKey.make_column_grounding("museum", "Open_Year")) grounding[GroundingIndex(2,1,"that opened after 2011")] = GroundingKey.make_comparative_grounding(">", "2011", GroundingKey.make_column_grounding("museum", "Open_Year")) grounding[GroundingIndex(3,0,"the visitor of #REF")] = GroundingKey.make_table_grounding("visitor") grounding[GroundingIndex(5,0,"name of #REF")] = GroundingKey.make_column_grounding("visitor", "Name") sparql_query = create_sparql_query_from_qdmr(qdmr, schema, rdf_graph, grounding) result_correct = QueryResult.execute_query_sql(sql_query, schema) result = QueryResult.execute_query_to_rdf(sparql_query, rdf_graph, schema, virtuoso_server=VIRTUOSO_SPARQL_SERVICE) equal, message = result.is_equal_to(result_correct, require_column_order=True, require_row_order=False, return_message=True) self.assertTrue(equal, message) @timeout(ONE_TEST_TIMEOUT) def test_spider_dev_swap_args(self): """Test an entry from spider dataset """ split_name = "dev" i_query = 426 db_id = get_db_id(split_name, i_query) rdf_graph, schema = get_graph_and_schema(split_name, db_id) sql_query = get_sql_query(split_name, i_query) # SQL: # SELECT t1.name FROM visitor AS t1 JOIN visit AS t2 ON t1.id = t2.visitor_id JOIN museum AS t3 ON t3.Museum_ID = t2.Museum_ID # WHERE t3.open_year < 2009 # INTERSECT # SELECT t1.name FROM visitor AS t1 JOIN visit AS t2 ON t1.id = t2.visitor_id JOIN museum AS t3 ON t3.Museum_ID = t2.Museum_ID WHERE # t3.open_year > 2011 # Question: What is the name of the visitor who visited both a museum opened before 2009 and a museum opened after 2011? correct_sparql_query = textwrap.dedent("""\ SELECT ?Name ?Level_of_membership WHERE { ?visitor arc:visitor:Level_of_membership ?Level_of_membership. FILTER(?Level_of_membership > 4). ?visitor arc:visitor:Name ?Name. ?visitor arc:visitor:Age ?Age. } ORDER BY DESC(?Age)""") qdmr = get_qdmr_from_break(split_name, i_query) # break_program: # #1: SELECT['museums'] # #2: FILTER['#1', 'that opened before 2009'] # #3: FILTER['#1', 'that opened after 2011'] # #4: PROJECT['the visitor of #REF', '#1'] # #5: INTERSECTION['#4', '#2', '#3'] # #6: PROJECT['name of #REF', '#5'] grounding = {} grounding[GroundingIndex(0,0,"museums")] = GroundingKey.make_table_grounding("museum") grounding[GroundingIndex(1,1,"that opened before 2009")] = GroundingKey.make_comparative_grounding(">", "2011", GroundingKey.make_column_grounding("museum", "Open_Year")) grounding[GroundingIndex(2,1,"that opened after 2011")] = GroundingKey.make_comparative_grounding("<", "2009", GroundingKey.make_column_grounding("museum", "Open_Year")) grounding[GroundingIndex(3,0,"the visitor of #REF")] = GroundingKey.make_table_grounding("visitor") grounding[GroundingIndex(5,0,"name of #REF")] = GroundingKey.make_column_grounding("visitor", "Name") sparql_query = create_sparql_query_from_qdmr(qdmr, schema, rdf_graph, grounding) result_correct = QueryResult.execute_query_sql(sql_query, schema) result = QueryResult.execute_query_to_rdf(sparql_query, rdf_graph, schema, virtuoso_server=VIRTUOSO_SPARQL_SERVICE) equal, message = result.is_equal_to(result_correct, require_column_order=True, require_row_order=False, return_message=True) self.assertTrue(equal, message) @timeout(ONE_TEST_TIMEOUT) def test_spider_dev_intersection_via_double_filter(self): """Test an entry from spider dataset """ split_name = "dev" i_query = 426 db_id = get_db_id(split_name, i_query) rdf_graph, schema = get_graph_and_schema(split_name, db_id) sql_query = get_sql_query(split_name, i_query) # SQL: # SELECT t1.name FROM visitor AS t1 JOIN visit AS t2 ON t1.id = t2.visitor_id JOIN museum AS t3 ON t3.Museum_ID = t2.Museum_ID # WHERE t3.open_year < 2009 # INTERSECT # SELECT t1.name FROM visitor AS t1 JOIN visit AS t2 ON t1.id = t2.visitor_id JOIN museum AS t3 ON t3.Museum_ID = t2.Museum_ID WHERE # t3.open_year > 2011 # Question: What is the name of the visitor who visited both a museum opened before 2009 and a museum opened after 2011? correct_sparql_query = textwrap.dedent("""\ SELECT ?Name WHERE { { SELECT ?visitor WHERE { { SELECT ?visitor WHERE { ?visitor_ID arc:visit:visitor_ID:visitor:ID ?visitor. ?visit arc:visit:visitor_ID ?visitor_ID. ?visit arc:visit:Museum_ID ?Museum_ID. ?Museum_ID arc:visit:Museum_ID:museum:Museum_ID ?museum. ?museum arc:museum:Open_Year ?Open_Year. FILTER(?Open_Year < "2009"). } GROUP BY ?visitor } ?visitor_ID_1 arc:visit:visitor_ID:visitor:ID ?visitor. ?visit_1 arc:visit:visitor_ID ?visitor_ID_1. ?visit_1 arc:visit:Museum_ID ?Museum_ID_1. ?Museum_ID_1 arc:visit:Museum_ID:museum:Museum_ID ?museum_1. ?museum_1 arc:museum:Open_Year ?Open_Year_1. FILTER(?Open_Year_1 > "2011"). } GROUP BY ?visitor } ?visitor arc:visitor:Name ?Name. }""") qdmr = get_qdmr_from_break(split_name, i_query) # break_program: # #1: SELECT['visitor'] # #2: FILTER['#1', 'that visited a museum opened before 2009'] # #3: FILTER['#2', 'that visited a museum opened after 2011'] # #4: PROJECT['name of #REF', '#3'] qdmr = QdmrInstance(["select", "filter", "filter", "project"], [["visitor"], ['#1', 'that visited a museum opened before 2009'], ['#2', 'that visited a museum opened after 2011'], ['name of #REF', '#3'] ]) grounding = {} grounding[GroundingIndex(0,0,"visitor")] = GroundingKey.make_table_grounding("visitor") grounding[GroundingIndex(1,1,"that visited a museum opened before 2009")] = GroundingKey.make_comparative_grounding("<", "2009", GroundingKey.make_column_grounding("museum", "Open_Year")) grounding[GroundingIndex(2,1,"that visited a museum opened after 2011")] = GroundingKey.make_comparative_grounding(">", "2011", GroundingKey.make_column_grounding("museum", "Open_Year")) grounding[GroundingIndex(3,0,"name of #REF")] = GroundingKey.make_column_grounding("visitor", "Name") sparql_query = create_sparql_query_from_qdmr(qdmr, schema, rdf_graph, grounding) result_correct = QueryResult.execute_query_sql(sql_query, schema) result = QueryResult.execute_query_to_rdf(sparql_query, rdf_graph, schema, virtuoso_server=VIRTUOSO_SPARQL_SERVICE) equal, message = result.is_equal_to(result_correct, require_column_order=True, require_row_order=False, return_message=True) self.assertTrue(equal, message) class TestSpiderTrain1353(unittest.TestCase): @timeout(ONE_TEST_TIMEOUT) def test_spider_dev(self): """Test an entry from spider dataset """ split_name = "train" i_query = 1353 db_id = get_db_id(split_name, i_query) rdf_graph, schema = get_graph_and_schema(split_name, db_id) sql_query = get_sql_query(split_name, i_query) # Question: What is the sum of budgets of the Marketing and Finance departments? # sql_query: # SELECT sum(budget) FROM department WHERE dept_name = 'Marketing' OR dept_name = 'Finance' correct_sparql_query = textwrap.dedent("""\ SELECT (?budget_1 + ?budget_2 AS ?sum) WHERE { ?dep_1 arc:department:budget ?budget_1. ?dep_1 arc:department:dept_name ?dept_name_1. FILTER(?dept_name_1 = key:department:dept_name:Marketing). ?dep_2 arc:department:budget ?budget_2. ?dep_2 arc:department:dept_name ?dept_name_2. FILTER(?dept_name_2 = key:department:dept_name:Finance). }""") qdmr = get_qdmr_from_break(split_name, i_query) # break_program: # SELECT['budgets'] # FILTER['#1', 'of the Marketing department'] # FILTER['#1', 'of the Finance department'] # ARITHMETIC['sum', '#2', '#3'] grounding = {} grounding[GroundingIndex(0,0,"budgets")] = GroundingKey.make_column_grounding("department", "budget") # grounding looks like key:department:dept_name:Marketing because that value is a key in the RDF graph grounding[GroundingIndex(1,1,"of the Marketing department")] = GroundingKey.make_value_grounding("department", "dept_name", "Marketing") grounding[GroundingIndex(2,1,"of the Finance department")] = GroundingKey.make_value_grounding("department", "dept_name", "Finance") sparql_query = create_sparql_query_from_qdmr(qdmr, schema, rdf_graph, grounding) result_correct = QueryResult.execute_query_sql(sql_query, schema) result = QueryResult.execute_query_to_rdf(sparql_query, rdf_graph, schema, virtuoso_server=VIRTUOSO_SPARQL_SERVICE) equal, message = result.is_equal_to(result_correct, require_column_order=True, require_row_order=False, return_message=True) self.assertTrue(equal, message) class TestSpiderTrain4320(unittest.TestCase): @timeout(ONE_TEST_TIMEOUT) def test_spider_dev(self): """Test an entry from spider dataset """ split_name = "train" i_query = 4320 db_id = get_db_id(split_name, i_query) rdf_graph, schema = get_graph_and_schema(split_name, db_id) sql_query = get_sql_query(split_name, i_query) # Question: What are the distinct grant amount for the grants where the documents were sent before '1986-08-26 20:49:27' and grant were ended after '1989-03-16 18:27:16'? # sql_query: # SELECT T1.grant_amount FROM Grants AS T1 JOIN Documents AS T2 ON T1.grant_id
<reponame>denisgolius/aws-syndicate """ Copyright 2018 EPAM Systems, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import concurrent import json from concurrent.futures import ALL_COMPLETED, ThreadPoolExecutor from datetime import date, datetime from functools import cmp_to_key from syndicate.commons.log_helper import get_logger from syndicate.core.build.bundle_processor import (create_deploy_output, load_deploy_output, load_failed_deploy_output, load_meta_resources, remove_deploy_output, remove_failed_deploy_output) from syndicate.core.build.meta_processor import resolve_meta from syndicate.core.constants import (BUILD_META_FILE_NAME, CLEAN_RESOURCE_TYPE_PRIORITY, DEPLOY_RESOURCE_TYPE_PRIORITY, LAMBDA_TYPE) from syndicate.core.helper import exit_on_exception, prettify_json from syndicate.core.resources import (APPLY_MAPPING, CREATE_RESOURCE, DESCRIBE_RESOURCE, REMOVE_RESOURCE, RESOURCE_CONFIGURATION_PROCESSORS, RESOURCE_IDENTIFIER, UPDATE_RESOURCE) _LOG = get_logger('syndicate.core.build.deployment_processor') def get_dependencies(name, meta, resources_dict, resources): """ Get dependencies from resources that needed to create them too. :type name: str :type meta: dict :type resources_dict: dict :param resources: :param resources_dict: resources that will be created {name: meta} """ resources_dict[name] = meta if meta.get('dependencies'): for dependency in meta.get('dependencies'): dep_name = dependency['resource_name'] dep_meta = resources[dep_name] resources_dict[dep_name] = dep_meta if dep_meta.get('dependencies'): get_dependencies(dep_name, dep_meta, resources_dict, resources) # todo implement resources sorter according to priority def _process_resources(resources, handlers_mapping): res_type = None output = {} args = [] resource_type = None try: for res_name, res_meta in resources: res_type = res_meta['resource_type'] if resource_type is None: resource_type = res_type if res_type == resource_type: args.append({'name': res_name, 'meta': res_meta}) continue elif res_type != resource_type: _LOG.info('Processing {0} resources ...'.format(resource_type)) func = handlers_mapping[resource_type] response = func(args) # todo exception may be raised here if response: output.update(response) del args[:] args.append({'name': res_name, 'meta': res_meta}) resource_type = res_type if args: _LOG.info('Processing {0} resources ...'.format(resource_type)) func = handlers_mapping[resource_type] response = func(args) if response: output.update(response) return True, output except Exception as e: _LOG.exception('Error occurred while {0} ' 'resource creating: {1}'.format(res_type, str(e))) # args list always contains one item here return False, update_failed_output(args[0]['name'], args[0]['meta'], resource_type, output) def update_failed_output(res_name, res_meta, resource_type, output): describe_func = DESCRIBE_RESOURCE[resource_type] failed_resource_output = describe_func(res_name, res_meta) if failed_resource_output: if isinstance(failed_resource_output, list): for item in failed_resource_output: output.update(item) else: output.update(failed_resource_output) return output def deploy_resources(resources): return _process_resources(resources=resources, handlers_mapping=CREATE_RESOURCE) def update_resources(resources): return _process_resources(resources=resources, handlers_mapping=UPDATE_RESOURCE) def clean_resources(output): args = [] resource_type = None # clean all resources for arn, config in output: res_type = config['resource_meta']['resource_type'] if resource_type is None: resource_type = res_type if res_type == resource_type: args.append({'arn': arn, 'config': config}) continue elif res_type != resource_type: _LOG.info('Removing {0} resources ...'.format(resource_type)) func = REMOVE_RESOURCE[resource_type] func(args) del args[:] args.append({'arn': arn, 'config': config}) resource_type = res_type if args: _LOG.info('Removing {0} resources ...'.format(resource_type)) func = REMOVE_RESOURCE[resource_type] func(args) # todo implement saving failed output def continue_deploy_resources(resources, failed_output): updated_output = {} deploy_result = True res_type = None try: args = [] resource_type = None for res_name, res_meta in resources: res_type = res_meta['resource_type'] if resource_type is None: resource_type = res_type if res_type == resource_type: resource_output = __find_output_by_resource_name( failed_output, res_name) args.append( { 'name': res_name, 'meta': res_meta, 'current_configurations': resource_output }) continue elif res_type != resource_type: func = RESOURCE_CONFIGURATION_PROCESSORS.get(resource_type) if func: response = func(args) if response: updated_output.update( json.loads( json.dumps(response, default=_json_serial))) else: # function to update resource is not present # move existing output for resources to new output __move_output_content(args, failed_output, updated_output) del args[:] resource_output = __find_output_by_resource_name( failed_output, res_name) args.append({ 'name': res_name, 'meta': res_meta, 'current_configurations': resource_output }) resource_type = res_type if args: func = RESOURCE_CONFIGURATION_PROCESSORS.get(resource_type) if func: response = func(args) if response: updated_output.update( json.loads( json.dumps(response, default=_json_serial))) else: # function to update resource is not present # move existing output- for resources to new output __move_output_content(args, failed_output, updated_output) except Exception as e: _LOG.exception('Error occurred while {0} resource creating: {1}'.format( res_type, str(e))) deploy_result = False return deploy_result, updated_output def __move_output_content(args, failed_output, updated_output): for arg in args: resource_output = __find_output_by_resource_name( failed_output, arg['name']) if resource_output: updated_output.update(resource_output) def __find_output_by_resource_name(output, resource_name): found_items = {} for k, v in output.items(): if v['resource_name'] == resource_name: found_items[k] = v return found_items @exit_on_exception def create_deployment_resources(deploy_name, bundle_name, deploy_only_resources=None, deploy_only_types=None, excluded_resources=None, excluded_types=None): resources = resolve_meta(load_meta_resources(bundle_name)) _LOG.debug('Names were resolved') _LOG.debug(prettify_json(resources)) # validate_deployment_packages(resources) _LOG.info('{0} file was loaded successfully'.format(BUILD_META_FILE_NAME)) # TODO make filter chain if deploy_only_resources: resources = dict((k, v) for (k, v) in resources.items() if k in deploy_only_resources) if excluded_resources: resources = dict((k, v) for (k, v) in resources.items() if k not in excluded_resources) if deploy_only_types: resources = dict((k, v) for (k, v) in resources.items() if v['resource_type'] in deploy_only_types) if excluded_types: resources = dict((k, v) for (k, v) in resources.items() if v['resource_type'] not in excluded_types) _LOG.debug('Going to create: {0}'.format(prettify_json(resources))) # sort resources with priority resources_list = list(resources.items()) resources_list.sort(key=cmp_to_key(_compare_deploy_resources)) _LOG.info('Going to deploy AWS resources') success, output = deploy_resources(resources_list) if success: _LOG.info('AWS resources were deployed successfully') # apply dynamic changes that uses ARNs _LOG.info('Going to apply dynamic changes') _apply_dynamic_changes(resources, output) _LOG.info('Dynamic changes were applied successfully') _LOG.info('Going to create deploy output') output_str = json.dumps(output, default=_json_serial) create_deploy_output(bundle_name, deploy_name, output_str, success) _LOG.info('Deploy output for {0} was created.'.format(deploy_name)) return success @exit_on_exception def remove_deployment_resources(deploy_name, bundle_name, clean_only_resources=None, clean_only_types=None, excluded_resources=None, excluded_types=None): output = load_deploy_output(bundle_name, deploy_name) _LOG.info('Output file was loaded successfully') # TODO make filter chain if clean_only_resources: output = dict((k, v) for (k, v) in output.items() if v['resource_name'] in clean_only_resources) if excluded_resources: output = dict((k, v) for (k, v) in output.items() if v['resource_name'] not in excluded_resources) if clean_only_types: output = dict((k, v) for (k, v) in output.items() if v['resource_meta']['resource_type'] in clean_only_types) if excluded_types: output = dict((k, v) for (k, v) in output.items() if v['resource_meta'][ 'resource_type'] not in excluded_types) # sort resources with priority resources_list = list(output.items()) resources_list.sort(key=cmp_to_key(_compare_clean_resources)) _LOG.debug('Resources to delete: {0}'.format(resources_list)) _LOG.info('Going to clean AWS resources') clean_resources(resources_list) # remove output from bucket remove_deploy_output(bundle_name, deploy_name) @exit_on_exception def continue_deployment_resources(deploy_name, bundle_name, deploy_only_resources=None, deploy_only_types=None, excluded_resources=None, excluded_types=None): output = load_failed_deploy_output(bundle_name, deploy_name) _LOG.info('Failed output file was loaded successfully') resources = resolve_meta(load_meta_resources(bundle_name)) _LOG.debug('Names were resolved') _LOG.debug(prettify_json(resources)) # TODO make filter chain if deploy_only_resources: resources = dict((k, v) for (k, v) in resources.items() if k in deploy_only_resources) if excluded_resources: resources = dict((k, v) for (k, v) in resources.items() if k not in excluded_resources) if deploy_only_types: resources = dict((k, v) for (k, v) in resources.items() if v['resource_type'] in deploy_only_types) if excluded_types: resources = dict((k, v) for (k, v) in resources.items() if v['resource_type'] not in excluded_types) # sort resources with priority resources_list = list(resources.items()) resources_list.sort(key=cmp_to_key(_compare_deploy_resources)) success, updated_output = continue_deploy_resources(resources_list, output) _LOG.info('AWS resources were deployed successfully') if success: # apply dynamic changes that uses ARNs _LOG.info('Going to apply dynamic changes') _apply_dynamic_changes(resources, updated_output) _LOG.info('Dynamic changes were applied successfully') # remove failed output from bucket remove_failed_deploy_output(bundle_name, deploy_name) _LOG.info('Going to create deploy output') create_deploy_output(bundle_name, deploy_name, prettify_json(updated_output), success=success) return success @exit_on_exception def remove_failed_deploy_resources(deploy_name, bundle_name, clean_only_resources=None, clean_only_types=None, excluded_resources=None, excluded_types=None): output = load_failed_deploy_output(bundle_name, deploy_name) _LOG.info('Failed output file was loaded successfully') # TODO make filter chain if clean_only_resources: output = dict((k, v) for (k, v) in output.items() if v['resource_name'] in clean_only_resources) if excluded_resources: output = dict((k, v) for (k, v) in output.items() if v['resource_name'] not in excluded_resources) if clean_only_types: output = dict((k, v) for (k, v) in output.items() if v['resource_meta']['resource_type'] in clean_only_types) if excluded_types: output = dict((k, v) for (k, v) in output.items() if v['resource_meta'][ 'resource_type'] not in excluded_types) # sort resources with priority resources_list = list(output.items()) resources_list.sort(key=cmp_to_key(_compare_clean_resources)) _LOG.info('Going to clean AWS resources') clean_resources(resources_list) # remove output from bucket remove_failed_deploy_output(bundle_name, deploy_name) @exit_on_exception def update_lambdas(bundle_name, publish_only_lambdas, excluded_lambdas_resources): resources = resolve_meta(load_meta_resources(bundle_name)) _LOG.debug('Names were resolved') _LOG.debug(prettify_json(resources)) # TODO make filter chain resources = dict((k, v) for (k, v) in resources.items() if v['resource_type'] == LAMBDA_TYPE) if publish_only_lambdas: resources = dict((k, v) for (k, v) in resources.items() if k in publish_only_lambdas) if excluded_lambdas_resources: resources = dict((k, v) for (k, v) in resources.items() if k not in excluded_lambdas_resources) _LOG.debug('Going to update the following lambdas: {0}'.format( prettify_json(resources))) resources = list(resources.items()) update_resources(resources=resources) def _json_serial(obj): """JSON serializer for objects not serializable by default json code""" if isinstance(obj, (datetime, date)): return obj.isoformat() raise TypeError("Type %s not serializable" % type(obj)) def _apply_dynamic_changes(resources, output): pool = ThreadPoolExecutor(max_workers=5) futures = [] for name, meta in resources.items(): resource_type = meta['resource_type'] apply_changes = meta.get('apply_changes') if apply_changes: for apply_item in apply_changes: change_type = apply_item['apply_type'] dependency_name = apply_item['dependency_name'] res_config = resources.get(dependency_name) if not res_config: _LOG.debug('Dependency resource {0} is not found, ' 'skipping the
dst_mean_vec - dst_mean_vec.dot(normal) * normal cos_dihedral = src_mean_projection.dot(dst_mean_projection) / ( np.linalg.norm(src_mean_projection) * np.linalg.norm(dst_mean_projection)) dihedral_angle = np.arccos(cos_dihedral) edges.append([src_idx, dst_idx]) mask.append(1) distances.append(np.linalg.norm(src_to_dst)) angles.append(dihedral_angle) edges.append([dst_idx, src_idx]) distances.append(np.linalg.norm(src_to_dst)) mask.append(1) angles.append(dihedral_angle) edges = torch.tensor(edges) graph = dgl.graph((edges[:, 0], edges[:, 1]), num_nodes=len(coords), idtype=torch.int32) graph.ndata['feat'] = lig_atom_featurizer(lig) graph.ndata['weights'] = torch.from_numpy(np.array(weights).astype(np.float32)) graph.edata['feat'] = distance_featurizer(distances, 0.75) # avg distance = 1.3 So divisor = (4/7)*1.3 = ~0.75 graph.ndata['x'] = torch.from_numpy(np.array(coords).astype(np.float32)) return graph, torch.tensor(mask, dtype=bool), torch.tensor(angles, dtype=torch.float32) def get_geometry_graph(lig): coords = lig.GetConformer().GetPositions() edges_src = [] edges_dst = [] for i, atom in enumerate(lig.GetAtoms()): src_idx = atom.GetIdx() assert src_idx == i one_hop_dsts = [neighbor for neighbor in list(atom.GetNeighbors())] two_and_one_hop_idx = [neighbor.GetIdx() for neighbor in one_hop_dsts] for one_hop_dst in one_hop_dsts: for two_hop_dst in one_hop_dst.GetNeighbors(): two_and_one_hop_idx.append(two_hop_dst.GetIdx()) all_dst_idx = list(set(two_and_one_hop_idx)) all_dst_idx.remove(src_idx) all_src_idx = [src_idx] *len(all_dst_idx) edges_src.extend(all_src_idx) edges_dst.extend(all_dst_idx) graph = dgl.graph((torch.tensor(edges_src), torch.tensor(edges_dst)), num_nodes=lig.GetNumAtoms(), idtype=torch.long) graph.edata['feat'] = torch.from_numpy(np.linalg.norm(coords[edges_src] - coords[edges_dst], axis=1).astype(np.float32)) return graph def isRingAromatic(mol, bondRing): for id in bondRing: if not mol.GetBondWithIdx(id).GetIsAromatic(): return False return True def get_geometry_graph_ring(lig): coords = lig.GetConformer().GetPositions() rings = lig.GetRingInfo().AtomRings() bond_rings = lig.GetRingInfo().BondRings() edges_src = [] edges_dst = [] for i, atom in enumerate(lig.GetAtoms()): src_idx = atom.GetIdx() assert src_idx == i one_hop_dsts = [neighbor for neighbor in list(atom.GetNeighbors())] two_and_one_hop_idx = [neighbor.GetIdx() for neighbor in one_hop_dsts] for one_hop_dst in one_hop_dsts: for two_hop_dst in one_hop_dst.GetNeighbors(): two_and_one_hop_idx.append(two_hop_dst.GetIdx()) all_dst_idx = list(set(two_and_one_hop_idx)) for ring_idx, ring in enumerate(rings): if src_idx in ring and isRingAromatic(lig,bond_rings[ring_idx]): all_dst_idx.extend(list(ring)) all_dst_idx = list(set(all_dst_idx)) all_dst_idx.remove(src_idx) all_src_idx = [src_idx] *len(all_dst_idx) edges_src.extend(all_src_idx) edges_dst.extend(all_dst_idx) graph = dgl.graph((torch.tensor(edges_src), torch.tensor(edges_dst)), num_nodes=lig.GetNumAtoms(), idtype=torch.long) graph.edata['feat'] = torch.from_numpy(np.linalg.norm(coords[edges_src] - coords[edges_dst], axis=1).astype(np.float32)) return graph def get_lig_graph_multiple_conformer(mol, name, radius=20, max_neighbors=None, use_rdkit_coords=False, num_confs=10): conf = mol.GetConformer() true_lig_coords = conf.GetPositions() try: count = 0 success = False while not success: try: all_lig_coords = get_multiple_rdkit_coords_individual(mol,num_conf=num_confs) success = True except Exception as e: print(f'failed RDKit coordinate generation. Trying the {count}th time.') if count > 5: raise Exception(e) count +=1 except Exception as e: all_lig_coords = [true_lig_coords] * num_confs with open('temp_create_dataset_rdkit.log', 'a') as f: f.write('Generating RDKit conformer failed for \n') f.write(name) f.write('\n') f.write(str(e)) f.write('\n') f.flush() print('Generating RDKit conformer failed for ') print(name) print(str(e)) lig_graphs = [] for i in range(num_confs): R, t = rigid_transform_Kabsch_3D(all_lig_coords[i].T, true_lig_coords.T) lig_coords = ((R @ (all_lig_coords[i]).T).T + t.squeeze()) log('kabsch RMSD between rdkit ligand and true ligand is ', np.sqrt(np.sum((lig_coords - true_lig_coords) ** 2, axis=1).mean()).item()) num_nodes = lig_coords.shape[0] assert lig_coords.shape[1] == 3 distance = spa.distance.cdist(lig_coords, lig_coords) src_list = [] dst_list = [] dist_list = [] mean_norm_list = [] for i in range(num_nodes): dst = list(np.where(distance[i, :] < radius)[0]) dst.remove(i) if max_neighbors != None and len(dst) > max_neighbors: dst = list(np.argsort(distance[i, :]))[1: max_neighbors + 1] # closest would be self loop if len(dst) == 0: dst = list(np.argsort(distance[i, :]))[1:2] # closest would be the index i itself > self loop log( f'The lig_radius {radius} was too small for one lig atom such that it had no neighbors. So we connected {i} to the closest other lig atom {dst}') assert i not in dst src = [i] * len(dst) src_list.extend(src) dst_list.extend(dst) valid_dist = list(distance[i, dst]) dist_list.extend(valid_dist) valid_dist_np = distance[i, dst] sigma = np.array([1., 2., 5., 10., 30.]).reshape((-1, 1)) weights = softmax(- valid_dist_np.reshape((1, -1)) ** 2 / sigma, axis=1) # (sigma_num, neigh_num) assert weights[0].sum() > 1 - 1e-2 and weights[0].sum() < 1.01 diff_vecs = lig_coords[src, :] - lig_coords[dst, :] # (neigh_num, 3) mean_vec = weights.dot(diff_vecs) # (sigma_num, 3) denominator = weights.dot(np.linalg.norm(diff_vecs, axis=1)) # (sigma_num,) mean_vec_ratio_norm = np.linalg.norm(mean_vec, axis=1) / denominator # (sigma_num,) mean_norm_list.append(mean_vec_ratio_norm) assert len(src_list) == len(dst_list) assert len(dist_list) == len(dst_list) graph = dgl.graph((torch.tensor(src_list), torch.tensor(dst_list)), num_nodes=num_nodes, idtype=torch.int32) graph.ndata['feat'] = lig_atom_featurizer(mol) graph.edata['feat'] = distance_featurizer(dist_list, 0.75) # avg distance = 1.3 So divisor = (4/7)*1.3 = ~0.75 graph.ndata['x'] = torch.from_numpy(np.array(true_lig_coords).astype(np.float32)) graph.ndata['mu_r_norm'] = torch.from_numpy(np.array(mean_norm_list).astype(np.float32)) if use_rdkit_coords: graph.ndata['new_x'] = torch.from_numpy(np.array(lig_coords).astype(np.float32)) lig_graphs.append(graph) return lig_graphs def get_lig_graph_revised(mol, name, radius=20, max_neighbors=None, use_rdkit_coords=False): conf = mol.GetConformer() true_lig_coords = conf.GetPositions() if use_rdkit_coords: try: rdkit_coords = get_rdkit_coords(mol).numpy() R, t = rigid_transform_Kabsch_3D(rdkit_coords.T, true_lig_coords.T) lig_coords = ((R @ (rdkit_coords).T).T + t.squeeze()) log('kabsch RMSD between rdkit ligand and true ligand is ', np.sqrt(np.sum((lig_coords - true_lig_coords) ** 2, axis=1).mean()).item()) except Exception as e: lig_coords = true_lig_coords with open('temp_create_dataset_rdkit_timesplit_no_lig_or_rec_overlap_train.log', 'a') as f: f.write('Generating RDKit conformer failed for \n') f.write(name) f.write('\n') f.write(str(e)) f.write('\n') f.flush() print('Generating RDKit conformer failed for ') print(name) print(str(e)) else: lig_coords = true_lig_coords num_nodes = lig_coords.shape[0] assert lig_coords.shape[1] == 3 distance = spa.distance.cdist(lig_coords, lig_coords) src_list = [] dst_list = [] dist_list = [] mean_norm_list = [] for i in range(num_nodes): dst = list(np.where(distance[i, :] < radius)[0]) dst.remove(i) if max_neighbors != None and len(dst) > max_neighbors: dst = list(np.argsort(distance[i, :]))[1: max_neighbors + 1] # closest would be self loop if len(dst) == 0: dst = list(np.argsort(distance[i, :]))[1:2] # closest would be the index i itself > self loop log( f'The lig_radius {radius} was too small for one lig atom such that it had no neighbors. So we connected {i} to the closest other lig atom {dst}') assert i not in dst src = [i] * len(dst) src_list.extend(src) dst_list.extend(dst) valid_dist = list(distance[i, dst]) dist_list.extend(valid_dist) valid_dist_np = distance[i, dst] sigma = np.array([1., 2., 5., 10., 30.]).reshape((-1, 1)) weights = softmax(- valid_dist_np.reshape((1, -1)) ** 2 / sigma, axis=1) # (sigma_num, neigh_num) assert weights[0].sum() > 1 - 1e-2 and weights[0].sum() < 1.01 diff_vecs = lig_coords[src, :] - lig_coords[dst, :] # (neigh_num, 3) mean_vec = weights.dot(diff_vecs) # (sigma_num, 3) denominator = weights.dot(np.linalg.norm(diff_vecs, axis=1)) # (sigma_num,) mean_vec_ratio_norm = np.linalg.norm(mean_vec, axis=1) / denominator # (sigma_num,) mean_norm_list.append(mean_vec_ratio_norm) assert len(src_list) == len(dst_list) assert len(dist_list) == len(dst_list) graph = dgl.graph((torch.tensor(src_list), torch.tensor(dst_list)), num_nodes=num_nodes, idtype=torch.int32) graph.ndata['feat'] = lig_atom_featurizer(mol) graph.edata['feat'] = distance_featurizer(dist_list, 0.75) # avg distance = 1.3 So divisor = (4/7)*1.3 = ~0.75 graph.ndata['x'] = torch.from_numpy(np.array(true_lig_coords).astype(np.float32)) graph.ndata['mu_r_norm'] = torch.from_numpy(np.array(mean_norm_list).astype(np.float32)) if use_rdkit_coords: graph.ndata['new_x'] = torch.from_numpy(np.array(lig_coords).astype(np.float32)) return graph def distance_featurizer(dist_list, divisor) -> torch.Tensor: # you want to use a divisor that is close to 4/7 times the average distance that you want to encode length_scale_list = [1.5 ** x for x in range(15)] center_list = [0. for _ in range(15)] num_edge = len(dist_list) dist_list = np.array(dist_list) transformed_dist = [np.exp(- ((dist_list / divisor) ** 2) / float(length_scale)) for length_scale, center in zip(length_scale_list, center_list)] transformed_dist = np.array(transformed_dist).T transformed_dist = transformed_dist.reshape((num_edge, -1)) return torch.from_numpy(transformed_dist.astype(np.float32)) def get_hierarchical_graph(rec, rec_coords_list, c_alpha_coords, n_coords, c_coords, c_alpha_cutoff=20, c_alpha_max_neighbors=None, surface_graph_cutoff=10, surface_max_neighbors=None, surface_mesh_cutoff=1.72): surface_mesh = get_surface(rec, 'msms -density 1') rec_coords_concat = np.concatenate(rec_coords_list, axis=0) distances = spatial.distance.cdist(rec_coords_concat, surface_mesh) # surface_indices = sorted(list(set(np.argmin(distances, axis=0)))) # use the closest atom instead surface_indices = sorted(list(set(np.where(distances < surface_mesh_cutoff)[0]))) np_surface_indices = np.array(surface_indices) c_alpha_to_surface_src = [] c_alpha_to_surface_dst = [] c_alpha_to_surface_distances = [] n_i_list = [] u_i_list = [] v_i_list = [] atom_count = 0 for i, res_coords in enumerate(rec_coords_list): res_indices = np.arange(len(res_coords)) + atom_count atom_count += len(res_coords) # get indices where the surface atom indices of this residue appear in surface_indices (CAREFUL: for this to work, the surface_indices have to be sorted) index_in_surface_atoms = np.where(np.isin(surface_indices, res_indices))[0] res_surface_indices = np_surface_indices[index_in_surface_atoms] c_alpha_to_surface_src.extend(len(index_in_surface_atoms) * [i]) c_alpha_to_surface_dst.extend(list(index_in_surface_atoms)) res_surface_coords = rec_coords_concat[res_surface_indices] nitrogen = n_coords[i] c_alpha = c_alpha_coords[i] carbon = c_coords[i] c_alpha_to_surface_distances.extend(list(np.linalg.norm((res_surface_coords - c_alpha), axis=1))) u_i = (nitrogen - c_alpha) / np.linalg.norm(nitrogen - c_alpha) t_i = (carbon - c_alpha) / np.linalg.norm(carbon - c_alpha) n_i = np.cross(u_i, t_i) / np.linalg.norm(np.cross(u_i, t_i)) v_i = np.cross(n_i, u_i) assert (math.fabs( np.linalg.norm(v_i) - 1.) < 1e-5), "protein utils protein_to_graph_dips, v_i norm larger than 1" n_i_list.append(n_i) u_i_list.append(u_i) v_i_list.append(v_i) n_i_feat = np.stack(n_i_list, axis=0) u_i_feat = np.stack(u_i_list, axis=0) v_i_feat = np.stack(v_i_list, axis=0) num_residues = len(rec_coords_list) if num_residues <= 1: raise ValueError(f"l_or_r contains only 1 residue!") ################### Build the k-NN graph ############################## surface_coords = rec_coords_concat[surface_indices] surface_distances = spa.distance.cdist(surface_coords, surface_coords) surface_src = [] surface_dst = [] surface_edge_distances = [] surface_mean_norms = [] for i in range(len(surface_coords)): dst = list(np.where(surface_distances[i, :] < surface_graph_cutoff)[0]) dst.remove(i) if surface_max_neighbors != None and len(dst) > surface_max_neighbors: dst = list(np.argsort(surface_distances[i, :]))[1: surface_max_neighbors + 1] # closest would be self loop if len(dst) == 0: dst = list(np.argsort(surface_distances[i, :]))[1:2] # closest would be the index i itself > self loop log( f'The surface_graph_cutoff {surface_graph_cutoff} was too small for one surface atom such that it had no neighbors. So we connected {i} to the closest other surface_atom {dst}') assert i not in dst src =
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A utility script for checking out subdirectories of many GIT repositories to specified locations, like is possible with SVN and gclient. This uses a combination of GIT, sparse-checkout, shallow-clone and filesystem junctions. For each dependency in a 'gitdeps' file this script will checkout one subdirectory of one repository into a specified location. The input is as follows: - The user specifies a local destination for the checkout. - The user specifies a source repository. - The user specifies a list of subdirectories of the repository to get. - The user specifies a revision. The checkout works as follows: - An empty git checkout is initialized in the cache directory. This will be in a subfolder with an essentially random name. - The specified repository is added as a remote to that repo. - A sparse-checkout directive is added to select only the desired subdirectories. - The repository is cloned using a depth of 1 (no history, only the actual contents of the desired revision). - The destination directories are created as junctions pointing to the desired subdirectory of the checkout in the cache directory. The script maintains its state in the root of the cache directory, allowing it to reuse checkout directories when possible. """ import ast import glob import hashlib import logging import optparse import os import random import re import subprocess import threading _LOGGER = logging.getLogger(os.path.basename(__file__)) # Matches a SHA1 hash used as a git revision. _GIT_SHA1_RE = re.compile('^[A-Fa-f0-9]{40}$') def _ParseCommandLine(): """Parses the command-line and returns an options structure.""" option_parser = optparse.OptionParser() option_parser.add_option('--cache-dir', type='string', default='.gitdeps-cache', help='The directory to be used for storing cache files. Defaults to ' '.gitdeps-cache in the current working directory.') option_parser.add_option('--output-dir', type='string', default='.', help='The directory to be used as the root of all output. Defaults to ' 'the current working directory.') option_parser.add_option('--dry-run', action='store_true', default=False, help='If true then will simply list actions that would be performed.') option_parser.add_option('--force', action='store_true', default=False, help='If true then will force the checkout to be completely rebuilt.') option_parser.add_option('--verbose', dest='log_level', action='store_const', default=logging.INFO, const=logging.DEBUG, help='Enables verbose logging.') option_parser.add_option('--quiet', dest='log_level', action='store_const', default=logging.INFO, const=logging.ERROR, help='Disables all output except for errors.') options, args = option_parser.parse_args() # Configure logging. logging.basicConfig(level=options.log_level) # Set default values. if not args: # Default to checking for a file in the current working directory. _LOGGER.info('Defaulting to using GITDEPS in current working directory.') args = ['GITDEPS'] # Validate arguments and options. if not os.path.isdir(options.output_dir): option_parser.error('Output directory does not exist: %s' % options.output_dir) for path in args: if not os.path.exists(path): option_parser.error('Missing dependency file: %s' % path) # Normalize local paths for prettier output. options.cache_dir = os.path.normpath(os.path.abspath(options.cache_dir)) options.output_dir = os.path.normpath(os.path.abspath(options.output_dir)) return options, args class RepoOptions(object): """Light object used for shuttling around information about a dependency.""" def __init__(self): self.repository = None self.revision = None self.output_dir = None self.remote_dirs = [] self.deps_file = None self.checkout_dir = None self.recurse = False def __str__(self): """Stringifies this object for debugging.""" return ('RepoOptions(repository=%s, revision=%s, output_dir=%s, ' 'remote_dirs=%s, deps_file=%s, checkout_dir=%s, recurse=%s)') % ( self.repository.__repr__(), self.revision.__repr__(), self.output_dir.__repr__(), self.remote_dirs.__repr__(), self.deps_file.__repr__(), self.checkout_dir.__repr__(), self.recurse.__repr__()) def _ParseRepoOptions(cache_dir, root_output_dir, deps_file_path, key, value): """Given the |root_output_dir| specified on the command line, a |key| and |value| pair from a GITDEPS file, and the path of the deps file, generates a corresponding RepoOptions object. The |key| is the output path of the checkout relative to |root_output_dir|, and |value| consists of a (repository URL, remote directory, revision hash) tuple. This can raise an Exception on failure. """ bad = False if ((type(value) != list and type(value) != tuple) or len(value) < 3 or len(value) > 4 or (type(value[1]) != list and type(value[1]) != tuple)): bad = True if len(value) == 4 and type(value[3]) != dict: bad = True if bad: _LOGGER.error('Invalid dependency tuple: %s', value) raise Exception() # Always use lowercase SHA1 hashes for consistency. refspec = value[2] if _GIT_SHA1_RE.match(refspec): refspec = refspec.lower() repo_options = RepoOptions() repo_options.output_dir = os.path.normpath(os.path.abspath(os.path.join( root_output_dir, key))) repo_options.repository = value[0] repo_options.remote_dirs = value[1] repo_options.revision = refspec repo_options.deps_file = deps_file_path # Parse additional options. if len(value) > 3: repo_options.recurse = value[3].get('recurse', False) == True # Create a unique name for the checkout in the cache directory. Make the # output directory relative to the cache directory so that they can be # moved around together. output_dir_rel = os.path.relpath(repo_options.output_dir, root_output_dir).lower() if output_dir_rel.startswith('..'): raise Exception('Invalid output directory: %s' % key) n = hashlib.md5(output_dir_rel).hexdigest() repo_options.checkout_dir = os.path.abspath(os.path.join(cache_dir, n, 'src')) return repo_options def _EnsureDirectoryExists(path, comment_name, dry_run): """Ensures that the given |path| exists. Only actually creates the directory if |dry_run| is False. |comment_name| is used during logging of this operation. """ if not comment_name: comment_name += ' ' else: comment_name = '' if not os.path.exists(path): _LOGGER.debug('Creating %sdirectory: %s', comment_name, path) if not dry_run: os.makedirs(path) def _GetCasedFilename(filename): """Returns the full case-sensitive filename for the given |filename|. If the path does not exist, returns the original |filename| as is. """ pattern = '%s[%s]' % (filename[:-1], filename[-1]) filenames = glob.glob(pattern) if not filenames: return filename return filenames[0] def _Shell(*cmd, **kw): """Runs |cmd|, returns the results from Popen(cmd).communicate(). Additional keyword arguments are passed on to subprocess.Popen. If |stdout| and |stderr| are not specified, they default to subprocess.PIPE. If |dry_run| is not specified it defaults to True. The command is only actually run if |dry_run| is False. This can raise a RuntimeError on failure. """ if 'cwd' in kw: _LOGGER.debug('Executing %s in "%s".', cmd, kw['cwd']) else: _LOGGER.debug('Executing %s.', cmd) if kw.get('dry_run', True): return ('', '') kw.pop('dry_run', None) dump_on_error = kw.pop('dump_on_error', False) kw['shell'] = True kw.setdefault('stdout', subprocess.PIPE) kw.setdefault('stderr', subprocess.PIPE) prog = subprocess.Popen(cmd, **kw) stdout, stderr = prog.communicate() if prog.returncode != 0: if dump_on_error: print stdout print stderr raise RuntimeError('Command "%s" returned %d.' % (cmd, prog.returncode)) return (stdout, stderr) def _IsGitCheckoutRoot(path): """Return true if the given |path| is the root of a git checkout.""" return os.path.exists(os.path.join(path, '.git')) # Matches a GIT config file section header, and grabs the name of the section # in the first group. Used by _GetGitOrigin. _GIT_CONFIG_SECTION_RE = re.compile(r'^\s*\[(.*?)\]\s*$') # Matches the URL line from a 'remote' section of a GIT config. Used by # _GetGitOrigin. _GIT_CONFIG_REMOTE_URL_RE = re.compile(r'^\s*url\s*=\s*(.*?)\s*$') def _GetGitOrigin(path): """Returns the URL of the 'origin' remote for the git repo in |path|. Returns None if the 'origin' remote doesn't exist. Raises an IOError if |path| doesn't exist or is not a git repo. """ section = None for line in open(os.path.join(path, '.git', 'config'), 'rb'): m = _GIT_CONFIG_SECTION_RE.match(line) if m: section = m.group(1) continue # We only care about the 'origin' configuration. if section != 'remote "origin"': continue m = _GIT_CONFIG_REMOTE_URL_RE.match(line) if m: return m.group(1).strip() return None def _GetGitHead(path): """Returns the hash of the head of the git repo in |path|. Raises an IOError if |path| doesn't exist or is not a git repo. """ return open(os.path.join(path, '.git', 'HEAD'), 'rb').read().strip() def _NormalizeGitPath(path): """Given a |path| in a GIT repository (relative to its root), normalizes it so it will match only that exact path in a sparse checkout. """ path = path.strip() if not path.startswith('/'): path = '/' + path if not path.endswith('/'): path += '/' return path def _RenameCheckout(path, dry_run): """Renames the checkout in |path| so that it can be subsequently deleted. Only actually does the work if |dry_run| is False. Returns the path of the renamed checkout directory. Raises an Exception on failure. """ def _RenameCheckoutImpl(path, dry_run): if dry_run: return path + '-old-dryrun' attempts = 0 while attempts < 10: newpath = '%s-old-%04d' % (path, random.randint(0, 999)) try: os.rename(path, newpath) return newpath except WindowsError: attempts += 1 raise Exception('Unable to rename checkout directory: %s' % path) newpath = _RenameCheckoutImpl(path, dry_run) _LOGGER.debug('Renamed checkout directory: %s', newpath) return newpath def _DeleteCheckout(path, dry_run): """Deletes the checkout in |path|. Only actually deletes the checkout if
# stacking.py # module: vespy.stacking # Functions for applying various stacking methods to seismic data from vespy.utils import get_station_coordinates import numpy as np import scipy.signal as sig import cmath def degrees_to_radians(theta): return theta * np.pi / 180 def resolve_slowness_vector(s, baz): ''' Resolves a scalar slowness and backazimuth into the x and y components of the two-dimensional slowness vector. Parameters ---------- s : float Magnitude of slowness vector, in s / km baz : float Backazimuth of slowness vector, (i.e. angle from North back to epicentre of event) Returns ------- (s_x, s_y) : tuple Tuple containing the magnitude of the x and y components of the 2d slowness vector, in s / km. ''' baz_rad = np.deg2rad(baz) s_x = s * np.sin(baz_rad) s_y = s * np.cos(baz_rad) return s_x, s_y def get_shifts(st, s, baz): ''' Calculates the shifts (as an integer number of samples in the time series) for every station in a stream of time series seismograms for a slowness vector of given magnitude and backazimuth. The shift is that which needs to be applied in order to align an arrival (arriving with slowness s and backazimuth baz) with the same arrival at the array reference point (the location of the station that makes up the first trace in the stream). Parameters ---------- st : ObsPy Stream object Stream of SAC format seismograms for the seismic array, length K = no. of stations in array s : float Magnitude of slowness vector, in s / km baz : float Backazimuth of slowness vector, (i.e. angle from North back to epicentre of event) Returns ------- shifts : list List of integer delays at each station in the array, also length K ''' theta = [] # Angular position of each station, measured clockwise from North r = [] # Distance of each station # First station is reference point, so has zero position vector theta.append(0.0) r.append(0.0) geometry = get_station_coordinates(st)/1000. # in km # For each station, get distance from array reference point (first station), and the angular displacement clockwise from north for station in geometry[1:]: r_x = station[0] # x-component of position vector r_y = station[1] # y-component of position vector # theta is angle c/w from North to position vector of station; need to compute diffently for each quadrant if r_x == 0 and r_y == 0: theta.append(0.0) elif r_x > 0 and r_y == 0: theta.append(90.0) elif r_x < 0 and r_y == 0: theta.append(270.0) elif r_x >= 0 and r_y > 0: theta.append(np.degrees(np.arctan(r_x/r_y))) elif r_x >= 0 and r_y < 0: theta.append(180.0 + np.degrees(np.arctan(r_x/r_y))) elif r_x < 0 and r_y < 0: theta.append(180.0 + np.degrees(np.arctan(r_x/r_y))) else: theta.append(360.0 + np.degrees(np.arctan(r_x/r_y))) r.append(np.sqrt(r_x**2 + r_y**2)) # Find angle between station position vector and slowness vector in order to compute dot product # Angle between slowness and position vectors, measured clockwise phi = [180 - baz + th for th in theta] sampling_rate = st[0].stats.sampling_rate shifts = [] # Shift is dot product. The minus sign is because a positive time delay needs to be corrected by a negative shift in order to stack for i in range(0, len(st)): shifts.append(-1 * int(round(r[i] * s * np.cos(np.radians(phi[i])) * sampling_rate))) return shifts def get_shifts_3d(st, s, theta, baz): ''' Calculates the shifts (as an integer number of samples in the time series) for every station in a stream of time series seismograms for a slowness vector of given magnitude and backazimuth. Takes account of the full 3d slowness vector in order to factor in station elevations. The shift is that which needs to be applied in order to align an arrival (arriving with slowness s and backazimuth baz) with the same arrival at the array reference point (the location of the station that makes up the first trace in the stream). Parameters ---------- st : ObsPy Stream object Stream of SAC format seismograms for the seismic array, length K = no. of stations in array s : float Horizontal slowness in s / km theta : float Angle of incidence in degrees baz : float Backazimuth of slowness vector, (i.e. angle from North back to epicentre of event) Returns ------- shifts : list List of integer delays at each station in the array, also length K ''' shifts = [] r = [] # Displacemnt of each station from centre # First station is reference point, so has zero position vector #r.append(0.0) sampling_rate = st[0].stats.sampling_rate geometry = get_station_coordinates(st)/1000. # in km # 3D Slowness vector s_x, s_y = resolve_slowness_vector(s, baz) s_z = s / np.tan(degrees_to_radians(theta)) #shifts.append(0) # For each station, get distance from array reference point (first station), and the angular displacement clockwise from north for station in geometry: r_x = station[0] # x-component of position vector r_y = station[1] # y-component of position vector r_z = station[2] # z-component of position vector delta_t = np.dot([r_x, r_y, r_z], [s_x, s_y, s_z]) shift = int(round(delta_t * sampling_rate)) shifts.append(shift) return shifts def linear_stack(st, s, baz): ''' Returns the linear (delay-and-sum) stack for a seismic array, for a beam of given slowness and backazimuth. Parameters ---------- st : ObsPy Stream object Stream of SAC format seismograms for the seismic array, length K = no. of stations in array s : float Magnitude of slowness vector, in s / km baz : float Backazimuth of slowness vector, (i.e. angle from North back to epicentre of event) Returns ------- stack : NumPy array The delay-and-sum beam at the given slowness and backazimuth, as a time series. ''' # Check that each channel has the same number of samples, otherwise we can't construct the beam properly assert len(set([len(tr) for tr in st])) == 1, "Traces in stream have different lengths, cannot stack." nsta = len(st) shifts = get_shifts(st, s, baz) shifted_st = st.copy() for i, tr in enumerate(shifted_st): tr.data = np.roll(tr.data, shifts[i]) stack = np.sum([tr.data for tr in shifted_st], axis=0) / nsta return stack def nth_root_stack(st, s, baz, n): ''' Returns the nth root stack for a seismic array, for a beam of given slowness and backazimuth. Parameters ---------- st : ObsPy Stream object Stream of SAC format seismograms for the seismic array, length K = no. of stations in array s : float Magnitude of slowness vector, in s / km baz : float Backazimuth of slowness vector, (i.e. angle from North back to epicentre of event) n : int Order of the nth root process (n=1 just yields the linear vespa) Returns ------- stack : NumPy array The nth root beam at the given slowness and backazimuth, as a time series. ''' # Check that each channel has the same number of samples, otherwise we can't construct the beam properly assert len(set([len(tr) for tr in st])) == 1, "Traces in stream have different lengths, cannot stack." nsta = len(st) shifts = get_shifts(st, s, baz) stack = np.zeros(st[0].data.shape) for i, tr in enumerate(st): stack += np.roll(pow(abs(tr.data), 1./n) * np.sign(tr.data), shifts[i]) # Shift data in each trace by its offset stack /= nsta stack = pow(abs(stack), n) * np.sign(stack) return stack def phase_weighted_stack(st, s, baz, n=1): ''' Calculates the phase-weighted stack for seismograms in the stream. n is the order of the phase-weighting. n should be an integer >= 0. n = 0 corresponds with no phase weighting, i.e. just the linear stack. Parameters ---------- st: ObsPy Stream object The stream of seismograms for the array for a particular event s : float Magnitude of slowness vector, in s / km baz : float Backazimuth of slowness vector, (i.e. angle from North back to epicentre of event) n : number Order of the phase-weighted stacking to be applied, default 1. Should be int, n >= 0. Returns ------- stack : NumPy array Phase-weighted stack for the given event at the array Notes ----- The phase-weighted stack weights the data from each seismogram by its
<reponame>highmore9501/fretDance<filename>chordToFinger.py from calculate import arrangeNotesInChord def copyNewDancer(dancer): """ 复制原来的dancer,并且把手指都抬起来 :param dancer: :return: """ import copy newDancer = copy.deepcopy(dancer) newDancer.releaseFingers() return newDancer def getChordList(chordPosition): """ 处理和弦音符位置chordPosition,把它分解成需要按的音符位置chordList,和不要按的空弦音noPress,方便后续处理 :param chordPosition: :return: """ chordList = list(chordPosition) chordLength = len(chordList) noPress = [] for i in range(chordLength - 1, -1, -1): if chordList[i][1] == 0: noPress.append(chordList.pop(i)) return chordList, noPress def fingerNoteComb(dancer, chordPosition, fingerList, usedFinger=None, ESN=None): """ :param ESN: empty string note 空弦音 原来母和弦里的空弦音,和这个函数里的Chord不同,这个函数里的Chord已经过滤掉空弦音了 :param usedFinger: 其它使用过的手指列表 :param dancer: 原始dancer :param chordPosition: 多指需要按的音符位置列表,中间不包含空弦音 :param fingerList: 可以用到的手指列表,例如[2,3,4]表示利用2/3/4指 :return: 所有单按完以后生成的dancer列表 """ if ESN is None: ESN = [] if usedFinger is None: usedFinger = [] result = [] resultAppend = result.append noteNumber = len(chordPosition) realFingerList = fingerList + usedFinger from itertools import combinations import copy for fingerComb in combinations(fingerList, noteNumber): newDancer = copy.deepcopy(dancer) for i in range(noteNumber): newDancer.fingerMoveTo(fingerComb[i], chordPosition[i][0], chordPosition[i][1]) newDancer.recordTrace(realFingerList, ESN) if newDancer.validation(chordPosition): resultAppend(newDancer) return result def chord2Finger00(dancer, chordPosition): """处理[0],也就是全部空弦音的情况,输出结果1个""" newDancer = copyNewDancer(dancer) newTrace = [] for [string, fret] in chordPosition: newTrace.append([string, 0]) newDancer.traceNote.append(newTrace) newDancer.traceFinger.append([0]) return newDancer def chord2Finger01(dancer, chordPosition): """处理[1],输出结果4个,分别用1/2/3/4指单按""" result = [] resultAppend = result.append chordList, noPress = getChordList(chordPosition) string = chordList[0][0] fret = chordList[0][1] for i in range(4): newDancer = copyNewDancer(dancer) newDancer.fingerMoveTo(i + 1, string, fret) newDancer.recordTrace([i + 1], noPress) if newDancer.validation(chordPosition): resultAppend(newDancer) return result def chord2Finger02(dancer, chordPosition): """处理[2],输出结果3个,输出结果4个,就是1/3/4指大横按或1指小横按, 加上输出结果6个,4指对2点组合单按""" result = [] resultAppend = result.append chordList, noPress = getChordList(chordPosition) fret = chordList[0][1] for i in range(2): # 1指大横按 for string in range(chordList[0][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(1, string, fret, i + 2) newDancer.recordTrace([1], noPress) if newDancer.validation(chordPosition): resultAppend(newDancer) for i in range(2): # 34指大横按 for string in range(chordList[0][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(i + 2, string, fret, 2) newDancer.recordTrace([i + 2], noPress) if newDancer.validation(chordPosition): resultAppend(newDancer) newDancer = copyNewDancer(dancer) singlePressDancer = fingerNoteComb(newDancer, chordPosition, [1, 2, 3, 4], ESN=noPress) # 1/2/3/4指单按和弦里的2个音 result += singlePressDancer return result def chord2Finger03(dancer, chordPosition): """处理[1,1],输出结果6个,4指对2点组合单按""" chordList, noPress = getChordList(chordPosition) newChordByFret = arrangeNotesInChord(chordList, 'fret') newDancer = copyNewDancer(dancer) result = fingerNoteComb(newDancer, newChordByFret, [1, 2, 3, 4], ESN=noPress) return result def chord2Finger04(dancer, chordPosition): """处理[3],输出结果4个,就是1/3/4指大横按或1指小横按, 加上输出结果4个,4指对3点组合单按""" result = [] resultAppend = result.append chordList, noPress = getChordList(chordPosition) newChordByString = arrangeNotesInChord(chordList, 'string') fret = newChordByString[0][1] for i in range(2): # 1指大小横按 for string in range(newChordByString[0][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(1, string, fret, i + 2) newDancer.recordTrace([1], noPress) if newDancer.validation(chordPosition): resultAppend(newDancer) for i in range(2): # 34指大横按 for string in range(newChordByString[0][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(i + 2, string, fret, 2) newDancer.recordTrace([i + 2], noPress) if newDancer.validation(chordPosition): resultAppend(newDancer) newDancer = copyNewDancer(dancer) singlePressDancer = fingerNoteComb(newDancer, newChordByString, [1, 2, 3, 4], ESN=noPress) # 4指对3点组合单按 result += singlePressDancer return result def chord2Finger05(dancer, chordPosition): """处理[2,1],输出结果6个,1指横按/小横按,2/3/4指单按; 加上出结果4个,4指对3点组合单按""" result = [] resultAppend = result.append chordList, noPress = getChordList(chordPosition) newChordByFret = arrangeNotesInChord(chordList, 'fret') fret = newChordByFret[0][1] for i in range(2): # 1指大小横按最低品,2/3/4指单按最高品 for fingerNumber in range(2, 5): for string in range(newChordByFret[0][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(1, string, fret, i + 2) newDancer.fingerMoveTo(fingerNumber, newChordByFret[2][0], newChordByFret[2][1]) newDancer.recordTrace([1, fingerNumber], noPress) if newDancer.validation(chordPosition): resultAppend(newDancer) newDancer = copyNewDancer(dancer) singlePressDancer = fingerNoteComb(newDancer, newChordByFret, [1, 2, 3, 4], ESN=noPress) # 4指对3点组合单按 result += singlePressDancer return result def chord2Finger06(dancer, chordPosition): """处理[1,2],输出结果2个,3指大横按,1/2指单按; 加上输出结果3个,4指小横按,1/2/3指单按; 加上出结果4个,4指对3点组合单按""" result = [] resultAppend = result.append chordList, noPress = getChordList(chordPosition) newChordByFret = arrangeNotesInChord(chordList, 'fret') fret = newChordByFret[1][1] for fingerNumber in range(1, 3): # 3指大横按,1/2指单按 for string in range(newChordByFret[1][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(3, string, fret, 2) newDancer.fingerMoveTo(fingerNumber, newChordByFret[0][0], newChordByFret[0][1]) newDancer.recordTrace([3, fingerNumber], noPress) if newDancer.validation(chordPosition): resultAppend(newDancer) for fingerNumber in range(1, 4): # 4指大横按,1/2/3指单按 for string in range(newChordByFret[0][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(4, string, fret, 2) newDancer.fingerMoveTo(fingerNumber, newChordByFret[0][0], newChordByFret[0][1]) newDancer.recordTrace([4, fingerNumber], noPress) if newDancer.validation(chordPosition): resultAppend(newDancer) newDancer = copyNewDancer(dancer) singlePressDancer = fingerNoteComb(newDancer, newChordByFret, [1, 2, 3, 4], ESN=noPress) # 4指对3点组合单按 result += singlePressDancer return result def chord2Finger07(dancer, chordPosition): """处理[1,1,1],输出结果4个,品格从低到高分别用1/2/3/4指,单按3个音""" chordList, noPress = getChordList(chordPosition) newChordByFret = arrangeNotesInChord(chordList, 'fret') newDancer = copyNewDancer(dancer) singlePressDancer = fingerNoteComb(newDancer, newChordByFret, [1, 2, 3, 4], ESN=noPress) # 4指对3点组合单按 return singlePressDancer def chord2Finger08(dancer, chordPosition): """处理[4],[5],[6],输出结果1个,就是1指横按""" chordList, noPress = getChordList(chordPosition) for string in range(chordList[0][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(1, string, chordList[0][1], 2) newDancer.recordTrace([1], noPress) if newDancer.validation(chordPosition): return newDancer def chord2Finger09(dancer, chordPosition): """处理[1,3],输出结果1个,1指按最低品,2/3/4指根据弦数从低到高单按; 加上输出结果2个,3指小横按,1/2指单按;加上输出结果3个,4指小横按,1/2/3指单按""" result = [] resultAppend = result.append chordList, noPress = getChordList(chordPosition) newChordByFret = arrangeNotesInChord(chordList, 'fret') fret = newChordByFret[1][1] for fingerNumber in range(1, 3): # 3指大横按,1/2指单按 for string in range(newChordByFret[1][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(3, string, fret, 2) newDancer.fingerMoveTo(fingerNumber, newChordByFret[0][0], newChordByFret[0][1]) newDancer.recordTrace([3, fingerNumber], noPress) if newDancer.validation(chordPosition): resultAppend(newDancer) for fingerNumber in range(1, 4): # 4指大横按,1/2/3指单按 for string in range(newChordByFret[1][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(4, string, fret, 2) newDancer.fingerMoveTo(fingerNumber, newChordByFret[0][0], newChordByFret[0][1]) newDancer.recordTrace([4, fingerNumber], noPress) if newDancer.validation(chordPosition): resultAppend(newDancer) for i in range(1): # 1234指对四个音单按 newDancer = copyNewDancer(dancer) newDancer.fingerMoveTo(1, newChordByFret[0][0], newChordByFret[0][1]) newDancer.fingerMoveTo(2, newChordByFret[1][0], fret) newDancer.fingerMoveTo(3, newChordByFret[2][0], fret) newDancer.fingerMoveTo(4, newChordByFret[2][0], fret) newDancer.recordTrace([1, 2, 3, 4], noPress) if newDancer.validation(chordPosition): resultAppend(newDancer) return result def chord2Finger10(dancer, chordPosition): """处理[2,2],输出结果1个,1/2指按2个低音,3/4指按2个高音, 加上输出6个结果,1指大/小横按,23/24/34指单按2个单音, 加上输出2个结果,1指大横按,3/4指小横按""" result = [] resultAppend = result.append chordList, noPress = getChordList(chordPosition) newChordByFret = arrangeNotesInChord(chordList, 'fret') for i in range(0, 1): # 1指大/小横按,2/3/4指单按2个单音 for string in range(newChordByFret[0][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(1, string, newChordByFret[0][1], i + 2) singlePressDancer = fingerNoteComb(newDancer, newChordByFret[2:], [2, 3, 4], ESN=noPress) result += singlePressDancer for i in range(0, 1): # 1指大横按,3/4指小横按 for string in range(newChordByFret[0][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(1, string, newChordByFret[0][1], 2) newDancer.changeBarre(i + 3, newChordByFret[2][0], newChordByFret[2][1], 3) newDancer.recordTrace([1, i + 3], noPress) if newDancer.validation(chordPosition): resultAppend(newDancer) newDancer = copyNewDancer(dancer) for i in range(4): # 1/2指按2个低音,3/4指按2个高音 newDancer.fingerMoveTo(i + 1, newChordByFret[i][0], newChordByFret[i][1]) newDancer.recordTrace([1, 2, 3, 4], noPress) if newDancer.validation(chordPosition): resultAppend(newDancer) return result def chord2Finger11(dancer, chordPosition): """处理[3,1],[4,1],[5,1]输出结果3个,1指大横按,2/3/4指单按""" result = [] chordList, noPress = getChordList(chordPosition) newChordByFret = arrangeNotesInChord(chordList, 'fret') for string in range(newChordByFret[0][0], 7): newDancer = copyNewDancer(dancer) # 1指大横按 newDancer.changeBarre(1, string, newChordByFret[0][1], 2) singlePressDancer = fingerNoteComb(newDancer, [newChordByFret[-1]], [2, 3, 4], ESN=noPress) # 2/3/4指对1点组合单按 result += singlePressDancer return result def chord2Finger12(dancer, chordPosition): """处理[1,1,2],[1,1,3],输出结果2个,3/4指大横按,1/2指单按两个音""" result = [] chordList, noPress = getChordList(chordPosition) newChordByFret = arrangeNotesInChord(chordList, 'fret') for i in range(2): for string in range(newChordByFret[2][0], 7): newDancer = copyNewDancer(dancer) # 3/4指大横按 newDancer.changeBarre(i + 3, string, newChordByFret[2][1], 2) singlePressDancer = fingerNoteComb(newDancer, [newChordByFret[:1]], [1, 2], ESN=noPress) # 1,2指对2点组合单按 result += singlePressDancer return result def chord2Finger13(dancer, chordPosition): """处理[1,2,1],[1,1,1,1],输出结果1个,品格从低到高分别用1234""" result = [] chordList, noPress = getChordList(chordPosition) newChordByFret = arrangeNotesInChord(chordList, 'fret') newDancer = copyNewDancer(dancer) for i in range(4): newDancer.fingerMoveTo(i + 1, newChordByFret[i][0], newChordByFret[i][1]) newDancer.recordTrace([1, 2, 3, 4], noPress) if newDancer.validation(chordPosition): result.append(newDancer) return result def chord2Finger14(dancer, chordPosition): """处理[2,1,1],[3,1,1],输出结果6个,1指横按/小横按,2/3/4指按2个单音""" result = [] chordList, noPress = getChordList(chordPosition) newChordByFret = arrangeNotesInChord(chordList, 'fret') # 1指大横按,2/3/4指单按2个单音 for string in range(newChordByFret[0][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(1, string, newChordByFret[0][1], 2) singlePressDancer = fingerNoteComb(newDancer, newChordByFret[-2:], [2, 3, 4], [1], noPress) result += singlePressDancer return result def chord2Finger15(dancer, chordPosition): """处理[3,1,1,1],[2,1,1,1],输出结果2个,1指大/小横按,2/3/4指单按3个音""" result = [] chordList, noPress = getChordList(chordPosition) newChordByFret = arrangeNotesInChord(chordList, 'fret') for i in range(0, 1): # 1指大/小横按,2/3/4指单按2个单音 for string in range(newChordByFret[0][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(1, string, newChordByFret[0][1], i + 2) singlePressDancer = fingerNoteComb(newDancer, newChordByFret[i + 2:], [2, 3, 4], [1], noPress) result += singlePressDancer return result def chord2Finger16(dancer, chordPosition): """处理[1,4],输出结果4个,3/4指大横按,1/2指单按低音""" result = [] chordList, noPress = getChordList(chordPosition) newChordByFret = arrangeNotesInChord(chordList, 'fret') for i in range(0, 1): # 3/4指大横按,1/2指单按低音 for string in range(newChordByFret[0][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(i + 3, string, newChordByFret[0][1], 2) singlePressDancer = fingerNoteComb(newDancer, [newChordByFret[0]], [1, 2], [i + 3], noPress) result += singlePressDancer return result def chord2Finger17(dancer, chordPosition): """处理[2,3],输出结果2个,1指大横按,3/4指大横按""" result = [] resultAppend = result.append chordList, noPress = getChordList(chordPosition) newChordByFret = arrangeNotesInChord(chordList, 'fret') for i in range(0, 1): # 1指大横按,3/4指小横按 for string in range(newChordByFret[0][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(1, string, newChordByFret[0][1], 2) newDancer.changeBarre(i + 3, newChordByFret[2][0], newChordByFret[2][1], 3) newDancer.recordTrace([1, i + 3], noPress) if newDancer.validation(chordPosition): resultAppend(newDancer) return result def chord2Finger18(dancer, chordPosition): """处理[3,2],输出结果2个,1指大横按,3/4指大横按, 加上输出6个结果,1指大/小横按,23/24/34指单按2个单音""" result = [] resultAppend = result.append chordList, noPress = getChordList(chordPosition) newChordByFret = arrangeNotesInChord(chordList, 'fret') for i in range(0, 1): # 1指大横按,3/4指小横按 for string in range(newChordByFret[0][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(1, string, newChordByFret[0][1], 2) newDancer.changeBarre(i + 3, newChordByFret[2][0], newChordByFret[2][1], 3) newDancer.recordTrace([1, i + 3], noPress) if newDancer.validation(chordPosition): resultAppend(newDancer) for i in range(0, 1): # 1指大/小横按,2/3/4指单按2个单音 for string in range(newChordByFret[0][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(1, string, newChordByFret[0][1], i + 2) singlePressDancer = fingerNoteComb(newDancer, newChordByFret[3:], [2, 3, 4], [1], noPress) result += singlePressDancer return result def chord2Finger19(dancer, chordPosition): """处理[4,2],输出结果2个,1指大横按,3/4指大横按,加上输出3个结果,1指大横按,23/24/34指单按2个单音""" result = [] resultAppend = result.append chordList, noPress = getChordList(chordPosition) newChordByFret = arrangeNotesInChord(chordList, 'fret') for string in range(newChordByFret[0][0], 7): newDancer = copyNewDancer(dancer) newDancer.changeBarre(1, string, newChordByFret[0][1], 2) singlePressDancer = fingerNoteComb(newDancer, newChordByFret[4:],
self.blockSignals(False) return except Exception as e: log.debug(str(e)) self.app.inform.emit('[success] %s' % _("Tool(s) deleted from Tool Table.")) self.blockSignals(False) self.build_ui() def on_generate_buffer(self): self.app.inform.emit('[WARNING_NOTCL] %s...' % _("Buffering solid geometry")) self.obj_name = self.ui.object_combo.currentText() # Get source object. try: self.grb_obj = self.app.collection.get_by_name(self.obj_name) except Exception as e: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Could not retrieve object"), str(self.obj_name))) return "Could not retrieve object: %s with error: %s" % (self.obj_name, str(e)) if self.grb_obj is None: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Object not found"), str(self.obj_name))) return def buffer_task(app_obj): with app_obj.proc_container.new('%s...' % _("Buffering")): if isinstance(self.grb_obj.solid_geometry, list): self.grb_obj.solid_geometry = MultiPolygon(self.grb_obj.solid_geometry) self.grb_obj.solid_geometry = self.grb_obj.solid_geometry.buffer(0.0000001) self.grb_obj.solid_geometry = self.grb_obj.solid_geometry.buffer(-0.0000001) app_obj.inform.emit('[success] %s' % _("Done.")) self.grb_obj.plot_single_object.emit() self.app.worker_task.emit({'fcn': buffer_task, 'params': [self.app]}) def on_iso_button_click(self): self.obj_name = self.ui.object_combo.currentText() # Get source object. try: self.grb_obj = self.app.collection.get_by_name(self.obj_name) except Exception: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Could not retrieve object"), str(self.obj_name))) return if self.grb_obj is None: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Object not found"), str(self.obj_name))) return if self.ui.valid_cb.get_value() is True: self.find_safe_tooldia_multiprocessing() def worker_task(iso_obj): with self.app.proc_container.new('%s ...' % _("Isolating")): self.isolate_handler(iso_obj) self.app.worker_task.emit({'fcn': worker_task, 'params': [self.grb_obj]}) def follow_geo(self, followed_obj, outname): """ Creates a geometry object "following" the gerber paths. :param followed_obj: Gerber object for which to generate the follow geometry :type followed_obj: AppObjects.FlatCAMGerber.GerberObject :param outname: Nme of the resulting Geometry object :type outname: str :return: None """ def follow_init(follow_obj, app_obj): # Propagate options follow_obj.options["cnctooldia"] = str(tooldia) follow_obj.solid_geometry = self.grb_obj.follow_geometry app_obj.inform.emit('[success] %s.' % _("Following geometry was generated")) # in the end toggle the visibility of the origin object so we can see the generated Geometry followed_obj.ui.plot_cb.set_value(False) follow_name = outname for tool in self.iso_tools: tooldia = self.iso_tools[tool]['tooldia'] new_name = "%s_%.*f" % (follow_name, self.decimals, tooldia) follow_state = self.iso_tools[tool]['data']['tools_iso_follow'] if follow_state: ret = self.app.app_obj.new_object("geometry", new_name, follow_init) if ret == 'fail': self.app.inform.emit("[ERROR_NOTCL] %s: %.*f" % ( _("Failed to create Follow Geometry with tool diameter"), self.decimals, tooldia)) else: self.app.inform.emit("[success] %s: %.*f" % ( _("Follow Geometry was created with tool diameter"), self.decimals, tooldia)) def isolate_handler(self, isolated_obj): """ Creates a geometry object with paths around the gerber features. :param isolated_obj: Gerber object for which to generate the isolating routing geometry :type isolated_obj: AppObjects.FlatCAMGerber.GerberObject :return: None """ selection = self.ui.select_combo.get_value() if selection == 0: # ALL self.isolate(isolated_obj=isolated_obj) elif selection == 1: # Area Selection self.app.inform.emit('[WARNING_NOTCL] %s' % _("Click the start point of the area.")) if self.app.is_legacy is False: self.app.plotcanvas.graph_event_disconnect('mouse_press', self.app.on_mouse_click_over_plot) self.app.plotcanvas.graph_event_disconnect('mouse_move', self.app.on_mouse_move_over_plot) self.app.plotcanvas.graph_event_disconnect('mouse_release', self.app.on_mouse_click_release_over_plot) else: self.app.plotcanvas.graph_event_disconnect(self.app.mp) self.app.plotcanvas.graph_event_disconnect(self.app.mm) self.app.plotcanvas.graph_event_disconnect(self.app.mr) self.mr = self.app.plotcanvas.graph_event_connect('mouse_release', self.on_mouse_release) self.mm = self.app.plotcanvas.graph_event_connect('mouse_move', self.on_mouse_move) self.kp = self.app.plotcanvas.graph_event_connect('key_press', self.on_key_press) # disconnect flags self.area_sel_disconnect_flag = True elif selection == 2: # Polygon Selection # disengage the grid snapping since it may be hard to click on polygons with grid snapping on if self.app.ui.grid_snap_btn.isChecked(): self.grid_status_memory = True self.app.ui.grid_snap_btn.trigger() else: self.grid_status_memory = False self.app.inform.emit('[WARNING_NOTCL] %s' % _("Click on a polygon to isolate it.")) self.mr = self.app.plotcanvas.graph_event_connect('mouse_release', self.on_poly_mouse_click_release) self.kp = self.app.plotcanvas.graph_event_connect('key_press', self.on_key_press) if self.app.is_legacy is False: self.app.plotcanvas.graph_event_disconnect('mouse_release', self.app.on_mouse_click_release_over_plot) else: self.app.plotcanvas.graph_event_disconnect(self.app.mr) # disconnect flags self.poly_sel_disconnect_flag = True elif selection == 3: # Reference Object ref_obj = self.app.collection.get_by_name(self.ui.reference_combo.get_value()) ref_geo = unary_union(ref_obj.solid_geometry) use_geo = unary_union(isolated_obj.solid_geometry).difference(ref_geo) self.isolate(isolated_obj=isolated_obj, geometry=use_geo) def isolate(self, isolated_obj, geometry=None, limited_area=None, negative_dia=None, plot=True): """ Creates an isolation routing geometry object in the project. :param isolated_obj: Gerber object for which to generate the isolating routing geometry :type isolated_obj: AppObjects.FlatCAMGerber.GerberObject :param geometry: specific geometry to isolate :type geometry: List of Shapely polygon :param limited_area: if not None isolate only this area :type limited_area: Shapely Polygon or a list of them :param negative_dia: isolate the geometry with a negative value for the tool diameter :type negative_dia: bool :param plot: if to plot the resulting geometry object :type plot: bool :return: None """ combine = self.ui.combine_passes_cb.get_value() tools_storage = self.iso_tools sorted_tools = [] table_items = self.ui.tools_table.selectedItems() sel_rows = {t.row() for t in table_items} for row in sel_rows: tid = int(self.ui.tools_table.item(row, 3).text()) sorted_tools.append(tid) if not sorted_tools: self.app.inform.emit('[ERROR_NOTCL] %s' % _("There are no tools selected in the Tool Table.")) return 'fail' # update the Common Parameters values in the self.iso_tools for tool_iso in self.iso_tools: for key in self.iso_tools[tool_iso]: if key == 'data': self.iso_tools[tool_iso][key]["tools_iso_rest"] = self.ui.rest_cb.get_value() self.iso_tools[tool_iso][key]["tools_iso_combine_passes"] = combine self.iso_tools[tool_iso][key]["tools_iso_isoexcept"] = self.ui.except_cb.get_value() self.iso_tools[tool_iso][key]["tools_iso_selection"] = self.ui.select_combo.get_value() self.iso_tools[tool_iso][key]["tools_iso_area_shape"] = self.ui.area_shape_radio.get_value() if combine: if self.ui.rest_cb.get_value(): self.combined_rest(iso_obj=isolated_obj, iso2geo=geometry, tools_storage=tools_storage, lim_area=limited_area, negative_dia=negative_dia, plot=plot) else: self.combined_normal(iso_obj=isolated_obj, iso2geo=geometry, tools_storage=tools_storage, lim_area=limited_area, negative_dia=negative_dia, plot=plot) else: prog_plot = self.app.defaults["tools_iso_plotting"] for tool in sorted_tools: tool_data = tools_storage[tool]['data'] to_follow = tool_data['tools_iso_follow'] work_geo = geometry if work_geo is None: work_geo = isolated_obj.follow_geometry if to_follow else isolated_obj.solid_geometry iso_t = { 'ext': 0, 'int': 1, 'full': 2 }[tool_data['tools_iso_isotype']] passes = tool_data['tools_iso_passes'] overlap = tool_data['tools_iso_overlap'] overlap /= 100.0 milling_type = tool_data['tools_iso_milling_type'] iso_except = self.ui.except_cb.get_value() for i in range(passes): tool_dia = tools_storage[tool]['tooldia'] tool_type = tools_storage[tool]['tool_type'] iso_offset = tool_dia * ((2 * i + 1) / 2.0000001) - (i * overlap * tool_dia) if negative_dia: iso_offset = -iso_offset outname = "%s_%.*f" % (isolated_obj.options["name"], self.decimals, float(tool_dia)) if passes > 1: iso_name = outname + "_iso" + str(i + 1) if iso_t == 0: iso_name = outname + "_ext_iso" + str(i + 1) elif iso_t == 1: iso_name = outname + "_int_iso" + str(i + 1) else: iso_name = outname + "_iso" if iso_t == 0: iso_name = outname + "_ext_iso" elif iso_t == 1: iso_name = outname + "_int_iso" # if milling type is climb then the move is counter-clockwise around features mill_dir = 1 if milling_type == 'cl' else 0 iso_geo = self.generate_envelope(iso_offset, mill_dir, geometry=work_geo, env_iso_type=iso_t, follow=to_follow, nr_passes=i, prog_plot=prog_plot) if iso_geo == 'fail': self.app.inform.emit('[ERROR_NOTCL] %s' % _("Isolation geometry could not be generated.")) continue # ############################################################ # ########## AREA SUBTRACTION ################################ # ############################################################ if iso_except: self.app.proc_container.update_view_text(' %s' % _("Subtracting Geo")) iso_geo = self.area_subtraction(iso_geo) if limited_area: self.app.proc_container.update_view_text(' %s' % _("Intersecting Geo")) iso_geo = self.area_intersection(iso_geo, intersection_geo=limited_area) # make sure that no empty geometry element is in the solid_geometry new_solid_geo = [geo for geo in iso_geo if not geo.is_empty] tool_data.update({ "name": iso_name, }) def iso_init(geo_obj, fc_obj): # Propagate options geo_obj.options["cnctooldia"] = str(tool_dia) geo_obj.solid_geometry = deepcopy(new_solid_geo) # ############################################################ # ########## AREA SUBTRACTION ################################ # ############################################################ if self.ui.except_cb.get_value(): self.app.proc_container.update_view_text(' %s' % _("Subtracting Geo")) geo_obj.solid_geometry = self.area_subtraction(geo_obj.solid_geometry) geo_obj.tools = {'1': {}} geo_obj.tools.update({ '1': { 'tooldia': float(tool_dia), 'offset': 'Path', 'offset_value': 0.0, 'type': 'Rough', 'tool_type': tool_type, 'data': tool_data, 'solid_geometry': geo_obj.solid_geometry } }) # detect if solid_geometry is empty and this require list flattening which is "heavy" # or just looking in the lists (they are one level depth) and if any is not empty # proceed with object creation, if there are empty and the number of them is the length # of the list then we have an empty solid_geometry which should raise a Custom Exception empty_cnt = 0 if not isinstance(geo_obj.solid_geometry, list): geo_obj.solid_geometry = [geo_obj.solid_geometry] for g in geo_obj.solid_geometry: if g: break else: empty_cnt += 1 if empty_cnt == len(geo_obj.solid_geometry): fc_obj.inform.emit('[ERROR_NOTCL] %s: %s' % ( _("Empty Geometry in"), geo_obj.options["name"])) return 'fail' else: fc_obj.inform.emit('[success] %s: %s' % (_("Isolation geometry created"), geo_obj.options["name"])) geo_obj.multigeo = True self.app.app_obj.new_object("geometry", iso_name, iso_init, plot=plot) # clean the progressive plotted shapes if it was used if prog_plot == 'progressive': self.temp_shapes.clear(update=True) # Switch notebook to Properties page self.app.ui.notebook.setCurrentWidget(self.app.ui.properties_tab) def combined_rest(self, iso_obj, iso2geo, tools_storage, lim_area, negative_dia=None, plot=True): """ Isolate the provided Gerber object using "rest machining" strategy :param iso_obj: the isolated Gerber object :type iso_obj: AppObjects.FlatCAMGerber.GerberObject :param iso2geo: specific geometry to isolate :type iso2geo: list of Shapely Polygon :param tools_storage: a dictionary that holds the tools and geometry :type tools_storage: dict :param lim_area: if not None restrict isolation to this area :type lim_area: Shapely Polygon or a list of them :param negative_dia: isolate the geometry with a negative value for the tool diameter :type negative_dia: bool :param plot: if to plot the resulting geometry object :type plot: bool :return: Isolated solid geometry :rtype: """ log.debug("ToolIsolation.combine_rest()") total_solid_geometry = [] iso_name = iso_obj.options["name"] + '_iso_rest' work_geo = iso_obj.solid_geometry if iso2geo is None else iso2geo # sorted_tools = [] # for k, v in self.iso_tools.items(): # sorted_tools.append(float('%.*f' % (self.decimals, float(v['tooldia'])))) sorted_tools = [] table_items = self.ui.tools_table.selectedItems() sel_rows = {t.row() for t in table_items} for row in sel_rows: try: tdia = float(self.ui.tools_table.item(row, 1).text()) except ValueError: # try to convert comma to
""" Morgan. authors: <NAME> and <NAME> contact: dangeles at caltech edu """ import pandas as pd import warnings as wng import numpy as np import pymc3 as pm # import theano ############################################################################### # --------------------------------------------------------------------------- # # --------------------------------------------------------------------------- # ############################################################################### class hunt(object): """morgan objects are used for genetic analysis using RNA-seq. Each genotype can be associated with two attributes: Read counts and log(fold-change). These attributes are provided in two different dataframes. If you provide a dataframe with fold-change (not log-foldchange) certain functions will not work correctly! Attributes: ------------------ gene change counts qval q """ def __init__(self, gene, change, counts, qval, q=0.1): """ The initialize function. Params: gene change counts qval q """ if not gene: raise ValueError('`gene` cannot be empty') if not change: raise ValueError('`change` cannot be empty') if not counts: raise ValueError('`counts` cannot be empty') if not qval: raise ValueError('`qval` cannot be empty') if type(gene) is not str: raise ValueError('`gene` must be a string') if type(change) is not str: raise ValueError('`change` must be a string') if type(counts) is not str: raise ValueError('`counts` must be a string') if type(qval) is not str: raise ValueError('`qval` must be a string') if type(q) is not float: raise ValueError('`q` must be a float') if q <= 0 or q >= 1: raise ValueError('`q` must be between 0 and 1') self.gene = gene self.change = change self.counts = counts self.qval = qval self.q = q self.single_mutants = [] self.double_muts = {} self.beta = None def add_single_mutant(self, single): """ Add a single mutant to the list. Params: single - str or listlike Note: ALL letter codes are coerced to lowercase! """ if type(single) not in [str, list]: raise ValueError('`single` must be a str or list of strings') if type(single) is str: self.single_mutants += [single.lower()] if type(single) is list: self.single_mutants += [x.lower() for x in single] self.single_mutants = list(set(self.single_mutants)) def add_double_mutants(self, lettercode, genotype): """ A method that adds double mutants codes to a dictionary. Params: --------- lettercode - str or list, contains the code by which the double mutant will be referred to genotype - str or list, contains the genotype that lettercode refers to i.e. {a: bc} - the lettercode is a, and the genotype is b(minus)c(minus) Output: appends to the double mutant dictionary. """ if type(lettercode) != type(genotype): raise ValueError('types of lettercode and genotype must match!') if type(lettercode) is not str: if len(lettercode) != len(genotype): raise ValueError('lengths of lettercode\ and genotype must match!') if type(lettercode) is str: if lettercode.lower() in self.double_muts.keys(): w = '{0} is already in string\ and was replaced'.format(lettercode.lower()) wng.warn(w) self.double_muts[lettercode.lower()] = genotype.lower() return for i, letter in enumerate(lettercode): if letter.lower() in self.double_muts.keys(): w = '{0} is already in string\ and was replaced'.format(letter.lower()) wng.warn('{0} is already in string!'.format(letter)) self.double_muts[letter.lower()] = genotype[i].lower() def add_genmap(self, genmap_path, sep=',', comment='#'): """ Add a genmap path to this object. The genmap file must have exactly two columns: project_name - the name of each RNA-seq run genotype - typically, each genotype has n replicates with n project_name's batch - batch each project belonged to I.e.: run1,WT run2,WT run3,WT run4,mut run5,mut run6,mut Params: genmap_path - path (including filename) to genmap file sep - separator used to make genmap comment - if there are comments, marker used to define comments """ self.genmap = pd.read_csv(genmap_path, sep=sep, comment=comment) columns = ['project_name', 'genotype', 'batch'] if (self.genmap.columns != columns).all(): raise ValueError('genmap is not in the right format!') self.genmap.genotype = self.genmap.genotype.apply(str) # make sure everything is always in lowercase self.genmap.genotype = self.genmap.genotype.apply(str.lower) def add_tpm(self, main_path, tpm_fname, folder='', sep='\t'): """ Add tpm files. main_path - path where all the tpm files are kept tpm_fname - generic name of all tpm files (i.e., tpm.csv) folder - if there are any subfolders to get to tpm_fname, go here sep - separator used in tpm files i.e.: main_path -> genmap.project_name[0] -> folder -> tpm_fname main_path -> genmap.project_name[1] -> folder -> tpm_fname returns: self.tpm - a dictionary (project_name, df) """ self.tpm = {} # initialize an empty hash # get tpm for each project for prjct in self.genmap.project_name.unique(): path = main_path + prjct + folder + tpm_fname self.tpm[prjct] = pd.read_csv(path, sep=sep) self.tpm[prjct].sort_values(self.gene, inplace=True) self.tpm[prjct].reset_index(drop=True, inplace=True) def add_betas(self, main_path, fc_fname, folders, sep=','): """ Add fold change dfs. Params: ------------------------- main_path - str, path to each processed read folder folders - dict, where keys are the genotypes and the values are the names of the folders the genotype is in fc_fname - str, standard name of the fold-change data sep - separators between columns Output: ------------------------- self.beta - dictionary of dataframes """ if type(folders) is not dict: raise ValueError('`folders` must be listlike') self.beta = {} # empty hash # get betas for each genotype comparison: for genotype in folders.keys(): path = main_path + folders[genotype] + fc_fname self.beta[genotype] = pd.read_csv(path, sep=sep) # beta dataframes from sleuth MUST BE SORTED By ID!!!! self.beta[genotype].sort_values(self.gene, inplace=True) self.beta[genotype].reset_index(drop=True, inplace=True) def add_beta(self, fname, key, **kwargs): """A function to add a file to the beta dictionary.""" if self.beta is None: self.beta = {} self.beta[key] = pd.read_csv(fname, **kwargs) def set_qval(self, q=0.1): """A function to set the qvalue parameter.""" if type(q) is not float: raise ValueError('`q` must be a float!') if q == 0 or q == 1: raise ValueError('`q` must be between 0, 1 noninclusive') self.q = q def filter_data(self): """ A function to filter out NaNs in the beta dataframes. Params: count_min - int or float count_quantile - float outputs: filtered_tpm filtered_beta """ for genotype, df in self.beta.items(): df.dropna(subset=['b'], inplace=True) ############################################################################### # --------------------------------------------------------------------------- # # --------------------------------------------------------------------------- # ############################################################################### # some common functions def find_rank(morgan, df): """A function to find the rank values of a variable.""" d = df.copy() d.sort_values('b', inplace=True) rank = np.linspace(0, len(d)-1, len(d)) d['r'] = rank d.sort_values(morgan.gene, inplace=True) return d def find_inliers(morgan, ovx, ovy, trace): """A function to find inliers from the Bayesian regression.""" # find the mean and std of the distribution along the line mean = np.mean(ovy.r - trace.Intercept.mean() - ovx.r*trace.x.mean()) std = np.std(ovy.r - trace.Intercept.mean() - ovx.r*trace.x.mean()) # find the total distribution: intercept = trace.Intercept.mean() slope = trace.x.mean() distribution = ovy.r - intercept - ovx.r*slope # call the inliers and outliers. # fairly aggressive -- < 1std is inlier, > is outlier inliers = (np.abs(distribution - mean)/std < 1) # get a list of the gene candidates (genes close to line) candidates = ovy[ovy.r.isin(ovy.r[inliers])][morgan.gene] return candidates def robust_regress(data, progress=False): """A robust regression using a StudentT instead of a Gaussian model.""" with pm.Model(): family = pm.glm.families.StudentT() pm.glm.glm('y ~ x', data, family=family) start = pm.find_MAP() step = pm.NUTS(scaling=start) trace_robust = pm.sample(2000, step, progressbar=progress) return trace_robust class mcclintock(object): """ An object that performs bayesian robust regression on a morgan object. For single mutant analysis. Attributes: ------------------ name robust_slope primary_weights secondary_slope secondary weights """ def __init__(self, name, morgan, progress): """ Initialize function. Performs bayesian primary and secondary regression. """ self.name = name self.progress = progress self.robust_regression_primary(morgan, progress) self.robust_regression_secondary(morgan, progress) def mcmc_robust(self, data, progress=True): """Bayesian Regression Using PyMC3.""" # with pm.Model() as model_robust: with pm.Model(): family = pm.glm.families.StudentT() pm.glm.glm('y ~ x', data, family=family) start = pm.find_MAP() step = pm.NUTS(scaling=start) trace_robust = pm.sample(2000, step, progressbar=progress) return trace_robust def robust_regression_primary(self, morgan, alpha=10**-4, progress=True): """ A function to perform robust spearmanr analyses on all single mutants. Params: alpha - float, significance value for spearmanr correlation progress - Boolean, show progressbar for mcmc Outputs: res_dict - a hash containing the results of the analysis. """ def perform_mcmc(morgan, ovx, ovy, mut_a, mut_b, progress=True): """ A function to perform the robust spearmanr regress. Written mainly to avoid running into RAM issues. Not entirely meant for public use. ovx, ovy -- dataframes to be correlated mut_a, mut_b -- genotypes of ovx and ovy """ # rank order: ovx = find_rank(morgan, ovx) ovy = find_rank(morgan, ovy) # place in a dict data = dict(x=ovx.r, y=ovy.r) # run PyMC3 with student T distribution # to minimize impact of outliers print('\nstarting comparison of {0}, {1}'.format(i, j)) trace_robust = robust_regress(data, progress) # find the mean and std of the distribution along the line candidates =
timeout How long to wait for the output to exist before raising a :class:`htmap.exceptions.TimeoutError`. If ``None``, wait forever. """ return self._load_output(component, timeout=timeout) def __getitem__(self, item: int) -> Any: """Return the output associated with the input index. Does not block.""" return self.get(item, timeout=0) def get_err(self, component: int, timeout: utils.Timeout = None,) -> errors.ComponentError: """ Return the error associated with the input component index. If the component actually succeeded, this will raise :class:`htmap.exceptions.ExpectedError`. Parameters ---------- component The index of the input to get the output for. timeout How long to wait for the output to exist before raising a :class:`htmap.exceptions.TimeoutError`. If ``None``, wait forever. """ return self._load_error(component, timeout=timeout) def __iter__(self) -> Iterator[Any]: """ Iterating over the :class:`htmap.Map` yields the outputs in the same order as the inputs, waiting on each individual output to become available. """ yield from self.iter() def iter(self, timeout: utils.Timeout = None,) -> Iterator[Any]: """ Returns an iterator over the output of the :class:`htmap.Map` in the same order as the inputs, waiting on each individual output to become available. Parameters ---------- timeout How long to wait for each output to be available before raising a :class:`htmap.exceptions.TimeoutError`. If ``None``, wait forever. """ for component in self.components: yield self._load_output(component, timeout=timeout) def iter_with_inputs( self, timeout: utils.Timeout = None, ) -> Iterator[Tuple[Tuple[tuple, Dict[str, Any]], Any]]: """ Returns an iterator over the inputs and output of the :class:`htmap.Map` in the same order as the inputs, waiting on each individual output to become available. Parameters ---------- timeout How long to wait for each output to be available before raising a :class:`htmap.exceptions.TimeoutError`. If ``None``, wait forever. """ for component in self.components: output = self._load_output(component, timeout=timeout) input = self._load_input(component) yield input, output def iter_as_available(self, timeout: utils.Timeout = None,) -> Iterator[Any]: """ Returns an iterator over the output of the :class:`htmap.Map`, yielding individual outputs as they become available. The iteration order is initially random, but is consistent within a single interpreter session once the map is completed. Parameters ---------- timeout How long to wait for the entire iteration to complete before raising a :class:`htmap.exceptions.TimeoutError`. If ``None``, wait forever. """ timeout = utils.timeout_to_seconds(timeout) start_time = time.time() remaining_indices = set(self.components) while len(remaining_indices) > 0: for component in copy(remaining_indices): try: output = self._load_output(component, timeout=0) remaining_indices.remove(component) yield output except exceptions.OutputNotFound: pass if timeout is not None and time.time() > start_time + timeout: raise exceptions.TimeoutError("Timed out while waiting for more output") time.sleep(settings["WAIT_TIME"]) def iter_as_available_with_inputs( self, timeout: utils.Timeout = None, ) -> Iterator[Tuple[Tuple[tuple, Dict[str, Any]], Any]]: """ Returns an iterator over the inputs and output of the :class:`htmap.Map`, yielding individual ``(input, output)`` pairs as they become available. The iteration order is initially random, but is consistent within a single interpreter session once the map is completed. Parameters ---------- timeout How long to wait for the entire iteration to complete before raising a :class:`htmap.exceptions.TimeoutError`. If ``None``, wait forever. """ timeout = utils.timeout_to_seconds(timeout) start_time = time.time() remaining_indices = set(self.components) while len(remaining_indices) > 0: for component in copy(remaining_indices): try: output = self._load_output(component, timeout=0) input = self._load_input(component) remaining_indices.remove(component) yield input, output except exceptions.OutputNotFound: pass if timeout is not None and time.time() > start_time + timeout: raise exceptions.TimeoutError("Timed out while waiting for more output") time.sleep(settings["WAIT_TIME"]) def iter_inputs(self) -> Iterator[Any]: """Returns an iterator over the inputs of the :class:`htmap.Map`.""" return (self._load_input(idx) for idx in self.components) def _requirements(self, requirements: Optional[str] = None) -> str: """Build an HTCondor requirements expression that captures all of the ``cluster_id`` for this map.""" base = f"({' || '.join(f'ClusterId=={cid}' for cid in self._cluster_ids)})" extra = f" && {requirements}" if requirements is not None else "" return base + extra def _query( self, requirements: Optional[str] = None, projection: Optional[List[str]] = None, ) -> Iterator[classad.ClassAd]: """ Perform a _query against the HTCondor cluster to get information about the map jobs. Parameters ---------- requirements A ClassAd expression to use as the requirements for the _query. In addition to whatever restrictions given in this expression, the _query will only target the jobs for this map. projection The ClassAd attributes to return from the _query. Returns ------- classads An iterator of matching :class:`classad.ClassAd`, with only the projected fields. """ if projection is None: projection = [] req = self._requirements(requirements) schedd = condor.get_schedd() q = schedd.xquery(requirements=req, projection=projection,) logger.debug( f'Queried for map {self.tag} (requirements = "{req}") with projection {projection}' ) yield from q @property def component_statuses(self) -> List[state.ComponentStatus]: """ Return the current :class:`state.ComponentStatus` of each component in the map. """ return self._state.component_statuses def components_by_status(self) -> Mapping[state.ComponentStatus, Tuple[int, ...]]: """ Return the component indices grouped by their states. Examples -------- This example finds the completed jobs for a submitted map, and processes those results: .. code:: python from time import sleep import htmap def job(x): sleep(x) return 1 / x m = htmap.map(job, [0, 2, 4, 6, 8], tag="foo") # Wait for all jobs to finish. # Alternatively, use `futures = htmap.load("foo")` on a different process sleep(10) completed = m.components_by_status()[htmap.JobStatus.COMPLETED] for component in completed: result = m.get(future) # Whatever processing needs to be done print(result) # prints "2", "4", "6", and "8" """ status_to_components: MutableMapping[ state.ComponentStatus, List[int] ] = collections.defaultdict(list) for component, status in enumerate(self.component_statuses): status_to_components[status].append(component) return { status: tuple(sorted(components)) for status, components in status_to_components.items() } def status(self) -> str: """Return a string containing the number of jobs in each status.""" counts = collections.Counter(self.component_statuses) stat = " | ".join( f"{str(js)} = {counts[js]}" for js in state.ComponentStatus.display_statuses() ) msg = f"{self.__class__.__name__} {self.tag} ({len(self)} components): {stat}" return utils.rstr(msg) @property def holds(self) -> Dict[int, holds.ComponentHold]: """ A dictionary of component indices to their :class:`Hold` (if they are held). """ return self._state.holds def hold_report(self) -> str: """ Return a string containing a formatted table describing any held components. """ headers = ["Component", "Code", "Hold Reason"] rows = [(component, hold.code, hold.reason) for component, hold in self.holds.items()] return utils.table( headers=headers, rows=rows, alignment={"Component": "ljust", "Hold Reason": "ljust",}, ) @property def errors(self) -> Dict[int, errors.ComponentError]: """ A dictionary of component indices to their :class:`ExecutionError` (if that component experienced an error). """ err = {} for idx in self.components: try: err[idx] = self.get_err(idx) except ( exceptions.OutputNotFound, exceptions.ExpectedError, exceptions.MapComponentHeld, ) as e: pass return err def error_reports(self) -> Iterator[str]: """ Yields the error reports for any components that experienced an error during execution. """ for idx in self.components: try: yield self.get_err(idx, timeout=0).report() except ( exceptions.OutputNotFound, exceptions.ExpectedError, exceptions.TimeoutError, exceptions.MapComponentHeld, ) as e: pass @property def memory_usage(self) -> List[int]: """ Return the latest peak memory usage of each map component, measured in MB. A component that hasn't reported yet will show a ``0``. .. warning:: Due to current limitations in HTCondor, memory use for very short-lived components (<5 seconds) will not be accurate. """ return self._state.memory_usage @property def runtime(self) -> List[datetime.timedelta]: """Return the total runtime (user + system) of each component.""" return self._state.runtime @property def local_data(self) -> int: """Return the number of bytes stored on the local disk by the map.""" # this cache is invalidated by the state reader loop when appropriate if self._local_data is None: logger.debug( f"Getting map directory size for map {self.tag} (map directory is {self._map_dir})" ) with utils.Timer() as timer: self._local_data = utils.get_dir_size(self._map_dir, safe=False) logger.debug( f"Map directory size for map {self.tag} is {utils.num_bytes_to_str(self._local_data)} (took {timer.elapsed:.6f} seconds)" ) return self._local_data def _act( self, action: htcondor.JobAction, requirements: Optional[str] = None, ) -> classad.ClassAd: """Perform an action on all of the jobs associated with this map.""" if not self.is_active: return classad.ClassAd() schedd = condor.get_schedd() req = self._requirements(requirements) a = schedd.act(action, req) logger.debug(f'Acted on map {self.tag} (requirements = "{req}") with action {action}') return a def remove(self, force: bool = False) -> None: """ This command removes a map from the Condor queue. Functionally, this command aborts a job. This function will completely remove a map from the Condor queue regardless of job state (running, executing, waiting, etc). All data associated with a removed map is permanently deleted. Parameters ---------- force If ``True``, do not wait for HTCondor
<gh_stars>1-10 ## kClassification.py ## K-label classification cadres with cross-entropy loss ## NOTE: This file needs to be tested and should get an example analysis notebook. from __future__ import division, print_function, absolute_import import time import numpy as np import tensorflow as tf import utility as u from itertools import product class multilabelCadreModel(object): def __init__(self, M=2, gamma=10., lambda_d=0.01, lambda_W=0.01, alpha_d=0.9, alpha_W=0.9, Tmax=10000, record=100, eta=2e-3, Nba=64, eps=1e-3, termination_metric='accuracy'): ## hyperparameters / structure self.M = M # number of cadres self.gamma = gamma # cadre assignment sharpness self.lambda_d = lambda_d # regularization strengths self.lambda_W = lambda_W self.alpha_d = alpha_d # elastic net mixing weights self.alpha_W = alpha_W self.fitted = False ## optimization settings self.Tmax = Tmax # maximum iterations self.record = record # record points self.eta = eta # initial stepsize self.Nba = Nba # minibatch size self.eps = eps # convergence tolerance self.termination_metric = termination_metric ## parameters self.W = 0 # regression weights self.W0 = 0 # regression biases self.C = 0 # cadre centers self.d = 0 # cadre assignment weights ## data self.data = None # pd.DataFrame containing features and response self.cadreFts = None # pd.Index of column-names giving features used for cadre assignment self.predictFts = None # pd.Index of column-names giving features used for target-prediction self.targetCol = None # string column-name of response variable ## outputs self.metrics = {'training': {'loss': [], 'accuracy': []}, 'validation': {'loss': [], 'accuracy': []}} self.time = [] # times self.proportions = [] # cadre membership proportions during training self.termination_reason = None # why training stopped def get_params(self, deep=True): return {'M': self.M, 'gamma': self.gamma, 'lambda_d': self.lambda_d, 'lambda_W': self.lambda_W, 'alpha_d': self.alpha_d, 'alpha_W': self.alpha_W, 'Tmax': self.Tmax, 'record': self.record, 'eta': self.eta, 'Nba': self.Nba, 'eps': self.eps} def set_params(self, **parameters): for parameter, value in parameters.items(): setattr(self, parameter, value) return self def fit(self, data, targetCol, cadreFts=None, predictFts=None, dataVa=None, seed=16162, store=False, progress=False): np.random.seed(seed) """Fits multilabel classification cadre model""" ## store categories of column names self.targetCol = targetCol if cadreFts is not None: self.cadreFts = cadreFts else: self.cadreFts = data.drop(targetCol, axis=1).columns if predictFts is not None: self.predictFts = predictFts else: self.predictFts = data.drop(targetCol, axis=1).columns ## get dataset attributes self.fitted = True if store: self.data = data Pcadre, Ppredict, Ntr = self.cadreFts.shape[0], self.predictFts.shape[0], data.shape[0] ## split data into separate numpy arrays for faster access ## features for cadre-assignment dataCadre = data.loc[:,self.cadreFts].values ## features for target-prediction dataPredict = data.loc[:,self.predictFts].values ## target feature dataTarget = data.loc[:,[self.targetCol]].values K = np.unique(dataTarget).shape[0] if dataVa is not None: dataCadreVa = dataVa.loc[:,self.cadreFts].values dataPredictVa = dataVa.loc[:,self.predictFts].values dataTargetVa = dataVa.loc[:,[self.targetCol]].values ############################################ ## tensorflow parameters and placeholders ## ############################################ tf.reset_default_graph() ## cadre centers parameter C = tf.Variable(np.random.normal(loc=0., scale=0.1, size=(Pcadre,self.M)), dtype=tf.float32, name='C') ## cadre determination weights parameter d = tf.Variable(np.random.uniform(size=(Pcadre)), dtype=tf.float32, name='d') ## regression hyperplane weights parameter W = tf.Variable(np.random.normal(loc=0., scale=0.1, size=(K,Ppredict,self.M)), dtype=tf.float32, name='W') ## regression hyperplane bias parameter W0 = tf.Variable(tf.zeros(shape=(K,self.M), dtype=tf.float32), dtype=tf.float32, name='W0') Xcadre = tf.placeholder(dtype=tf.float32, shape=(None,Pcadre), name='Xcadre') Xpredict = tf.placeholder(dtype=tf.float32, shape=(None,Ppredict), name='Xpredict') Y = tf.placeholder(dtype=tf.int32, shape=(None, ), name='Y') eta = tf.placeholder(dtype=tf.float32, shape=(), name='eta') lambda_Ws = tf.placeholder(dtype=tf.float32, shape=(self.M,), name='lambda_Ws') ## T[n,m] = ||x^n - c^m||^2_D T = tf.einsum('npm,p->nm', tf.square(tf.map_fn(lambda x: tf.expand_dims(x,1) - C, Xcadre)), d) ## G[n,m] = g_m(x^n) ## = 1 / sum_m' exp(gamma(T[n,m] - T[n,m'])) G = 1 / tf.map_fn(lambda t: tf.reduce_sum(tf.exp(self.gamma*(tf.expand_dims(t,1) - tf.expand_dims(t,0))), axis=1), T, name='G') bstCd = tf.argmax(G, axis=1, name='bestCadre') ## E[n,y,m] = e^m_y(x^n) E = tf.add(tf.einsum('np,kpm->nkm', Xpredict, W), W0, name='E') ## F[n,k] = f_k(x^n) F = tf.einsum('nm,nkm->nk', G, E, name='F') Yhat = tf.argmax(F, axis=1) ## observation-wise error terms (based on jensen's inequality) error_terms = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=Y, logits=F) loss_score = tf.reduce_mean(error_terms) ## regularization l2_d = self.lambda_d * (1 - self.alpha_d) * tf.reduce_sum(d**2) l2_W = self.lambda_W * (1 - self.alpha_W) * tf.reduce_sum(lambda_Ws * W**2) l1_d = self.lambda_d * self.alpha_d * tf.reduce_sum(tf.abs(d)) l1_W = self.lambda_W * self.alpha_W * tf.reduce_sum(lambda_Ws * tf.abs(W)) l2_C = 1e-7 * tf.reduce_sum(C**2) ## loss that is fed into optimizer loss_opt = loss_score + l2_d + l2_W + l2_C ## full loss, including l1 terms handled with proximal gradient loss_full = loss_opt + l1_d + l1_W optimizer = tf.train.AdamOptimizer(learning_rate=eta).minimize(loss_opt) ## nonsmooth proximal terms thresh_W = tf.assign(W, tf.sign(W) * (tf.abs(W) - eta * self.lambda_W * lambda_Ws * self.alpha_W) * tf.cast(tf.abs(W) > eta * self.lambda_W * self.alpha_W, tf.float32)) thresh_d = tf.assign(d, tf.maximum(0., tf.sign(d) * (tf.abs(d) - eta * self.lambda_d * self.alpha_d) * tf.cast(tf.abs(d) > eta * self.lambda_d * self.alpha_d, tf.float32))) #################### ## learning model ## #################### with tf.Session() as sess: tf.global_variables_initializer().run() if progress: if dataVa is not None: print('numbers being printed:', 'SGD iteration, training loss, training accuracy, validation loss, validation accuracy, time') else: print('numbers being printed:', 'SGD iteration, training loss, training accuracy, time') t0 = time.time() ## perform optimization for t in range(self.Tmax): inds = np.random.choice(Ntr, self.Nba, replace=False) ## calculate adaptive regularization parameter cadres = bstCd.eval(feed_dict={Xcadre: dataCadre[inds,:], Xpredict: dataPredict[inds,:]}) cadre_counts = np.zeros(self.M) for m in range(self.M): cadre_counts[m] = np.sum(cadres == m) + 1 cadre_counts = cadre_counts.sum() / cadre_counts ## take SGD step sess.run(optimizer, feed_dict={Xcadre: dataCadre[inds,:], Xpredict: dataPredict[inds,:], Y: target_tr[inds,:], lambda_Ws: cadre_counts, eta: self.eta / np.sqrt(t+1)}) ## take proximal gradient step sess.run([thresh_d, thresh_W], feed_dict={eta: self.eta / np.sqrt(t+1), lambda_Ws: cadre_counts}) # record-keeping if not t % self.record: if progress: if len(self.time) and dataVa is not None: print(t, self.metrics['training']['loss'][-1], self.metrics['training']['accuracy'][-1], self.metrics['validation']['loss'][-1], self.metrics['validation']['accuracy'][-1], self.time[-1]) elif len(self.time): print(t, self.metrics['training']['loss'][-1], self.metrics['training']['accuracy'][-1], self.time[-1]) else: print(t) self.time.append(time.time() - t0) ## calculate metrics -- this should be its own function since it gets repeated cadres = bstCd.eval(feed_dict={Xcadre: dataCadre, Xpredict: dataPredict}) cadre_counts = np.zeros(self.M) for m in range(self.M): cadre_counts[m] = np.sum(cadres == m) + 1 cadre_counts = cadre_counts / cadre_counts.sum() self.metrics['training']['loss'].append(l) self.metrics['training']['accuracy'].append(np.mean(yhat == dataTarget)) self.proportions.append(pd.Series(cadres).value_counts().T) self.proportions[-1] /= self.proportions[-1].sum() if dataVa is not None: cadres = bstCd.eval(feed_dict={Xcadre: dataCadreVa, Xpredict: dataPredictVa}) cadre_counts = np.zeros(self.M) for m in range(self.M): cadre_counts[m] = np.sum(cadres == m) + 1 cadre_counts = cadre_counts / cadre_counts.sum() l, margin = sess.run([loss_full, F], feed_dict={Xcadre: dataCadreVa, Xpredict: dataPredictVa, lambda_Ws: cadre_counts, Y: target_va}) self.metrics['validation']['loss'].append(l) self.metrics['validation']['accuracy'].append(np.mean(yhat == dataTargetVa)) if dataVa is not None: if len(self.time) > 1: last_metric = self.metrics['validation'][self.termination_metric][-1] second_last_metric = self.metrics['validation'][self.termination_metric][-2] if np.abs(last_metric - second_last_metric) < self.eps: self.termination_reason = 'lack of sufficient decrease in validation ' + self.termination_metric break else: if len(self.time) > 1: last_metric = self.metrics['training'][self.termination_metric][-1] second_last_metric = self.metrics['training'][self.termination_metric][-2] if np.abs(last_metric - second_last_metric) < self.eps: self.termination_reason = 'lack of sufficient decrease in training ' + self.termination_metric break if self.termination_reason == None: self.termination_reason = 'model took ' + str(self.Tmax) + ' SGD steps' if progress: print('training has terminated because: ' + str(self.termination_reason)) self.C, self.d, self.W, self.W0 = C.eval(), d.eval(), W.eval(), W0.eval() self.C = pd.DataFrame(self.C, index=self.cadreFts) self.d = pd.Series(self.d, index=self.cadreFts) self.W = pd.DataFrame(self.W, index=self.predictFts) ## clean up output for easier analysis self.metrics['training'] = pd.DataFrame(self.metrics['training']) if dataVa is not None: self.metrics['validation'] = pd.DataFrame(self.metrics['validation']) self.proportions = pd.concat(self.proportions, axis=1).T return self def predictFull(self, Xnew): """Returns predicted values, cadre weights, and cadre estimates for new data""" if not self.fitted: print('warning: model not yet fit') tf.reset_default_graph() C = tf.Variable(self.C.values, dtype=tf.float32, name='C') d = tf.Variable(self.d.values, dtype=tf.float32, name='d') W = tf.Variable(self.W.values, dtype=tf.float32, name='W') W0 = tf.Variable(self.W0, dtype=tf.float32, name='w0') Xcadre = tf.placeholder(dtype=tf.float32, shape=(None,self.cadreFts.shape[0]), name='Xcadre') Xpredict = tf.placeholder(dtype=tf.float32, shape=(None,self.predictFts.shape[0]), name='Xpredict') Y = tf.placeholder(dtype=tf.float32, shape=(None,1), name='Y') ## T[n,m] = ||x^n - c^m||^2_D T = tf.einsum('npm,p->nm', tf.square(tf.map_fn(lambda x: tf.expand_dims(x,1) - C, Xcadre)), d) ## G[n,m] = g_m(x^n) ## = 1 / sum_m' exp(gamma(T[n,m] - T[n,m'])) G = 1 / tf.map_fn(lambda t: tf.reduce_sum(tf.exp(self.gamma*(tf.expand_dims(t,1) - tf.expand_dims(t,0))), axis=1), T, name='G') ## E[n,y,m] = e^m_y(x^n) E = tf.add(tf.einsum('np,ypm->nym', X, W), W0, name='E') ## F[n,y] = f_y(x^n) F = tf.einsum('nm,nym->ny', G, E, name='F') Yhat = tf.argmax(F, axis=1) bstCd = tf.argmax(G, axis=1, name='bestCadre') ## observation-wise error terms (based on jensen's inequality) error_terms = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=Y, logits=F) loss_score = tf.reduce_mean(error_terms) ## regularization l2_d = self.lambda_d * (1 - self.alpha_d) * tf.reduce_sum(d**2) l2_W = self.lambda_W * (1
783.0 5.580 0 784.0 5.578 0 785.0 5.578 0 786.0 5.576 0 787.0 5.552 0 788.0 5.534 0 789.0 5.534 0 790.0 5.534 0 791.0 5.539 0 792.0 5.542 0 793.0 5.531 0 794.0 5.524 0 795.0 5.520 0 796.0 5.533 0 797.0 5.562 0 798.0 5.566 0 799.0 .000 1 800.0 .000 1 801.0 .000 1 802.0 .000 1 803.0 .000 1 804.0 .000 1 805.0 .000 1 806.0 .000 1 807.0 .000 1 808.0 .000 1 809.0 .000 1 810.0 .000 1 811.0 .000 1 812.0 .000 1 813.0 .000 1 814.0 .000 1 815.0 .000 1 816.0 .000 1 817.0 .000 1 818.0 .000 1 819.0 .000 1 820.0 .000 1 821.0 .000 1 822.0 .000 1 823.0 .000 1 824.0 .000 1 825.0 .000 1 826.0 .000 1 827.0 .000 1 828.0 .000 1 829.0 .000 1 830.0 .000 1 831.0 .000 1 832.0 .000 1 833.0 .000 1 834.0 .000 1 835.0 .000 1 836.0 .000 1 837.0 .000 1 838.0 .000 1 839.0 .000 1 840.0 .000 1 841.0 .000 1 842.0 .000 1 843.0 .000 1 844.0 .000 1 845.0 .000 1 846.0 .000 1 847.0 .000 1 848.0 .000 1 849.0 .000 1 850.0 .000 1 851.0 .000 1 852.0 .000 1 853.0 .000 1 854.0 .000 1 855.0 .000 1 856.0 .000 1 857.0 .000 1 858.0 .000 1 859.0 .000 1 860.0 .000 1 861.0 .000 1 862.0 .000 1 863.0 .000 1 864.0 .000 1 865.0 .000 1 866.0 .000 1 867.0 .000 1 868.0 .000 1 869.0 .000 1 870.0 .000 1 871.0 .000 1 872.0 .000 1 873.0 .000 1 874.0 .000 1 875.0 .000 1 876.0 .000 1 877.0 .000 1 878.0 .000 1 879.0 .000 1 880.0 .000 1 881.0 .000 1 882.0 .000 1 883.0 .000 1 884.0 .000 1 885.0 .000 1 886.0 .000 1 887.0 .000 1 888.0 .000 1 889.0 .000 1 890.0 .000 1 891.0 .000 1 892.0 .000 1 893.0 .000 1 894.0 .000 1 895.0 .000 1 896.0 .000 1 897.0 .000 1 898.0 .000 1 899.0 .000 1 900.0 .000 1 901.0 .000 1 902.0 .000 1 903.0 .000 1 904.0 .000 1 905.0 .000 1 906.0 .000 1 907.0 .000 1 908.0 .000 1 909.0 .000 1 910.0 .000 1 911.0 .000 1 912.0 .000 1 913.0 .000 1 914.0 .000 1 915.0 .000 1 916.0 .000 1 917.0 .000 1 918.0 .000 1 919.0 .000 1 920.0 .000 1 921.0 .000 1 922.0 .000 1 923.0 .000 1 924.0 .000 1 925.0 .000 1 926.0 .000 1 927.0 .000 1 928.0 .000 1 929.0 .000 1 930.0 .000 1 931.0 .000 1 932.0 .000 1 933.0 .000 1 934.0 .000 1 935.0 .000 1 936.0 .000 1 937.0 .000 1 938.0 .000 1 939.0 .000 1 940.0 .000 1 941.0 .000 1 942.0 .000 1 943.0 .000 1 944.0 .000 1 945.0 .000 1 946.0 .000 1 947.0 .000 1 948.0 .000 1 949.0 .000 1 950.0 .000 1 951.0 .000 1 952.0 .000 1 953.0 .000 1 954.0 .000 1 955.0 .000 1 956.0 .000 1 957.0 .000 1 958.0 .000 1 959.0 .000 1 960.0 .000 1 961.0 .000 1 962.0 .000 1 963.0 .000 1 964.0 .000 1 965.0 .000 1 966.0 .000 1 967.0 .000 1 968.0 .000 1 969.0 .000 1 970.0 .000 1 971.0 .000 1 972.0 .000 1 973.0 .000 1 974.0 .000 1 975.0 .000 1 976.0 .000 1 977.0 .000 1 978.0 .000 1 979.0 .000 1 980.0 .000 1 981.0 .000 1 982.0 .000 1 983.0 .000 1 984.0 .000 1 985.0 .000 1 986.0 .000 1 987.0 .000 1 988.0 .000 1 989.0 .000 1 990.0 .000 1 991.0 .000 1 992.0 .000 1 993.0 .000 1 994.0 .000 1 995.0 .000 1 996.0 .000 1 997.0 .000 1 998.0 .000 1 999.0 .000 1 HH 10082287 -59.660 115.730 1996 1 25 103PFL 4.0 2.468 0 9.9 2.468 0 15.8 2.468 0 21.8 2.468 0 27.7 2.468 0 33.7 2.468 0 39.6 2.426 0 45.6 2.384 0 51.5 2.341 0 57.4 1.919 0 63.4 1.709 0 69.3 1.687 0 75.3 1.582 0 81.2 1.456 0 86.2 1.330 0 92.1 1.245 0 98.0 1.161 0 104.0 1.035 0 109.9 .888 0 115.9 .783 0 121.8 .720 0 127.7 .699 0 133.7 .699 0 139.6 .699 0 145.6 .657 0 151.5 .636 0 157.4 .699 0 163.4 .699 0 169.3 .678 0 175.3 .741 0 181.2 .825 0 186.1 1.014 0 192.1 1.224 0 198.0 1.351 0 204.0 1.372 0 209.9 1.456 0 215.8 1.561 0 221.8 1.624 0 227.7 1.645 0 233.6 1.751 0 239.6 1.814 0 245.5 1.877 0 251.5 1.877 0 257.4 1.877 0 263.3 1.898 0 269.3 1.961 0 275.2 1.961 0 281.1 1.961 0 286.1 1.983 0 292.0 2.046 0 298.0 2.046 0 303.9 2.046 0 309.8 2.046 0 315.8 2.046 0 321.7 2.046 0 327.6 2.046 0 333.6 2.109 0 339.5 2.130 0 345.4 2.130 0 351.4 2.130 0 357.3 2.130 0 363.2 2.130 0 369.2 2.130 0 375.1 2.130 0 381.0 2.130 0 386.0 2.130 0 391.9 2.130 0 397.8 2.151 0 409.7 2.215 1 421.6 2.215 1 433.4 2.215 1 445.3 2.215 1 457.1 2.215 1 469.0 2.215 1 480.9 2.215 1 491.7 2.215 1 503.6 2.215 1 515.5 2.215 1 527.3 2.215 1 539.2 2.215 1 551.0 2.215 1 562.9 2.215 1 574.7 2.215 1 585.6 2.215 1 597.5 2.215 1 609.3 2.215 1 621.2 2.215 1 633.0 2.215 1 644.9 2.151 0 656.7 2.130 0 668.6 2.130 0 680.4 2.130 0 691.3 2.130 0 703.1 2.130 0 715.0 2.130 0 726.8 2.130 0 738.6 2.130 0 750.5 2.088 0 762.3 2.088 0 774.2 2.046 0 791.0 2.046 0 808.7 2.046 0 826.5 2.046 0 HH 13110218 -62.608 96.778 2008 3 20 26APB 2.0 -2.296 1 5.0 -2.296 1 14.9 -2.296 1 24.8 -2.296 1 34.7 -2.296 1 44.6 -2.296 1 54.5 -2.296 1 64.4 -2.296 1 74.3 -2.296 1 84.2 -2.296 1 94.1 -2.296 1 104.0 -2.296 1 113.9 -2.296 1 123.8 -2.296 1 133.7 -2.296 1 143.6 -2.296 1 153.4 -2.296 1 163.3 -2.296 1 173.2 -2.296 1 249.4 -2.296 1 259.3 -2.011 0 279.1 -.825 0 298.9 -.255 0 368.1 .409 0 417.5 .616 0 930.8 .272 0 HH 4373438 34.000 -65.730 1950 4 19 10MBT .0 18.300 1 9.0 18.300 1 15.0 18.300 1 30.0 18.300 1 46.0 18.300 1 76.0 18.300 1 100.0 18.300 1 150.0 18.300 1 200.0 18.300 1 250.0 17.000 0 HH 2997813 -33.930 154.670 1969 8 1 89XBT .0 19.390 1 5.0 19.390 1 10.0 19.390 1 15.0 19.390 1 20.0 19.390 1 25.0 19.390 1 30.0 19.390 1 35.0 19.390 1 40.0 19.390 1 45.0 19.390 1 50.0 19.390 1 55.0 19.390 1 60.0 19.390 1 65.0 19.390 1 70.0 19.390 1 75.0 19.390 1 80.0 19.390 1 85.0 19.390 1 90.0 19.390 1 95.0 19.390 1 100.0 19.390 1 105.0 19.390 1 110.0 19.390 1 115.0 19.390 1 120.0 19.390 1 125.0 19.390 1 130.0 19.390 1 135.0 19.390 1 140.0 19.390 1 145.0 19.390 1 150.0 19.390 1 155.0 19.390 1 160.0 19.390 1 165.0 19.390 1 170.0 19.390 1 175.0 19.390 1 180.0 19.390 1 185.0 19.390 1 190.0 19.390 1 195.0 19.390 1 200.0 19.390 1 205.0 19.390 1 210.0 19.390 1 215.0 19.390 1 220.0 19.390 1 225.0 19.390 1 230.0 19.390 1 235.0 19.390 1 240.0 19.390 1 245.0 19.390 1 250.0 19.390 1 255.0 19.390 1 260.0 19.390 1 265.0 19.390 1 270.0 19.390 1 275.0 19.200 0 280.0 19.000 0 285.0 19.000 0 290.0 18.890 0 295.0 18.790 0 300.0 18.700 0 305.0
].AdjointGradientJacobi( v.tVector[ i ][ 0 ], j.tVector[ i ][ 0 ], dj.tVector[ i ][ 0 ] ) jOutput.tVector[ i ][ 1 ], jOutputDash.tVector[ i ][ 1 ] = self.pt[ i ][ 1 ].AdjointGradientJacobi( v.tVector[ i ][ 1 ], j.tVector[ i ][ 1 ], dj.tVector[ i ][ 1 ] ) return jOutput, jOutputDash def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.pt, self.meanRadius ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.pt = infoList[ 2 ] self.meanRadius = infoList[ 3 ] self.pos = self.pt[ 0 ] self.rad = self.pt[ 1 ] self.spoke1 = self.pt[ 2 ] self.spoke2 = self.pt[ 3 ] ########################################################################## ## Kendall 2D Shape Space ## ########################################################################## class kendall2D_tVec( object ): # def __init__( self ): # self.Type = "Sphere_Tangent" # self.nDim = 3 # self.tVector = [ 0, 0, 0 ] def __init__( self, nPt ): self.Type = "Kendall2D_Tangent" self.nPt = nPt self.nDim = nPt - 2 self.tVector = np.zeros( [ 2, nPt ] ) def GetTangentVector(self): return self.tVector def SetTangentVector(self, tVec): if not tVec.shape[ 1 ] == self.nPt: print( "Error : # of points does not match" ) return if not tVec.shape[ 0 ] == 2: print( "Error : Tangent vector should be 2D" ) return self.tVector = tVec def InnerProduct( self, tVec1 ): result = 0 for i in range( self.nPt ): for j in range( 2 ): result += self.tVector[ j, i ] * tVec1.tVector[ j, i ] return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ScalarMultiply( self, t ): tVector_t = kendall2D_tVec( self.nPt ) for i in range( self.nPt ): for j in range( 2 ): tVector_t.tVector[ j, i ] = self.tVector[ j, i ] * t return tVector_t def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.nPt, self.tVector, False ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.nPt = infoList[ 2 ] self.tVector = infoList[ 3 ] class kendall2D( object ): def __init__( self, nPt ): self.Type = "Kendall2D" self.nPt = nPt self.nDim = nPt - 2 pt_base = np.zeros( [ 2, nPt ] ) pt_base[ 0, 0 ] = 1 pt_base[ 0, 1 ] = 0 self.pt = pt_base def SetPoint( self, pt ): if not pt.shape[ 1 ] == self.nPt: print( "Error : # of Points does not match" ) return if not pt.shape[ 0 ] == 2: print( "Error : Point should be 2D" ) return if not np.linalg.norm( pt ) == 1: # print( "Warning : The point is not on a sphere") self.pt = np.asmatrix( pt ) return self.pt = np.asmatrix( pt ) def GetPoint( self ): return self.pt def InnerProduct( self, ptA ): result = 0 for i in range( self.nPt ): for j in range( 2 ): result += self.pt[ j, i ] * ptA.pt[ j, i ] return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ExponentialMap( self, tVec ): theta = tVec.norm() if theta < 1e-12: exp_pt = kendall2D( self.nPt ) exp_pt.pt = self.pt return exp_pt if theta > np.pi * 2: theta = np.mod( theta, np.pi * 2 ) exp_pt = kendall2D( self.nPt ) lhs = np.multiply( np.cos( theta ), self.pt ) rhs = np.multiply( np.sin( theta ) / theta, tVec.tVector ) exp_pt.pt = lhs + rhs exp_pt.pt = np.divide( exp_pt.pt, exp_pt.norm() ) return exp_pt def LogMap( self, another_pt ): m = np.matmul( self.pt, another_pt.pt.T ) U, s, V = np.linalg.svd( m ) rotation = np.matmul( U, V.T ) qRot_pt = np.matmul( rotation, another_pt.pt ) qRot = kendall2D( self.nPt ) qRot.SetPoint( qRot_pt ) cosTheta = self.InnerProduct( qRot ) tVec = kendall2D_tVec( self.nPt ) tVec_mat = np.subtract( qRot.pt, np.multiply( cosTheta, self.pt ) ) tVec.SetTangentVector( tVec_mat ) length = tVec.norm() if length < 1e-12 or cosTheta >= 1.0 or cosTheta <= -1.0: tVec = kendall2D_tVec( self.nPt ) return tVec tVec = tVec.ScalarMultiply( np.arccos( cosTheta ) / length ) return tVec def ParallelTranslate( self, v, w ): vNorm = v.norm() pNorm = self.norm() if( vNorm < 1.0e-12 or pNorm < 1.0e-12 ): # print( "tVector too small" ) return w skew = np.zeros( [ 2, 2 ] ) skew[ 0, 1 ] = -1 skew[ 1, 0 ] = 1 unitV = v.ScalarMultiply( 1.0 / vNorm ) unitJV_mat = np.matmul( skew, unitV.tVector ) unitJV = kendall2D_tVec( self.nPt ) unitJV.SetTangentVector( unitJV_mat ) unitP = self.ScalarMultiply( 1.0 / pNorm ) unitJP_mat = np.matmul( skew, unitP.pt ) unitJP = kendall2D( self.nPt ) unitJP.SetPoint( unitJP_mat ) # If v and w are horizontal, the real inner product will work wDotUnitV = unitV.InnerProduct( w ) wDotUnitJV = unitJV.InnerProduct( w ) # Component of w orthogonal to v and jv parallel_mat = np.add( np.multiply( wDotUnitV, unitV.tVector ), np.multiply( wDotUnitJV, unitJV_mat ) ) orth_mat = np.subtract( w.tVector, parallel_mat ) # Compute Parallel Translated V parallelUnitV_mat = np.add( np.multiply( self.pt, -np.sin( vNorm ) / pNorm ), np.multiply( np.cos( vNorm ), unitV.tVector ) ) # Compute Parallel Translated jV parallelUnitJV_mat = np.subtract( np.multiply( np.cos( vNorm ), unitJV_mat ), np.multiply( np.sin( vNorm ), unitJP_mat ) ) # Add parallel translated v to orth, and get parallel translated w parallelW_paraV = np.add( np.multiply( wDotUnitV, parallelUnitV_mat ), np.multiply( wDotUnitJV, parallelUnitJV_mat ) ) parallelW_mat = np.add( parallelW_paraV, orth_mat ) wParallelTranslated = kendall2D_tVec( self.nPt ) wParallelTranslated.SetTangentVector( parallelW_mat ) return wParallelTranslated def ParallelTranslateAtoB( self, a, b, w ): v = a.LogMap( b ) return a.ParallelTranslate( v, w ) def ParallelTranslateToA( self, a, w ): v = self.LogMap( a ) return self.ParallelTranslate( v, w ) def ScalarMultiply( self, t ): p_t = kendall2D( self.nPt ) for i in range( self.nPt ): for j in range( 2 ): p_t.pt[ j, i ] = self.pt[ j, i ] * t return p_t def GradientJacobi( self, v, J, dJ ): vNorm = v.norm() if( vNorm < 1.0e-12 ): for i in range( self.nPt ): for k in range( 2 ): J.tVector[ k ][ i ] = J.tVector[ k ][ i ] + dJ.tVector[ k ][ i ] return J VdotJ = v.InnerProduct( J ) VdotJPrime = v.InnerProduct( dJ ) scaleFactorJ = VdotJ / ( vNorm * vNorm ) scaleFactorJPrime = VdotJPrime / ( vNorm * vNorm ) jTang_mat = np.multiply( v.tVector, scaleFactorJ ) jTang = kendall2D_tVec( self.nPt ) jTang.SetTangentVector( jTang_mat ) dJTang_mat = np.multiply( v.tVector, scaleFactorJPrime ) dJTang = kendall2D_tVec( self.nPt ) dJTang.SetTangentVector( dJTang_mat ) jOrth_mat = np.subtract( J.tVector, jTang_mat ) jOrth = kendall2D_tVec( self.nPt ) jOrth.SetTangentVector( jOrth_mat ) dJOrth_mat = np.subtract( dJ.tVector, dJTang_mat ) dJOrth = kendall2D_tVec( self.nPt ) dJOrth.SetTangentVector( dJOrth_mat ) skew = np.zeros( [ 2, 2 ] ) skew[ 0, 1 ] = -1 skew[ 1, 0 ] = 1 unitV = v.ScalarMultiply( 1.0 / vNorm ) w_mat = np.matmul( skew, unitV.tVector ) w = kendall2D_tVec( self.nPt ) w.SetTangentVector( w_mat ) # Curvature 4 component jOrth4 = w.ScalarMultiply( w.InnerProduct( jOrth ) ) dJOrth4 = w.ScalarMultiply( w.InnerProduct( dJOrth ) ) # Curvature 1 Component jOrth1 = kendall2D_tVec( self.nPt ) jOrth1.SetTangentVector( np.subtract( jOrth.tVector, jOrth4.tVector ) ) dJOrth1 = kendall2D_tVec( self.nPt ) dJOrth1.SetTangentVector( np.subtract( dJOrth.tVector, dJOrth4.tVector ) ) # Orthogonal Parts jOrth.SetTangentVector( np.add( np.multiply( cos( vNorm ), jOrth1.tVector ), np.multiply( cos( 2.0 * vNorm ), jOrth4.tVector ) ) ) dJOrth.SetTangentVector( np.add( np.multiply( np.sin( vNorm ) / vNorm, dJOrth1.tVector ), np.multiply( 0.5 * np.sin( 2.0 * vNorm ) / vNorm, dJOrth4.tVector ) ) ) J_dJ_mat = jTang.tVector + dJTang.tVector + jOrth.tVector + dJOrth.tVector J_dJ = kendall2D_tVec( self.nPt ) J_dJ.SetTangentVector( J_DJ ) J = self.ParallelTranslate( v, J_dJ ) dJOrth_mat = jOrth1.ScalarMultiply( -vNorm * np.sin( vNorm ) ).tVector + jOrth4.ScalarMultiply( -2.0 * vNorm * sin( 2.0 * vNorm ) ).tVector dJOrth.SetTangentVector( dJOrth_mat ) ddJOrth_mat = dJOrth1.ScalarMultiply( cos( vNorm ) ).tVector + djOrth4.ScalarMultiply( cos( 2.0 * vNorm ) ).tVector ddJOrth = kendall2D_tVec( self.nPt ) ddJOrth.SetTangentVector( ddJOrth_mat ) dJ_ddJ_mat = djTang.tVector + dJOrth.tVector + ddJOrth.tVector dJ_ddJ = kendall2D_tVec( self.nPt ) dJ = self.ParallelTranslate( v, dJ_ddJ ) return J, dJ def AdjointGradientJacobi( self, v, Jac, dJac ): vNorm = v.norm() if( vNorm < 1.0e-12 ): for i in range( self.nPt ): for j in range( 2 ): Jac.tVector[ j ][ i ] = Jac.tVector[ j ][ i ] + dJac.tVector[ j ][ i ] Jac_Updated = Jac dJac_Updated = dJac return Jac_Updated, dJac_Updated VdotJac = v.InnerProduct( Jac ) VdotJacPrime = v.InnerProduct( dJac ) scaleFactorJac = VdotJac / ( vNorm * vNorm ) scaleFactorJacPrime = VdotJacPrime / ( vNorm * vNorm ) jTang_mat = np.multiply( v.tVector, scaleFactorJac ) jTang = kendall2D_tVec( self.nPt ) jTang.SetTangentVector( jTang_mat ) dJacTang_mat = np.multiply( v.tVector, scaleFactorJacPrime ) dJacTang = kendall2D_tVec( self.nPt ) dJacTang.SetTangentVector( dJacTang_mat ) jOrth_mat = np.subtract( Jac.tVector, jTang_mat ) jOrth = kendall2D_tVec( self.nPt ) jOrth.SetTangentVector( jOrth_mat ) dJacOrth_mat = np.subtract( dJac.tVector, dJacTang_mat ) dJacOrth = kendall2D_tVec( self.nPt ) dJacOrth.SetTangentVector( dJacOrth_mat ) skew = np.zeros( [ 2, 2 ] ) skew[ 0, 1 ] = -1 skew[ 1, 0 ] = 1 unitV = v.ScalarMultiply( 1.0 / vNorm ) w_mat = np.matmul( skew,
from pliers import config from pliers.filters import FrameSamplingFilter from pliers.extractors import (GoogleVisionAPIFaceExtractor, GoogleVisionAPILabelExtractor, GoogleVisionAPIPropertyExtractor, GoogleVisionAPISafeSearchExtractor, GoogleVisionAPIWebEntitiesExtractor, GoogleVideoIntelligenceAPIExtractor, GoogleVideoAPILabelDetectionExtractor, GoogleVideoAPIShotDetectionExtractor, GoogleVideoAPIExplicitDetectionExtractor, GoogleLanguageAPIExtractor, GoogleLanguageAPIEntityExtractor, GoogleLanguageAPISentimentExtractor, GoogleLanguageAPISyntaxExtractor, GoogleLanguageAPITextCategoryExtractor, GoogleLanguageAPIEntitySentimentExtractor, ExtractorResult, merge_results) from pliers.extractors.api.google import GoogleVisionAPIExtractor from pliers.stimuli import ImageStim, VideoStim, TextStim from pliers.utils import attempt_to_import, verify_dependencies import pytest import json from os.path import join from ...utils import get_test_data_path import numpy as np googleapiclient = attempt_to_import('googleapiclient', fromlist=['discovery']) IMAGE_DIR = join(get_test_data_path(), 'image') VIDEO_DIR = join(get_test_data_path(), 'video') TEXT_DIR = join(get_test_data_path(), 'text') @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_vision_api_extractor_inits(): ext = GoogleVisionAPIExtractor(num_retries=5) assert ext.num_retries == 5 assert ext.max_results == 100 assert ext.service is not None @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_vision_api_face_extractor_inits(): ext = GoogleVisionAPIFaceExtractor(num_retries=5) assert ext.num_retries == 5 assert ext.max_results == 100 assert ext.service is not None # Test parsing of individual response filename = join( get_test_data_path(), 'payloads', 'google_vision_api_face_payload.json') response = json.load(open(filename, 'r')) stim = ImageStim(join(get_test_data_path(), 'image', 'obama.jpg')) res = ExtractorResult(response['faceAnnotations'], stim, ext) df = res.to_df() assert df['angerLikelihood'][0] == 'VERY_UNLIKELY' assert df['landmark_LEFT_EYE_BOTTOM_BOUNDARY_y'][0] == 257.023 assert np.isnan(df['boundingPoly_vertex2_y'][0]) @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_vision_api_face_extractor(): ext = GoogleVisionAPIFaceExtractor(num_retries=5) assert ext.validate_keys() filename = join(get_test_data_path(), 'image', 'obama.jpg') stim = ImageStim(filename) result = ext.transform(stim).to_df() assert 'joyLikelihood' in result.columns assert result['joyLikelihood'][0] == 'VERY_LIKELY' assert float(result['face_detectionConfidence'][0]) > 0.7 ext = GoogleVisionAPIFaceExtractor(discovery_file='nogood') assert not ext.validate_keys() @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_vision_multiple_face_extraction(): filename = join(get_test_data_path(), 'image', 'thai_people.jpg') stim = ImageStim(filename) # Only first record ext = GoogleVisionAPIFaceExtractor() result1 = ext.transform(stim).to_df(handle_annotations='first') assert 'joyLikelihood' in result1.columns # All records ext = GoogleVisionAPIFaceExtractor() result2 = ext.transform(stim).to_df() assert 'joyLikelihood' in result2.columns assert result2.shape[0] > result1.shape[0] @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_vision_face_batch(): stims = ['apple', 'obama', 'thai_people'] stim_files = [join(get_test_data_path(), 'image', '%s.jpg' % s) for s in stims] stims = [ImageStim(s) for s in stim_files] ext = GoogleVisionAPIFaceExtractor(batch_size=5) result = ext.transform(stims) result = merge_results(result, format='wide', extractor_names=False, handle_annotations='first') assert result.shape == (2, 139) assert 'joyLikelihood' in result.columns assert result['joyLikelihood'][0] == 'VERY_LIKELY' assert result['joyLikelihood'][1] == 'VERY_LIKELY' video = VideoStim(join(VIDEO_DIR, 'obama_speech.mp4')) conv = FrameSamplingFilter(every=10) video = conv.transform(video) result = ext.transform(video) result = merge_results(result, format='wide', extractor_names=False) assert 'joyLikelihood' in result.columns assert result.shape == (22, 139) video = VideoStim(join(VIDEO_DIR, 'small.mp4')) video = conv.transform(video) result = ext.transform(video) result = merge_results(result, format='wide', extractor_names=False) assert 'joyLikelihood' not in result.columns assert len(result) == 0 @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_vision_api_label_extractor(): ext = GoogleVisionAPILabelExtractor(num_retries=5) assert ext.validate_keys() filename = join(get_test_data_path(), 'image', 'apple.jpg') stim = ImageStim(filename) result = ext.transform(stim).to_df() assert 'apple' in result.columns assert result['apple'][0] > 0.75 url = 'https://tuition.utexas.edu/sites/all/themes/tuition/logo.png' stim = ImageStim(url=url) result = ext.transform(stim).to_df() assert result['orange'][0] > 0.7 ext = GoogleVisionAPILabelExtractor(discovery_file='nogood') assert not ext.validate_keys() @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_vision_api_properties_extractor(): ext = GoogleVisionAPIPropertyExtractor(num_retries=5) filename = join(get_test_data_path(), 'image', 'apple.jpg') stim = ImageStim(filename) result = ext.transform(stim).to_df() assert '158, 13, 29' in result.columns assert np.isfinite(result['158, 13, 29'][0]) @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_vision_api_safe_search(): ext = GoogleVisionAPISafeSearchExtractor(num_retries=5) filename = join(get_test_data_path(), 'image', 'obama.jpg') stim = ImageStim(filename) result = ext.transform(stim).to_df() assert 'adult' in result.columns assert result['violence'][0] == 'VERY_UNLIKELY' @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_vision_api_web_entities(): ext = GoogleVisionAPIWebEntitiesExtractor(num_retries=5) filename = join(get_test_data_path(), 'image', 'obama.jpg') stim = ImageStim(filename) result = ext.transform(stim).to_df() assert 'Barack Obama' in result.columns @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_vision_api_extractor_large(): default = config.get_option('allow_large_jobs') default_large = config.get_option('large_job') default_cache = config.get_option('cache_transformers') config.set_option('allow_large_jobs', False) config.set_option('large_job', 1) config.set_option('cache_transformers', False) ext = GoogleVisionAPILabelExtractor() images = [ImageStim(join(IMAGE_DIR, 'apple.jpg')), ImageStim(join(IMAGE_DIR, 'obama.jpg'))] with pytest.raises(ValueError): merge_results(ext.transform(images)) config.set_option('allow_large_jobs', True) results = merge_results(ext.transform(images)) assert 'GoogleVisionAPILabelExtractor#apple' in results.columns assert results.shape == (2, 32) config.set_option('allow_large_jobs', default) config.set_option('large_job', default_large) config.set_option('cache_transformers', default_cache) @pytest.mark.long_test @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_video_api_extractor(caplog): ext = GoogleVideoIntelligenceAPIExtractor(timeout=1) stim = VideoStim(join(VIDEO_DIR, 'park.mp4')) result = ext.transform(stim) log_message = caplog.records[-1].message assert log_message == ("The extraction reached the timeout limit of %fs, " "which means the API may not have finished analyzing the " "video and the results may be empty or incomplete." % 1.0) ext = GoogleVideoIntelligenceAPIExtractor(timeout=500, features=['LABEL_DETECTION', 'SHOT_CHANGE_DETECTION']) result = ext.transform(stim).to_df() log_message = caplog.records[-1].message incomplete = (log_message == ("The extraction reached the timeout limit of" " %fs, which means the API may not have finished analyzing the" " video and the results may be empty or incomplete." % 500)) if not incomplete: assert result.shape == (1, 31) assert result['onset'][0] == 0.0 assert result['duration'][0] > 0.5 and result['duration'][0] < 0.6 assert result['category_plant'][0] > 0.5 assert result['park'][0] > 0.5 assert result['shot_id'][0] == 0 @pytest.mark.long_test @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_video_api_extractor2(caplog): segments = [{'startTimeOffset': '0.1s', 'endTimeOffset': '0.3s'}, {'startTimeOffset': '0.3s', 'endTimeOffset': '0.45s'}] ext = GoogleVideoIntelligenceAPIExtractor(timeout=500, segments=segments, features=['EXPLICIT_CONTENT_DETECTION']) stim = VideoStim(join(VIDEO_DIR, 'park.mp4')) result = ext.transform(stim).to_df() log_message = caplog.records[-1].message incomplete = (log_message == ("The extraction reached the timeout limit of" " %fs, which means the API may not have finished analyzing the" " video and the results may be empty or incomplete." % 500)) if not incomplete: assert result.shape == (2, 5) assert result['onset'][0] > 0.1 and result['onset'][0] < 0.3 assert result['onset'][1] > 0.3 and result['onset'][1] < 0.45 assert 'UNLIKELY' in result['pornographyLikelihood'][0] @pytest.mark.long_test @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_video_api_label_extractor(caplog): ext = GoogleVideoAPILabelDetectionExtractor(mode='FRAME_MODE', stationary_camera=True) stim = VideoStim(join(VIDEO_DIR, 'small.mp4')) ex_result = ext.transform(stim) log_message = caplog.records[-1].message incomplete = (log_message == ("The extraction reached the timeout limit of" " %fs, which means the API may not have finished analyzing the" " video and the results may be empty or incomplete." % 90)) if not incomplete: result = ex_result.to_df() assert result.shape == (7, 25) assert 'category_toy' in result.columns assert result['toy'][0] > 0.5 assert np.isclose(result['duration'][0], stim.duration, 0.1) result = ex_result.to_df(format='long') assert 'pornographyLikelihood' not in result['feature'] assert np.nan not in result['value'] ext = GoogleVideoAPILabelDetectionExtractor(mode='SHOT_MODE') stim = VideoStim(join(VIDEO_DIR, 'shot_change.mp4')) ex_result = ext.transform(stim) log_message = caplog.records[-1].message incomplete = (log_message == ("The extraction reached the timeout limit of" " %fs, which means the API may not have finished analyzing the" " video and the results may be empty or incomplete." % 90)) if not incomplete: raw = ex_result.raw['response']['annotationResults'][0] assert 'shotLabelAnnotations' in raw result = ex_result.to_df() assert result.shape == (3, 17) assert result['onset'][1] == 0.0 assert np.isclose(result['onset'][2], 3.2, 0.1) assert np.isnan(result['cat'][1]) assert result['cat'][2] > 0.5 assert np.isnan(result['clock'][2]) assert result['clock'][1] > 0.5 or result['clock'][0] > 0.5 @pytest.mark.long_test @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_video_api_shot_extractor(caplog): ext = GoogleVideoAPIShotDetectionExtractor(request_rate=3) stim = VideoStim(join(VIDEO_DIR, 'small.mp4')) result = ext.transform(stim).to_df() log_message = caplog.records[-1].message incomplete = (log_message == ("The extraction reached the timeout limit of" " %fs, which means the API may not have finished analyzing the" " video and the results may be empty or incomplete." % 90)) if not incomplete: assert result.shape == (1, 5) assert result['onset'][0] == 0.0 assert np.isclose(result['duration'][0], stim.duration, 0.1) assert 'shot_id' in result.columns assert result['shot_id'][0] == 0 ext = GoogleVideoAPIShotDetectionExtractor() stim = VideoStim(join(VIDEO_DIR, 'shot_change.mp4')) result = ext.transform(stim).to_df() log_message = caplog.records[-1].message incomplete = (log_message == ("The extraction reached the timeout limit of" " %fs, which means the API may not have finished analyzing the" " video and the results may be empty or incomplete." % 90)) if not incomplete: assert result.shape == (2, 5) assert np.isclose(result['onset'][1], 3.2, 0.1) assert 'shot_id' in result.columns assert result['shot_id'][1] == 1 @pytest.mark.long_test @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_video_api_explicit_extractor(caplog): ext = GoogleVideoAPIExplicitDetectionExtractor(request_rate=3) stim = VideoStim(join(VIDEO_DIR, 'small.mp4'), onset=4.2) result = ext.transform(stim).to_df() log_message = caplog.records[-1].message incomplete = (log_message == ("The extraction reached the timeout limit of" " %fs, which means the API may not have finished analyzing the" " video and the results may be empty or incomplete." % 90)) if not incomplete: assert result.shape[1] == 5 assert result['onset'][0] >= 4.2 assert 'pornographyLikelihood' in result.columns assert 'UNLIKELY' in result['pornographyLikelihood'][0] @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_language_api_extractor(): verify_dependencies(['googleapiclient']) ext = GoogleLanguageAPIExtractor(features=['classifyText', 'extractEntities']) stim = TextStim(text='hello world') with pytest.raises(googleapiclient.errors.HttpError): # Should fail because too few tokens ext.transform(stim) stim = TextStim(join(TEXT_DIR, 'scandal.txt')) result = ext.transform(stim).to_df(timing=False, object_id='auto') assert result.shape == (43, 10) assert 'category_/Books & Literature' in result.columns assert result['category_/Books & Literature'][0] > 0.5 irene = result[result['text'] == '<NAME>'] assert (irene['type'] == 'PERSON').all() assert not irene['metadata_wikipedia_url'].isna().any() # Document row shouldn't have entity features, and vice versa assert np.isnan(result.iloc[0]['text']) assert np.isnan(result.iloc[1]['category_/Books & Literature']).all() @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_language_api_entity_extractor(): verify_dependencies(['googleapiclient']) ext = GoogleLanguageAPIEntityExtractor() stim = TextStim(join(TEXT_DIR, 'sample_text_with_entities.txt')) result = ext.transform(stim).to_df(timing=False, object_id='auto') assert result.shape == (10, 9) assert result['text'][0] == 'Google' assert result['type'][0] == 'ORGANIZATION' assert result['salience'][0] > 0.0 and result['salience'][0] < 0.5 assert result['begin_char_index'][4] == 165.0 assert result['end_char_index'][4] == 172.0 assert result['text'][4] == 'Android' assert result['type'][4] == 'CONSUMER_GOOD' @pytest.mark.requires_payment @pytest.mark.skipif("'GOOGLE_APPLICATION_CREDENTIALS' not in os.environ") def test_google_language_api_sentiment_extractor(): verify_dependencies(['googleapiclient']) ext = GoogleLanguageAPISentimentExtractor() stim = TextStim(join(TEXT_DIR, 'scandal.txt')) result = ext.transform(stim).to_df(timing=False, object_id='auto') assert result.shape == (12, 7) assert 'sentiment_magnitude' in result.columns assert 'text' in result.columns doc_sentiment = result['sentiment_score'][11]
<filename>ufora/cumulus/test/CheckpointingTest_test.py<gh_stars>100-1000 # Copyright 2015 Ufora Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import random import time import unittest import ufora.cumulus.test.InMemoryCumulusSimulation as InMemoryCumulusSimulation import ufora.distributed.S3.InMemoryS3Interface as InMemoryS3Interface import ufora.native.CallbackScheduler as CallbackScheduler import ufora.native.Cumulus as CumulusNative import ufora.native.Hash as HashNative #import ufora.distributed.Storage.HdfsObjectStore as HdfsObjectStore callbackScheduler = CallbackScheduler.singletonForTesting() #note that we are being careful not to use anything from the builtins in these examples #so that checkpointing is fast. Currently, "FORA.eval" doesn't use the module subsampler, #so we end up holding the entire builtins if we use it. def expensiveChildCachecalls(ix): return """ let sumf = fun(a,b) { if (a+1 >= b) return [sum(a, 10**12) + %s] let mid = (a+b)/2 return sumf(a,mid) + sumf(mid,b) } sumf(0,10) """ % ix vecOfVecCalcText = """ let sum = fun(a,b,f) { if (a >= b) return 0 if (a+1 >= b) return f(a) let mid = (a+b)/2; return sum(a,mid,f) + sum(mid,b,f) } let res = []; let ix = 0; while (ix < 100) { res = res + sum(0,100, fun(x) { [[sum(x, 10**6, fun(x){x+1})].paged].paged }) ix = ix + 1 } res.sum() """ vecLoopSumText = """ let res = 0; let ix = 0; while (ix < 1000000) { res = res + Vector.range(100000).sum() ix = ix + 1 } res """ repeatedVecInLoop = """ let v = Vector.range(1000000) let ix = 0 while (ix < 1000000) { v = v.apply({_+1}).paged ix = ix + 1 } v.sum() """ simpleSumInLoopText = """ let v = Vector.range(1000000).paged; let sum = fun(a,b,f) { if (a >= b) return 0 if (a+1 >= b) return f(a) let mid = (a+b)/2; return sum(a,mid,f) + sum(mid,b,f) } let res = 0; let ix = 0 while (ix < 100) { ix = ix + 1 res = res + sum(ix, Int64(10**9), {if (_ % 16 == 0) v[(_ * 1024) % size(v)] else _ }); } res """ sumInLoopText = """ let sum = fun(a,b,f) { if (a >= b) return 0 if (a+1 >= b) return f(a) let mid = (a+b)/2; return sum(a,mid,f) + sum(mid,b,f) } let res = 0; let ix = 0; while (ix < 10000) { let bound = match(ix%3) with (0) { 1 } (1) { 10 } (2) { 100 }; res = res + sum(0,bound * 1000000, fun(x) { x + 1 }) ix = ix + 1 } res """ bigSumText = """ let sum = fun(a,b,f) { if (a >= b) return 0 if (a+1 >= b) return f(a) let mid = (a+b)/2; return sum(a,mid,f) + sum(mid,b,f) } sum(0,10**13,{_}) """ cachedBigSumText = """ let sum = fun(a,b,f) { if (a >= b) return 0 if (a+1 >= b) return f(a) let mid = (a+b)/2; return sum(a,mid,f) + sum(mid,b,f) } cached(sum(0,10**13,{_}))[0] """ TIMEOUT = 30 class CheckpointingTest(unittest.TestCase): def waitForAllCheckpointsToClear(self, simulation, timeout = TIMEOUT): t0 = time.time() while time.time() < t0 + timeout: if not simulation.getGlobalScheduler().anyOutstandingTriggeredCheckpoints(): return time.sleep(0.01) assert False, "timed out" def timestampOfMostRecentFullCheckpoint(self, simulation, onlyUnfinished = True, onlySuccessful = True): if not simulation.getGlobalScheduler(): return None statuses = simulation.getGlobalScheduler().currentOutstandingCheckpointStatuses(onlyUnfinished, True) if len(statuses): (computation, (checkpointStatus, checkpointRequest)) = statuses[0] timestamp = checkpointRequest.timestamp isFull = checkpointRequest.writeToStorage and (not onlySuccessful or checkpointStatus.checkpointSuccessful) if isFull: return timestamp def timestampOfMostRecentCheckpoint(self, simulation): if not simulation.getGlobalScheduler(): return None statuses = simulation.getGlobalScheduler().currentOutstandingCheckpointStatuses(True, False) if len(statuses): (computation, (checkpointStatus, checkpointRequest)) = statuses[0] return checkpointRequest.timestamp def timeElapsedOfMostRecentCheckpoints(self, simulation, onlyUnfinished = True, onlyCommitted = False): if not simulation.getGlobalScheduler(): return {} statuses = simulation.getGlobalScheduler().currentOutstandingCheckpointStatuses(onlyUnfinished, onlyCommitted) return {status[0]: status[1][0].statistics.timeElapsed.timeSpentInCompiledCode for status in statuses} def totalTimeElapsedOfMostRecentCheckpoints(self, simulation, onlyUnfinished = True, onlyCommitted = False): return sum(self.timeElapsedOfMostRecentCheckpoints(simulation, onlyUnfinished, onlyCommitted).values(), 0) def waitForCheckpoint(self, simulation, priorCheckpoint = None, checkInterval = 0.1, onlyUnfinished = True): t1 = time.time() foundFullCheckpoint = False while time.time() - t1 < TIMEOUT and not foundFullCheckpoint: scheduler = simulation.getGlobalScheduler() if scheduler: statuses = simulation.getGlobalScheduler().currentOutstandingCheckpointStatuses(onlyUnfinished, False) if statuses: checkpointSecondsElapsed = statuses[0][1][0].statistics.timeElapsed.timeSpentInCompiledCode if priorCheckpoint is None or priorCheckpoint < checkpointSecondsElapsed: foundFullCheckpoint = True if not foundFullCheckpoint: time.sleep(checkInterval) if foundFullCheckpoint: return checkpointSecondsElapsed def waitForNFullCheckpoints(self, simulation, count, checkInterval = 0.1): t1 = time.time() while time.time() - t1 < TIMEOUT: scheduler = simulation.getGlobalScheduler() found = [] if scheduler: statuses = simulation.getGlobalScheduler().currentOutstandingCheckpointStatuses(True, True) for (computation, (stats, checkpoint)) in statuses: if checkpoint.writeToStorage and stats.checkpointSuccessful: checkpointSecondsElapsed = stats.statistics.timeElapsed.timeSpentInCompiledCode found.append(checkpointSecondsElapsed) if len(found) < count: time.sleep(checkInterval) else: return found def waitForFullCheckpoint(self, simulation, priorCheckpoint = None, checkInterval = 0.1, onlyUnfinished = True, onlySuccessful = False): t1 = time.time() foundFullCheckpoint = False while time.time() - t1 < TIMEOUT and not foundFullCheckpoint: scheduler = simulation.getGlobalScheduler() if scheduler: statuses = simulation.getGlobalScheduler().currentOutstandingCheckpointStatuses(onlyUnfinished, True) if statuses: (computation, (stats, checkpoint)) = statuses[0] if checkpoint.writeToStorage and (not onlySuccessful or stats.checkpointSuccessful): checkpointSecondsElapsed = stats.statistics.timeElapsed.timeSpentInCompiledCode if priorCheckpoint is None or priorCheckpoint < checkpointSecondsElapsed: foundFullCheckpoint = True if not foundFullCheckpoint: time.sleep(checkInterval) if foundFullCheckpoint: return checkpointSecondsElapsed def createSimulation(self, useHdfsObjectStore=False, objectStore=None, sharedStateViewFactory=None, workerCount=4, machineIdHashSeed=None, s3Service=None ): s3 = s3Service or InMemoryS3Interface.InMemoryS3InterfaceFactory() return InMemoryCumulusSimulation.InMemoryCumulusSimulation( workerCount, 1, memoryPerWorkerMB=100, threadsPerWorker=2, s3Service=s3, objectStore=objectStore, sharedStateViewFactory=sharedStateViewFactory, machineIdHashSeed=machineIdHashSeed ) def test_checkpointingCumulusClientRequestPathway(self): simulation = self.createSimulation() #give the simulation a couple of seconds to pick a scheduler t0 = time.time() while simulation.getGlobalScheduler() is None: time.sleep(0.01) self.assertTrue(time.time() - t0 < 2.0) simulation.getGlobalScheduler().setCheckpointStatusInterval(0.0001) count = 0 try: simulation.submitComputation(simpleSumInLoopText) while time.time() - t0 < 2.0: result = simulation.getCurrentCheckpointStatistics(timeout = TIMEOUT) count = count + 1 self.assertTrue(count > 10) print "Total roundtrips: ", count finally: simulation.teardown() def test_checkpointingSystemWritesToS3(self): simulation = self.createSimulation() self.assertTrue(len(simulation.objectStore.listValues()) == 0) try: #give the simulation a couple of seconds to pick a scheduler t0 = time.time() while simulation.getGlobalScheduler() is None: time.sleep(0.01) self.assertTrue(time.time() - t0 < TIMEOUT, "never got a scheduler") simulation.getGlobalScheduler().setCheckpointStatusInterval(0.01) simulation.submitComputation(simpleSumInLoopText) time.sleep(1.0) count = 0 lastCheckpoint = None while time.time() - t0 < 20.0: simulation.getGlobalScheduler().triggerFullCheckpointsOnOutstandingComputations() foundFullCheckpoint = False t1 = time.time() while time.time() - t1 < 10.0 and not foundFullCheckpoint: statuses = simulation.getGlobalScheduler().currentOutstandingCheckpointStatuses(True, True) if len(statuses): (computation, (stats, checkpoint)) = statuses[0] newCheckpoint = checkpoint.timestamp if lastCheckpoint is None or newCheckpoint != lastCheckpoint: lastCheckpoint = newCheckpoint if checkpoint.writeToStorage and stats.checkpointSuccessful: foundFullCheckpoint = True time.sleep(.1) self.assertTrue(foundFullCheckpoint) count += 1 logging.info( "Total: %d after %s with %d files.", count, time.time() - t0, len(simulation.objectStore.listValues()) ) self.assertGreater( len(simulation.objectStore.listValues()), 0) guids = simulation.getWorkerVdm(0).getPersistentCacheIndex().allCheckpointedComputationGuids() self.assertGreater( len(guids), 0, "Didn't write the checkpoint to the persistent cache" ) for item in simulation.objectStore.listValues(): simulation.objectStore.deleteValue(item[0]) except: simulation.dumpSchedulerEventStreams() raise finally: simulation.teardown() def test_checkpointingRecoverySimpleSum(self): self.recoveryTest(simpleSumInLoopText) def test_checkpointingRecoveryVecLoop(self): for ix in range(3): self.recoveryTest( repeatedVecInLoop, interval1 = 1.0, interval2 = 1.0, interval3 = 1.0, initialWorkers = 4, workersToDrop1 = 3, workersToAdd1 = 3, machineIdHashSeed=str(ix) ) def test_s3DatasetComputationHashesAreStable(self): for ix in range(2): s3 = InMemoryS3Interface.InMemoryS3InterfaceFactory() s3().setKeyValue( "bucketname", "key", "this is some data" ) self.recoveryTest(""" let data = cached(fun() { datasets.s3("bucketname","key") }())[0]; cached(fun() { sum(0,10**12, fun(ix) { data[ix % size(data)] }) }())[0] """, s3Service = s3, interval1 = 1.0, interval2 = 1.0, interval3 = 1.0, interval4 = 1.0, workersToDrop1 = 3, workersToAdd1 = 3, workersToDrop2 = 3, workersToAdd2 = 3, machineIdHashSeed=str(ix) ) def test_recoveryWithUnreadDatasetsS3(self): s3 = InMemoryS3Interface.InMemoryS3InterfaceFactory() s3().setKeyValue( "bucketname", "key", "this is some data" ) simulation = self.createSimulation(s3Service = s3) try: #give the simulation a couple of seconds to pick a scheduler self.assertTrue(simulation.waitForGlobalScheduler(timeout=2.0)) simulation.submitComputation(""" let data = datasets.s3("bucketname","key") let res = sum(0,10**12) data[res % 2] """) time.sleep(1.0) simulation.getGlobalScheduler().triggerFullCheckpointsOnOutstandingComputations() self.waitForAllCheckpointsToClear(simulation) finally: simulation.teardown() def recoveryTest(self, text, interval1 = 5.0, interval2 = 1.0, interval3 = 1.0, interval4 = 1.0, initialWorkers = 4, workersToDrop1 = 1, workersToAdd1 = 0, workersToDrop2 = 1, workersToAdd2 = 0, machineIdHashSeed=None, s3Service=None ): simulation = self.createSimulation(machineIdHashSeed=machineIdHashSeed, workerCount = initialWorkers, s3Service = s3Service) try: self.assertTrue(len(simulation.objectStore.listValues()) == 0) #give the simulation a couple of seconds to pick a scheduler self.assertTrue(simulation.waitForGlobalScheduler(timeout=2.0)) simulation.submitComputation(text) time.sleep(interval1) simulation.getGlobalScheduler().triggerFullCheckpointsOnOutstandingComputations() self.waitForAllCheckpointsToClear(simulation) checkpointSecondsElapsed = self.totalTimeElapsedOfMostRecentCheckpoints(simulation, onlyUnfinished=False, onlyCommitted=True) time.sleep(interval2) for _ in range(workersToDrop1): simulation.dropTopWorker() for _ in range(workersToAdd1): simulation.addWorker() self.assertTrue(simulation.waitForHandshake()) time.sleep(interval3) simulation.getGlobalScheduler().triggerFullCheckpointsOnOutstandingComputations() self.waitForAllCheckpointsToClear(simulation) checkpointSecondsElapsed2 = self.totalTimeElapsedOfMostRecentCheckpoints(simulation, onlyUnfinished=False, onlyCommitted=True) self.assertTrue( checkpointSecondsElapsed2
import re import time from selenium.webdriver.common.by import By from selenium.webdriver.support.select import Select from helpers import auditchecker from view_models import sidebar as sidebar_constants, clients_table_vm, members_table, \ keys_and_certificates_table as keyscertificates_constants, popups as popups, messages, \ groups_table, central_services, log_constants from view_models.clients_table_vm import DETAILS_TAB_CSS from view_models.log_constants import ADD_MEMBER_FAILED, EDIT_MEMBER_NAME_FAILED, GENERATE_KEY_FAILED, ADD_WSDL_FAILED, \ EDIT_MEMBER_NAME from view_models.messages import get_error_message def test_key_label_inputs(): def test_case(self): parse_key_label_inputs(self) return test_case def test_csr_inputs(): def test_case(self): parse_csr_inputs(self) return test_case def test_ss_client_inputs(): def test_case(self): """ MEMBER_47 step 3 System verifies security server client input :param self: MainController object :return: None """ '''Open security server clients tab''' self.log('Open security server clients tab') self.wait_until_visible(type=By.CSS_SELECTOR, element=sidebar_constants.CLIENTS_BTN_CSS).click() '''Loop through clients members and subsystems codes and expected results''' counter = 1 for add_client_data in clients_table_vm.MEMBER_SUBSYSTEM_CODE_AND_RESULTS: member_code = add_client_data[0] subsystem_code = add_client_data[1] error = add_client_data[2] error_message = add_client_data[3] error_message_label = add_client_data[4] whitespaces = add_client_data[5] self.log('TEST-{0}'.format(counter)) '''Add client''' add_ss_client(self, member_code, subsystem_code) '''Verify error messages''' error_messages(self, error, error_message, error_message_label) if error: '''MEMBER 47/3a3a SS administrator selects to terminate the use case.''' self.log('Click on "Cancel" button') self.wait_until_visible(type=By.XPATH, element=popups.ADD_CLIENT_POPUP_CANCEL_BTN_XPATH).click() else: self.log('Click on "CONTINUE" button') self.wait_until_visible(type=By.XPATH, element=popups.WARNING_POPUP_CONTINUE_XPATH).click() self.log('Click on "CONFIRM" button') popups.confirm_dialog_click(self) '''MEMBER 54 2. System verifies that mandatory fields are filled.''' self.log('''MEMBER 54 2. System verifies that mandatory fields are filled.''') '''MEMBER 54 3. System verifies that the user input does not exceed 255 characters.''' self.log('''MEMBER 54 3. System verifies that the user input does not exceed 255 characters.''') self.log('Find added Member Code == "' + member_code + ', Subsystem Code == ' + subsystem_code) self.wait_jquery() client_id = self.wait_until_visible(type=By.XPATH, element=clients_table_vm. get_client_id_by_member_code_subsystem_code(member_code.strip(), subsystem_code.strip())) client_id_text = client_id.text self.log(client_id_text) if whitespaces: '''MEMBER 54 1. System removes leading and trailing whitespaces.''' self.log('''MEMBER 54 1. System removes leading and trailing whitespaces.''') find_text_with_whitespaces(self, member_code, client_id_text) find_text_with_whitespaces(self, subsystem_code, client_id_text) else: assert member_code and subsystem_code in client_id_text '''Delete the added client''' delete_added_client(self, client_id) counter += 1 self.wait_jquery() return test_case def test_edit_wsdl_inputs(): def test_case(self): """ SERVICE_09 step 3 Verifies WSDL url :param self: MainController object :return: None """ self.log('Open security server clients tab') self.wait_until_visible(type=By.CSS_SELECTOR, element=sidebar_constants.CLIENTS_BTN_CSS).click() member_code = clients_table_vm.ONE_SS_CLIENT[0] subsystem_code = clients_table_vm.ONE_SS_CLIENT[1] '''Add client''' add_ss_client(self, member_code, subsystem_code) self.wait_jquery() self.log('Click on "CONTINUE" button') self.wait_until_visible(type=By.XPATH, element=popups.WARNING_POPUP_CONTINUE_XPATH).click() self.log('Click on "CONFIRM" button') popups.confirm_dialog_click(self) self.log('Find added Member Code == "' + member_code + ', Subsystem Code == ' + subsystem_code) client_row = self.wait_until_visible(type=By.XPATH, element=clients_table_vm. get_client_id_by_member_code_subsystem_code(member_code, subsystem_code)) counter = 1 management_wsdl_url = self.config.get('wsdl.management_service_wsdl_url') cs_host = self.config.get('cs.ssh_host') ss_2_ssh_host = self.config.get('ss2.ssh_host') ss_2_ssh_user = self.config.get('ss2.ssh_user') ss_2_ssh_pass = self.config.get('ss2.ssh_pass') self.wait_jquery() self.log("Open client details") client_row.find_element_by_css_selector(DETAILS_TAB_CSS).click() add_wsdl_url(self, management_wsdl_url) self.wait_jquery() '''Open WSDL URL services''' self.log('Click on added wsdl url - {0}'.format(management_wsdl_url)) self.wait_until_visible(type=By.XPATH, element=popups.get_wsdl_url_row(management_wsdl_url)).click() self.wait_jquery() self.log('Click on "CLOSE" button') self.wait_until_visible(type=By.XPATH, element=popups.CLIENT_DETAILS_POPUP_CLOSE_BTN_XPATH).click() log_checker = auditchecker.AuditChecker(host=ss_2_ssh_host, username=ss_2_ssh_user, password=<PASSWORD>) '''Loop through wsdl url's''' for wsdl_data in clients_table_vm.WSDL_DATA: current_log_lines = log_checker.get_line_count() wsdl_url = wsdl_data[0].format(management_wsdl_url, cs_host) error = wsdl_data[1] error_message = wsdl_data[2] error_message_label = wsdl_data[3] whitespaces = wsdl_data[4] '''Generate long inputs''' long_wsdl_url = wsdl_url.split('#') try: if long_wsdl_url[1] == '255': multiplier = int(long_wsdl_url[1]) - len(long_wsdl_url[0]) - len(long_wsdl_url[2]) wsdl_url = long_wsdl_url[0] + multiplier * 'A' + long_wsdl_url[2] elif long_wsdl_url[1] == '256': multiplier = int(long_wsdl_url[1]) - len(long_wsdl_url[0]) - len(long_wsdl_url[2]) wsdl_url = long_wsdl_url[0] + multiplier * 'A' + long_wsdl_url[2] except: pass self.log('TEST - {0}'.format(counter)) self.log("Open client details") client_row.find_element_by_css_selector(DETAILS_TAB_CSS).click() self.wait_jquery() self.log("Open 'Services' tab") self.wait_until_visible(type=By.XPATH, element=clients_table_vm.SERVICES_TAB_XPATH).click() self.wait_jquery() '''SERVICE 09/1 SS administrator selects to edit the URL of a WSDL.''' self.log('Click on "Edit" button') self.wait_until_visible(type=By.ID, element=popups.EDIT_WSDL_BUTTON_ID).click() self.wait_jquery() '''SERVICE 09/2 SS administrator inserts the new URL of the WSDL.''' self.log('Enter wsdl url (string length = {0}) - {1}'.format(len(wsdl_url), wsdl_url)) url_field = self.wait_until_visible(type=By.ID, element=popups.EDIT_WSDL_POPUP_URL_ID) self.input(url_field, wsdl_url) self.wait_jquery() self.log('Click on "OK" button') self.wait_until_visible(type=By.XPATH, element=popups.EDIT_WSDL_POPUP_OK_BTN_XPATH).click() '''SERVICE 09/3 System parses the user input:''' '''Verify error messages''' error_messages(self, error, error_message, error_message_label) self.wait_jquery() if error: '''SERVICE 09/3a3a SS administrator selects to terminate the use case.''' logs_found = log_checker.check_log(log_constants.EDIT_WSDL_FAILED, from_line=current_log_lines + 1) self.is_true(logs_found, msg="Edit wsdl failed not found in audit log") self.log('Click on "Cancel" button') self.wait_until_visible(type=By.XPATH, element=popups.EDIT_WSDL_POPUP_CANCEL_BTN_XPATH).click() else: '''SERVICE 11 2. System verifies that mandatory fields are filled.''' self.log('''SERVICE 11 2. System verifies that mandatory fields are filled.''') '''SERVICE 11 3. System verifies that the user input does not exceed 255 characters.''' self.log('''SERVICE 11 3. System verifies that the user input does not exceed 255 characters.''') self.log('Find added WSDL URL row number - ' + wsdl_url) found_wsdl_url = self.wait_until_visible(type=By.CSS_SELECTOR, element=popups.CLIENT_DETAILS_POPUP_WSDL_CSS) found_wsdl_url = found_wsdl_url.text if whitespaces: '''SERVICE 11 1. System removes leading and trailing whitespaces.''' self.log('''SERVICE 11 1. System removes leading and trailing whitespaces.''') find_text_with_whitespaces(self, wsdl_url, found_wsdl_url) else: assert wsdl_url in found_wsdl_url self.log('Found WSDL URL - ' + found_wsdl_url) '''Close details window''' self.log('Click on "CLOSE" button') self.wait_until_visible(type=By.XPATH, element=popups.CLIENT_DETAILS_POPUP_CLOSE_BTN_XPATH).click() counter += 1 '''Delete added client''' client_row = self.wait_until_visible(type=By.XPATH, element=clients_table_vm. get_client_id_by_member_code_subsystem_code(member_code, subsystem_code)) delete_added_client(self, client_row) return test_case def test_disable_wsdl_inputs(): def test_case(self): """ SERVICE_13 step 4 Verifies WSDL url :param self: MainController object :return: None """ self.log('Open security server clients tab') self.wait_until_visible(type=By.CSS_SELECTOR, element=sidebar_constants.CLIENTS_BTN_CSS).click() member_code = clients_table_vm.ONE_SS_CLIENT[0] subsystem_code = clients_table_vm.ONE_SS_CLIENT[1] '''Add client''' add_ss_client(self, member_code, subsystem_code) self.log('Click on "CONTINUE" button') self.wait_until_visible(type=By.XPATH, element=popups.WARNING_POPUP_CONTINUE_XPATH).click() self.log('Click on "CONFIRM" button') popups.confirm_dialog_click(self) self.log('Find added Member Code == "' + member_code + ', Subsystem Code == ' + subsystem_code) client_row = self.wait_until_visible(type=By.XPATH, element=clients_table_vm. get_client_id_by_member_code_subsystem_code(member_code, subsystem_code)) self.wait_jquery() '''Add wsdl url''' self.log("Open client details") client_row.find_element_by_css_selector(DETAILS_TAB_CSS).click() add_wsdl_url(self, self.config.get('wsdl.management_service_wsdl_url')) self.log('Click on WSDL url row') self.wait_until_visible(type=By.CSS_SELECTOR, element=popups.CLIENT_DETAILS_POPUP_WSDL_CSS).click() wsdl_disabled = True counter = 1 ss_2_ssh_host = self.config.get('ss2.ssh_host') ss_2_ssh_user = self.config.get('ss2.ssh_user') ss_2_ssh_pass = self.config.get('ss2.ssh_pass') log_checker = auditchecker.AuditChecker(host=ss_2_ssh_host, username=ss_2_ssh_user, password=<PASSWORD>) '''Loop through inputs and expected results''' for wsdl_disable_notice in clients_table_vm.WSDL_DISABLE_NOTICES: current_log_lines = log_checker.get_line_count() notice = wsdl_disable_notice[0] error = wsdl_disable_notice[1] error_message = wsdl_disable_notice[2] error_message_label = wsdl_disable_notice[3] self.log('TEST - {0}'.format(counter) + str(counter) + '. Notice == "' + notice + '"') if wsdl_disabled: self.log('Click on "ENABLE" button') self.wait_until_visible(type=By.ID, element=popups.CLIENT_DETAILS_POPUP_ENABLE_WSDL_BTN_ID).click() '''SERVICE_13/1 SS administrator selects to disable a WSDL.''' self.log('Click on "DISABLE" button') self.wait_until_visible(type=By.ID, element=popups.CLIENT_DETAILS_POPUP_DISABLE_WSDL_BTN_ID).click() '''SERVICE_13/2 System asks for notice message that will be sent as a response to service clients trying to access services described in the WSDL''' '''SERVICE_13/3 SS administrator inserts the message.''' self.log('Add notice (string length = {0})- "{1}"'.format(len(notice), notice)) notice_field = self.wait_until_visible(type=By.ID, element=popups.DISABLE_WSDL_POPUP_NOTICE_ID) self.input(notice_field, notice) self.log('Click on "OK" button') self.wait_until_visible(type=By.XPATH, element=popups.DISABLE_WSDL_POPUP_OK_BTN_XPATH).click() '''SERVICE 13/4 System parses the user input:''' '''Verify error messages''' error_messages(self, error, error_message, error_message_label) if error: self.log('SERVICE_13 4a2 audit log contains disable wsdl failed when disabling fails') logs_found = log_checker.check_log(log_constants.DISABLE_WSDL_FAILED, from_line=current_log_lines + 1) self.is_true(logs_found, msg="Disable wsdl failed not found in audit log") '''SERVICE 13/4a.3a SS administrator selects to terminate the use case.''' self.log('Click on "CANCEL" button') self.wait_until_visible(type=By.XPATH, element=popups.DISABLE_WSDL_POPUP_CANCEL_BTN_XPATH).click() wsdl_disabled = False else: wsdl_disabled = True self.wait_jquery() self.log('Click on "CLOSE" button') self.wait_until_visible(type=By.XPATH, element=popups.CLIENT_DETAILS_POPUP_CLOSE_BTN_XPATH).click() self.log('Delete added client') delete_added_client(self, client_row) counter += 1 return test_case def edit_service(self, service_url, service_timeout=None, verify_tls=None): ''' Tries to enter WSDL url to "Edit WSDL Parameters" dialog URL input field and press "OK" :param self: :param url: str - URL that contains the WSDL :param clear_field: Boolean - clear the field before entering anything :return: ''' self.log('Setting new service URL with timeout {1}: {0}'.format(service_timeout, service_url)) # Find the "Edit Service Parameters" dialog. Because this function can be called from a state where the dialog is open and # a state where it is not, we'll first check if the dialog is open. If it is not, we'll click the "Edit" # button to open it. wsdl_dialog = self.by_xpath(popups.EDIT_SERVICE_POPUP_XPATH) # Open the dialog if it is not already open if not wsdl_dialog.is_displayed(): # Find "Edit" button and click it. edit_wsdl_button = self.by_id(popups.CLIENT_DETAILS_POPUP_EDIT_WSDL_BTN_ID) edit_wsdl_button.click() # Find the dialog and wait until it is visible. self.wait_until_visible(wsdl_dialog) # Now an "Edit Service Parameters" dialog with a URL prompt should be open. Let's try to set the service URL. # Find the URL input element service_url_input = self.by_id(popups.EDIT_SERVICE_POPUP_URL_ID) service_timeout_input = self.by_id(popups.EDIT_SERVICE_POPUP_TIMEOUT_ID) # Enter the service URL. self.input(service_url_input, service_url) # Set service timeout if specified if service_timeout is not None: # UC SERVICE_timeout_input.clear() # UC SERVICE_timeout_input.send_keys(service_timeout) self.input(service_timeout_input, service_timeout) # Set "Verify TLS" if specified if verify_tls is not None: service_tls_checkbox = self.wait_until_visible(popups.EDIT_SERVICE_POPUP_TLS_ENABLED_XPATH, By.XPATH) checked = service_tls_checkbox.get_attribute('checked') if ((checked != '' and checked is not None) and not verify_tls) or (checked is None and verify_tls): service_tls_checkbox.click() # Find the "OK" button in "Edit WSDL Parameters" dialog wsdl_dialog_ok_button = self.by_xpath(popups.EDIT_SERVICE_POPUP_OK_BTN_XPATH) wsdl_dialog_ok_button.click() # Clicking the button starts an
# -*- coding: utf-8 -*- # Copyright 2020 The TensorFlowTTS Team and <NAME> (@kan-bayashi) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Parallel-wavegan Modules. Based on pytorch implementation (https://github.com/kan-bayashi/ParallelWaveGAN)""" import tensorflow as tf def get_initializer(initializer_seed=42): """Creates a `tf.initializers.he_normal` with the given seed. Args: initializer_seed: int, initializer seed. Returns: HeNormal initializer with seed = `initializer_seed`. """ return tf.keras.initializers.HeNormal(seed=initializer_seed) class TFConv1d1x1(tf.keras.layers.Conv1D): """1x1 Conv1d with customized initialization.""" def __init__(self, filters, use_bias, padding, initializer_seed, **kwargs): """Initialize 1x1 Conv1d module.""" super().__init__( filters=filters, kernel_size=1, strides=1, padding=padding, dilation_rate=1, use_bias=use_bias, kernel_initializer=get_initializer(initializer_seed), **kwargs, ) class TFConv1d(tf.keras.layers.Conv1D): """Conv1d with customized initialization.""" def __init__(self, *args, **kwargs): """Initialize Conv1d module.""" initializer_seed = kwargs.pop("initializer_seed", 42) super().__init__( *args, **kwargs, kernel_initializer=get_initializer(initializer_seed) ) class TFResidualBlock(tf.keras.layers.Layer): """Residual block module in WaveNet.""" def __init__( self, kernel_size=3, residual_channels=64, gate_channels=128, skip_channels=64, aux_channels=80, dropout_rate=0.0, dilation_rate=1, use_bias=True, use_causal_conv=False, initializer_seed=42, **kwargs, ): """Initialize ResidualBlock module. Args: kernel_size (int): Kernel size of dilation convolution layer. residual_channels (int): Number of channels for residual connection. skip_channels (int): Number of channels for skip connection. aux_channels (int): Local conditioning channels i.e. auxiliary input dimension. dropout_rate (float): Dropout probability. dilation_rate (int): Dilation factor. use_bias (bool): Whether to add bias parameter in convolution layers. use_causal_conv (bool): Whether to use use_causal_conv or non-use_causal_conv convolution. initializer_seed (int32): initializer seed. """ super().__init__(**kwargs) self.dropout_rate = dropout_rate # no future time stamps available self.use_causal_conv = use_causal_conv # dilation conv self.conv = TFConv1d( filters=gate_channels, kernel_size=kernel_size, padding="same" if self.use_causal_conv is False else "causal", strides=1, dilation_rate=dilation_rate, use_bias=use_bias, initializer_seed=initializer_seed, ) # local conditionong if aux_channels > 0: self.conv1x1_aux = TFConv1d1x1( gate_channels, use_bias=False, padding="same", initializer_seed=initializer_seed, name="conv1x1_aux", ) else: self.conv1x1_aux = None # conv output is split into two groups gate_out_channels = gate_channels // 2 self.conv1x1_out = TFConv1d1x1( residual_channels, use_bias=use_bias, padding="same", initializer_seed=initializer_seed, name="conv1x1_out", ) self.conv1x1_skip = TFConv1d1x1( skip_channels, use_bias=use_bias, padding="same", initializer_seed=initializer_seed, name="conv1x1_skip", ) self.dropout = tf.keras.layers.Dropout(rate=self.dropout_rate) def call(self, x, c, training=False): """Calculate forward propagation. Args: x (Tensor): Input tensor (B, residual_channels, T). c (Tensor): Local conditioning auxiliary tensor (B, aux_channels, T). Returns: Tensor: Output tensor for residual connection (B, T, residual_channels). Tensor: Output tensor for skip connection (B, T, skip_channels). """ residual = x x = self.dropout(x, training=training) x = self.conv(x) # split into two part for gated activation xa, xb = tf.split(x, 2, axis=-1) # local conditioning if c is not None: assert self.conv1x1_aux is not None c = self.conv1x1_aux(c) ca, cb = tf.split(c, 2, axis=-1) xa, xb = xa + ca, xb + cb x = tf.nn.tanh(xa) * tf.nn.sigmoid(xb) # for skip connection s = self.conv1x1_skip(x) # for residual connection x = self.conv1x1_out(x) x = (x + residual) * tf.math.sqrt(0.5) return x, s class TFStretch1d(tf.keras.layers.Layer): """Stretch2d module.""" def __init__(self, x_scale, y_scale, method="nearest", **kwargs): """Initialize Stretch2d module. Args: x_scale (int): X scaling factor (Time axis in spectrogram). y_scale (int): Y scaling factor (Frequency axis in spectrogram). method (str): Interpolation method. """ super().__init__(**kwargs) self.x_scale = x_scale self.y_scale = y_scale self.method = method def call(self, x): """Calculate forward propagation. Args: x (Tensor): Input tensor (B, T, C, 1). Returns: Tensor: Interpolated tensor (B, T * x_scale, C * y_scale, 1) """ x_shape = tf.shape(x) new_size = (x_shape[1] * self.x_scale, x_shape[2] * self.y_scale) x = tf.image.resize(x, method=self.method, size=new_size) return x class TFUpsampleNetWork(tf.keras.layers.Layer): """Upsampling network module.""" def __init__( self, output_channels, upsample_scales, nonlinear_activation=None, nonlinear_activation_params={}, interpolate_mode="nearest", freq_axis_kernel_size=1, use_causal_conv=False, **kwargs, ): """Initialize upsampling network module. Args: output_channels (int): output feature channels. upsample_scales (list): List of upsampling scales. nonlinear_activation (str): Activation function name. nonlinear_activation_params (dict): Arguments for specified activation function. interpolate_mode (str): Interpolation mode. freq_axis_kernel_size (int): Kernel size in the direction of frequency axis. """ super().__init__(**kwargs) self.use_causal_conv = use_causal_conv self.up_layers = [] for scale in upsample_scales: # interpolation layer stretch = TFStretch1d( scale, 1, interpolate_mode, name="stretch_._{}".format(scale) ) # ->> outputs: [B, T * scale, C * 1, 1] self.up_layers += [stretch] # conv layer assert ( freq_axis_kernel_size - 1 ) % 2 == 0, "Not support even number freq axis kernel size." kernel_size = scale * 2 + 1 conv = tf.keras.layers.Conv2D( filters=1, kernel_size=(kernel_size, freq_axis_kernel_size), padding="causal" if self.use_causal_conv is True else "same", use_bias=False, ) # ->> outputs: [B, T * scale, C * 1, 1] self.up_layers += [conv] # nonlinear if nonlinear_activation is not None: nonlinear = getattr(tf.keras.layers, nonlinear_activation)( **nonlinear_activation_params ) self.up_layers += [nonlinear] def call(self, c): """Calculate forward propagation. Args: c : Input tensor (B, T, C). Returns: Tensor: Upsampled tensor (B, T', C), where T' = T * prod(upsample_scales). """ c = tf.expand_dims(c, -1) # [B, T, C, 1] for f in self.up_layers: c = f(c) return tf.squeeze(c, -1) # [B, T, C] class TFConvInUpsampleNetWork(tf.keras.layers.Layer): """Convolution + upsampling network module.""" def __init__( self, upsample_scales, nonlinear_activation=None, nonlinear_activation_params={}, interpolate_mode="nearest", freq_axis_kernel_size=1, aux_channels=80, aux_context_window=0, use_causal_conv=False, initializer_seed=42, **kwargs, ): """Initialize convolution + upsampling network module. Args: upsample_scales (list): List of upsampling scales. nonlinear_activation (str): Activation function name. nonlinear_activation_params (dict): Arguments for specified activation function. mode (str): Interpolation mode. freq_axis_kernel_size (int): Kernel size in the direction of frequency axis. aux_channels (int): Number of channels of pre-convolutional layer. aux_context_window (int): Context window size of the pre-convolutional layer. use_causal_conv (bool): Whether to use causal structure. """ super().__init__(**kwargs) self.aux_context_window = aux_context_window self.use_causal_conv = use_causal_conv and aux_context_window > 0 # To capture wide-context information in conditional features kernel_size = ( aux_context_window + 1 if use_causal_conv else 2 * aux_context_window + 1 ) self.conv_in = TFConv1d( filters=aux_channels, kernel_size=kernel_size, padding="same", use_bias=False, initializer_seed=initializer_seed, name="conv_in", ) self.upsample = TFUpsampleNetWork( output_channels=aux_channels, upsample_scales=upsample_scales, nonlinear_activation=nonlinear_activation, nonlinear_activation_params=nonlinear_activation_params, interpolate_mode=interpolate_mode, freq_axis_kernel_size=freq_axis_kernel_size, use_causal_conv=use_causal_conv, name="upsample_network", ) def call(self, c): """Calculate forward propagation. Args: c : Input tensor (B, T', C). Returns: Tensor: Upsampled tensor (B, T, C), where T = (T' - aux_context_window * 2) * prod(upsample_scales). Note: The length of inputs considers the context window size. """ c_ = self.conv_in(c) return self.upsample(c_) class TFParallelWaveGANGenerator(tf.keras.Model): """Parallel WaveGAN Generator module.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.out_channels = config.out_channels self.aux_channels = config.aux_channels self.n_layers = config.n_layers self.stacks = config.stacks self.kernel_size = config.kernel_size self.upsample_params = config.upsample_params # check the number of layers and stacks assert self.n_layers % self.stacks == 0 n_layers_per_stack = self.n_layers // self.stacks # define first convolution self.first_conv = TFConv1d1x1( filters=config.residual_channels, use_bias=True, padding="same", initializer_seed=config.initializer_seed, name="first_convolution", ) # define conv + upsampling network if config.upsample_conditional_features: self.upsample_params.update({"use_causal_conv": config.use_causal_conv}) self.upsample_params.update( { "aux_channels": config.aux_channels, "aux_context_window": config.aux_context_window, } ) self.upsample_net = TFConvInUpsampleNetWork(**self.upsample_params) else: self.upsample_net = None # define residual blocks self.conv_layers = [] for layer in range(self.n_layers): dilation_rate = 2 ** (layer % n_layers_per_stack) conv = TFResidualBlock( kernel_size=config.kernel_size, residual_channels=config.residual_channels, gate_channels=config.gate_channels, skip_channels=config.skip_channels, aux_channels=config.aux_channels, dilation_rate=dilation_rate, dropout_rate=config.dropout_rate, use_bias=config.use_bias, use_causal_conv=config.use_causal_conv, initializer_seed=config.initializer_seed, name="residual_block_._{}".format(layer), ) self.conv_layers += [conv] # define output layers self.last_conv_layers = [ tf.keras.layers.ReLU(), TFConv1d1x1( filters=config.skip_channels, use_bias=config.use_bias, padding="same", initializer_seed=config.initializer_seed, ), tf.keras.layers.ReLU(), TFConv1d1x1( filters=config.out_channels, use_bias=True, padding="same", initializer_seed=config.initializer_seed, ), tf.keras.layers.Activation("tanh"), ] def _build(self): mels = tf.random.uniform(shape=[2, 20, 80], dtype=tf.float32) self(mels, training=tf.cast(True, tf.bool)) def call(self, mels, training=False, **kwargs): """Calculate forward propagation. Args: mels (Tensor): Local conditioning auxiliary features (B, T', C). Returns: Tensor: Output tensor (B, T, 1) """ # perform upsampling if mels is not None and self.upsample_net is not None: c = self.upsample_net(mels) # random noise x # enccode to hidden representation x = tf.expand_dims(tf.random.normal(shape=tf.shape(c)[0:2]), axis=2) x = self.first_conv(x) skips = 0 for f in self.conv_layers: x, h = f(x, c, training=training) skips += h skips *= tf.math.sqrt(1.0 / len(self.conv_layers)) # apply final layers x = skips for f in self.last_conv_layers: x = f(x) return x @tf.function( experimental_relax_shapes=True, input_signature=[ tf.TensorSpec(shape=[None, None, 80], dtype=tf.float32, name="mels"), ], ) def inference(self, mels): """Calculate forward propagation. Args: c (Tensor): Local conditioning auxiliary features (B, T', C). Returns: Tensor: Output tensor (B, T, 1) """ # perform upsampling if mels is not None and self.upsample_net is not None: c = self.upsample_net(mels) # enccode to hidden
is None: return u.one return u.Unit(unit) @property def wavelength(self): """Wavelength of the observation.""" return u.Quantity(self.meta.get('wavelnth', 0), self.waveunit) @property def observatory(self): """Observatory or Telescope name.""" return self.meta.get('obsrvtry', self.meta.get('telescop', "")).replace("_", " ") @property def processing_level(self): """ Returns the FITS processing level if present. """ return self.meta.get('lvl_num', None) @property def bottom_left_coord(self): """ The physical coordinate at the center of the bottom left ([0, 0]) pixel. """ return self.pixel_to_world(0*u.pix, 0*u.pix) @property def top_right_coord(self): """ The physical coordinate at the center of the the top right ([-1, -1]) pixel. """ top_right = u.Quantity(self.dimensions) - 1 * u.pix return self.pixel_to_world(*top_right) @property def center(self): """ Return a coordinate object for the center pixel of the array. If the array has an even number of pixels in a given dimension, the coordinate returned lies on the edge between the two central pixels. """ center = (u.Quantity(self.dimensions) - 1 * u.pix) / 2. return self.pixel_to_world(*center) @property def shifted_value(self): """The total shift applied to the reference coordinate by past applications of `~sunpy.map.GenericMap.shift`.""" return self._shift @u.quantity_input def shift(self, axis1: u.deg, axis2: u.deg): """ Returns a map shifted by a specified amount to, for example, correct for a bad map location. These values are applied directly to the `~sunpy.map.GenericMap.reference_coordinate`. To check how much shift has already been applied see `~sunpy.map.GenericMap.shifted_value` Parameters ---------- axis1 : `~astropy.units.Quantity` The shift to apply to the Longitude (solar-x) coordinate. axis2 : `~astropy.units.Quantity` The shift to apply to the Latitude (solar-y) coordinate Returns ------- out : `~sunpy.map.GenericMap` or subclass A new shifted Map. """ new_meta = self.meta.copy() # Update crvals new_meta['crval1'] = ((self.meta['crval1'] * self.spatial_units[0] + axis1).to(self.spatial_units[0])).value new_meta['crval2'] = ((self.meta['crval2'] * self.spatial_units[1] + axis2).to(self.spatial_units[1])).value # Create new map with the modification new_map = self._new_instance(self.data, new_meta, self.plot_settings) new_map._shift = SpatialPair(self.shifted_value[0] + axis1, self.shifted_value[1] + axis2) return new_map @property def rsun_meters(self): """Radius of the sun in meters.""" return u.Quantity(self.meta.get('rsun_ref', constants.radius), 'meter') @property def rsun_obs(self): """ Angular radius of the Sun. Notes ----- This value is taken the ``'rsun_obs'``, ``'solar_r'``, or ``radius`` FITS keywords. If none of these keys are present the photospheric limb as seen from the observer coordinate is returned. """ rsun_arcseconds = self.meta.get('rsun_obs', self.meta.get('solar_r', self.meta.get('radius', None))) if rsun_arcseconds is None: warnings.warn("Missing metadata for solar angular radius: assuming photospheric limb " "as seen from observer coordinate.", SunpyUserWarning) dsun = self.dsun rsun = sun._angular_radius(constants.radius, dsun) else: rsun = rsun_arcseconds * u.arcsec return rsun @property def coordinate_system(self): """Coordinate system used for x and y axes (ctype1/2).""" return SpatialPair(self.meta.get('ctype1', 'HPLN- '), self.meta.get('ctype2', 'HPLT- ')) @property def _supported_observer_coordinates(self): """ A list of supported coordinate systems. This is a list so it can easily maintain a strict order. The list of two element tuples, the first item in the tuple is the keys that need to be in the header to use this coordinate system and the second is the kwargs to SkyCoord. """ return [(('hgln_obs', 'hglt_obs', 'dsun_obs'), {'lon': self.meta.get('hgln_obs'), 'lat': self.meta.get('hglt_obs'), 'radius': self.meta.get('dsun_obs'), 'unit': (u.deg, u.deg, u.m), 'frame': "heliographic_stonyhurst"}), (('crln_obs', 'crlt_obs', 'dsun_obs'), {'lon': self.meta.get('crln_obs'), 'lat': self.meta.get('crlt_obs'), 'radius': self.meta.get('dsun_obs'), 'unit': (u.deg, u.deg, u.m), 'frame': "heliographic_carrington"}), ] def _remove_existing_observer_location(self): """ Remove all keys that this map might use for observer location. """ all_keys = expand_list([e[0] for e in self._supported_observer_coordinates]) for key in all_keys: self.meta.pop(key) @property def observer_coordinate(self): """ The Heliographic Stonyhurst Coordinate of the observer. """ missing_meta = {} for keys, kwargs in self._supported_observer_coordinates: meta_list = [k in self.meta for k in keys] if all(meta_list): sc = SkyCoord(obstime=self.date, **kwargs) # We need to specially handle an observer location provided in Carrington # coordinates. To create the observer coordinate, we need to specify the # frame, but defining a Carrington frame normally requires specifying the # frame's observer. This loop is the problem. Instead, since the # Carrington frame needs only the Sun-observer distance component from the # frame's observer, we create the same frame using a fake observer that has # the same Sun-observer distance. if isinstance(sc.frame, HeliographicCarrington): fake_observer = HeliographicStonyhurst(0*u.deg, 0*u.deg, sc.radius, obstime=sc.obstime) fake_frame = sc.frame.replicate(observer=fake_observer) hgs = fake_frame.transform_to(HeliographicStonyhurst(obstime=sc.obstime)) # HeliographicStonyhurst doesn't need an observer, but adding the observer # facilitates a conversion back to HeliographicCarrington return SkyCoord(hgs, observer=hgs) return sc.heliographic_stonyhurst elif any(meta_list) and not set(keys).isdisjoint(self.meta.keys()): if not isinstance(kwargs['frame'], str): kwargs['frame'] = kwargs['frame'].name missing_meta[kwargs['frame']] = set(keys).difference(self.meta.keys()) warning_message = "".join( [f"For frame '{frame}' the following metadata is missing: {','.join(keys)}\n" for frame, keys in missing_meta.items()]) warning_message = "Missing metadata for observer: assuming Earth-based observer.\n" + warning_message warnings.warn(warning_message, SunpyMetadataWarning, stacklevel=3) return get_earth(self.date) @property def heliographic_latitude(self): """Observer heliographic latitude.""" return self.observer_coordinate.lat @property def heliographic_longitude(self): """Observer heliographic longitude.""" return self.observer_coordinate.lon @property def carrington_latitude(self): """Observer Carrington latitude.""" hgc_frame = HeliographicCarrington(observer=self.observer_coordinate, obstime=self.date) return self.observer_coordinate.transform_to(hgc_frame).lat @property def carrington_longitude(self): """Observer Carrington longitude.""" hgc_frame = HeliographicCarrington(observer=self.observer_coordinate, obstime=self.date) return self.observer_coordinate.transform_to(hgc_frame).lon @property def dsun(self): """Observer distance from the center of the Sun.""" return self.observer_coordinate.radius.to('m') @property def _reference_longitude(self): """ FITS-WCS compatible longitude. Used in self.wcs and self.reference_coordinate. """ return self.meta.get('crval1', 0.) * self.spatial_units[0] @property def _reference_latitude(self): return self.meta.get('crval2', 0.) * self.spatial_units[1] @property def reference_coordinate(self): """Reference point WCS axes in data units (i.e. crval1, crval2). This value includes a shift if one is set.""" return SkyCoord(self._reference_longitude, self._reference_latitude, frame=self.coordinate_frame) @property def reference_pixel(self): """ Pixel of reference coordinate. The pixel returned uses zero-based indexing, so will be 1 pixel less than the FITS CRPIX values. """ return PixelPair((self.meta.get('crpix1', (self.meta.get('naxis1') + 1) / 2.) - 1) * u.pixel, (self.meta.get('crpix2', (self.meta.get('naxis2') + 1) / 2.) - 1) * u.pixel) @property def scale(self): """ Image scale along the x and y axes in units/pixel (i.e. cdelt1, cdelt2). """ # TODO: Fix this if only CDi_j matrix is provided return SpatialPair(self.meta.get('cdelt1', 1.) * self.spatial_units[0] / u.pixel, self.meta.get('cdelt2', 1.) * self.spatial_units[1] / u.pixel) @property def spatial_units(self): """ Image coordinate units along the x and y axes (i.e. cunit1, cunit2). """ return SpatialPair(u.Unit(self.meta.get('cunit1')), u.Unit(self.meta.get('cunit2'))) @property def rotation_matrix(self): """ Matrix describing the rotation required to align solar North with the top of the image. """ if 'PC1_1' in self.meta: return np.array([[self.meta['PC1_1'], self.meta['PC1_2']], [self.meta['PC2_1'], self.meta['PC2_2']]]) elif 'CD1_1' in self.meta: cd = np.array([[self.meta['CD1_1'], self.meta['CD1_2']], [self.meta['CD2_1'], self.meta['CD2_2']]]) cdelt = u.Quantity(self.scale).value return cd / cdelt else: return self._rotation_matrix_from_crota() def _rotation_matrix_from_crota(self): """ This method converts the deprecated CROTA FITS kwargs to the new PC rotation matrix. This method can be overriden if an instruments header does not use this conversion. """ lam = self.scale[0] / self.scale[1] p = np.deg2rad(self.meta.get('CROTA2', 0)) return np.array([[np.cos(p), -1 * lam * np.sin(p)], [1/lam * np.sin(p), np.cos(p)]]) @property def fits_header(self): """ A `~astropy.io.fits.Header` representation of the ``meta`` attribute. """ return sunpy.io.fits.header_to_fits(self.meta) # #### Miscellaneous #### # def _fix_date(self): # Check commonly used but non-standard FITS keyword for observation # time and correct the keyword if we can. Keep updating old one for # backwards compatibility. if is_time(self.meta.get('date_obs', None)): self.meta['date-obs'] = self.meta['date_obs'] def _fix_naxis(self): # If naxis is not specified, get it from the array shape if 'naxis1' not in self.meta: self.meta['naxis1'] = self.data.shape[1] if 'naxis2' not in self.meta: self.meta['naxis2'] = self.data.shape[0] if 'naxis' not in self.meta: self.meta['naxis'] = self.ndim def _fix_bitpix(self): # Bit-depth # # 8 Character or unsigned binary integer # 16 16-bit twos-complement binary integer # 32 32-bit twos-complement binary integer # -32 IEEE single precision floating point # -64 IEEE double precision floating point # if 'bitpix' not in self.meta: float_fac = -1 if self.dtype.kind == "f" else 1 self.meta['bitpix'] = float_fac * 8 * self.dtype.itemsize def _get_cmap_name(self): """Build the default color map name.""" cmap_string = (self.observatory + self.detector + str(int(self.wavelength.to('angstrom').value))) return cmap_string.lower() def _validate_meta(self): """ Validates the meta-information associated with a Map. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.map.sources package. Allows for default unit assignment for: CUNIT1, CUNIT2, WAVEUNIT """ msg = ('Image coordinate units for axis {} not present in metadata.') err_message = [] for i in [1, 2]: if self.meta.get(f'cunit{i}') is None: err_message.append(msg.format(i, i)) if err_message: err_message.append( f'See
when on a loop self.size = 0 # Residue size (0:1) 0:ignor size, 1:Large residue self.SpecialRes = {0:0} # Special characteristic of residue self.n1 = 0 self.n2 = 0 self.ResVol = 162.9 self.SideChainVol = 162.9-54.1 class Pro(AminoAcid): def __init__(self): AminoAcid.__init__(self,'P') # Proline # ********** # NH-(CH2)3-CH-COOH # |_________| # Side chain bond to C alpha # exceptional conformational rigidity # usually solvent-exposed. # lacks a hydrogen on the amide group, it cannot act as a hydrogen bond donor, # only as a hydrogen bond acceptor. # # Molecular weight 115.13 Da # Non ploar # Acidity - Natural # Hydrophobicity 0.711 (Analytical Bio chemistry 193:11,72-82 Elsevier 1991) # Hydrophathy index -1.6 (J.Mol.Bio(1982) 157, 105-132) # Isoelectric point 6.30 # pKa( alpha-COOH) 1.95 # pKa( alpha-NH2) 10.64 # CAS # 147-85-3 # PubChem ID 614 # self.Hydropathy = -1.6 self.ResWeight = 59 self.name3L = 'PRO' self.Hydrophobic = 1 # 1: Hydrophobic, 0: Hydrophilic self.charge = 0 self.polar = 0 self.corner = 0 # Would prefer to be at a corner : give positive value self.loop = 0 # cost/benefit when on a loop self.size = 0 # Residue size (0:1) 0:ignor size, 1:Large residue self.SpecialRes = {0:0,3:-3,4:-3,5:-3,6:-2} # special value scores self.n1 = 0 self.n2 = 0 self.ResVol = 112.7 self.SideChainVol = 112.7-54.1 # ############ Non Polar Uncharged ########### class Gly(AminoAcid): def __init__(self): AminoAcid.__init__(self,'G') # # NH2-CH2-COOH # # Molecular weight 75.07 Da # Non ploar # Acidity - Natural # Hydrophobicity 0.501 (Analytical Bio chemistry 193:11,72-82 Elsevier 1991) # Hydrophathy index -0.4 (J.Mol.Bio(1982) 157, 105-132) # Isoelectric point 6.06 # pKa( alpha-COOH) 2.35 # pKa( alpha-NH2) 9.78 # CAS # 56-40-6 # PubChem ID 750 self.Hydrophobic = 0 # 1: Hydrophobic, 0: Hydrophilic self.Hydropathy = -0.4 self.ResWeight = 19 self.name3L = 'GLY' self.SpecialRes = {0:0,3:-3,5:-3} # special value scores self.ResVol = 60.1 self.SideChainVol = 60.1-54.1 # ############ Polar Uncharged ########### class Ser(AminoAcid): def __init__(self): AminoAcid.__init__(self,'S') # Serine # ###### # HO-CH2-CH(NH2)-COOH # # Molecular weight 105.09 Da # Ploar # Acidity - Natural # Hydrophobicity 0.359 (Analytical Bio chemistry 193:11,72-82 Elsevier 1991) # Hydrophathy index -0.8 (J.Mol.Bio(1982) 157, 105-132) # Isoelectric point 5.68 # pKa( alpha-COOH) 2.19 # pKa( alpha-NH2) 9.21 # CAS # 56-45-1 # PubChem ID 617 # self.Hydropathy = -0.8 self.ResWeight = 49 self.name3L = 'SER' self.Hydrophobic = 0 # 1: Hydrophobic, 0: Hydrophilic self.charge = 0 self.polar = 1 self.corner = 0 # Would prefer to be at a corner : give positive value self.loop = 0 # cost/benefit when on a loop self.size = 0 # Residue size (0:1) 0:ignor size, 1:Large residue self.SpecialRes = {0:0} # Special characteristic of residue self.n1 = 0 self.n2 = 0 self.ResVol = 89.0 self.SideChainVol = 89-54.1 class Thr(AminoAcid): def __init__(self): AminoAcid.__init__(self,'T') # Threonine # ########## # CH3-CH(OH)-CH(NH2)-COOH # bearing an alcohol group # # Essential AA # Molecular weight 119.12 Da # Ploar # Acidity - Natural # Hydrophobicity 0.450 (Analytical Bio chemistry 193:11,72-82 Elsevier 1991) # Hydrophathy index -0.7 (J.Mol.Bio(1982) 157, 105-132) # Isoelectric point 5.60 # pKa( alpha-COOH) 2.09 # pKa( alpha-NH2) 9.10 # CAS # 72-19-5 # PubChem ID 6288 # self.Hydropathy = -0.7 self.ResWeight = 63 self.name3L = 'THR' self.Hydrophobic = 0 # 1: Hydrophobic, 0: Hydrophilic self.charge = 0 self.polar = 1 self.corner = 0 # Would prefer to be at a corner : give positive value self.loop = 0 # cost/benefit when on a loop self.size = 0 # Residue size (0:1) 0:ignor size, 1:Large residue self.SpecialRes = {0:0} # Special characteristic of residue self.n1 = 0 self.n2 = 0 self.ResVol = 116.1 self.SideChainVol = 116.1-54.1 class Cys(AminoAcid): def __init__(self): AminoAcid.__init__(self,'C') # Cysteine # ###### # HS-CH2-CH(NH2)-COOH # thiol (R-S-H) side chain # Has Sulfur in side chain # # Molecular weight 121.16 Da # Ploar # Acidity - Natural # Hydrophobicity 0.680 (Analytical Bio chemistry 193:11,72-82 Elsevier 1991) # Hydrophathy index 2.5 (J.Mol.Bio(1982) 157, 105-132) # Isoelectric point 5.05 # pKa( alpha-COOH) 1.92 # pKa( alpha-NH2) 10.70 # CAS # 59-90-4 # PubChem ID 5862 # self.Hydropathy = 2.5 self.ResWeight = 65 self.name3L = 'CYS' self.Hydrophobic = 0 # 1: Hydrophobic, 0: Hydrophilic self.charge = 0 self.polar = 1 self.corner = 0 # Would prefer to be at a corner : give positive value self.loop = 0 # cost/benefit when on a loop self.size = 0 # Residue size (0:1) 0:ignor size, 1:Large residue self.n1 = -7 self.n2 = 0 self.SpecialRes = {0:0} # special value scores self.ResVol = 108.5 self.SideChainVol = 108.5-54.1 class Tyr(AminoAcid): def __init__(self): AminoAcid.__init__(self,'Y') # Tyrosine # ########### # HO-p-Ph-CH2-CH(NH2)-COOH # # Molecular weight 181.19 Da # Non ploar # Acidity - Natural # Hydrophobicity 0.880 (Analytical Bio chemistry 193:11,72-82 Elsevier 1991) # Hydrophathy index -1.3 (J.Mol.Bio(1982) 157, 105-132) # Isoelectric point 5.64 # pKa( alpha-COOH) 2.20 # pKa( alpha-NH2) 9.21 # CAS # 60-18-4 # PubChem ID 1153 # self.Hydropathy = -1.3 self.ResWeight = 125 self.name3L = 'TYR' self.Hydrophobic = 0 # 1: Hydrophobic, 0: Hydrophilic self.charge = 0 self.polar = 1 self.corner = 0 # Would prefer to be at a corner : give positive value self.loop = 0 # cost/benefit when on a loop self.size = 0 # Residue size (0:1) 0:ignor size, 1:Large residue self.SpecialRes = {0:0} # Special characteristic of residue self.n1 = 0 self.n2 = 0 self.ResVol = 193.6 self.SideChainVol = 193.6-54.1 class Asn(AminoAcid): def __init__(self): AminoAcid.__init__(self,'N') # Asparagine # ########## # H2N-CO-CH2-CH(NH2)-COOH # N Donor - NH2 # # has carboxamide as the side chain's functional group(R-CO-NH2) # side chain can form hydrogen bond interactions with the peptide backbone # often found near the beginning and the end of alpha-helices, # and in turn motifs in beta sheets. # # Molecular weight 132.12 Da # Ploar # Acidity - Natural # Hydrophobicity 0.236 (Analytical Bio chemistry 193:11,72-82 Elsevier 1991) # Hydrophathy index -3.5 (J.Mol.Bio(1982) 157, 105-132) # Isoelectric point 5.41 # pKa( alpha-COOH) 2.14 # pKa( alpha-NH2) 8.72 # CAS # 70-47-3 # PubChem ID 236 # self.Hydropathy = -3.5 self.ResWeight = 76 self.name3L = 'ASN' self.Hydrophobic = 0 # 1: Hydrophobic, 0: Hydrophilic self.charge = 0 self.polar = 1 self.corner = 0 # Would prefer to be at a corner : give positive value self.loop = 0 # cost/benefit when on a loop self.size = 0 # Residue size (0:1) 0:ignor size, 1:Large residue self.SpecialRes = {0:0} # Special characteristic of residue self.n1 = -1 self.n2 = -2 self.ResVol = 114.1 self.SideChainVol = 114.1-54.1 class Gln(AminoAcid): def __init__(self): AminoAcid.__init__(self,'Q') # Glutamine # ############# # H2N-CO-(CH2)2-CH(NH2)-COOH # N Donor - NH2 # # Molecular weight 146.14 Da # Ploar # Acidity - Natural # Hydrophobicity 0.251 (Analytical Bio chemistry 193:11,72-82 Elsevier 1991) # Hydrophathy index -3.5 (J.Mol.Bio(1982) 157, 105-132) # Isoelectric point 5.65 # pKa( alpha-COOH) 2.17 # pKa( alpha-NH2) 9.13 # CAS # 56-85-9 # PubChem ID 5950 # self.Hydropathy = -3.5 self.ResWeight = 90 self.name3L = 'GLN' self.Hydrophobic = 0 # 1: Hydrophobic, 0: Hydrophilic self.charge = 0 self.polar = 1 self.corner = 0 # Would prefer to be at a corner : give positive value self.loop = 0 # cost/benefit when on a loop self.size = 0 # Residue size (0:1) 0:ignor size, 1:Large residue self.n1 = -1 self.n2 = -2 self.SpecialRes = {0:0} # special value scores self.ResVol = 143.8 self.SideChainVol = 143.8-54.1 # ########## Polar Acidic ########### class Asp(AminoAcid): def __init__(self): AminoAcid.__init__(self,'D') # Aspartic acid # ######## # HOOC-CH2-CH(NH2)-COOH # # Molecular weight 133.10 Da # Ploar # Acidity - Acidic # Hydrophobicity 0.028 (Analytical Bio chemistry 193:11,72-82 Elsevier 1991) # Hydrophathy index -3.5 (J.Mol.Bio(1982) 157, 105-132) # Isoelectric point 2.85 # pKa( alpha-COOH) 1.99 # pKa( alpha-NH2) 9.90 # CAS # 56-84-8 # PubChem ID 5960 # self.Hydropathy = -3.5 self.ResWeight = 77 self.name3L = 'ASP' self.Hydrophobic = 0 # 1: Hydrophobic, 0: Hydrophilic self.charge = 1 self.polar = 1 self.corner = 0 # Would
# -*- coding: utf-8 -*- # encoding=utf8 import sys if sys.version_info >= (3,0,0): long = int import elasticsearch_dsl es_dsl_version = elasticsearch_dsl.__version__ from six import iteritems from elasticsearch import Elasticsearch, helpers from elasticsearch_dsl import * from elasticsearch_dsl.connections import connections import fileinput, logging, argparse, gc, codecs, json, math, hashlib, signal, os, traceback, time from argparse import RawTextHelpFormatter from datetime import datetime from threading import Thread, Event from debug_utils import log_rss_memory_usage log = logging.getLogger(__name__) logging.basicConfig(format="[ %(asctime)s %(levelname)s %(process)s ] " + "%(message)s", level=logging.INFO) args = None translate_cfg_property = None es_version = None geo = None if es_dsl_version >= (6, 0, 0): #no string object #http://elasticsearch-dsl.readthedocs.io/en/latest/Changelog.html?highlight=String#id2 log.error('Please, use the versions provided in requirements.txt. Version >=6.0.0 of elasticsearch-dsl modules break backward compatibility.') sys.exit() def parse_args(): parser = argparse.ArgumentParser(description='This program indexes files to elasticsearch.\n', formatter_class=RawTextHelpFormatter) parser.add_argument('-i', '--input', dest='input', required=False, default='-', help='Input file. Default: stdin.') parser.add_argument('-c', '--cfg', dest='cfg', required=False, default=False, help='Configuration file.') parser.add_argument('-s', '--separator', dest='separator', required=False, default=';', help='File Separator. Default: ;') #override configuration stuff parser.add_argument('-x', '--index', dest='index', required=False, default=None, help='Elasticsearch index. It overrides the cfg JSON file values. Default: the index specified in the JSON file.') parser.add_argument('-t', '--type', dest='type', required=False, default=None, help='Elasticsearch document type. It overrides the cfg JSON file values. Default: the type specified in the JSON file.') #elastic connection stuff parser.add_argument('-n', '--node', dest='node', required=False, default='localhost', help='Elasticsearch node. Default: localhost') parser.add_argument('-p', '--port', dest='port', required=False, default=9200, help='Elasticsearch port. Default: 9200') parser.add_argument('-u', '--user', dest='user', required=False, default=None, help='Elasticsearch user if needed.') parser.add_argument('-P', '--password', dest='password', required=False, default='', help='Elasticsearch password if needed.') #extra stuff to consider when indexing parser.add_argument('--skip_first_line', dest='skip_first_line', default=False, action='store_true', help='Skips first line.') parser.add_argument('--dates_in_seconds', dest='dates_in_seconds', default=False, action='store_true', help='If true, assume dates are provided in seconds.') parser.add_argument('--refresh', dest='refresh', default=False, action='store_true', help='Refresh the index when finished.') parser.add_argument('--delete', dest='delete', default=False, action='store_true', help='Delete the index before process.') parser.add_argument('--utf8', dest='utf8', default=False, action='store_true', help='Change the default encoding to utf8. In python2 performance is drastically affected. No effect in python3.') parser.add_argument('-X', '--extra_data', dest='extra_data', required=False, default=None, help='Pairs field:value with value beeing a keyword string that will be indexed with each document. Multiple pairs allowed with \';;;\' as separator. For example: --extra_data \'service:mail;;;host:mailserver\'') parser.add_argument('--typed_iterator', dest='typed_iterator', default=False, action='store_true', help='If true, use a typed iterator that checks the value types and parses them. Reduces performance.') #meta stuff to consider when creating indices parser.add_argument('--replicas', dest='replicas', default=0, help='Number of replicas for the index if it does not exist. Default: 0') parser.add_argument('--shards', dest='shards', default=2, help='Number of shards for the index if it does not exist. Default: 2') parser.add_argument('--refresh_interval', dest='refresh_interval', default='60s', help='Refresh interval for the index if it does not exist. Default: 60s') parser.add_argument('--no_source', dest='no_source', default=False, action='store_true', help='If true, do not index _source field.') parser.add_argument('--no_all', dest='no_all', default=False, action='store_true', help='If true, do not index _all field.') parser.add_argument('--deflate_compression', dest='deflate_compression', default=False, action='store_true', help='Store compression level in Lucene indices. Elasticsearch default is usually LZ4. This option enables best_compression using DEFLATE compression. More information: https://www.elastic.co/blog/store-compression-in-lucene-and-elasticsearch') #index sutff for elastic parser.add_argument('--bulk', dest='bulk', required=False, default=2000, type=int, help='Elasticsearch bulk size parameter. Default: 2000') parser.add_argument('--threads', dest='threads', required=False, default=5, type=int, help='Number of threads for the parallel bulk. Default: 5') parser.add_argument('--queue', dest='queue', required=False, default=6, type=int, help='Size of the task queue between the main thread (producing chunks to send) and the processing threads. Default: 6') parser.add_argument('--timeout', dest='timeout', required=False, type=int, default=600, help='Connection timeout in seconds. Default: 600') #internal stuff for the elastic API parser.add_argument('--debug', dest='debug', default=False, action='store_true', help='If true log level is set to DEBUG.') parser.add_argument('--no_progress', dest='noprogress', default=False, action='store_true', help='If true do not show progress.') parser.add_argument('--show_elastic_logger', dest='show_elastic_logger', default=False, action='store_true', help='If true show elastic logger at the same loglevel as the importer.') parser.add_argument('--raise_on_error', dest='raise_on_error', default=False, action='store_true', help='Raise BulkIndexError containing errors (as .errors) from the execution of the last chunk when some occur. By default we DO NOT raise.') parser.add_argument('--raise_on_exception', dest='raise_on_exception', default=False, action='store_true', help='By default we DO NOT propagate exceptions from call to bulk and just report the items that failed as failed. Use this option to propagate exceptions.') parser.add_argument('--test_processing_speed', dest='test_processing_speed', default=False, action='store_true', help='For debugging purposes, only consumes the iterator lines without indexing.') #stuff to avoid duplicates parser.add_argument('--md5_id', dest='md5_id', default=False, action='store_true', help='Uses the MD5 hash of the line as ID.') parser.add_argument('--md5_exclude', dest='md5_exclude', nargs = '*', required=False, default=[], help='List of column names to be excluded from the hash.') #stuff to add geographical information from data fields parser.add_argument('--geo_precission', dest='geo_precission', default=None, help='If set, geographical information will be added to the indexed documents. Possible values: country_level, multilevel, IP. If country_level is used in the geo_precission parameter, a column must be provided with either the country_code with 2 letters (ISO 3166-1 alpha-2) or the country_name in the format of the countries.csv file of the repository, for better results use country_code. If multilevel is set in the geo_precission option, then, a column or list of columns must be provided with either the country_code, region_name, place_name, or zip_code. If IP is set in the geo_precission option, then a column name containing IP addresses must be provided.') parser.add_argument('--geo_column_country_code', dest='geo_column_country_code', default=None, help='Column name containing country codes with 2 letters (ISO 3166-1 alpha-2). Used if geo_precission is set to either country_level or multilevel.') parser.add_argument('--geo_column_country_name', dest='geo_column_country_name', default=None, help='Column name containing country names. Used if geo_precission is set to either country_level.') parser.add_argument('--geo_column_region_name', dest='geo_column_region_name', default=None, help='Column name containing region names. Used if geo_precission is set to multilevel.') parser.add_argument('--geo_column_place_name', dest='geo_column_place_name', default=None, help='Column name containing place names. Used if geo_precission is set to multilevel.') parser.add_argument('--geo_column_zip_code', dest='geo_column_zip_code', default=None, help='Column name containing zip codes. Used if geo_precission is set to multilevel.') parser.add_argument('--geo_column_ip', dest='geo_column_ip', default=None, help='Column name containing IP addresses. Used if geo_precission is set to IP.') parser.add_argument('--geo_int_ip', dest='geo_int_ip', default=False, help='Set if the provided IP addresses are integer numbers.') #geo databases stuff parser.add_argument('--regenerate_databases', dest='regenerate_databases', nargs = '*', required=False, default=[], help='Regenerate geo databases and exit. Specify the databases to regenerate: db9, db0, multilevel.') #stuff for TOR information parser.add_argument('--tor-info-from', dest='tor_info_from', default=False, help='Column name containing IP addresses. Information will be added about the relation (if any) of the IP to the TOR network.') parser.add_argument('--tor-int-ip', dest='tor_int_ip', default=False, help='Set if the provided IP addresses are integer numbers.') args = parser.parse_args() #set up loggers if not args.show_elastic_logger: for _ in ("elasticsearch", "urllib3"): logging.getLogger(_).setLevel(logging.CRITICAL) loggers = [log, logging.getLogger('geodb')] loglevel = logging.DEBUG if args.debug else logging.INFO logging.basicConfig(format="[ %(asctime)s %(levelname)s %(threadName)s ] " + "%(message)s", level=loglevel) #logging.basicConfig(format='%(asctime)s %(message)s', level=loglevel) for logger in loggers: logger.setLevel(loglevel) if len(args.regenerate_databases) == 0 and not args.cfg: parser.error("-c or --cfg required.") elif len(args.regenerate_databases) > 0: path = get_script_path() import geodb if 'db0' in args.regenerate_databases: fname = '{}/db/geodb0.db'.format(path) if os.path.isfile(fname): os.remove(fname) geodb.CountryLevel_GeoDB('db0', '{}/db/countries.csv'.format(path), fname, update=True, debug=args.debug) if 'multilevel' in args.regenerate_databases: fname = '{}/db/multilevel.db'.format(path) if os.path.isfile(fname): os.remove(fname) log.info('FTS5 Support: {}'.format(geodb.ZIPLevel_GeoDB.check_FTS5_support())) geodb.ZIPLevel_GeoDB('geoinfo', '{}/db/create_zip_db.sql.gz'.format(path), '{}/db/multilevel.db'.format(path), update=True, debug=args.debug) #geodb.ZIPLevel_GeoDB('{}/db/multilevel.db'.format(path), '{}/db/create_zip_db.sql.gz'.format(path), update=True) if 'db9' in args.regenerate_databases: fname = '{}/db/geodb9.db'.format(path) if os.path.isfile(fname): os.remove(fname) fname = '{}/db/geodb9.db'.format(path) geodb.ZIP_GeoIPDB('db9', '{}/db/IP2LOCATION-LITE-DB9.CSV.gz'.format(path), fname, update=True, debug=args.debug) sys.exit(1) if args.extra_data is not None: pairs = args.extra_data.split(';;;') extra_data_dicc = {} for pair in pairs: fieldname, fieldvalue = pair.split(':') extra_data_dicc[fieldname] = fieldvalue args.extra_data = extra_data_dicc args.geo_precission = args.geo_precission.lower() if args.geo_precission is not None else args.geo_precission if args.geo_precission not in ['ip', 'multilevel', 'country_level', None]: log.error("Please, provide a valid --geo_precission option {'ip', 'multilevel', 'country_level'}.") sys.exit(-1) args.geo_fields = {} if args.geo_precission == 'ip': if args.geo_column_ip is not None: args.geo_fields['ip'] = args.geo_column_ip elif args.geo_precission == 'multilevel': if args.geo_column_country_code is not None: args.geo_fields['country_code'] = args.geo_column_country_code if args.geo_column_country_name is not None: args.geo_fields['country_name'] = args.geo_column_country_name if args.geo_column_region_name is not None: args.geo_fields['region_name'] = args.geo_column_region_name if args.geo_column_place_name is not None: args.geo_fields['place_name'] = args.geo_column_place_name if args.geo_column_zip_code is not None: args.geo_fields['zip_code'] = args.geo_column_zip_code elif args.geo_precission == 'country_level': if args.geo_column_country_code is not None: args.geo_fields['country_code'] = args.geo_column_country_code if args.geo_column_country_name is not None: args.geo_fields['country_name'] = args.geo_column_country_name if args.geo_precission is not None and len(args.geo_fields) == 0: log.error('Please provide the --geo_column options') sys.exit(-1) args.geodb = load_geo_database(args.geo_precission, args.debug) if args.geodb is not None: log_rss_memory_usage('After loading geo module.') log.info('Geo-module loaded.') args.tor_info = None if args.tor_info_from != False: log.info('Loading TORinfo module.') from torinfo import TORinfo path = get_script_path() args.tor_info = TORinfo('{}/db/Tor_ip_list_EXIT.csv'.format(path), '{}/db/Tor_ip_list_ALL.csv'.format(path)) args.date_fields = [] return args #SYS STUFF def get_script_path(): return os.path.dirname(os.path.realpath(sys.argv[0])) #TOR STUFF def get_torinfo_field(): extra_tor_fields = {} extra_tor_fields['tor_info'] = translate_cfg_property('keyword') extra_tor_fields['tor_is_exit_node'] = translate_cfg_property('boolean') extra_tor_fields['tor_is_tor_server'] = translate_cfg_property('boolean') return extra_tor_fields #GEO LOCATION STUFF def get_geodata_field(level): """Creates a geodata field for the DocType considering the following format. Format for Country Level geolocalization: {'country_code': 'US', 'country_name': 'UNITED STATES', 'location': '37.09024,-95.712891', 'representative_point': '37.09024,-95.712891'} Format for Multilevel geolocalization: {'accuracy': 4.0, 'admin_code1': 'DC', 'admin_code2': '001', 'admin_code3': '', 'admin_name1': 'DISTRICT OF COLUMBIA', 'admin_name2': 'DISTRICT OF COLUMBIA', 'admin_name3': '', 'country_code': 'US', 'country_name': None, // always None in Multilevel geolocalization 'location': '38.9122,-77.0177', 'place_name': 'WASHINGTON', 'representative_point': '38.8959,-77.0211', 'zip_code': '20001'} Format for IP Level geolocalization: {'country_code': 'US', 'country_name': 'UNITED STATES', 'location': '37.44188,-122.14302', 'place_name': 'PALO ALTO', 'region_name': 'CALIFORNIA', 'representative_point': '37.57259,-92.932405', 'zip_code': '94301'} The three formats match in location, representative_point, country_code :return: A geodata field. """ # extra_geo_fields = {} if level == 'country_level': pass if level == 'multilevel': extra_geo_fields['geo_accuracy'] = translate_cfg_property('float') extra_geo_fields['geo_admin_code2'] = translate_cfg_property('keyword') extra_geo_fields['geo_admin_code3'] = translate_cfg_property('keyword') extra_geo_fields['geo_admin_name1'] = translate_cfg_property('keyword') extra_geo_fields['geo_admin_name2'] = translate_cfg_property('keyword') extra_geo_fields['geo_admin_name3'] = translate_cfg_property('keyword') extra_geo_fields['geo_place_name'] = translate_cfg_property('keyword') extra_geo_fields['geo_zip_code'] = translate_cfg_property('keyword') if level == 'ip': extra_geo_fields['geo_place_name'] = translate_cfg_property('keyword') extra_geo_fields['geo_region_name'] = translate_cfg_property('keyword') extra_geo_fields['geo_zip_code'] = translate_cfg_property('keyword') extra_geo_fields['geo_country_code'] = translate_cfg_property('keyword') extra_geo_fields['geo_country_name'] = translate_cfg_property('keyword') extra_geo_fields['geo_location'] = translate_cfg_property('geopoint') extra_geo_fields['geo_representative_point'] = translate_cfg_property('geopoint') return extra_geo_fields def load_geo_database(level, debug): if level == 'country_level': path = get_script_path() log_rss_memory_usage('Before loading geo module.') from geodb import CountryLevel_GeoDB return CountryLevel_GeoDB('db0', '{}/db/countries.csv'.format(path), '{}/db/geodb0.db'.format(path), update=False, debug=debug) elif level == 'multilevel': path = get_script_path() log_rss_memory_usage('Before loading geo module.') from geodb import ZIPLevel_GeoDB log.info('FTS5 Support: {}'.format(ZIPLevel_GeoDB.check_FTS5_support())) return ZIPLevel_GeoDB('{}/db/multilevel.db'.format(path), '{}/db/create_zip_db.sql.gz'.format(path), update=False,
<reponame>team-aisaac/aisaac-strategy #!/usr/bin/env python # coding:utf-8 import math import rospy import numpy as np from world.objects import Objects from aisaac.msg import Ball_sub_params, Def_pos from statistics import variance import config from common import functions WORLD_LOOP_RATE = config.WORLD_LOOP_RATE """ 主に共通した計算処理などを担当する """ # Publisher用クラス class Publisher(): def __init__(self): self.team_color = str(rospy.get_param("friend_color")) self.ball_sub_params_pub = rospy.Publisher("/" + self.team_color + "/ball_sub_params", Ball_sub_params, queue_size=10) self.def_pos_pub = rospy.Publisher("/" + self.team_color + "/def_pos", Def_pos, queue_size=10) def ball_params_publisher(self, msg): self.ball_sub_params_pub.publish(msg) def def_pos_publisher(self, msg): self.def_pos_pub.publish(msg) class Calculation(): def __init__(self): rospy.init_node("Calculation_node") self.robot_color = str(rospy.get_param("friend_color")) self.robot_side = str(rospy.get_param("team_side")) # Composition self.objects = Objects( self.robot_color, self.robot_side, config.NUM_FRIEND_ROBOT, config.NUM_ENEMY_ROBOT, node="calculation") self.robot_friend = self.objects.robot self.robot_enemy = self.objects.enemy self.ball_params = self.objects.ball self.ball_sub_params = Ball_sub_params() self.def_pos = Def_pos() self.ball_frame = 10 # ボールの軌道直線フィッティングと速度の計算フレーム数 self.ball_move_threshold = 0.01 # ボールが移動したと判定する閾値[m] self.same_pos_count = 0 # 停止判定用カウント self.ball_pos_count = 0 # 計算用カウント、フレーム単位でカウント self.calc_flag = False # 計算フラグ、停止判定時は計算しない self.ball_pos_x_array = np.array([0.0]*self.ball_frame) # ボールのx座標保存用配列 self.ball_pos_y_array = np.array([0.0]*self.ball_frame) # ボールのy座標保存用配列 self.ball_vel_array = np.array([0.0]*self.ball_frame) # ボールの速度保存用配列 self.ball_vel_x_array = np.array([0.0]*self.ball_frame) # ボールのx方向の速度保存用配列 self.ball_vel_y_array = np.array([0.0]*self.ball_frame) # ボールのy方向の速度保存用配列 self.ball_vel_time_array = np.array([0.0]*self.ball_frame) # 加速度計算用、時間配列 self.ball_vel = 0. # ボール速度 self.ball_vel_a = 0. # ボール速度の傾き self.ball_vel_b = 0. # ボール速度の切片 self.ball_vel_x_a = 0. # x方向の速度の傾き self.ball_vel_x_b = 0. # x方向の速度の切片 self.ball_vel_y_a = 0. # y方向の速度の傾き self.ball_vel_y_b = 0. # y方向の速度の切片 self.ball_stop_time_x = 0. # x方向の停止までの時間 self.ball_stop_time_y = 0. # y方向の停止までの時間 # 守備の時のロボットのポジション座標計算用変数 # 現状、青チームのみ対応 self.g_up_x = -6.0 # ゴールポストの上側のx座標:y_GL self.g_up_y = 0.6 # ゴールポストの上側のy座標:x_GL self.g_down_x = -6.0 # ゴールポストの下側のx座標:y_GR self.g_down_y = -0.6 # ゴールポストの下側のy座標:x_GR self.g_center_x = -6.0 # ゴールの中央のx座標:y_GC self.g_center_y = 0.0 # ゴールの中央のy座標:x_GC self.p_area_up_x = -4.8 # ペナルティエリアの上側の角のx座標:y_PL self.p_area_up_y = 1.2 # ペナルティエリアの上側の角のy座標:x_PL self.p_area_down_x = -4.8 # ペナルティエリアの下側の角のx座標:y_PR self.p_area_down_y = -1.2 # ペナルティエリアの下側の角のy座標:x_PR self.line_up_x = 0.0 # ボールとゴールポストを結んだ線と防御ラインとの交点の上側のx座標:y_LL self.line_up_y = 0.0 # ボールとゴールポストを結んだ線と防御ラインとの交点の上側のy座標:x_LL self.line_down_x = 0.0 # ボールとゴールポストを結んだ線と防御ラインとの交点の下側のx座標:y_LR self.line_down_y = 0.0 # ボールとゴールポストを結んだ線と防御ラインとの交点の下側のy座標:x_LR self.line_up_r_x = 0.0 # ロボットの半径を考慮した補正後の座標:y_LL' self.line_up_r_y = 0.0 # ロボットの半径を考慮した補正後の座標:x_LL' self.line_down_r_x = 0.0 # ロボットの半径を考慮した補正後の座標:y_LR' self.line_down_r_y = 0.0 # ロボットの半径を考慮した補正後の座標:x_LR' self.offset_r = 0. # オフセット値 self.robot_r = 90.0/1000.0 # ロボット半径 self.robot_a = 1.0 # ロボットの加速度 self.ball_MAX_SPEED = 6.5 # ボールの最大速度 self.delay_time_ms = 100.0 # 遅延時間[ms] self.L_a = 0.0 # 壁のラインとボールまでの距離 self.L_G = 0.0 # ボール到達までに移動可能な距離 # x,yの配列とデータ数を指定して、最小二乗法を行い、傾きと切片を返す def reg1dim(self, x, y, n): # データをクリップ x = np.clip(x,-6.5,6.5) y = np.clip(y,-5.5,5.5) # 傾きと切片を計算 a = np.clip(((np.dot(x, y) - y.sum()*x.sum()/n) / ((x**2.).sum() - x.sum()**2./n)),-1.0e+3,1.0e+3) b = np.clip((y.sum() - a * x.sum())/n,-1.0e+3,1.0e+3) return a, b # nフレーム分のボールの位置から最小二乗法を用いて傾きと切片を計算 # 分散が1より大きかったり、ボールが止まっているとリセット def calc_ball_line(self): #直近nフレームの座標を取得 if self.ball_pos_count < self.ball_frame: self.ball_pos_x_array[self.ball_pos_count] = self.ball_params.get_current_position()[0] self.ball_pos_y_array[self.ball_pos_count] = self.ball_params.get_current_position()[1] # self.ball_vel_x_array[self.ball_pos_count] = self.ball_params.get_current_velosity()[0] # self.ball_vel_y_array[self.ball_pos_count] = self.ball_params.get_current_velosity()[1] # self.ball_vel_array[self.ball_pos_count] = math.sqrt(self.ball_params.get_current_velosity()[0]**2 + self.ball_params.get_current_velosity()[1]**2) # self.ball_vel_time_array[self.ball_pos_count] = 1./WORLD_LOOP_RATE * self.ball_pos_count # 二回目以降に、前回との偏差を計算し、一定値以下なら動いてない判定とし、カウントを増やす。nフレームの半分までカウントされたら計算フラグをFalseにして if self.ball_pos_count > 0: if functions.distance_btw_two_points( (self.ball_pos_x_array[self.ball_pos_count-1],self.ball_pos_y_array[self.ball_pos_count-1]), (self.ball_pos_x_array[self.ball_pos_count],self.ball_pos_y_array[self.ball_pos_count])) < self.ball_move_threshold: self.same_pos_count+=1 if self.same_pos_count >= self.ball_frame/2: self.same_pos_count = self.ball_frame/2 self.ball_pos_count = -1 self.calc_flag = False else: self.same_pos_count = 0 self.calc_flag = True self.ball_pos_count+=1 else: self.ball_pos_x_array = np.roll(self.ball_pos_x_array,-1) self.ball_pos_y_array = np.roll(self.ball_pos_y_array,-1) # self.ball_vel_x_array = np.roll(self.ball_vel_x_array,-1) # self.ball_vel_y_array = np.roll(self.ball_vel_y_array,-1) # self.ball_vel_array = np.roll(self.ball_vel_array,-1) self.ball_pos_x_array[self.ball_pos_count-1] = self.ball_params.get_current_position()[0] self.ball_pos_y_array[self.ball_pos_count-1] = self.ball_params.get_current_position()[1] # self.ball_vel_x_array[self.ball_pos_count-1] = self.ball_params.get_current_velosity()[0] # self.ball_vel_y_array[self.ball_pos_count-1] = self.ball_params.get_current_velosity()[1] # self.ball_vel_array[self.ball_pos_count] = math.sqrt(self.ball_params.get_current_velosity()[0]**2 + self.ball_params.get_current_velosity()[1]**2) if functions.distance_btw_two_points( (self.ball_pos_x_array[self.ball_pos_count-2],self.ball_pos_y_array[self.ball_pos_count-2]), (self.ball_pos_x_array[self.ball_pos_count-1],self.ball_pos_y_array[self.ball_pos_count-1])) < self.ball_move_threshold: self.same_pos_count+=1 if self.same_pos_count >= self.ball_frame/2: self.ball_pos_count = 0 self.calc_flag = False else: self.same_pos_count = 0 self.calc_flag = True #x,y座標の分散を計算 x_variance = variance(self.ball_pos_x_array) y_variance = variance(self.ball_pos_y_array) #print(x_variance,y_variance) #分散が1より大きかったらカウントリセット if (x_variance > 1 or y_variance > 1): self.ball_pos_count = 0 self.same_pos_count = 0 for i in range(0,self.ball_frame): self.ball_pos_x_array[i] = 0 self.ball_pos_y_array[i] = 0 #print(self.ball_pos_count,self.same_pos_count) if self.calc_flag == True: a, b = self.reg1dim(self.ball_pos_x_array, self.ball_pos_y_array, self.ball_pos_count) self.ball_params.set_line_a(a) self.ball_params.set_line_b(b) """ #self.ball_vel_x_a, self.ball_vel_x_b = self.reg1dim(self.ball_vel_x_array, self.ball_vel_time_array, self.ball_pos_count) #self.ball_vel_y_a, self.ball_vel_y_b = self.reg1dim(self.ball_vel_y_array, self.ball_vel_time_array, self.ball_pos_count) #self.ball_vel_a, self.ball_vel_b = self.reg1dim(self.ball_vel_array, self.ball_vel_time_array, self.ball_pos_count) #self.ball_params.ball_sub_params.a, self.ball_params.ball_sub_params.b = self.reg1dim(self.ball_vel_x_array, self.ball_vel_time_array, self.ball_pos_count) # self.ball_params.ball_sub_params.future_x = # self.ball_params.ball_sub_params.future_y #rospy.loginfo("vel_x_a:%f\tvel_x_b:%f",self.ball_vel_x_a, self.ball_vel_x_b) #ボールの予想停止位置を計算 #x,y方向の現在の速度を最小二乗法で求めた直線から計算→式が違う、速度推定が必要 #ball_fit_vel_x = self.ball_vel_x_a*self.ball_vel_time_array[self.ball_pos_count-1] + self.ball_vel_x_b #ball_fit_vel_y = self.ball_vel_y_a*self.ball_vel_time_array[self.ball_pos_count-1] + self.ball_vel_y_b #とりあえず現在速度を使う #ball_fit_vel_x = self.ball_params.get_current_velosity()[0] #ball_fit_vel_y = self.ball_params.get_current_velosity()[1] #停止するまでの時間を現在の速度と傾きから計算 if self.ball_vel_x_a != 0 and self.ball_vel_y_a != 0: self.ball_stop_time_x = -(ball_fit_vel_x / self.ball_vel_x_a) self.ball_stop_time_y = -(ball_fit_vel_y / self.ball_vel_y_a) if self.ball_stop_time_x <= 0 or self.ball_stop_time_y <= 0: # self.ball_params.ball_sub_params.future_x = 0 # self.ball_params.ball_sub_params.future_y = 0 else: self.ball_params.ball_sub_params.future_x = self.ball_params.get_current_position()[0] + ball_fit_vel_x*self.ball_stop_time_x + 1/2*self.ball_vel_x_a*self.ball_stop_time_x**2 self.ball_params.ball_sub_params.future_y = self.ball_params.get_current_position()[1] + ball_fit_vel_y*self.ball_stop_time_y + 1/2*self.ball_vel_y_a*self.ball_stop_time_y**2 self.ball_params.ball_sub_params.future_x = np.clip(self.ball_params.ball_sub_params.future_x,-5,5) self.ball_params.ball_sub_params.future_y = np.clip(self.ball_params.ball_sub_params.future_y,-5,5) #rospy.loginfo("t=(%.3f,%.3f)\t(f_x:n_x)=(%.3f:%.3f)\t(f_y:n_y)=(%.3f:%.3f)",self.ball_stop_time_x,self.ball_stop_time_y,self.ball_params.ball_sub_params.future_x, self.ball_params.get_current_position()[0], self.ball_params.ball_sub_params.future_y, self.ball_params.get_current_position()[1]) """ else: # self.ball_params.ball_sub_params.a = 0. # self.ball_params.ball_sub_params.b = 0. self.ball_params.set_line_a(0.) self.ball_params.set_line_b(0.) """ self.ball_vel_x_a = 0. self.ball_vel_x_b = 0. self.ball_vel_y_a = 0. self.ball_vel_y_b = 0. for i in range(0,self.ball_frame): self.ball_pos_x_array[i] = 0 self.ball_pos_y_array[i] = 0 self.ball_vel_x_array[i] = 0 self.ball_vel_y_array[i] = 0 """ self.ball_sub_params.a = self.ball_params.get_line_a() self.ball_sub_params.b = self.ball_params.get_line_b() #print(self.ball_stop_time_x,self.ball_stop_time_y) #rospy.loginfo("f=%d\tt=(%.2f,%.2f)\t(f_x:n_x)=(%.3f:%.3f)\t(f_y:n_y)=(%.3f:%.3f)",self.calc_flag,self.ball_stop_time_x,self.ball_stop_time_y,self.ball_params.ball_sub_params.future_x, self.ball_params.get_current_position()[0], self.ball_params.ball_sub_params.future_y, self.ball_params.get_current_position()[1]) def calc_def_pos(self): # 見づらいのでボールの座標を再代入 ball_x = self.ball_params.get_current_position()[0] # y_B ball_y = self.ball_params.get_current_position()[1] # x_B # 壁の座標 def1_pos_x = 0.0 def1_pos_y = 0.0 def2_pos_x = 0.0 def2_pos_y = 0.0 # 各パラメータ計算 a_1 = ball_y - self.g_center_y b_1 = ball_x - self.g_center_x c_1 = self.line_down_y*(self.g_center_y - ball_y) + self.line_down_x*(self.g_center_x - ball_x) a_2 = ball_y - self.g_center_y b_2 = ball_x - self.g_center_x c_2 = self.line_up_y*(self.g_center_y - ball_y) + self.line_up_x*(self.g_center_x - ball_x) a_3 = self.g_center_y - ball_y b_3 = self.g_center_x - ball_x c_3 = self.p_area_down_y*(ball_y - self.g_center_y) + self.p_area_down_x*(ball_x - self.g_center_x) a_4 = ball_x - self.g_up_x b_4 = self.g_up_y - ball_y c_4 = ball_y*(self.g_up_x - ball_x) + ball_x*(ball_y - self.g_up_y) a_5 = ball_x - self.g_down_x b_5 = self.g_down_y - ball_y c_5 = ball_y*(self.g_down_x - ball_x) + ball_x*(ball_y - self.g_down_y) a_6 = self.g_center_y - ball_y b_6 = self.g_center_x - ball_x c_6 = self.p_area_up_y*(ball_y - self.g_center_y) + self.p_area_up_x*(ball_x - self.g_center_x) t = self.offset_r/math.sqrt((self.g_center_y - ball_y)**2 + (self.g_center_x - ball_x)**2) # 防御ラインの計算 # 最下部 if ball_x <= (self.g_down_x - self.p_area_down_x)/(self.g_down_y - self.p_area_down_y)*(ball_y - self.g_down_y) + self.g_down_x: self.line_up_r_y = (b_3*c_4 - b_4*c_3)/(a_3*b_4 - a_4*b_3) + (ball_y - self.g_center_y)*t self.line_up_r_x = (a_3*c_4 - a_4*c_3)/(a_4*b_3 - a_3*b_4) + (ball_x - self.g_center_x)*t self.line_down_r_y = (b_3*c_5 - b_5*c_3)/(a_3*b_5 - a_5*b_3) + (ball_y - self.g_center_y)*t self.line_down_r_x = (a_3*c_5 - a_5*c_3)/(a_5*b_3 - a_3*b_5) + (ball_x - self.g_center_x)*t self.L_a = abs(a_3*ball_y + b_3*ball_x + c_3)/math.sqrt(a_3**2 + b_3**2) # 下部 elif (ball_x >= (self.g_down_x - self.p_area_down_x)/(self.g_down_y - self.p_area_down_y)*(ball_y - self.g_down_y) + self.g_down_x) and (ball_y <= self.g_center_y): self.line_down_r_y = (self.g_down_y - ball_y)/(self.g_down_x - ball_x)*(self.p_area_down_x - ball_x) + ball_y + (ball_y - self.g_center_y)*t self.line_down_r_x = self.p_area_down_x + (ball_x - self.g_center_x)*t self.line_down_y = (self.g_down_y - ball_y)/(self.g_down_x - ball_x)*(self.p_area_down_x - ball_x) + ball_y self.line_down_x = self.p_area_down_x c_1 = self.line_down_y*(self.g_center_y - ball_y) + self.line_down_x*(self.g_center_x - ball_x) self.line_up_r_y = (b_1*c_4 - b_4*c_1)/(a_1*b_4 - a_4*b_1) + (ball_y - self.g_center_y)*t self.line_up_r_x = (a_1*c_4 - a_4*c_1)/(a_4*b_1 - a_1*b_4) + (ball_x - self.g_center_x)*t self.L_a = abs(a_1*ball_y + b_1*ball_x + c_1)/math.sqrt(a_1**2 + b_1**2) # 上部 elif (ball_x >= (self.g_up_x - self.p_area_up_x)/(self.g_up_y - self.p_area_up_y)*(ball_y - self.g_up_y) + self.g_up_x) and (ball_y > self.g_center_y): self.line_up_r_y = (self.g_up_y - ball_y)/(self.g_up_x - ball_x)*(self.p_area_up_x - ball_x) + ball_y + (ball_y - self.g_center_y)*t self.line_up_r_x = self.p_area_up_x + (ball_x - self.g_center_x)*t self.line_up_y = (self.g_up_y - ball_y)/(self.g_up_x - ball_x)*(self.p_area_up_x - ball_x) + ball_y self.line_up_x = self.p_area_up_x c_2 = self.line_up_y*(self.g_center_y - ball_y) + self.line_up_x*(self.g_center_x - ball_x) self.line_down_r_y = (b_2*c_5 - b_5*c_2)/(a_2*b_5 - a_5*b_2) + (ball_y - self.g_center_y)*t self.line_down_r_x = (a_2*c_5 - a_5*c_2)/(a_5*b_2 - a_2*b_5) + (ball_x - self.g_center_x)*t self.L_a = abs(a_2*ball_y + b_2*ball_x + c_2)/math.sqrt(a_2**2 + b_2**2) # # 最上部 elif ball_x >= (self.g_up_x - self.p_area_up_x)/(self.g_up_y - self.p_area_up_x)*(ball_y - self.g_up_y) + self.g_up_x: self.line_up_r_y = (b_6*c_4 - b_4*c_6)/(a_6*b_4 - a_4*b_6) + (ball_y - self.g_center_y)*t self.line_up_r_x = (a_6*c_4 - a_4*c_6)/(a_4*b_6 - a_6*b_4) + (ball_x - self.g_center_x)*t self.line_down_r_y = (b_6*c_5 - b_5*c_6)/(a_6*b_5 - a_5*b_6) + (ball_y - self.g_center_y)*t self.line_down_r_x = (a_6*c_5 - a_5*c_6)/(a_5*b_6 - a_6*b_5) + (ball_x - self.g_center_x)*t self.L_a = abs(a_6*ball_y + b_6*ball_x + c_6)/math.sqrt(a_6**2 + b_6**2) # その他 else: self.line_up_r_x = self.p_area_up_x + self.offset_r self.line_up_r_y = self.g_up_y/2 self.line_down_r_x = self.p_area_down_x + self.offset_r self.line_down_r_y = self.g_down_y/2 # ここまでが壁の基本位置計算 # ここからがロボットの移動を考慮した位置補正と壁をニアorファーサイドに寄せる計算 # ボールが壁に到達するまでに移動可能な距離の計算 tmp = (self.L_a/self.ball_MAX_SPEED - self.delay_time_ms/1000.0) if tmp > 0: self.L_G = self.robot_a*(tmp**2)/2.0 else: self.L_G = 0 # ボールがハーフラインよりも敵陣側(壁が一台)かつ1台で守れる範囲:パターン1 if (ball_x > 0.5) and (((self.line_up_r_y - self.line_down_r_y)**2 + (self.line_up_r_x - self.line_down_r_x)**2) <= 4.0*((self.L_G + self.robot_r)**2)): def1_pos_y = (self.line_up_r_y + self.line_down_r_y)/2.0 def1_pos_x = (self.line_up_r_x + self.line_down_r_x)/2.0 def2_pos_y = functions.calculate_internal_dividing_point_vector_args(self.ball_params.get_current_position(), config.GOAL_CENTER, 1, 1)[1] def2_pos_x = functions.calculate_internal_dividing_point_vector_args(self.ball_params.get_current_position(), config.GOAL_CENTER, 1, 1)[0] # ボールがハーフラインよりも味方陣側(壁が二台)かつ2台で守れる範囲:パターン2-1,2 elif (ball_x <= 0) and (((self.line_up_r_y - self.line_down_r_y)**2 + (self.line_up_r_x
<filename>qtgui/panels/face.py """ File: face.py Author: <NAME> Email: <EMAIL> Graphical interface for face detection and recognition. """ # pylint --method-naming-style=camelCase --attr-naming-style=camelCase qtgui.panels.face # standard imports import logging # third party imports import numpy as np # Qt imports from PyQt5.QtCore import Qt, pyqtSlot from PyQt5.QtWidgets import (QGroupBox, QWidget, QLabel, QVBoxLayout, QHBoxLayout, QGridLayout) from PyQt5.QtGui import QResizeEvent # toolbox imports from toolbox import Toolbox from dltb.base.data import Data from dltb.base.image import Image, Imagelike from dltb.tool import Tool from dltb.tool.face.detector import Detector as FaceDetector from dltb.tool.worker import Worker # GUI imports from ..utils import QObserver, QBusyWidget, QPrepareButton, protect from ..widgets.image import QImageView, QImageBatchView from ..widgets.data import QDataInspector from ..widgets.tools import QToolComboBox from .panel import Panel # logging LOG = logging.getLogger(__name__) class QDetectorWidget(QGroupBox, QObserver, qattributes={Toolbox: False}, qobservables={ Worker: {'tool_changed', 'work_finished', 'busy_changed'}}): """A detector widget displays the output of a Detector. _worker: Worker _view: QImageView _label: QLabel _busy: QBusyWidget _trueMetadata """ def __init__(self, detector: FaceDetector = None, **kwargs): """Initialization of the FacePanel. Parameters ---------- decector: FaceDetector The face detector providing data. parent: QWidget The parent argument is sent to the QWidget constructor. """ super().__init__(**kwargs) self._trueMetadata = None self._initUI() self._layoutUI() self.setWorker(Worker(detector)) self.toggled.connect(self.onToggled) LOG.info("New QDetectorWidget[%s] initialized: detector=%s", type(self), detector) def _initUI(self): """Initialize the user interface The user interface contains the following elements: * the input view: depicting the current input image * a loop button: allowing to start and stop loop data sources * an input counter: * a process counter: * up to four detector views: depicting faces located in the input image """ self._view = QImageView() self._batchView = QImageBatchView() self._prepareButton = QPrepareButton() self._label = QLabel() self._busy = QBusyWidget() self._status = QLabel() self._toolSelector = QToolComboBox() self.addAttributePropagation(Toolbox, self._toolSelector) self._toolSelector.toolSelected.connect(self.onToolSelected) def _layoutUI(self): layout = QVBoxLayout() layout.addWidget(self._view) layout.addWidget(self._label) layout.addWidget(self._batchView) layout.addWidget(self._busy) layout.addStretch(3) layout.addWidget(self._toolSelector) layout.addWidget(self._prepareButton) layout.addWidget(self._status) self.setLayout(layout) self.setCheckable(True) def setWorker(self, worker: Worker) -> None: """Set the worker observed by this :py:class:`QDetectorWidget`. The widget is initialized with its own private :py:class:`Worker`, so there is usually no reason to call this method directly. """ self._busy.setBusyObservable(worker) def faceDetector(self) -> FaceDetector: """Get the detector currently applied by this :py:class:`QDetectorWidget`. Result ------ detector: FaceDetector The face detector on `None` if no detector is set. """ return self._worker.tool def setFaceDetector(self, detector: FaceDetector) -> None: """Set a new :py:class:`FaceDetector`. The face detector will inform us whenever new faces where detected. """ LOG.info("setFaceDetector: %s", detector) if detector is self.faceDetector(): return # Nothing to do # we want to do timing if detector is not None: detector.timer = True # setting the tool in the worker will indirectly trigger update() # in the main event loop thread. self._worker.tool = detector self._prepareButton.setPreparable(detector) self._toolSelector.setCurrentTool(detector) if detector is not None and not detector.busy: if detector.preparable: LOG.debug("setFaceDetector: preparing detector") detector.prepare() else: LOG.debug("setFaceDetector: detector is not preparable") def worker_changed(self, worker: Worker, change: Worker.Change) -> None: # pylint: disable=invalid-name """React to changes in the observed :py:class:`FaceDetector`. """ LOG.debug("QDetectorWidget[%s].worker_changed(chanage=%s): busy=%s", worker.tool, change, worker.busy) if change.tool_changed or change.busy_changed: detector = worker.tool self.setTitle("None" if detector is None else (type(detector).__name__ + (' (busy)' if worker.busy else ''))) if change.tool_changed or change.work_finished: self.update() def setData(self, data: Data) -> None: """Set a new :py:class:`Data` object to be displayed by this :py:class:`QDetectorWidget`. The data is expected to an image. """ self.setImage(None if not data else data.array, data) def setImage(self, image: np.ndarray, data: Data = None): """Set the image to be worked on by the underlying detector. """ LOG.debug("QDetectorWidget[%s].set_image(data=%s, data=%s)", self._worker.tool, None if image is None else image.shape, data) self._trueMetadata = data if self._worker.ready: self._worker.work(data, extract=True) self.update() def update(self): """Update the display of this :py:class:`QDetectorWidget`. """ detector = self._worker.tool if self._worker.tool is None or not self.isChecked(): self._view.setData(None) self._batchView.setImages(None) self._label.setText("No detector." if detector is None else "Off.") self._status.setText("no detector" if detector is None else "off") return data = self._worker.data detections = detector.detections(data) LOG.debug("QDetectorWidget[%s].update(): data = %s, detections = %s", detector, data, detections) self._view.setData(data) self._status.setText(f"failed: {detector.failed}, " f"preparable: {detector.preparable}, " f"prepared: {detector.prepared}") if detections is None: self._label.setText("No detections.") self._batchView.setImages(None) return # FIXME[old/todo] # self._view.showAnnotations(self._trueMetadata, detections) self._view.setMetadata(detections) self._batchView.setImages(detector.extractions(data)) duration = detector.duration(data) or -1.0 if detections.has_regions(): count = len(detections.regions) self._label.setText(f"{count} face{'s' if count >1 else ''} " f"detected in {duration:.3f}s") else: self._label.setText(f"Nothing detected in {duration:.3f}s") @pyqtSlot(bool) @protect def onToggled(self, _state: bool) -> None: """We want to update this :py:class:`QDetectorWidget` when it gets (de)activated. """ self.update() @pyqtSlot(Tool) @protect def onToolSelected(self, tool: Tool) -> None: """A slot to be informed if a new Tool is selected. Arguments --------- tool: Tool The `tool` is expected to be a face detector, otherwise it will be treated as `None`, meaning this :py:class:`QDetectorWidget` will be deactivated """ print("QDetectorWidget.onToolSelected:", tool, type(tool)) if not isinstance(tool, FaceDetector): LOG.warning("%s is not a FaceDetector.", tool) tool = None self.setFaceDetector(tool) class FacePanel(Panel, QObserver, qobservables={Toolbox: {'input_changed'}}): # pylint: disable=too-many-instance-attributes """The :py:class:`FacePanel` provides access to different face recognition technologies. This includes * face detection * face landmarking * face alignment * face recogntion The panel allows to independently select these components (if possible - some implementations combine individutal steps). The :py:class:`FacePanel` can be assigned an image to process using the :py:meth:`setImage`. This will trigger the processing steps, updating the display(s) accordingly. Alternatively, if a full data object is available, including image data and metadata like ground truth annotations, this can be set using the :py:class:`setData` method (which will internally call :py:class:`setImage`). A :py:class:`FacePanel` is associated with a :py:class:`Toolbox`. It will use the toolbox' input and the `QDataselector` can be used to change this input. Face detection -------------- * Apply face detector to some data source * Compare multiple face detectors * Evaluate face detectors Properties ---------- _toolbox: Toolbox = None _detectorViews: list = None _dataView: QDataView = None _inputCounter: QLabel = None _processCounter: QLabel = None _dataInspector: QDataInspector = None """ def __init__(self, toolbox: Toolbox = None, **kwargs): """Initialization of the FacePanel. Parameters ---------- toolbox: Toolbox The toolbox provides input data. parent: QWidget The parent argument is sent to the QWidget constructor. """ super().__init__(**kwargs) # name = 'shape_predictor_5_face_landmarks.dat' name = 'shape_predictor_68_face_landmarks.dat' # FIXME[hack] self._initUI() self._layoutUI() self.setToolbox(toolbox) self._counter = 0 # FIXME[hack] def _initUI(self): """Initialize the user interface. The user interface contains the following elements: * the data selector: depicting the current input image and allowing to select new inputs from a datasource * an input counter and a process counter: * up to four detector views: depicting faces located in the input image """ # # Input data # # QImageView: a widget to display the input data self._dataInspector = QDataInspector(orientation=Qt.Vertical) self._dataView = self._dataInspector.dataView() self._dataView.addAttribute('filename') self._dataView.addAttribute('basename') self._dataView.addAttribute('directory') self._dataView.addAttribute('path') self._dataView.addAttribute('regions') self._dataView.addAttribute('image') self._inputCounter = QLabel("0") self._processCounter = QLabel("0") self._detectorViews = [] for detector in range(2): LOG.info("FacePanel._initUI(): add detector view %s", detector) self._detectorViews.append(QDetectorWidget()) def _layoutUI(self): """Initialize the user interface of this :py:class:`FacePanel`. """ # The big picture: # # +--------------------+----------------------------------------+ # |+------------------+|+---------------+ +---------------+ ... | # ||dataInspector |||QDetectorWidget| |QDetectorWidget| | # ||[view] ||| Result | | Result | | # || ||| | | | | # || ||| | | | | # || ||| | | | | # || ||| Controls | | Controls | | # || ||| | | | | # ||[navigator] ||| | | | | # || ||| | | | | # || ||| Selector | | Selector | | # |+------------------+|+---------------+ +---------------+ ... | # +--------------------+----------------------------------------+ layout = QHBoxLayout() layout2 = QVBoxLayout() layout2.addWidget(self._dataInspector) row = QHBoxLayout() row.addWidget(self._processCounter) row.addWidget(QLabel("/")) row.addWidget(self._inputCounter) row.addStretch() layout2.addLayout(row) layout2.addStretch(1) layout.addLayout(layout2) layout.setStretchFactor(layout2, 1) grid = QGridLayout() for i, view in enumerate(self._detectorViews): grid.addWidget(view, i//2, i % 2) layout.addLayout(grid) layout.setStretchFactor(grid, 1) self.setLayout(layout) @staticmethod def _detectorWidget(name: str, widget: QWidget): layout = QVBoxLayout() layout.addWidget(widget) layout.addWidget(QLabel(name)) groupBox = QGroupBox(name) groupBox.setLayout(layout) groupBox.setCheckable(True) return groupBox def setImage(self, image: Imagelike) -> None: """Set the image for this :py:class:`FacePanel`. This will initiate the processing of this image using the current tools. """ self.setData(Image.as_data(image)) def setData(self, data: Data) -> None: """Set the data to be processed by this :py:class:`FacePanel`. """ # set data for the dataView - this is redundant if data is set # from the toolbox (as the dataView also observes the toolbox), # but it is necessary, if setData is called independently. self._dataView.setData(data) # now feed the new data to the detecotors
the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS''', 'gnu2': ''' GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Lesser General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause
<reponame>anshul96go/toolbox from qnt.data.common import * from qnt.data.secgov import load_facts import itertools import pandas as pd import datetime as dt from qnt.log import log_info, log_err def load_indicators( assets, time_coord, standard_indicators=None, builders = None, start_date_offset = datetime.timedelta(days=365*2), fill_strategy=lambda xarr: xarr.ffill('time') ): cik2id = dict((a['cik'], a['id']) for a in assets if a.get('cik') is not None) min_date = pd.Timestamp(time_coord.min().values).to_pydatetime().date() - parse_tail(start_date_offset) max_date = pd.Timestamp(time_coord.max().values).to_pydatetime().date() indicator_dicts = load_indicator_dicts(list(cik2id.keys()), standard_indicators, builders, min_date, max_date) dfs = [] for (cik, inds) in indicator_dicts: series = [pd.Series(v if len(v) > 0 else {min_date.isoformat(): np.nan}, dtype=np.float64, name=k) for (k,v) in inds.items()] df = pd.concat(series, axis=1) df.index = df.index.astype(dtype=time_coord.dtype,copy=False) df = df.unstack().to_xarray().rename({'level_0':'field', 'level_1': 'time'}) df.name = cik2id[cik] dfs.append(df) if len(dfs) is 0: return None # TODO idc_arr = xr.concat(dfs, pd.Index([d.name for d in dfs], name='asset')) idc_arr = xr.align(idc_arr, time_coord, join='outer')[0] idc_arr = idc_arr.sel(time = np.sort(idc_arr.time.values)) idc_arr = fill_strategy(idc_arr) idc_arr = idc_arr.sel(time=time_coord) idc_arr.name = "secgov_indicators" return idc_arr secgov_load_indicators = deprecated_wrap(load_indicators) def load_indicator_dicts(ciks, standard_indicators=None, builders=None, min_date=None, max_date=None, tail=DEFAULT_TAIL): if builders is None: builders = [] else: builders = list(builders) if standard_indicators is None: builders = builders + standard_indicator_builders else: for a in standard_indicators: for si in standard_indicator_builders: if si.alias == a: builders.append(si) fact_names = [f for b in builders for f in b.facts] fact_names = set(fact_names) fact_names = list(fact_names) for g in load_facts(ciks, fact_names, min_date=min_date, max_date=max_date, skip_segment=True, tail=tail, columns=['cik', 'report_id', 'report_type', 'report_date', 'fact_name', 'period', 'period_length'], group_by_cik=True): indicators = dict() for b in builders: data = [d for d in g[1] if d['fact_name'] in b.facts] indicators[b.alias] = b.build_series_dict(data) yield (g[0], indicators) secgov_load_indicator_dicts = deprecated_wrap(load_indicator_dicts) class IndicatorBuilder: facts = None alias = None use_report_date = None sort_key = None group_key = None def __init__(self, alias, facts, use_report_date): self.facts = facts self.alias = alias self.use_report_date = use_report_date if(self.use_report_date): self.sort_key = lambda f: (f['report_date'], f['period'], f['report_id'], -self.facts.index(f['fact_name'])) else: self.sort_key = lambda f: (f['period'], f['report_date'], f['report_id'], -self.facts.index(f['fact_name'])) def build_series_dict(self, fact_data): pass class InstantIndicatorBuilder(IndicatorBuilder): def __init__(self, alias, facts, use_report_date): super().__init__(alias, facts, use_report_date) self.group_key=(lambda f: f['report_date']) if self.use_report_date else (lambda f: f['period']) def build_series_dict(self, fact_data): fact_data = sorted(fact_data, key=self.sort_key, reverse=True) groups = itertools.groupby(fact_data,self.group_key) return dict((g[0], next(g[1])['value']) for g in groups) class SimplePeriodIndicatorBuilder(IndicatorBuilder): periods = None """ qf, representing quarterly values af, representing annual values saf, representing semi-annual values """ def __init__(self, alias, facts, use_report_date, periods): super().__init__(alias, facts, use_report_date) self.periods = periods self.group_key=(lambda f: f['report_date']) if self.use_report_date else (lambda f: f['period'][1]) def build_series_dict(self, fact_data): fact_data = sorted(fact_data, key=self.sort_key, reverse=True) # TODO restore missed semi-annual facts # TODO restore missed quarter facts # TODO ltm if self.periods == 'qf': fact_data = [f for f in fact_data if 80 < f['period_length'] < 100] elif self.periods == 'saf': fact_data = [f for f in fact_data if 170 < f['period_length'] < 190] elif self.periods == 'af': fact_data = [f for f in fact_data if 355 < f['period_length'] < 375] groups = itertools.groupby(fact_data,self.group_key) return dict((g[0] , next(g[1])['value']) for g in groups) class PeriodIndicatorBuilder(IndicatorBuilder): periods = None """ qf, representing quarterly values af, representing annual values ltm, representing LTM (last twelve months) values """ def __init__(self, alias, facts, use_report_date, periods): super().__init__(alias, facts, use_report_date) self.periods = periods if self.use_report_date: self.sort_key = lambda f: (f['report_date'], f['period'], f['report_id'], -self.facts.index(f['fact_name'])) else: self.sort_key = lambda f: (f['period'], f['report_date'], f['report_id'], -self.facts.index(f['fact_name'])) self.group_key = (lambda f: f['report_date']) if self.use_report_date else (lambda f: f['period'][1]) def build_series_dict(self, fact_data): fact_data = sorted(fact_data, key=self.sort_key, reverse=True) if self.periods == 'ltm': result = self.build_ltm(fact_data) return dict((item[1].date().isoformat(), item[0]) for item in reversed(result)) elif self.periods == 'qf': result = self.build_series_qf(fact_data) return dict((item[1] , item[0]) for item in reversed(result)) elif self.periods == 'af': fact_data = [f for f in fact_data if 340 < f['period_length'] < 380] groups = itertools.groupby(fact_data,self.group_key) return dict((g[0] , next(g[1])['value']) for g in groups) def build_series_qf(self, fact_data): # from the earliest reports to new ones fact_data = sorted(fact_data, key=self.sort_key) result = [] all_info = [] # For each report... groups = itertools.groupby(fact_data,self.group_key) for g in groups: local_facts = list(g[1]) #identify the report type Q_report = False K_report = False q_indexis = [] k_indexis = [] # Form all info list and find indexis for quarter and annual facts for i, f in enumerate(local_facts): if f['value'] is not None: all_info.append([f['period'],f['value']]) if f['period_length'] is not None: if (75 < f['period_length'] < 120): q_indexis.append(i) if (340 < f['period_length'] < 380): k_indexis.append(i) if f['report_type'] in ['10-Q','10-Q/A']: Q_report = True if f['report_type'] in ['10-K','10-K/A']: K_report = True # Quarter info only if Q_report and (len(q_indexis) > 0) and not K_report: result.append([local_facts[q_indexis[-1]]['value'],g[0]]) # Annual report but all periods are quarters elif K_report and (len(k_indexis)) == 0 and (len(q_indexis) > 0) and not Q_report: result.append([local_facts[q_indexis[-1]]['value'],g[0]]) # Both reports at the same report date - take the most actual info elif Q_report and K_report and (len(k_indexis)) > 0 and (len(q_indexis) > 0): last_k_date = dt.datetime.strptime(local_facts[k_indexis[-1]]['period'][1], '%Y-%m-%d') last_q_date = dt.datetime.strptime(local_facts[q_indexis[-1]]['period'][1], '%Y-%m-%d') if last_q_date > last_k_date: result.append([local_facts[q_indexis[-1]]['value'],g[0]]) else: result.append([local_facts[k_indexis[-1]]['value'],g[0]]) # Mixed info elif K_report and (len(k_indexis)) > 0 and (len(q_indexis) > 0) and not Q_report: last_q_date = dt.datetime.strptime(local_facts[q_indexis[-1]]['period'][1], '%Y-%m-%d') last_k_date = dt.datetime.strptime(local_facts[k_indexis[-1]]['period'][1], '%Y-%m-%d') first_k_date = dt.datetime.strptime(local_facts[k_indexis[-1]]['period'][0], '%Y-%m-%d') # I may contains 4th quarter info separately if (last_k_date - dt.timedelta(days = 5)) < last_q_date < (last_k_date + dt.timedelta(days = 5)): result.append([local_facts[q_indexis[-1]]['value'],g[0]]) # If not, one can exctract it from other periods else: local_value = local_facts[k_indexis[-1]]['value'] if local_value is None: temp = np.nan else: temp = previous_3_quarters(all_info, first_k_date, local_facts[k_indexis[-1]]['value']) result.append([temp,g[0]]) # Annual info only elif K_report and (len(k_indexis)) > 0 and (len(q_indexis) == 0) and not Q_report: first_k_date = dt.datetime.strptime(local_facts[k_indexis[-1]]['period'][0], '%Y-%m-%d') local_value = local_facts[k_indexis[-1]]['value'] if local_value is None: temp = np.nan else: temp = previous_3_quarters(all_info, first_k_date, local_facts[k_indexis[-1]]['value']) result.append([temp,g[0]]) #All other cases elif (K_report or Q_report) and len(local_facts) > 0: if local_facts[-1]['value'] is not None \ and local_facts[-1]['period_length'] is not None \ and local_facts[-1]['period_length'] > 0: temp = local_facts[-1]['value']/local_facts[-1]['period_length']*90 result.append([temp,g[0]]) #We have tried else: result.append([np.nan,g[0]]) return result def build_ltm(self, fact_data): # averaging period avg_time_frame = 360 sort_type = lambda f: (f[1]) data_list = self.build_series_qf(fact_data) #check data if len(data_list) == 0: return [] annual_value_list = [] annual_date_list = [] result = [] #sort data data_list = sorted(data_list,key=sort_type) # the day we stop ltm end_date = dt.datetime.strptime(data_list[-1][1], '%Y-%m-%d') # add new events to a data: end of info shelf life add_list = [] for item in data_list: loop_date = dt.datetime.strptime(item[1], '%Y-%m-%d') + dt.timedelta(days = 365) add_list.append([0,loop_date.strftime('%Y-%m-%d')]) data_list = data_list + add_list data_list = sorted(data_list,key=sort_type) # for event in data list.. for item in data_list: loop_date = dt.datetime.strptime(item[1], '%Y-%m-%d') if (len(annual_value_list)==0) or (len(annual_date_list)==0): start_date = loop_date annual_value_list = [] annual_date_list = [] dist = (loop_date - start_date).days # In case of weak data, we will not create synthetic one if (end_date - loop_date).days < 0: break # If less than year -> take into account new data if dist < avg_time_frame: if (item[0] is not None): if (item[0] != 0) and (~np.isnan(item[0])): annual_value_list.append(item[0]) annual_date_list.append(loop_date) # otherwise -> save result and drop it else: # Company might have a lot of reports. We might have some overlaps. # But there is only 4 quarters per year anyway local_value = np.nansum(annual_value_list)/len(annual_value_list)*4 result.append([local_value,loop_date]) if (item[0] is not None): if (item[0] != 0) and (~np.isnan(item[0])): annual_value_list.append(item[0]) annual_date_list.append(loop_date) annual_value_list.pop(0) annual_date_list.pop(0) if len(annual_date_list) > 0: start_date = annual_date_list[0] else: start_date = 0 return result def previous_3_quarters(full_list, start_time, val): ind1 = 0 ind2 = 0 ind3 = 0 ind12 = 0 ind23 = 0 local_index = [] # Searching for available timeframes for i, info in enumerate(full_list): left_bound = dt.datetime.strptime(info[0][0], '%Y-%m-%d') right_bound = dt.datetime.strptime(info[0][1], '%Y-%m-%d') left_index1 = (left_bound - dt.timedelta(days = 10)) < start_time < (left_bound + dt.timedelta(days = 10)) left_index2 = (left_bound - dt.timedelta(days = 110)) < start_time < (left_bound - dt.timedelta(days = 70)) left_index3 = (left_bound - dt.timedelta(days = 210)) < start_time < (left_bound - dt.timedelta(days = 150)) if left_index1: dist = (right_bound - left_bound).days if 80< dist< 120: local_index.extend([info[1], '1']) # first quarter elif 150 < dist< 200 : local_index.extend([info[1], '12']) # first and second quarters elif 250 < dist< 290 : local_index.extend([info[1], '123']) # first, second and third quarters -> exit return info[1] if
nitems = m_%s.receive(data, minReturned, maxReturned);\n" % xactor_name) f_out.write (" if (nitems == 0)\n") f_out.write (" return nitems;\n\n") f_out.write ("%s\n" % resizeparams) f_out.write (" for (int i=0; i<nitems; i++) {\n") for verilog_name in xactor.verilog_names: f_out.write (" %s[i] = data[i].m_field_%s;\n" % (verilog_name, verilog_name)) f_out.write (" }\n") f_out.write (" return nitems;\n") f_out.write ("}\n") f_out.write ("\n") f_out.write ("\n") def generateOutputRecvMethods(f_out, prefix, emu_type, new_module_name, xactor_name, xactor): typ = "BitT<%d>" % xactor.field_width f_out.write ("bool %sXactor::%sreceive_%s(%s &%s_data)\n" % (new_module_name, prefix, xactor_name, typ, xactor_name)) f_out.write ("{\n") f_out.write (" %s_%s data;\n" % (new_module_name, xactor_name)) f_out.write (" bool gotone = m_%s.receiveNB(data);\n" % xactor_name) f_out.write (" if (gotone) {\n") f_out.write (" %s_data = data;\n" % xactor_name) f_out.write (" }\n") f_out.write (" return gotone;\n") f_out.write ("}\n") f_out.write ("\n") f_out.write ("bool %sXactor::%sreceiveB_%s(%s &%s_data)\n" % (new_module_name, prefix, xactor_name, typ, xactor_name)) f_out.write ("{\n") f_out.write (" %s_%s data;\n" % (new_module_name, xactor_name)) f_out.write (" m_%s.receive(data);\n" % xactor_name) f_out.write (" %s_data = data;\n" % xactor_name) f_out.write (" return true;\n") f_out.write ("}\n") f_out.write ("\n") f_out.write ("bool %sXactor::%sset_emulation_type_%s(BitT<1> &t)\n" % (new_module_name, prefix, xactor_name)) f_out.write ("{\n") f_out.write (" m_%s_ctrl.sendAcknowledge(" << "t);\n" % xactor_name) f_out.write (" return true;\n") f_out.write ("}\n") f_out.write ("\n") def generateOutputPipeRecvMethods(f_out, prefix, emu_type, new_module_name, xactor_name, xactor): typ = "BitT<%d>" % xactor.field_width f_out.write ("bool %sXactor::%sreceive_%s(%s &%s_data)\n" % (new_module_name, prefix, xactor_name, typ, xactor_name)) f_out.write ("{\n") f_out.write (" bool gotone = m_%s.receiveNB(%s_data);\n" % (xactor_name, xactor_name)) f_out.write (" return gotone;\n") f_out.write ("}\n") f_out.write ("\n") f_out.write ("bool %sXactor::%sreceiveB_%s(%s &%s_data)\n" % (new_module_name, prefix, xactor_name, typ, xactor_name)) f_out.write ("{\n") f_out.write (" m_%s.receive(%s_data);\n" % (xactor_name, xactor_name)) f_out.write (" return true;\n") f_out.write ("}\n") f_out.write ("\n") f_out.write ("unsigned %sXactor::%svector_receive_%s(std::vector<%s > &%s_data" % (new_module_name, prefix, xactor_name, typ, xactor_name)) f_out.write (", unsigned minReturned, unsigned maxReturned)\n") f_out.write ("{\n") f_out.write (" unsigned nitems = m_%s.receive(%s_data, minReturned, maxReturned);\n" % (xactor_name, xactor_name)) f_out.write (" return nitems;\n") f_out.write ("}\n") f_out.write ("\n") f_out.write ("bool %sXactor::%sset_emulation_type_%s(BitT<1> &t)\n" % (new_module_name, prefix, xactor_name)) f_out.write ("{\n") f_out.write (" m_%s_ctrl.sendAcknowledge(t);\n" % xactor_name) f_out.write (" return true;\n") f_out.write ("}\n") f_out.write ("\n") def genDutXactorImpl (output_dir, dut_ifc, new_module_name): impl_filename = os.path.join (output_dir, "%sXactor.cpp" % new_module_name) try: f_impl = open (impl_filename, "w") except: print "Error opening file: ", impl_filename return 1 print "Generating file: ", impl_filename genDutXactorImplFile (f_impl, dut_ifc, new_module_name) f_impl.close() return 0 def genDutXactorImplFile (f_out, dut_ifc, new_module_name): f_out.write ("// Copyright Bluespec Inc. 2012-2013\n") f_out.write ("// By: GenTestbench tool\n\n") f_out.write ("#include <iostream>\n") f_out.write ("#include \"%sXactor.h\"\n" % new_module_name) f_out.write ("\n") f_out.write ("using namespace std;\n") f_out.write ("\n") f_out.write ("%sXactor *%sXactor::m_xactor = NULL;\n\n" % (new_module_name, new_module_name)) f_out.write ("%sXactor *%sXactor::init(SceMi *scemi)\n" % (new_module_name, new_module_name)) f_out.write ("{\n") f_out.write (" if (m_xactor != NULL)\n") f_out.write (" return m_xactor;\n\n") f_out.write (" m_xactor = new %sXactor(scemi);\n\n" % new_module_name) f_out.write (" return m_xactor;\n") f_out.write ("}\n\n") f_out.write ("void %sXactor::destroy()\n" % new_module_name) f_out.write ("{\n") f_out.write (" delete m_xactor;\n") f_out.write (" m_xactor = NULL;\n") f_out.write ("}\n\n") f_out.write ("%sXactor::%sXactor(SceMi *scemi)\n" % (new_module_name, new_module_name)) f_out.write (" : DutXactor(scemi)\n") # ************************** # Contructor initialization # ************************** first = 1 for xactor_name in dut_ifc.xactors: xactor = dut_ifc.xactors [xactor_name] if isinstance (xactor, Xactor_PUT_IFC): f_out.write (" , m_%s (\"\", \"scemi_put_%s_inport\", XactorAdapter::InPort)\n" % (xactor_name, xactor_name)) elif isinstance (xactor, Xactor_PIPEPUT_IFC): f_out.write (" , m_%s (\"\", \"scemi_put_%s_inpipe\", XactorAdapter::InPipe)\n" % (xactor_name, xactor_name)) for xactor_name in dut_ifc.xactors: xactor = dut_ifc.xactors [xactor_name] if isinstance (xactor, Xactor_GET_IFC): f_out.write (" , m_%s (\"\", \"scemi_get_%s_outport\", XactorAdapter::OutPort)\n" % (xactor_name, xactor_name)) elif isinstance (xactor, Xactor_PIPEGET_IFC): f_out.write (" , m_%s (\"\", \"scemi_get_%s_outpipe\", XactorAdapter::OutPipe)\n" % (xactor_name, xactor_name)) for xactor_name in dut_ifc.xactors: xactor = dut_ifc.xactors [xactor_name] if isinstance (xactor, Xactor_Raw_In_IFC): f_out.write (" , m_%s (\"\", \"scemi_put_%s_inport\", XactorAdapter::InPort)\n" % (xactor_name, xactor_name)) f_out.write (" , m_%s_ctrl (\"\", \"scemi_put_%s_ctrl_in\", XactorAdapter::InPort)\n" % (xactor_name, xactor_name)) elif isinstance (xactor, Xactor_PIPE_IN_IFC): f_out.write (" , m_%s (\"\", \"scemi_put_%s_inpipe\", XactorAdapter::InPipe)\n" % (xactor_name, xactor_name)) f_out.write (" , m_%s_ctrl (\"\", \"scemi_put_%s_ctrl_in\", XactorAdapter::InPort)\n" % (xactor_name, xactor_name)) for xactor_name in dut_ifc.xactors: xactor = dut_ifc.xactors [xactor_name] if isinstance (xactor, Xactor_Raw_Out_IFC): f_out.write (" , m_%s (\"\", \"scemi_get_%s_outport\", XactorAdapter::OutPort)\n" % (xactor_name, xactor_name)) f_out.write (" , m_%s_ctrl (\"\", \"scemi_get_%s_ctrl_in\", XactorAdapter::InPort)\n" % (xactor_name, xactor_name)) elif isinstance (xactor, Xactor_PIPE_OUT_IFC): f_out.write (" , m_%s (\"\", \"scemi_get_%s_outpipe\", XactorAdapter::OutPipe)\n" % (xactor_name, xactor_name)) f_out.write (" , m_%s_ctrl (\"\", \"scemi_get_%s_ctrl_in\", XactorAdapter::InPort)\n" % (xactor_name, xactor_name)) f_out.write ("{\n") f_out.write ("}\n") f_out.write ("\n") # ************************** # Destructor # ************************** f_out.write ("%sXactor::~%sXactor()\n" % (new_module_name, new_module_name)) f_out.write ("{\n") f_out.write ("}\n") f_out.write ("\n") # ****** # send # ****** for xactor_name in dut_ifc.xactors: xactor = dut_ifc.xactors [xactor_name] if isinstance (xactor, Xactor_PUT_IFC) or isinstance (xactor, Xactor_PIPEPUT_IFC): generatePutSendMethods (f_out, "", new_module_name, xactor_name, xactor) for xactor_name in dut_ifc.xactors: xactor = dut_ifc.xactors [xactor_name] if isinstance (xactor, Xactor_Raw_In_IFC) or isinstance (xactor, Xactor_PIPE_IN_IFC): generateInputSendMethods(f_out, "", 0, new_module_name, xactor_name, xactor) # ***** # get # ***** for xactor_name in dut_ifc.xactors: xactor = dut_ifc.xactors [xactor_name] if isinstance (xactor, Xactor_GET_IFC) or isinstance (xactor, Xactor_PIPEGET_IFC): generateGetRecvMethods (f_out, "", new_module_name, xactor_name, xactor) for xactor_name in dut_ifc.xactors: xactor = dut_ifc.xactors [xactor_name] if isinstance (xactor, Xactor_Raw_Out_IFC): generateOutputRecvMethods(f_out, "", 0, new_module_name, xactor_name, xactor) elif isinstance (xactor, Xactor_PIPE_OUT_IFC): generateOutputPipeRecvMethods(f_out, "", 0, new_module_name, xactor_name, xactor) def generateInlinePutSend (f_out, prefix, new_module_name, xactor_name, xactor): params = "" params2 = "" pipeparams = "" first = 1 for j in range (len (xactor.verilog_names)): if (first == 1): first = 0 firstvector = xactor.verilog_names[j] else: params += ", " params2 += ", " pipeparams += ", " params += "BitT<%d> &%s" % (xactor.field_widths[j], xactor.verilog_names[j]) params2 += xactor.verilog_names[j] pipeparams += "std::vector<BitT<%d> > &%s" % (xactor.field_widths[j], xactor.verilog_names[j]) f_out.write ("inline bool %sput_%s(%s)\n" % (prefix, xactor_name, params)) f_out.write ("{\n") f_out.write (" return %sXactor::get()->put_%s(%s);\n" % (new_module_name, xactor_name, params2)) f_out.write ("}\n") f_out.write ("\n") f_out.write ("inline bool %sputB_%s(%s)\n" % (prefix, xactor_name, params)) f_out.write ("{\n") f_out.write (" return %sXactor::get()->putB_%s(%s);\n" % (new_module_name, xactor_name, params2)) f_out.write ("}\n") f_out.write ("\n") if isinstance (xactor, Xactor_PIPEPUT_IFC): f_out.write ("inline bool %svector_put_%s(%s)\n" % (prefix, xactor_name, pipeparams)) f_out.write ("{\n") f_out.write (" return %sXactor::get()->vector_put_%s(%s);\n" % (new_module_name, xactor_name, params2)) f_out.write ("}\n") f_out.write ("\n") f_out.write ("inline bool %svector_putB_%s(%s)\n" % (prefix, xactor_name, pipeparams)) f_out.write ("{\n") f_out.write (" return %sXactor::get()->vector_putB_%s(%s);\n" % (new_module_name, xactor_name, params2)) f_out.write ("}\n") f_out.write ("\n") f_out.write ("inline bool %svector_putAck_%s(%s)\n" % (prefix, xactor_name, pipeparams)) f_out.write ("{\n") f_out.write (" return %sXactor::get()->vector_putAck_%s(%s);\n" % (new_module_name, xactor_name, params2)) f_out.write ("}\n") f_out.write ("\n") def generateInlineInputSend (f_out, prefix, new_module_name, xactor_name, xactor): typ = "BitT<%d>" % xactor.field_width f_out.write ("inline bool %ssend_%s(%s &%s_data)\n" % (prefix, xactor_name, typ, xactor_name)) f_out.write ("{\n") f_out.write (" return %sXactor::get()->send_%s(%s_data);\n" % (new_module_name, xactor_name, xactor_name)) f_out.write ("}\n") f_out.write ("\n") f_out.write ("inline bool %ssendB_%s(%s &%s_data)\n" % (prefix, xactor_name, typ, xactor_name)) f_out.write ("{\n") f_out.write (" return %sXactor::get()->sendB_%s(%s_data);\n" % (new_module_name, xactor_name, xactor_name)) f_out.write ("}\n") f_out.write ("\n") f_out.write ("inline bool %ssendBAck_%s(%s &%s_data)\n" % (prefix, xactor_name, typ, xactor_name)) f_out.write ("{\n") f_out.write (" return %sXactor::get()->sendBAck_%s(%s_data);\n" % (new_module_name, xactor_name, xactor_name)) f_out.write ("}\n") f_out.write ("\n") if isinstance (xactor, Xactor_PIPE_IN_IFC): f_out.write ("inline bool %svector_send_%s(std::vector<%s > &%s_data)\n" % (prefix, xactor_name, typ, xactor_name)) f_out.write ("{\n") f_out.write (" return %sXactor::get()->vector_send_%s(%s_data);\n" % (new_module_name, xactor_name, xactor_name)) f_out.write ("}\n") f_out.write ("\n") f_out.write ("inline bool %svector_sendB_%s(std::vector<%s > &%s_data)\n" % (prefix, xactor_name, typ, xactor_name)) f_out.write ("{\n") f_out.write (" return %sXactor::get()->vector_sendB_%s(%s_data);\n" % (new_module_name, xactor_name, xactor_name)) f_out.write ("}\n") f_out.write ("\n") f_out.write ("inline bool %svector_sendAck_%s(std::vector<%s > &%s_data)\n" % (prefix, xactor_name, typ, xactor_name)) f_out.write ("{\n") f_out.write (" return %sXactor::get()->vector_sendAck_%s(%s_data);\n" % (new_module_name, xactor_name, xactor_name)) f_out.write ("}\n") f_out.write ("\n") f_out.write ("inline bool %sset_emulation_type_%s(EmulationPortType t)\n" % (prefix, xactor_name)) f_out.write ("{\n") f_out.write (" BitT<1> data = t;\n") f_out.write (" return %sXactor::get()->set_emulation_type_%s(data);\n" % (new_module_name, xactor_name)) f_out.write ("}\n") f_out.write ("\n") def generateInlineGetRecv (f_out, prefix, new_module_name, xactor_name, xactor): params = "" params2 = "" pipeparams = "" first = 1 for j in range (len (xactor.verilog_names)): if (first == 1): first = 0 else: params += ", " params2 += ", " pipeparams += ", " params += "BitT<%s> &%s" % (xactor.field_widths[j], xactor.verilog_names[j]) params2 += xactor.verilog_names[j] pipeparams += "std::vector<BitT<%s> > &%s" % (xactor.field_widths[j], xactor.verilog_names[j]) f_out.write ("inline bool %sget_%s(%s)\n" % (prefix, xactor_name, params)) f_out.write ("{\n") f_out.write (" return %sXactor::get()->get_%s(%s);\n" % (new_module_name, xactor_name, params2)) f_out.write ("}\n") f_out.write ("\n") f_out.write ("inline bool %sgetB_%s(%s)\n" % (prefix, xactor_name, params)) f_out.write ("{\n") f_out.write (" return %sXactor::get()->getB_%s(%s);\n" % (new_module_name, xactor_name, params2)) f_out.write ("}\n") f_out.write ("\n") if isinstance (xactor, Xactor_PIPEGET_IFC): f_out.write ("inline unsigned %svector_get_%s(%s" % (prefix, xactor_name, pipeparams)) f_out.write (", unsigned minReturned, unsigned maxReturned)\n") f_out.write ("{\n") f_out.write (" unsigned nitems;\n\n") f_out.write (" nitems = %sXactor::get()->vector_get_%s(%s, minReturned, maxReturned);\n" % (new_module_name, xactor_name, params2)) f_out.write (" return nitems;\n")
in the database. :param str messageid: Id of the message to search. Note that messageid is a string with the format msg-\d{1,3}. :return: True if the message is in the database. False otherwise. ''' return self.get_message(messageid) is not None def get_message_time(self, messageid): ''' Get the time when the message was sent. :param str messageid: Id of the message to search. Note that messageid is a string with the format msg-\d{1,3}. :return: message time as a string or None if that message does not exist. :raises ValueError: if messageId is not well formed ''' raise NotImplementedError("") #ACCESSING THE USER and USER_PROFILE tables def get_users(self): ''' Extracts all users in the database. :return: list of Users of the database. Each user is a dictionary that contains two keys: ``nickname``(str) and ``registrationdate`` (long representing UNIX timestamp). None is returned if the database has no users. ''' #Create the SQL Statements #SQL Statement for retrieving the users query = 'SELECT users.*, users_profile.* FROM users, users_profile \ WHERE users.user_id = users_profile.user_id' #Activate foreign key support self.set_foreign_keys_support() #Create the cursor self.con.row_factory = sqlite3.Row cur = self.con.cursor() #Execute main SQL Statement cur.execute(query) #Process the results rows = cur.fetchall() if rows is None: return None #Process the response. users = [] for row in rows: users.append(self._create_user_list_object(row)) return users def get_user(self, nickname): ''' Extracts all the information of a user. :param str nickname: The nickname of the user to search for. :return: dictionary with the format provided in the method: :py:meth:`_create_user_object` ''' #Create the SQL Statements #SQL Statement for retrieving the user given a nickname query1 = 'SELECT user_id from users WHERE nickname = ?' #SQL Statement for retrieving the user information query2 = 'SELECT users.*, users_profile.* FROM users, users_profile \ WHERE users.user_id = ? \ AND users_profile.user_id = users.user_id' #Variable to be used in the second query. user_id = None #Activate foreign key support self.set_foreign_keys_support() #Cursor and row initialization self.con.row_factory = sqlite3.Row cur = self.con.cursor() #Execute SQL Statement to retrieve the id given a nickname pvalue = (nickname,) cur.execute(query1, pvalue) #Extract the user id row = cur.fetchone() if row is None: return None user_id = row["user_id"] # Execute the SQL Statement to retrieve the user invformation. # Create first the valuse pvalue = (user_id, ) #execute the statement cur.execute(query2, pvalue) #Process the response. Only one posible row is expected. row = cur.fetchone() return self._create_user_object(row) def delete_user(self, nickname): ''' Remove all user information of the user with the nickname passed in as argument. :param str nickname: The nickname of the user to remove. :return: True if the user is deleted, False otherwise. ''' #Create the SQL Statements #SQL Statement for deleting the user information query = 'DELETE FROM users WHERE nickname = ?' #Activate foreign key support self.set_foreign_keys_support() #Cursor and row initialization self.con.row_factory = sqlite3.Row cur = self.con.cursor() #Execute the statement to delete pvalue = (nickname,) cur.execute(query, pvalue) self.con.commit() #Check that it has been deleted if cur.rowcount < 1: return False return True def modify_user(self, nickname, user): ''' Modify the information of a user. :param str nickname: The nickname of the user to modify :param dict user: a dictionary with the information to be modified. The dictionary has the following structure: .. code-block:: javascript {'public_profile':{'registrationdate':,'signature':'', 'avatar':''}, 'restricted_profile':{'firstname':'','lastname':'', 'email':'', 'website':'','mobile':'', 'skype':'','age':'','residence':'', 'gender':'', 'picture':''} } where: * ``registrationdate``: UNIX timestamp when the user registered in the system (long integer) * ``signature``: text chosen by the user for signature * ``avatar``: name of the image file used as avatar * ``firstanme``: given name of the user * ``lastname``: family name of the user * ``email``: current email of the user. * ``website``: url with the user's personal page. Can be None * ``mobile``: string showing the user's phone number. Can be None. * ``skype``: user's nickname in skype. Can be None. * ``residence``: complete user's home address. * ``picture``: file which contains an image of the user. * ``gender``: User's gender ('male' or 'female'). * ``age``: integer containing the age of the user. Note that all values are string if they are not otherwise indicated. :return: the nickname of the modified user or None if the ``nickname`` passed as parameter is not in the database. :raise ValueError: if the user argument is not well formed. ''' #Create the SQL Statements #SQL Statement for extracting the userid given a nickname query1 = 'SELECT user_id from users WHERE nickname = ?' #SQL Statement to update the user_profile table query2 = 'UPDATE users_profile SET firstname = ?,lastname = ?, \ email = ?,website = ?, \ picture = ?,mobile = ?, \ skype = ?,age = ?,residence = ?, \ gender = ?,signature = ?,avatar = ?\ WHERE user_id = ?' #temporal variables user_id = None p_profile = user['public_profile'] r_profile = user['restricted_profile'] _firstname = r_profile.get('firstname', None) _lastname = r_profile.get('lastname', None) _email = r_profile.get('email', None) _website = r_profile.get('website', None) _picture = r_profile.get('picture', None) _mobile = r_profile.get('mobile', None) _skype = r_profile.get('skype', None) _age = r_profile.get('age', None) _residence = r_profile.get('residence', None) _gender = r_profile.get('gender', None) _signature = p_profile.get('signature', None) _avatar = p_profile.get('avatar', None) #Activate foreign key support self.set_foreign_keys_support() #Cursor and row initialization self.con.row_factory = sqlite3.Row cur = self.con.cursor() #Execute the statement to extract the id associated to a nickname pvalue = (nickname,) cur.execute(query1, pvalue) #Only one value expected row = cur.fetchone() #if does not exist, return if row is None: return None else: user_id = row["user_id"] #execute the main statement pvalue = (_firstname, _lastname, _email, _website, _picture, _mobile, _skype, _age, _residence, _gender, _signature, _avatar, user_id) cur.execute(query2, pvalue) self.con.commit() #Check that I have modified the user if cur.rowcount < 1: return None return nickname def append_user(self, nickname, user): ''' Create a new user in the database. :param str nickname: The nickname of the user to modify :param dict user: a dictionary with the information to be modified. The dictionary has the following structure: .. code-block:: javascript {'public_profile':{'registrationdate':,'signature':'', 'avatar':''}, 'restricted_profile':{'firstname':'','lastname':'', 'email':'', 'website':'','mobile':'', 'skype':'','age':'','residence':'', 'gender':'', 'picture':''} } where: * ``registrationdate``: UNIX timestamp when the user registered in the system (long integer) * ``signature``: text chosen by the user for signature * ``avatar``: name of the image file used as avatar * ``firstanme``: given name of the user * ``lastname``: family name of the user * ``email``: current email of the user. * ``website``: url with the user's personal page. Can be None * ``mobile``: string showing the user's phone number. Can be None. * ``skype``: user's nickname in skype. Can be None. * ``residence``: complete user's home address. * ``picture``: file which contains an image of the user. * ``gender``: User's gender ('male' or 'female'). * ``age``: integer containing the age of the user. Note that all values are string if they are not otherwise indicated. :return: the nickname of the modified user or None if the ``nickname`` passed as parameter is not in the database. :raise ValueError: if the user argument is not well formed. ''' #Create the SQL Statements #SQL Statement for extracting the userid given a nickname query1 = 'SELECT user_id from users WHERE nickname = ?' #SQL Statement to create the row in users table query2 = 'INSERT INTO users(nickname,regDate,lastLogin,timesviewed)\ VALUES(?,?,?,?)' #SQL Statement to create the row in user_profile table query3 = 'INSERT INTO users_profile (user_id, firstname,lastname, \ email,website, \ picture,mobile, \ skype,age,residence, \ gender,signature,avatar)\ VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?)' #temporal variables for user table #timestamp will be used for lastlogin and regDate. timestamp = time.mktime(datetime.now().timetuple()) timesviewed = 0 #temporal variables for user profiles p_profile = user['public_profile'] r_profile = user['restricted_profile'] _firstname = r_profile.get('firstname', None) _lastname = r_profile.get('lastname', None) _email = r_profile.get('email', None) _website = r_profile.get('website', None) _picture = r_profile.get('picture', None) _mobile = r_profile.get('mobile', None) _skype = r_profile.get('skype', None) _age = r_profile.get('age', None) _residence = r_profile.get('residence', None) _gender = r_profile.get('gender', None) _signature = p_profile.get('signature', None) _avatar = p_profile.get('avatar', None) #Activate foreign key support self.set_foreign_keys_support() #Cursor and row initialization self.con.row_factory = sqlite3.Row
import sys, inspect, copy import numpy as np from collections import OrderedDict from ..data.mfstructure import DatumType from ..data import mfstructure, mfdatautil, mfdata from ..data.mfdatautil import MultiList from ..mfbase import ExtFileAction, MFDataException from ..utils.mfenums import DiscretizationType class MFArray(mfdata.MFMultiDimVar): """ Provides an interface for the user to access and update MODFLOW array data. Parameters ---------- sim_data : MFSimulationData data contained in the simulation structure : MFDataStructure describes the structure of the data data : list or ndarray actual data enable : bool enable/disable the array path : tuple path in the data dictionary to this MFArray dimensions : MFDataDimensions dimension information related to the model, package, and array Methods ------- new_simulation : (sim_data : MFSimulationData) initialize MFArray object for a new simulation supports_layered : bool Returns whether this MFArray supports layered data set_layered_data : (layered_data : bool) Sets whether this MFArray supports layered data store_as_external_file : (external_file_path : string, multiplier : float, layer_num : int) Stores data from layer "layer_num" to an external file at "external_file_path" with a multiplier "multiplier". For unlayered data do not pass in "layer". store_as_internal_array : (multiplier : float, layer_num : int) Stores data from layer "layer_num" internally within the MODFLOW file with a multiplier "multiplier". For unlayered data do not pass in "layer". has_data : (layer_num : int) : bool Returns whether layer "layer_num" has any data associated with it. For unlayered data do not pass in "layer". get_data : (layer_num : int) : ndarray Returns the data associated with layer "layer_num". If "layer_num" is None, returns all data. set_data : (data : ndarray/list, multiplier : float, layer_num : int) Sets the contents of the data at layer "layer_num" to "data" with multiplier "multiplier". For unlayered data do not pass in "layer_num". data can have the following formats: 1) ndarray - numpy ndarray containing all of the data 2) [data] - python list containing all of the data 3) val - a single constant value to be used for all of the data 4) {'filename':filename, 'factor':fct, 'iprn':print, 'data':data} - dictionary defining external file information 5) {'data':data, 'factor':fct, 'iprn':print) - dictionary defining internal information. Data that is layered can also be set by defining a list with a length equal to the number of layers in the model. Each layer in the list contains the data as defined in the formats above: [layer_1_val, [layer_2_array_vals], {'filename':file_with_layer_3_data, 'factor':fct, 'iprn':print}] load : (first_line : string, file_handle : file descriptor, block_header : MFBlockHeader, pre_data_comments : MFComment) : tuple (bool, string) Loads data from first_line (the first line of data) and open file file_handle which is pointing to the second line of data. Returns a tuple with the first item indicating whether all data was read and the second item being the last line of text read from the file. get_file_entry : (layer : int) : string Returns a string containing the data in layer "layer". For unlayered data do not pass in "layer". See Also -------- Notes ----- Examples -------- """ def __init__(self, sim_data, structure, data=None, enable=True, path=None, dimensions=None): super(MFArray, self).__init__(sim_data, structure, enable, path, dimensions) if self.structure.layered: try: self._layer_shape = self.layer_shape() except Exception as ex: type_, value_, traceback_ = sys.exc_info() raise MFDataException(self.structure.get_model(), self.structure.get_package(), self._path, 'resolving layer dimensions', self.structure.name, inspect.stack()[0][3], type_, value_, traceback_, None, self._simulation_data.debug, ex) else: self._layer_shape = (1,) if self._layer_shape[0] is None: self._layer_shape = (1,) self._data_type = structure.data_item_structures[0].type try: shp_ml = MultiList(shape=self._layer_shape) self._data_storage = self._new_storage(shp_ml.get_total_size() != 1) except Exception as ex: type_, value_, traceback_ = sys.exc_info() raise MFDataException(structure.get_model(), structure.get_package(), path, 'creating storage', structure.name, inspect.stack()[0][3], type_, value_, traceback_, None, sim_data.debug, ex) self._last_line_info = [] if self.structure.type == DatumType.integer: multiplier = [1] else: multiplier = [1.0] if data is not None: try: self._get_storage_obj().set_data(data, key=self._current_key, multiplier=multiplier) except Exception as ex: type_, value_, traceback_ = sys.exc_info() raise MFDataException(self.structure.get_model(), self.structure.get_package(), self._path, 'setting data', self.structure.name, inspect.stack()[0][3], type_, value_, traceback_, None, self._simulation_data.debug, ex) def __setattr__(self, name, value): if name == '__setstate__': raise AttributeError(name) elif name == 'fname': self._get_storage_obj().layer_storage.first_item().fname = value elif name == 'factor': self._get_storage_obj().layer_storage.first_item().factor = value elif name == 'iprn': self._get_storage_obj().layer_storage.first_item().iprn = value elif name == 'binary': self._get_storage_obj().layer_storage.first_item().binary = value else: super(MFArray, self).__setattr__(name, value) def __getitem__(self, k): if isinstance(k, int): k = (k,) storage = self._get_storage_obj() if storage.layered and (isinstance(k, tuple) or isinstance(k, list)): if not storage.layer_storage.in_shape(k): comment = 'Could not retrieve layer {} of "{}". There' \ 'are only {} layers available' \ '.'.format(k, self.structure.name, len(storage.layer_storage)) type_, value_, traceback_ = sys.exc_info() raise MFDataException(self.structure.get_model(), self.structure.get_package(), self._path, 'getting data', self.structure.name, inspect.stack()[0][3], type_, value_, traceback_, comment, self._simulation_data.debug) # for layered data treat k as layer number(s) return storage.layer_storage[k] else: # for non-layered data treat k as an array/list index of the data if isinstance(k, int): try: if len(self.get_data(apply_mult=True).shape) == 1: return self.get_data(apply_mult=True)[k] elif self.get_data(apply_mult=True).shape[0] == 1: return self.get_data(apply_mult=True)[0, k] elif self.get_data(apply_mult=True).shape[1] == 1: return self.get_data(apply_mult=True)[k, 0] except Exception as ex: type_, value_, traceback_ = sys.exc_info() raise MFDataException(self.structure.get_model(), self.structure.get_package(), self._path, 'setting data', self.structure.name, inspect.stack()[0][3], type_, value_, traceback_, None, self._simulation_data.debug, ex) comment = 'Unable to resolve index "{}" for ' \ 'multidimensional data.'.format(k) type_, value_, traceback_ = sys.exc_info() raise MFDataException(self.structure.get_model(), self.structure.get_package(), self._path, 'getting data', self.structure.name, inspect.stack()[0][3], type_, value_, traceback_, comment, self._simulation_data.debug) else: try: if isinstance(k, tuple): if len(k) == 3: return self.get_data(apply_mult=True)[k[0], k[1], k[2]] elif len(k) == 2: return self.get_data(apply_mult=True)[k[0], k[1]] if len(k) == 1: return self.get_data(apply_mult=True)[k] else: return self.get_data(apply_mult=True)[(k,)] except Exception as ex: type_, value_, traceback_ = sys.exc_info() raise MFDataException(self.structure.get_model(), self.structure.get_package(), self._path, 'setting data', self.structure.name, inspect.stack()[0][3], type_, value_, traceback_, None, self._simulation_data.debug, ex) def __setitem__(self, k, value): storage = self._get_storage_obj() if storage.layered: if isinstance(k, int): k = (k,) # for layered data treat k as a layer number try: storage.layer_storage[k].set_data(value) except Exception as ex: type_, value_, traceback_ = sys.exc_info() raise MFDataException(self.structure.get_model(), self.structure.get_package(), self._path, 'setting data', self.structure.name, inspect.stack()[0][3], type_, value_, traceback_, None, self._simulation_data.debug, ex) else: try: # for non-layered data treat k as an array/list index of the data a = self.get_data() a[k] = value a = a.astype(self.get_data().dtype) layer_storage = storage.layer_storage.first_item() self._get_storage_obj().set_data(a, key=self._current_key, multiplier=layer_storage.factor) except Exception as ex: type_, value_, traceback_ = sys.exc_info() raise MFDataException(self.structure.get_model(), self.structure.get_package(), self._path, 'setting data', self.structure.name, inspect.stack()[0][3], type_, value_, traceback_, None, self._simulation_data.debug, ex) def new_simulation(self, sim_data): super(MFArray, self).new_simulation(sim_data) self._data_storage = self._new_storage(False) self._layer_shape = (1,) def supports_layered(self): try: model_grid = self._data_dimensions.get_model_grid() except Exception as ex: type_, value_, traceback_ = sys.exc_info() raise MFDataException(self.structure.get_model(), self.structure.get_package(), self._path, 'getting model grid', self.structure.name, inspect.stack()[0][3], type_, value_, traceback_, None, self._simulation_data.debug, ex) return self.structure.layered and \ model_grid.grid_type() != DiscretizationType.DISU def set_layered_data(self, layered_data): if layered_data is True and self.structure.layered is False: if self._data_dimensions.get_model_grid().grid_type() == \ DiscretizationType.DISU: comment = 'Layered option not available for unstructured ' \ 'grid. {}'.format(self._path) else: comment = 'Data "{}" does not support layered option. ' \ '{}'.format(self._data_name, self._path) type_, value_, traceback_ = sys.exc_info() raise MFDataException(self.structure.get_model(), self.structure.get_package(), self._path, 'setting layered data', self.structure.name, inspect.stack()[0][3], type_, value_, traceback_, comment, self._simulation_data.debug) self._get_storage_obj().layered = layered_data def make_layered(self): if self.supports_layered(): try: self._get_storage_obj().make_layered() except Exception as ex: type_, value_, traceback_ = sys.exc_info() raise MFDataException(self.structure.get_model(), self.structure.get_package(), self._path, 'making data layered', self.structure.name, inspect.stack()[0][3], type_, value_, traceback_, None, self._simulation_data.debug, ex) else: if self._data_dimensions.get_model_grid().grid_type() == \ DiscretizationType.DISU: comment = 'Layered option not available for unstructured ' \ 'grid. {}'.format(self._path) else: comment = 'Data "{}" does not support layered option. ' \ '{}'.format(self._data_name, self._path) type_, value_, traceback_ = sys.exc_info() raise MFDataException(self.structure.get_model(), self.structure.get_package(), self._path, 'converting data to layered', self.structure.name, inspect.stack()[0][3], type_, value_, traceback_, comment, self._simulation_data.debug) def store_as_external_file(self, external_file_path, multiplier=[1.0], layer=None): if isinstance(layer, int): layer = (layer,) storage = self._get_storage_obj() if storage is None: self._set_storage_obj(self._new_storage(False, True)) ds_index = self._resolve_layer_index(layer) try: # move data to file if storage.layer_storage[ds_index[0]].data_storage_type == \ mfdata.DataStorageType.external_file: storage.external_to_external(external_file_path, multiplier, layer) else: storage.internal_to_external(external_file_path, multiplier, layer) except Exception as ex: type_, value_, traceback_ = sys.exc_info() raise MFDataException(self.structure.get_model(), self.structure.get_package(), self._path, 'storing data in external file ' '{}'.format(external_file_path), self.structure.name, inspect.stack()[0][3], type_, value_, traceback_, None, self._simulation_data.debug, ex) # update data storage self._get_storage_obj().layer_storage[ds_index[0]].data_storage_type \ = mfdata.DataStorageType.external_file self._get_storage_obj().layer_storage[ds_index[0]].fname = \ external_file_path if multiplier is not None: self._get_storage_obj().layer_storage[ds_index[0]].multiplier = \ multiplier[0] def has_data(self, layer=None): storage = self._get_storage_obj() if storage is None: return False if isinstance(layer, int): layer = (layer,) try:
self.params.train_dir is None: print('note that train_dir is not specified') # raise ValueError('Trained model directory not specified') try: global_step, checkpoint_path = load_checkpoint(saver, sess, self.my_params.load_ckpt) self.last_weights_file = checkpoint_path print('got global_step={} in checkpoint {}'.format(global_step, checkpoint_path)) except CheckpointNotFoundException: log_fn('Checkpoint not found in %s' % self.my_params.load_ckpt) return if self.dataset.queue_runner_required(): tf.train.start_queue_runners(sess=sess) image_producer = None if input_producer_op is not None: image_producer = cnn_util.ImageProducer( sess, input_producer_op, self.batch_group_size, self.params.use_python32_barrier) image_producer.start() if enqueue_ops: for i in xrange(len(enqueue_ops)): sess.run(enqueue_ops[:(i + 1)]) if image_producer is not None: image_producer.notify_image_consumption() loop_start_time = start_time = time.time() # TODO(laigd): refactor the part to compute/report the accuracy. Currently # it only works for image models. top_1_accuracy_sum = 0.0 top_5_accuracy_sum = 0.0 loss_sum = 0.0 total_eval_count = self.num_batches * self.batch_size print('total_eval_count=', total_eval_count) # print('----------show var values before eval---------') # for v in self.get_global_variables(): # if 'global' in v.name: # continue # print(v.name, np.mean(sess.run(v))) for step in xrange(self.num_batches): if (summary_writer is not None and summary_op is not None and self.params.save_summaries_steps > 0 and (step + 1) % self.params.save_summaries_steps == 0): results, summary_str = sess.run([fetches, summary_op], feed_dict=feed_dict) summary_writer.add_summary(summary_str) else: results = sess.run(fetches, feed_dict=feed_dict) results = self.model.postprocess(results) top_1_accuracy_sum += results['top_1_accuracy'] top_5_accuracy_sum += results['top_5_accuracy'] loss_sum += results['loss'] if (step + 1) % self.params.display_every == 0: duration = time.time() - start_time examples_per_sec = ( self.batch_size * self.params.display_every / duration) log_fn('%i\t%.1f examples/sec' % (step + 1, examples_per_sec)) start_time = time.time() if image_producer is not None: image_producer.notify_image_consumption() loop_end_time = time.time() if image_producer is not None: image_producer.done() accuracy_at_1 = top_1_accuracy_sum / self.num_batches print('top1={}/{}={}'.format(top_1_accuracy_sum, self.num_batches, accuracy_at_1)) accuracy_at_5 = top_5_accuracy_sum / self.num_batches mean_loss = loss_sum / self.num_batches summary = tf.Summary() summary.value.add(tag='eval/Accuracy@1', simple_value=accuracy_at_1) summary.value.add(tag='eval/Accuracy@5', simple_value=accuracy_at_5) for result_key, result_value in results.items(): if result_key.startswith(constants.SIMPLE_VALUE_RESULT_PREFIX): prefix_len = len(constants.SIMPLE_VALUE_RESULT_PREFIX) summary.value.add(tag='eval/' + result_key[prefix_len:], simple_value=result_value) if summary_writer is not None: summary_writer.add_summary(summary, global_step) log_fn('Accuracy @ 1 = %.4f Accuracy @ 5 = %.4f Loss = %.8f [%d examples]' % (accuracy_at_1, accuracy_at_5, mean_loss, total_eval_count)) elapsed_time = loop_end_time - loop_start_time images_per_sec = (self.num_batches * self.batch_size / elapsed_time) # Note that we compute the top 1 accuracy and top 5 accuracy for each # batch, which will have a slight performance impact. if self.my_params.save_hdf5: self.save_weights_to_hdf5(self.my_params.save_hdf5) log_fn('-' * 64) log_fn('total images/sec: %.2f' % images_per_sec) log_fn('-' * 64) if self.benchmark_logger: eval_result = { 'eval_top_1_accuracy', accuracy_at_1, 'eval_top_5_accuracy', accuracy_at_5, 'eval_average_examples_per_sec', images_per_sec, tf.GraphKeys.GLOBAL_STEP, global_step, } self.benchmark_logger.log_evaluation_result(eval_result) lf = self.my_params.eval_log_file or OVERALL_EVAL_RECORD_FILE log_important('{},{},top1={:.5f},top5={:.5f},loss={:.8f} on {} at {}'.format(self.params.model, self.last_weights_file or self.my_params.load_ckpt or self.my_params.init_hdf5, accuracy_at_1, accuracy_at_5, mean_loss, self.subset, cur_time()), log_file=lf) GPU_CACHED_INPUT_VARIABLE_NAME = 'gpu_cached_inputs' # shawn # overwrite this if you wish to use another convnet_builder (bds convnet builder, for example) def get_convnet_builder(self, input_list, phase_train): images = input_list[0] assert self.params.data_format in ['NCHW', 'NHWC'] if self.params.data_format == 'NCHW': images = tf.transpose(images, [0, 3, 1, 2]) var_type = tf.float32 data_type = tf.float16 if self.params.use_fp16 else tf.float32 if data_type == tf.float16 and self.params.fp16_vars: var_type = tf.float16 # shawn, # input_nchan=3 any exceptions ? convnet_builder = ConvNetBuilder(images, input_nchan=3, phase_train=phase_train, use_tf_layers=self.params.use_tf_layers, data_format=self.params.data_format, dtype=data_type, variable_dtype=var_type, use_dense_layer=self.my_params.use_dense_layer, input_rotation=self.my_params.input_rotation) return convnet_builder def postprocess_after_build_by_convnet_builder(self, convnet_builder, build_results): print('nothing to do after build by convnet builder') def do_train(self, graph_info): """Benchmark the graph. Args: graph_info: the namedtuple returned by _build_graph() which contains all necessary information to benchmark the graph, including named tensors/ops list, fetches, etc. Returns: Dictionary containing training statistics (num_workers, num_steps, average_wall_time, images_per_sec). """ if self.params.variable_update == 'horovod': import horovod.tensorflow as hvd # pylint: disable=g-import-not-at-top # First worker will be 'chief' - it will write summaries and # save checkpoints. is_chief = hvd.rank() == 0 else: is_chief = (not self.job_name or self.task_index == 0) summary_op = tf.summary.merge_all() # summary_op = tf.group(summary_op, graph_info.summary_op_group) # summary_op = tf.group(*graph_info.summary_ops) summary_writer = None if (is_chief and self.params.summary_verbosity and self.params.train_dir and self.params.save_summaries_steps > 0): summary_writer = tf.summary.FileWriter(self.params.train_dir, tf.get_default_graph()) # We want to start the benchmark timer right after a image_producer barrier # and avoids undesired waiting times on barriers. if ((self.num_warmup_batches + len(graph_info.enqueue_ops) - 1) % self.batch_group_size) != 0: self.num_warmup_batches = int( math.ceil( (self.num_warmup_batches + len(graph_info.enqueue_ops) - 1.0) / (self.batch_group_size)) * self.batch_group_size - len(graph_info.enqueue_ops) + 1) log_fn('Round up warm up steps to %d to match batch_group_size' % self.num_warmup_batches) assert ((self.num_warmup_batches + len(graph_info.enqueue_ops) - 1) % self.batch_group_size) == 0 # We run the summaries in the same thread as the training operations by # passing in None for summary_op to avoid a summary_thread being started. # Running summaries and training operations in parallel could run out of # GPU memory. if is_chief and not self.forward_only_and_freeze: saver = tf.train.Saver( self.variable_mgr.savable_variables(), save_relative_paths=True, max_to_keep=self.params.max_ckpts_to_keep) else: saver = None ready_for_local_init_op = None if self.job_name and not (self.single_session or self.distributed_collective): # In distributed mode, we don't want to run local_var_init_op_group until # the global variables are initialized, because local_var_init_op_group # may use global variables (such as in distributed replicated mode). We # don't set this in non-distributed mode, because in non-distributed mode, # local_var_init_op_group may itself initialize global variables (such as # in replicated mode). ready_for_local_init_op = tf.report_uninitialized_variables( tf.global_variables()) if self.params.variable_update == 'horovod': import horovod.tensorflow as hvd # pylint: disable=g-import-not-at-top bcast_global_variables_op = hvd.broadcast_global_variables(0) else: bcast_global_variables_op = None if self.params.variable_update == 'collective_all_reduce': # It doesn't matter what this collective_graph_key value is, # so long as it's > 0 and the same at every worker. init_run_options = tf.RunOptions() init_run_options.experimental.collective_graph_key = 6 else: init_run_options = tf.RunOptions() sv = MySupervisor( # For the purpose of Supervisor, all Horovod workers are 'chiefs', # since we want session to be initialized symmetrically on all the # workers. is_chief=is_chief or (self.params.variable_update == 'horovod' or self.distributed_collective), # Log dir should be unset on non-chief workers to prevent Horovod # workers from corrupting each other's checkpoints. logdir=self.params.train_dir if is_chief else None, ready_for_local_init_op=ready_for_local_init_op, local_init_op=graph_info.local_var_init_op_group, saver=saver, global_step=graph_info.global_step, summary_op=None, save_model_secs=self.params.save_model_secs, summary_writer=summary_writer, local_init_run_options=init_run_options, load_ckpt_full_path=self.my_params.load_ckpt, auto_continue=self.my_params.auto_continue) step_train_times = [] start_standard_services = ( self.params.train_dir or self.dataset.queue_runner_required()) target = self.cluster_manager.get_target() if self.cluster_manager else '' #shawn sess_context = sv.managed_session( master=target, config=create_config_proto(self.params), start_standard_services=start_standard_services) with sess_context as sess: self.sess = sess if self.params.backbone_model_path is not None: self.model.load_backbone_model(sess, self.params.backbone_model_path) if bcast_global_variables_op: sess.run(bcast_global_variables_op) image_producer = None if graph_info.input_producer_op is not None: image_producer = cnn_util.ImageProducer( sess, graph_info.input_producer_op, self.batch_group_size, self.params.use_python32_barrier) image_producer.start() if graph_info.enqueue_ops: for i in xrange(len(graph_info.enqueue_ops)): sess.run(graph_info.enqueue_ops[:(i + 1)]) if image_producer is not None: image_producer.notify_image_consumption() self.init_global_step, = sess.run([graph_info.global_step]) print('the current global step is ', self.init_global_step) if self.job_name and not self.params.cross_replica_sync: # TODO(zhengxq): Do we need to use a global step watcher at all? global_step_watcher = GlobalStepWatcher( sess, graph_info.global_step, self.num_workers * self.num_warmup_batches + self.init_global_step, self.num_workers * (self.num_warmup_batches + self.num_batches) - 1) global_step_watcher.start() else: global_step_watcher = None if self.graph_file is not None: path, filename = os.path.split(self.graph_file) as_text = filename.endswith('txt') log_fn('Writing GraphDef as %s to %s' % ( # pyformat break 'text' if as_text else 'binary', self.graph_file)) tf.train.write_graph(sess.graph.as_graph_def(add_shapes=True), path, filename, as_text) log_fn('Running warm up') local_step = -1 * self.num_warmup_batches if self.single_session: # In single session mode, each step, the global_step is incremented by # 1. In non-single session mode, each step, the global_step is # incremented once per worker. This means we need to divide # init_global_step by num_workers only in non-single session mode. end_local_step = self.num_batches - self.init_global_step else: end_local_step = self.num_batches - (self.init_global_step / self.num_workers) if not global_step_watcher: # In cross-replica sync mode, all workers must run the same number of # local steps, or else the workers running the extra step will block. done_fn = lambda: local_step >= end_local_step else: done_fn = global_step_watcher.done if self.params.debugger is not None: if self.params.debugger == 'cli': log_fn('The CLI TensorFlow debugger will be used.') sess = tf_debug.LocalCLIDebugWrapperSession(sess) self.sess = sess else: log_fn('The TensorBoard debugger plugin will be used.') sess = tf_debug.TensorBoardDebugWrapperSession(sess, self.params.debugger) self.sess = sess profiler = tf.profiler.Profiler() if self.params.tfprof_file else None loop_start_time = time.time() last_average_loss = None ########## # shawn # if self.my_params.init_hdf5: # self.load_weights_from_hdf5(self.my_params.init_hdf5) # print('----------show var values before train---------') # for v in self.get_global_variables(): # if 'global' in v.name: # continue # print(v.name, np.mean(sess.run(v))) print('self.lr_boundaries=', self.lr_boundaries) while not done_fn(): if local_step == 0: log_fn('Done warm up') if graph_info.execution_barrier: log_fn('Waiting for other replicas to finish warm up') sess.run([graph_info.execution_barrier]) # TODO(laigd): rename 'Img' to maybe 'Input'. header_str = ('Step\tImg/sec\t' + self.params.loss_type_to_report.replace('/', ' ')) if self.params.print_training_accuracy or
quarters, the search result will list 15 different files. If we want to download a `~lightkurve.collections.LightCurveFileCollection` object containing all 15 observations, use:: >>> search_result.download_all() # doctest: +SKIP or we can specify the downloaded products by limiting our search:: >>> lcf = search_lightcurvefile('Kepler-10', quarter=2).download() # doctest: +SKIP The above line of code will only search and download Quarter 2 data and create a `LightCurveFile` object called lcf. We can also pass a radius into `search_lightcurvefile` to perform a cone search:: >>> search_lightcurvefile('Kepler-10', radius=100, quarter=4) # doctest: +SKIP This will display a table containing all targets within 100 arcseconds of Kepler-10 and in Quarter 4. We can then download a `~lightkurve.collections.LightCurveFileCollection` containing all these products using:: >>> search_lightcurvefile('kepler-10', radius=100, quarter=4).download_all() # doctest: +SKIP """ try: return _search_products(target, radius=radius, filetype="Lightcurve", cadence=cadence, mission=mission, provenance_name=author, quarter=quarter, month=month, campaign=campaign, sector=sector, limit=limit) except SearchError as exc: log.error(exc) return SearchResult(None) def search_tesscut(target, sector=None): """Searches MAST for TESS Full Frame Image cutouts containing a desired target or region. This feature uses the `TESScut service <https://mast.stsci.edu/tesscut/>`_ provided by the TESS data archive at MAST. If you use this service in your work, please `cite TESScut <https://ascl.net/code/v/2239>`_ in your publications. Parameters ---------- target : str, int, or `astropy.coordinates.SkyCoord` object Target around which to search. Valid inputs include: * The name of the object as a string, e.g. "Kepler-10". * The KIC or EPIC identifier as an integer, e.g. 11904151. * A coordinate string in decimal format, e.g. "285.67942179 +50.24130576". * A coordinate string in sexagesimal format, e.g. "19:02:43.1 +50:14:28.7". * An `astropy.coordinates.SkyCoord` object. sector : int or list TESS Sector number. Default (None) will return all available sectors. A list of desired sectors can also be provided. Returns ------- result : :class:`SearchResult` object Object detailing the data products found. """ try: return _search_products(target, filetype="ffi", mission='TESS', sector=sector) except SearchError as exc: log.error(exc) return SearchResult(None) def _search_products(target, radius=None, filetype="Lightcurve", cadence=None, mission=('Kepler', 'K2', 'TESS'), provenance_name=('Kepler', 'K2', 'SPOC'), t_exptime=(0, 9999), quarter=None, month=None, campaign=None, sector=None, limit=None, **extra_query_criteria): """Helper function which returns a SearchResult object containing MAST products that match several criteria. Parameters ---------- target : str, int, or `astropy.coordinates.SkyCoord` object See docstrings above. radius : float or `astropy.units.Quantity` object Conesearch radius. If a float is given it will be assumed to be in units of arcseconds. If `None` then we default to 0.0001 arcsec. filetype : {'Target pixel', 'Lightcurve', 'FFI'} Type of files queried at MAST. cadence : 'long', 'short', 'fast', or float 'long' selects 10-min and 30-min cadence products; 'short' selects 1-min and 2-min products; 'fast' selects 20-sec products. Alternatively, you can pass the exact exposure time in seconds as an int or a float, e.g. ``cadence=600`` selects 10-minute cadence. By default, all cadence modes are returned. mission : str, list of str 'Kepler', 'K2', or 'TESS'. By default, all will be returned. provenance_name : str, list of str Provenance of the data product. Defaults to official products, i.e. ('Kepler', 'K2', 'SPOC'). Community-provided products such as 'K2SFF' are supported as well. quarter, campaign, sector : int, list of ints Kepler Quarter, K2 Campaign, or TESS Sector number. By default all quarters/campaigns/sectors will be returned. month : 1, 2, 3, 4 or list of int For Kepler's prime mission, there are three short-cadence TargetPixelFiles for each quarter, each covering one month. Hence, if cadence='short' you can specify month=1, 2, 3, or 4. By default all months will be returned. limit : int Maximum number of products to return Returns ------- SearchResult : :class:`SearchResult` object. """ if isinstance(target, int): if (0 < target) and (target < 13161030): log.warning("Warning: {} may refer to a different Kepler or TESS target. " "Please add the prefix 'KIC' or 'TIC' to disambiguate." "".format(target)) elif (0 < 200000000) and (target < 251813739): log.warning("Warning: {} may refer to a different K2 or TESS target. " "Please add the prefix 'EPIC' or 'TIC' to disambiguate." "".format(target)) # Ensure mission is a list mission = np.atleast_1d(mission).tolist() # Avoid filtering on `provenance_name` if `author` equals "any" or "all" if provenance_name in ("any", "all") or provenance_name is None: provenance_name = None else: provenance_name = np.atleast_1d(provenance_name).tolist() # Speed up by restricting the MAST query if we don't want FFI image data extra_query_criteria = {} if filetype in ['Lightcurve', 'Target Pixel']: # At MAST, non-FFI Kepler pipeline products are known as "cube" products, # and non-FFI TESS pipeline products are listed as "timeseries". extra_query_criteria['dataproduct_type'] = ['cube', 'timeseries'] # Make sure `search_tesscut` always performs a cone search (i.e. always # passed a radius value), because strict target name search does not apply. if filetype.lower() == 'ffi' and radius is None: radius = .0001 * u.arcsec observations = _query_mast(target, radius=radius, project=mission, provenance_name=provenance_name, t_exptime=t_exptime, sequence_number=campaign or sector, **extra_query_criteria) log.debug("MAST found {} observations. " "Now querying MAST for the corresponding data products." "".format(len(observations))) if len(observations) == 0: raise SearchError('No data found for target "{}".'.format(target)) # Light curves and target pixel files if filetype.lower() != 'ffi': from astroquery.mast import Observations products = Observations.get_product_list(observations) result = join(observations, products, keys="obs_id", join_type='right', uniq_col_name='{col_name}{table_name}', table_names=['', '_products']) result.sort(['distance', 'obs_id']) # Add the user-friendly 'author' column (synonym for 'provenance_name') result['author'] = result['provenance_name'] # Add the user-friendly 'observation' column result['observation'] = None obs_prefix = {'Kepler': 'Quarter', 'K2': 'Campaign', 'TESS': 'Sector'} for idx in range(len(result)): obs_project = result['project'][idx] obs_seqno = result['sequence_number'][idx] # Kepler sequence_number values were not populated at the time of # writing this code, so we parse them from the description field. if obs_project == 'Kepler' and result['sequence_number'].mask[idx]: try: obs_seqno = re.findall(r".*Q(\d+)", result['description'][idx])[0] except IndexError: obs_seqno = "" result['observation'][idx] = "{} {} {}".format(obs_project, obs_prefix.get(obs_project, ""), obs_seqno) masked_result = _filter_products(result, filetype=filetype, campaign=campaign, quarter=quarter, cadence=cadence, project=mission, provenance_name=provenance_name, month=month, sector=sector, limit=limit) log.debug("MAST found {} matching data products.".format(len(masked_result))) masked_result['distance'].info.format = '.1f' # display <0.1 arcsec return SearchResult(masked_result) # Full Frame Images else: cutouts = [] for idx in np.where(['TESS FFI' in t for t in observations['target_name']])[0]: # if target passed in is a SkyCoord object, convert to RA, dec pair if isinstance(target, SkyCoord): target = '{}, {}'.format(target.ra.deg, target.dec.deg) # pull sector numbers s = observations['sequence_number'][idx] # if the desired sector is available, add a row if s in np.atleast_1d(sector) or sector is None: cutouts.append({'description': f'TESS FFI Cutout (sector {s})', 'observation': f'TESS Sector {s}', 'target_name': str(target), 'targetid': str(target), 't_exptime': observations['t_exptime'][idx], 'productFilename': 'TESSCut', 'provenance_name': 'MAST', 'author': 'MAST', 'distance': 0.0, 'sequence_number': s, 'project': 'TESS', 'obs_collection': 'TESS'} ) if len(cutouts) > 0: log.debug("Found {} matching cutouts.".format(len(cutouts))) masked_result = Table(cutouts) masked_result.sort(['distance', 'sequence_number']) else: masked_result = None return SearchResult(masked_result) def _query_mast(target, radius=None, project=('Kepler', 'K2', 'TESS'), provenance_name=("Kepler", "K2", "SPOC"), t_exptime=(0, 9999), sequence_number=None, **extra_query_criteria): """Helper function which wraps `astroquery.mast.Observations.query_criteria()` to return a table of all Kepler/K2/TESS observations of a given target. By default only the official data products are returned, but this can be adjusted by adding alternative data product names into `provenance_name`. Parameters ---------- target : str, int, or `astropy.coordinates.SkyCoord` object See docstrings above. radius : float or `astropy.units.Quantity` object Conesearch radius. If a float is given it will be assumed to be in units of arcseconds. If `None` then we default to 0.0001 arcsec. project : str, list of str Mission name. Typically 'Kepler', 'K2', or 'TESS'. This parameter is case-insensitive. provenance_name : str, list of str Provenance of the observation. Common options include 'Kepler', 'K2', 'SPOC', 'K2SFF', 'EVEREST', 'KEPSEISMIC'. This parameter is case-insensitive. t_exptime : (float, float) tuple Exposure time range in seconds. Common values include `(59, 61)` for Kepler short cadence and `(1799, 1801)` for Kepler long cadence. sequence_number : int, list of int Quarter, Campaign, or Sector number. **extra_query_criteria : kwargs Extra criteria to be passed to `astroquery.mast.Observations.query_criteria`. Returns ------- obs : astropy.Table Table detailing the available observations on MAST. """ # Local astroquery import because the package is not used elsewhere from astroquery.mast import Observations from astroquery.exceptions import ResolverError, NoResultsWarning # If passed a SkyCoord, convert it to an "ra, dec" string for MAST if isinstance(target, SkyCoord): target =
LETTER AU 0A15 GURMUKHI LETTER KA 0A16 GURMUKHI LETTER KHA 0A17 GURMUKHI LETTER GA 0A18 GURMUKHI LETTER GHA 0A19 GURMUKHI LETTER NGA 0A1A GURMUKHI LETTER CA 0A1B GURMUKHI LETTER CHA 0A1C GURMUKHI LETTER JA 0A1D GURMUKHI LETTER JHA 0A1E GURMUKHI LETTER NYA 0A1F GURMUKHI LETTER TTA 0A20 GURMUKHI LETTER TTHA 0A21 GURMUKHI LETTER DDA 0A22 GURMUKHI LETTER DDHA 0A23 GURMUKHI LETTER NNA 0A24 GURMUKHI LETTER TA 0A25 GURMUKHI LETTER THA 0A26 GURMUKHI LETTER DA 0A27 GURMUKHI LETTER DHA 0A28 GURMUKHI LETTER NA 0A2A GURMUKHI LETTER PA 0A2B GURMUKHI LETTER PHA 0A2C GURMUKHI LETTER BA 0A2D GURMUKHI LETTER BHA 0A2E GURMUKHI LETTER MA 0A2F GURMUKHI LETTER YA 0A30 GURMUKHI LETTER RA 0A32 GURMUKHI LETTER LA 0A33 GURMUKHI LETTER LLA 0A35 GURMUKHI LETTER VA 0A36 GURMUKHI LETTER SHA 0A38 GURMUKHI LETTER SA 0A39 GURMUKHI LETTER HA 0A3C GURMUKHI SIGN NUKTA 0A3E GURMUKHI VOWEL SIGN AA 0A3F GURMUKHI VOWEL SIGN I 0A40 GURMUKHI VOWEL SIGN II 0A41 GURMUKHI VOWEL SIGN U 0A42 GURMUKHI VOWEL SIGN UU 0A47 GURMUKHI VOWEL SIGN EE 0A48 GURMUKHI VOWEL SIGN AI 0A4B GURMUKHI VOWEL SIGN OO 0A4C GURMUKHI VOWEL SIGN AU 0A4D GURMUKHI SIGN VIRAMA 0A51 GURMUKHI SIGN UDAAT 0A59 GURMUKHI LETTER KHHA 0A5A GURMUKHI LETTER GHHA 0A5B GURMUKHI LETTER ZA 0A5C GURMUKHI LETTER RRA 0A5E GURMUKHI LETTER FA 0A66 GURMUKHI DIGIT ZERO 0A67 GURMUKHI DIGIT ONE 0A68 GURMUKHI DIGIT TWO 0A69 GURMUKHI DIGIT THREE 0A6A GURMUKHI DIGIT FOUR 0A6B GURMUKHI DIGIT FIVE 0A6C GURMUKHI DIGIT SIX 0A6D GURMUKHI DIGIT SEVEN 0A6E GURMUKHI DIGIT EIGHT 0A6F GURMUKHI DIGIT NINE 0A70 GURMUKHI TIPPI 0A71 GURMUKHI ADDAK 0A72 GURMUKHI IRI 0A73 GURMUKHI URA 0A74 GURMUKHI EK ONKAR 0A75 GURMUKHI SIGN YAKASH 0A81 GUJARATI SIGN CANDRABINDU 0A82 GUJARATI SIGN ANUSVARA 0A83 GUJARATI SIGN VISARGA 0A85 GUJARATI LETTER A 0A86 GUJARATI LETTER AA 0A87 GUJARATI LETTER I 0A88 GUJARATI LETTER II 0A89 GUJARATI LETTER U 0A8A GUJARATI LETTER UU 0A8B GUJARATI LETTER VOCALIC R 0A8C GUJARATI LETTER VOCALIC L 0A8D GUJARATI VOWEL CANDRA E 0A8F GUJARATI LETTER E 0A90 GUJARATI LETTER AI 0A91 GUJARATI VOWEL CANDRA O 0A93 GUJARATI LETTER O 0A94 GUJARATI LETTER AU 0A95 GUJARATI LETTER KA 0A96 GUJARATI LETTER KHA 0A97 GUJARATI LETTER GA 0A98 GUJARATI LETTER GHA 0A99 GUJARATI LETTER NGA 0A9A GUJARATI LETTER CA 0A9B GUJARATI LETTER CHA 0A9C GUJARATI LETTER JA 0A9D GUJARATI LETTER JHA 0A9E GUJARATI LETTER NYA 0A9F GUJARATI LETTER TTA 0AA0 GUJARATI LETTER TTHA 0AA1 GUJARATI LETTER DDA 0AA2 GUJARATI LETTER DDHA 0AA3 GUJARATI LETTER NNA 0AA4 GUJARATI LETTER TA 0AA5 GUJARATI LETTER THA 0AA6 GUJARATI LETTER DA 0AA7 GUJARATI LETTER DHA 0AA8 GUJARATI LETTER NA 0AAA GUJARATI LETTER PA 0AAB GUJARATI LETTER PHA 0AAC GUJARATI LETTER BA 0AAD GUJARATI LETTER BHA 0AAE GUJARATI LETTER MA 0AAF GUJARATI LETTER YA 0AB0 GUJARATI LETTER RA 0AB2 GUJARATI LETTER LA 0AB3 GUJARATI LETTER LLA 0AB5 GUJARATI LETTER VA 0AB6 GUJARATI LETTER SHA 0AB7 GUJARATI LETTER SSA 0AB8 GUJARATI LETTER SA 0AB9 GUJARATI LETTER HA 0ABC GUJARATI SIGN NUKTA 0ABD GUJARATI SIGN AVAGRAHA 0ABE GUJARATI VOWEL SIGN AA 0ABF GUJARATI VOWEL SIGN I 0AC0 GUJARATI VOWEL SIGN II 0AC1 GUJARATI VOWEL SIGN U 0AC2 GUJARATI VOWEL SIGN UU 0AC3 GUJARATI VOWEL SIGN VOCALIC R 0AC4 GUJARATI VOWEL SIGN VOCALIC RR 0AC5 GUJARATI VOWEL SIGN CANDRA E 0AC7 GUJARATI VOWEL SIGN E 0AC8 GUJARATI VOWEL SIGN AI 0AC9 GUJARATI VOWEL SIGN CANDRA O 0ACB GUJARATI VOWEL SIGN O 0ACC GUJARATI VOWEL SIGN AU 0ACD GUJARATI SIGN VIRAMA 0AD0 GUJARATI OM 0AE0 GUJARATI LETTER VOCALIC RR 0AE1 GUJARATI LETTER VOCALIC LL 0AE2 GUJARATI VOWEL SIGN VOCALIC L 0AE3 GUJARATI VOWEL SIGN VOCALIC LL 0AE6 GUJARATI DIGIT ZERO 0AE7 GUJARATI DIGIT ONE 0AE8 GUJARATI DIGIT TWO 0AE9 GUJARATI DIGIT THREE 0AEA GUJARATI DIGIT FOUR 0AEB GUJARATI DIGIT FIVE 0AEC GUJARATI DIGIT SIX 0AED GUJARATI DIGIT SEVEN 0AEE GUJARATI DIGIT EIGHT 0AEF GUJARATI DIGIT NINE 0AF1 GUJARATI RUPEE SIGN 0B01 ORIYA SIGN CANDRABINDU 0B02 ORIYA SIGN ANUSVARA 0B03 ORIYA SIGN VISARGA 0B05 ORIYA LETTER A 0B06 ORIYA LETTER AA 0B07 ORIYA LETTER I 0B08 ORIYA LETTER II 0B09 ORIYA LETTER U 0B0A ORIYA LETTER UU 0B0B ORIYA LETTER VOCALIC R 0B0C ORIYA LETTER VOCALIC L 0B0F ORIYA LETTER E 0B10 ORIYA LETTER AI 0B13 ORIYA LETTER O 0B14 ORIYA LETTER AU 0B15 ORIYA LETTER KA 0B16 ORIYA LETTER KHA 0B17 ORIYA LETTER GA 0B18 ORIYA LETTER GHA 0B19 ORIYA LETTER NGA 0B1A ORIYA LETTER CA 0B1B ORIYA LETTER CHA 0B1C ORIYA LETTER JA 0B1D ORIYA LETTER JHA 0B1E ORIYA LETTER NYA 0B1F ORIYA LETTER TTA 0B20 ORIYA LETTER TTHA 0B21 ORIYA LETTER DDA 0B22 ORIYA LETTER DDHA 0B23 ORIYA LETTER NNA 0B24 ORIYA LETTER TA 0B25 ORIYA LETTER THA 0B26 ORIYA LETTER DA 0B27 ORIYA LETTER DHA 0B28 ORIYA LETTER NA 0B2A ORIYA LETTER PA 0B2B ORIYA LETTER PHA 0B2C ORIYA LETTER BA 0B2D ORIYA LETTER BHA 0B2E ORIYA LETTER MA 0B2F ORIYA LETTER YA 0B30 ORIYA LETTER RA 0B32 ORIYA LETTER LA 0B33 ORIYA LETTER LLA 0B35 ORIYA LETTER VA 0B36 ORIYA LETTER SHA 0B37 ORIYA LETTER SSA 0B38 ORIYA LETTER SA 0B39 ORIYA LETTER HA 0B3C ORIYA SIGN NUKTA 0B3D ORIYA SIGN AVAGRAHA 0B3E ORIYA VOWEL SIGN AA 0B3F ORIYA VOWEL SIGN I 0B40 ORIYA VOWEL SIGN II 0B41 ORIYA VOWEL SIGN U 0B42 ORIYA VOWEL SIGN UU 0B43 ORIYA VOWEL SIGN VOCALIC R 0B44 ORIYA VOWEL SIGN VOCALIC RR 0B47 ORIYA VOWEL SIGN E 0B48 ORIYA VOWEL SIGN AI 0B4B ORIYA VOWEL SIGN O 0B4C ORIYA VOWEL SIGN AU 0B4D ORIYA SIGN VIRAMA 0B56 ORIYA AI LENGTH MARK 0B57 ORIYA AU LENGTH MARK 0B5C ORIYA LETTER RRA 0B5D ORIYA LETTER RHA 0B5F ORIYA LETTER YYA 0B60 ORIYA LETTER VOCALIC RR 0B61 ORIYA LETTER VOCALIC LL 0B62 ORIYA VOWEL SIGN VOCALIC L 0B63 ORIYA VOWEL SIGN VOCALIC LL 0B66 ORIYA DIGIT ZERO 0B67 ORIYA DIGIT ONE 0B68 ORIYA DIGIT TWO 0B69 ORIYA DIGIT THREE 0B6A ORIYA DIGIT FOUR 0B6B ORIYA DIGIT FIVE 0B6C ORIYA DIGIT SIX 0B6D ORIYA DIGIT SEVEN 0B6E ORIYA DIGIT EIGHT 0B6F ORIYA DIGIT NINE 0B70 ORIYA ISSHAR 0B71 ORIYA LETTER WA 0B82 TAMIL SIGN ANUSVARA 0B83 TAMIL SIGN VISARGA 0B85 TAMIL LETTER A 0B86 TAMIL LETTER AA 0B87 TAMIL LETTER I 0B88 TAMIL LETTER II 0B89 TAMIL LETTER U 0B8A TAMIL LETTER UU 0B8E TAMIL LETTER E 0B8F TAMIL LETTER EE 0B90 TAMIL LETTER AI 0B92 TAMIL LETTER O 0B93 TAMIL LETTER OO 0B94 TAMIL LETTER AU 0B95 TAMIL LETTER KA 0B99 TAMIL LETTER NGA 0B9A TAMIL LETTER CA 0B9C TAMIL LETTER JA 0B9E TAMIL LETTER NYA 0B9F TAMIL LETTER TTA 0BA3 TAMIL LETTER NNA 0BA4 TAMIL LETTER TA 0BA8 TAMIL LETTER NA 0BA9 TAMIL LETTER NNNA 0BAA TAMIL LETTER PA 0BAE TAMIL LETTER MA 0BAF TAMIL LETTER YA 0BB0 TAMIL LETTER RA 0BB1 TAMIL LETTER RRA 0BB2 TAMIL LETTER LA 0BB3 TAMIL LETTER LLA 0BB4 TAMIL LETTER LLLA 0BB5 TAMIL LETTER VA 0BB6 TAMIL LETTER SHA 0BB7 TAMIL LETTER SSA 0BB8 TAMIL LETTER SA 0BB9 TAMIL LETTER HA 0BBE TAMIL VOWEL SIGN AA 0BBF TAMIL VOWEL SIGN I 0BC0 TAMIL VOWEL SIGN II 0BC1 TAMIL VOWEL SIGN U 0BC2 TAMIL VOWEL SIGN UU 0BC6 TAMIL VOWEL SIGN E 0BC7 TAMIL VOWEL SIGN EE 0BC8 TAMIL VOWEL SIGN AI 0BCA TAMIL VOWEL SIGN O 0BCB TAMIL VOWEL SIGN OO 0BCC TAMIL VOWEL SIGN AU 0BCD TAMIL SIGN VIRAMA 0BD0 TAMIL OM 0BD7 TAMIL AU LENGTH MARK 0BE6 TAMIL DIGIT ZERO 0BE7 TAMIL DIGIT ONE 0BE8 TAMIL DIGIT TWO 0BE9 TAMIL DIGIT THREE 0BEA TAMIL DIGIT FOUR 0BEB TAMIL DIGIT FIVE 0BEC TAMIL DIGIT SIX 0BED TAMIL DIGIT SEVEN 0BEE TAMIL DIGIT EIGHT 0BEF TAMIL DIGIT NINE 0BF0 TAMIL NUMBER TEN 0BF1 TAMIL NUMBER ONE HUNDRED 0BF2 TAMIL NUMBER ONE THOUSAND 0BF3 TAMIL DAY SIGN 0BF4 TAMIL MONTH SIGN 0BF5 TAMIL YEAR SIGN 0BF6 TAMIL DEBIT SIGN 0BF7 TAMIL CREDIT SIGN 0BF8 TAMIL AS ABOVE SIGN 0BF9 TAMIL RUPEE SIGN 0BFA TAMIL NUMBER SIGN 0C01 TELUGU SIGN CANDRABINDU 0C02 TELUGU SIGN ANUSVARA 0C03 TELUGU SIGN VISARGA 0C05 TELUGU LETTER A 0C06 TELUGU LETTER AA 0C07 TELUGU LETTER I 0C08 TELUGU LETTER II 0C09 TELUGU LETTER U 0C0A TELUGU LETTER UU 0C0B TELUGU LETTER VOCALIC R 0C0C TELUGU LETTER VOCALIC L 0C0E TELUGU LETTER E 0C0F TELUGU LETTER EE 0C10 TELUGU LETTER AI 0C12 TELUGU LETTER O 0C13 TELUGU LETTER OO 0C14 TELUGU LETTER AU 0C15 TELUGU LETTER KA 0C16 TELUGU LETTER KHA 0C17 TELUGU LETTER GA 0C18 TELUGU LETTER GHA 0C19 TELUGU LETTER NGA 0C1A TELUGU LETTER CA 0C1B TELUGU LETTER CHA 0C1C TELUGU LETTER JA 0C1D TELUGU LETTER JHA 0C1E TELUGU LETTER NYA 0C1F TELUGU LETTER TTA 0C20 TELUGU LETTER TTHA 0C21 TELUGU LETTER DDA 0C22 TELUGU LETTER DDHA 0C23 TELUGU LETTER NNA 0C24 TELUGU LETTER TA 0C25 TELUGU LETTER THA 0C26 TELUGU LETTER DA 0C27 TELUGU LETTER DHA 0C28 TELUGU LETTER NA 0C2A TELUGU LETTER PA 0C2B TELUGU LETTER PHA 0C2C TELUGU LETTER BA 0C2D TELUGU LETTER BHA 0C2E TELUGU LETTER MA 0C2F TELUGU LETTER YA 0C30 TELUGU LETTER RA 0C31 TELUGU LETTER RRA 0C32 TELUGU LETTER LA 0C33 TELUGU LETTER LLA 0C35 TELUGU LETTER VA 0C36 TELUGU LETTER SHA 0C37 TELUGU LETTER SSA 0C38 TELUGU LETTER SA 0C39 TELUGU LETTER HA 0C3D TELUGU SIGN AVAGRAHA 0C3E TELUGU VOWEL SIGN AA 0C3F TELUGU VOWEL SIGN I 0C40 TELUGU VOWEL SIGN II 0C41 TELUGU VOWEL SIGN U 0C42 TELUGU VOWEL SIGN UU 0C43 TELUGU VOWEL SIGN VOCALIC R 0C44 TELUGU VOWEL SIGN VOCALIC RR 0C46 TELUGU VOWEL SIGN E 0C47 TELUGU VOWEL SIGN EE 0C48 TELUGU VOWEL SIGN AI 0C4A TELUGU VOWEL SIGN O 0C4B TELUGU VOWEL SIGN OO 0C4C TELUGU VOWEL SIGN AU 0C4D TELUGU SIGN VIRAMA 0C55 TELUGU LENGTH MARK 0C56 TELUGU AI LENGTH MARK 0C58 TELUGU LETTER TSA 0C59 TELUGU LETTER DZA 0C60 TELUGU LETTER VOCALIC RR 0C61 TELUGU LETTER VOCALIC LL 0C62 TELUGU VOWEL SIGN VOCALIC L 0C63 TELUGU VOWEL SIGN VOCALIC LL 0C66 TELUGU DIGIT ZERO 0C67 TELUGU DIGIT ONE 0C68 TELUGU DIGIT TWO 0C69 TELUGU DIGIT THREE 0C6A TELUGU DIGIT FOUR 0C6B TELUGU DIGIT FIVE 0C6C TELUGU DIGIT SIX 0C6D TELUGU DIGIT SEVEN 0C6E TELUGU DIGIT EIGHT 0C6F TELUGU DIGIT NINE 0C78 TELUGU FRACTION DIGIT ZERO FOR ODD POWERS OF FOUR 0C79 TELUGU FRACTION DIGIT ONE FOR ODD POWERS OF FOUR 0C7A TELUGU FRACTION DIGIT TWO FOR ODD POWERS OF FOUR 0C7B TELUGU FRACTION DIGIT THREE FOR ODD POWERS OF FOUR 0C7C TELUGU FRACTION DIGIT ONE FOR EVEN POWERS OF FOUR 0C7D TELUGU FRACTION DIGIT TWO FOR EVEN POWERS OF FOUR 0C7E TELUGU FRACTION DIGIT THREE FOR EVEN POWERS OF FOUR 0C7F TELUGU SIGN TUUMU 0C82 KANNADA SIGN ANUSVARA 0C83 KANNADA SIGN VISARGA 0C85 KANNADA LETTER A 0C86 KANNADA LETTER AA 0C87 KANNADA LETTER I 0C88 KANNADA LETTER II 0C89 KANNADA LETTER U 0C8A KANNADA LETTER UU 0C8B KANNADA LETTER VOCALIC R 0C8C KANNADA LETTER VOCALIC L 0C8E KANNADA LETTER E 0C8F KANNADA LETTER EE 0C90 KANNADA LETTER AI 0C92 KANNADA LETTER O 0C93 KANNADA LETTER OO 0C94 KANNADA LETTER AU 0C95 KANNADA LETTER KA 0C96 KANNADA LETTER KHA 0C97 KANNADA LETTER GA 0C98 KANNADA LETTER GHA 0C99 KANNADA LETTER NGA 0C9A KANNADA LETTER CA 0C9B KANNADA LETTER CHA 0C9C KANNADA LETTER JA 0C9D KANNADA LETTER JHA 0C9E KANNADA LETTER NYA 0C9F KANNADA LETTER TTA 0CA0 KANNADA LETTER TTHA 0CA1 KANNADA LETTER DDA 0CA2 KANNADA LETTER DDHA 0CA3 KANNADA LETTER NNA 0CA4 KANNADA LETTER TA 0CA5 KANNADA LETTER THA 0CA6 KANNADA LETTER DA 0CA7 KANNADA LETTER DHA 0CA8 KANNADA LETTER NA 0CAA KANNADA LETTER PA 0CAB KANNADA LETTER PHA 0CAC KANNADA LETTER BA 0CAD KANNADA LETTER BHA 0CAE KANNADA LETTER MA 0CAF KANNADA LETTER YA 0CB0 KANNADA LETTER RA 0CB1 KANNADA LETTER RRA 0CB2 KANNADA LETTER LA 0CB3 KANNADA LETTER LLA 0CB5 KANNADA LETTER VA 0CB6 KANNADA LETTER SHA 0CB7 KANNADA LETTER SSA 0CB8 KANNADA LETTER SA 0CB9 KANNADA LETTER HA 0CBC KANNADA SIGN NUKTA 0CBD KANNADA SIGN AVAGRAHA 0CBE KANNADA VOWEL SIGN AA 0CBF KANNADA VOWEL SIGN I 0CC0 KANNADA VOWEL SIGN II 0CC1 KANNADA VOWEL SIGN U 0CC2 KANNADA VOWEL SIGN UU 0CC3 KANNADA VOWEL SIGN VOCALIC R 0CC4 KANNADA VOWEL SIGN VOCALIC RR 0CC6 KANNADA VOWEL SIGN E 0CC7 KANNADA VOWEL SIGN EE 0CC8 KANNADA VOWEL SIGN AI 0CCA KANNADA VOWEL SIGN O 0CCB KANNADA VOWEL SIGN OO 0CCC KANNADA VOWEL SIGN AU 0CCD KANNADA SIGN VIRAMA 0CD5 KANNADA LENGTH MARK 0CD6 KANNADA AI LENGTH MARK 0CDE KANNADA LETTER FA 0CE0 KANNADA LETTER VOCALIC RR 0CE1 KANNADA LETTER VOCALIC LL 0CE2 KANNADA VOWEL SIGN VOCALIC L 0CE3 KANNADA VOWEL SIGN VOCALIC LL 0CE6 KANNADA DIGIT ZERO 0CE7 KANNADA DIGIT ONE 0CE8 KANNADA DIGIT TWO 0CE9 KANNADA DIGIT THREE 0CEA KANNADA DIGIT FOUR 0CEB KANNADA DIGIT FIVE 0CEC KANNADA DIGIT SIX 0CED KANNADA DIGIT SEVEN 0CEE KANNADA DIGIT EIGHT 0CEF KANNADA DIGIT NINE 0CF1 KANNADA SIGN JIHVAMULIYA 0CF2 KANNADA SIGN UPADHMANIYA 0D02 MALAYALAM SIGN ANUSVARA 0D03 MALAYALAM SIGN VISARGA 0D05 MALAYALAM LETTER A 0D06 MALAYALAM LETTER AA 0D07 MALAYALAM LETTER I 0D08 MALAYALAM LETTER II 0D09 MALAYALAM LETTER U 0D0A MALAYALAM LETTER UU 0D0B MALAYALAM LETTER VOCALIC R 0D0C MALAYALAM LETTER VOCALIC L 0D0E MALAYALAM LETTER E 0D0F MALAYALAM LETTER EE 0D10 MALAYALAM LETTER AI 0D12 MALAYALAM LETTER O 0D13 MALAYALAM LETTER OO 0D14 MALAYALAM LETTER AU 0D15 MALAYALAM LETTER KA 0D16 MALAYALAM LETTER KHA 0D17 MALAYALAM LETTER GA 0D18 MALAYALAM LETTER GHA 0D19 MALAYALAM LETTER NGA 0D1A MALAYALAM LETTER CA 0D1B MALAYALAM LETTER CHA 0D1C MALAYALAM LETTER JA 0D1D MALAYALAM LETTER JHA 0D1E MALAYALAM LETTER NYA 0D1F MALAYALAM LETTER TTA 0D20 MALAYALAM LETTER TTHA 0D21 MALAYALAM LETTER DDA 0D22 MALAYALAM LETTER DDHA 0D23 MALAYALAM LETTER NNA 0D24 MALAYALAM LETTER TA 0D25 MALAYALAM LETTER THA 0D26 MALAYALAM LETTER DA 0D27 MALAYALAM LETTER DHA 0D28 MALAYALAM LETTER NA 0D2A MALAYALAM LETTER PA 0D2B MALAYALAM LETTER PHA 0D2C MALAYALAM LETTER BA 0D2D MALAYALAM LETTER BHA 0D2E MALAYALAM LETTER MA 0D2F MALAYALAM LETTER YA 0D30 MALAYALAM LETTER RA 0D31 MALAYALAM LETTER RRA 0D32 MALAYALAM LETTER LA 0D33 MALAYALAM LETTER LLA 0D34 MALAYALAM LETTER LLLA 0D35 MALAYALAM LETTER VA 0D36 MALAYALAM LETTER SHA 0D37 MALAYALAM LETTER SSA 0D38 MALAYALAM LETTER SA 0D39 MALAYALAM LETTER HA 0D3D MALAYALAM SIGN AVAGRAHA 0D3E MALAYALAM VOWEL SIGN AA 0D3F MALAYALAM VOWEL SIGN I 0D40 MALAYALAM VOWEL SIGN II 0D41 MALAYALAM VOWEL SIGN U 0D42 MALAYALAM VOWEL SIGN UU 0D43 MALAYALAM VOWEL SIGN VOCALIC R 0D44 MALAYALAM VOWEL SIGN VOCALIC RR 0D46 MALAYALAM VOWEL SIGN E 0D47 MALAYALAM VOWEL SIGN EE 0D48 MALAYALAM VOWEL SIGN AI 0D4A MALAYALAM VOWEL SIGN O 0D4B MALAYALAM VOWEL SIGN OO 0D4C MALAYALAM VOWEL SIGN AU 0D4D MALAYALAM SIGN VIRAMA 0D57 MALAYALAM AU LENGTH
<filename>UserCode/John/ReWriteAcousticT0.py<gh_stars>1-10 from __future__ import division import copy import re import numpy as np import scipy.signal from scipy import optimize import matplotlib.pyplot as plt def my_rms(arr): #return np.sqrt(arr.dot(arr)/arr.size) return np.std(arr) def extend_window(w, r): # Inputs: # w: An array of 2 elements. Normally, this will be a window like [t1, t2] # r: A float used as a ratio to extend w # Outputs: A rescaled version of w mp = 0.5*(w[1]+w[0]) # Midpoint new_len = (w[1]-w[0])*(1+r) # Length of new window return [mp-new_len/2, mp+new_len/2] def freq_filter(freqs, lower=None, upper=None): # Inputs: # freqs: An array of frequency bins # lower: The lower frequency to cut-off at # upper: The upper frequency to cut-off at # Outputs: An array of indices where the the frequency in freqs is between lower and upper if lower is None and upper is None: return freqs if lower is None: return np.where([x <= upper for x in freqs]) if upper is None: return np.where([x >= lower for x in freqs]) return np.where([lower <= x <= upper for x in freqs]) def closest_index(arr, el): # Inputs: # arr: A 1-dimensional array # el: Any element # Outputs: The FIRST index of the item in arr that is closest to el. # Notes: Arr does NOT have to be sorted. return np.argmin(np.abs(arr-el)) def spectrum_sums(spectrum, fr, n, lowerf=None, upperf=None): # Inputs: # spectrum: The output 2d spectrum from a spectogram # fr: A list of frequency bins corresponding to the spectrum # n: Number of bins # lowerf: The lower frequency to cut-off at # upperf: The upper frequency to cut-off at # Outputs: A compressed 1d array where each element is the sum of a bin from spectrum, only counting # frequencies between lowerf and upperf out = [] good_indices = freq_filter(fr, lowerf, upperf) for subn in range(n): out.append(np.trapz(spectrum[good_indices[0], subn], dx=np.mean(np.diff(fr)))) return out def rescale_window(w1, w2): # Inputs: # w1: An array with 2 elements # w2: An array with 2 elements # Outputs: A rescaled version of w2 so tha the endpoints of w2 match w1 but the number of elements remain the same y1, y2 = min(w1), max(w1) x1, x2 = min(w2), max(w2) if x1 == x2: return 0*w2 a = (y1-y2)/(x1-x2) b = (x1*y2-x2*y1)/(x1-x2) return a*w2+b def corr_signal(tau, dt, t0, n, fit_type=0, shift=10): # Inputs: # tau: Time constant on exponential decay # dt: Step size for the x-axis # t0: Where the exponential signal will start. Not important when used with correlation # N: Number of points requested # fit_type: The type of signal to create. See corr_signal_type_templates.py for a better explanation. # fit_type = 0 --> Exponential decay # fit_type = 1 --> Constant 1 followed by exponential decay (continuous) # fit_type = 2 --> Linear increase followed by exponential decay # fit_type = 3 --> Log increase followed by exponential decay # fit_type = 4 --> 0 value followed by an exponential decrease. Discontinuous. # Outputs: # t: t-values for plotting # y: y-values of our filter signal. # After careful analysis, we've determined that there reaches a point in the filtered piezo signal that # exhibits a sharp increase followed by an exponential decay. This function returns a brief exponential # decay function for use with convolution/correlation. shift = int(np.ceil(shift)) t = np.linspace(t0, t0+dt*n, n) y = np.exp(-(t-t0)/tau) ycopy = copy.deepcopy(y) if fit_type == 0: pass elif fit_type == 1: for subn in range(len(y) - shift): y[subn+shift] = ycopy[subn] y[0:shift] = 1 elif fit_type == 2: for subn in range(len(y) - shift): y[subn + shift] = ycopy[subn] y[0:shift] = (t[0:shift] - t0)/(shift*dt) elif fit_type == 3: for subn in range(len(y) - shift): y[subn + shift] = ycopy[subn] y[0:shift] = np.log((t[0:shift] + 1 - t0)) / np.log(shift*dt + 1) elif fit_type == 4: for subn in range(len(y) - shift): y[subn+shift] = ycopy[subn] y[0:shift] = 0 return t, y # Uncomment the below code if you want to test a new fit_type quickly to make sure the shape is what you want # fit_type = 0 # t,y = corr_signal(1.5, 0.1, 0, 45, fit_type, 20) # <-- Uncomment to test different fit types # plt.ioff() # plt.plot(t,y) # plt.show() # 1/0 # <-- Just to stop the program here def find_t0_from_corr(corrt, corry): # Inputs: # corrt: Time-values of the correlation signal # corry: Y-values of the correlation signal # Outputs: The time of the maximum in corry such that corrt is less than or equal to 0. n = np.where(corrt >= 0) corry[n] = 0 return corrt[np.argmax(corry)] def calculate_t0(piezo_waveform, piezo_timebase, led_on, tau, lower=20000, upper=40000, piezo_fit_type=0): # Inputs: # piezo_waveform: A piezo waveform, generally this should have the LED pulses subtracted # piezo_timebase: The times of each element in the piezo_waveform # tau: The time constant we are trying to fit to the exponential decay that occurs # immediately after the bubble forms # lower: The lower frequency threshold for cutting off the spectrogram # upper: The upper frequency threshold for cutting off the spectrogram # piezo_fit_type: The type of fit to use when trying to match the filtered piezo signal. Defaults to 0. # view_plots: Boolean. If true, will display some plots for analysis. # Outputs: A dictionary of results for the Acoustic Analysis. try: timebase = piezo_timebase textent = [min(timebase), max(timebase)] dt = np.mean(np.diff(timebase)) fr, bn, sp = scipy.signal.spectrogram(piezo_waveform, fs=1./dt, nfft=512, noverlap=450, mode="psd", window="hanning", nperseg=512) n = len(bn) sp_sums = spectrum_sums(sp, fr, n, lower, upper) sp_sums = scipy.signal.medfilt(sp_sums) rescaled_t = rescale_window(textent, bn) corr_dt = np.mean(np.diff(rescaled_t)) corr_n = 1000 corr_t, corr_y = corr_signal(tau, corr_dt, rescaled_t[0], corr_n, fit_type=piezo_fit_type) corr = np.correlate(sp_sums, corr_y, "same") corr_t = rescaled_t - 0.5 * corr_n * corr_dt test_t0 = find_t0_from_corr(corr_t, corr) # This is the t0 we begin to look backwards from # Establish a baseline for our lookback algorithm # But first we take the log of the [integrated] spectrogram signal log_sp_sums = np.log(sp_sums) first_on = np.argmax(led_on) first_off = np.argmin(led_on[first_on:]) second_on = np.argmax(led_on[first_off:]) t_first_off = timebase[first_off] t_second_on = timebase[second_on] if not np.any(led_on): return np.nan rescaled_t_first_off_index = np.argmin(np.abs(rescaled_t - t_first_off)) rescaled_t_second_on_index = np.argmin(np.abs(rescaled_t - t_second_on)) baseline = np.average(log_sp_sums[rescaled_t_first_off_index+1:rescaled_t_second_on_index]) baseline_rms = my_rms(log_sp_sums[rescaled_t_first_off_index+1:rescaled_t_second_on_index]) test_t0_index = np.argmin(np.abs(rescaled_t - test_t0)) rescaled_dt = np.mean(np.diff(rescaled_t)) t_thresh = 100e-6 n_lookback = int(np.floor(t_thresh/rescaled_dt)) pts_lookbacked_sofar = 0 while True: to_test = log_sp_sums[test_t0_index-n_lookback-pts_lookbacked_sofar:test_t0_index-pts_lookbacked_sofar] if np.all(to_test<(baseline+5*baseline_rms)): break pts_lookbacked_sofar += 1 if test_t0_index-n_lookback-pts_lookbacked_sofar <= 0: pts_lookbacked_sofar = -1 break if pts_lookbacked_sofar != -1: t0 = rescaled_t[test_t0_index-pts_lookbacked_sofar] + rescaled_dt/2 plt.ioff() plt.plot(rescaled_t, log_sp_sums, color="b", zorder=1) plt.axhline(baseline, color="r", zorder=2) plt.axhline(baseline+5*baseline_rms, color="r", zorder=2) plt.fill_between(rescaled_t, -18, baseline+5*baseline_rms, facecolor="red", alpha=0.3, zorder=10) plt.axvline(t0, color="m", linewidth=4, zorder=3) #plt.axvline(test_t0, color="r") #plt.axvline(t_first_off, color="k") #plt.axvline(t_second_on, color="k") plt.xlabel("Time (ms)") plt.ylabel("Log(Filtered Signal)") plt.show() else: t0 = np.nan return t0 except Exception as e: return np.nan def BandPass2(yd, f_low, f_high): fband = np.array([f_low, f_high]) b, a = scipy.signal.butter(2, fband / (2.5e6 / 2.0), btype='bandpass', output='ba') yd_f = scipy.signal.filtfilt(b, a, yd) return yd_f def CalcPiezoE(yd, td, t_wins, f_bins, t0): piezoE = np.zeros((t_wins.shape[0], f_bins.shape[0] - 1), dtype=np.float64) + np.nan if np.isnan(t0): return piezoE dt = td[1] - td[0] t_wins = t_wins + t0 t_wins_ix = np.intp(np.round((t_wins - td[0]) / dt)) t_wins_ix[t_wins_ix < 0] = 0 t_wins_ix[t_wins_ix > td.shape[0]] = td.shape[0] for i_win in range(t_wins.shape[0]): this_yd = yd[t_wins_ix[i_win][0]:t_wins_ix[i_win][1]] if len(this_yd) < 2: continue fft_amp = np.fft.rfft(this_yd) fft_pow = (np.abs(fft_amp) ** 2) * dt / len(this_yd) df = 1 / (dt * len(this_yd)) fd = df * (np.arange(len(fft_amp), dtype=np.float64) + 1) f_bins_ix = np.intp(np.round((f_bins / df) - 1)) f_bins_ix[f_bins_ix < 0] = 0 f_bins_ix[f_bins_ix > len(fft_amp)] = len(fft_amp) fft_en = fft_pow * (fd ** 2) for i_f in range(len(f_bins) - 1): piezoE[i_win, i_f] = df *\ np.sum(fft_en[f_bins_ix[i_f]:f_bins_ix[i_f + 1]]) return piezoE def AcousticAnalysis(ev, tau, piezo_fit_type=0, f_high=np.float64(40e3), f_low=np.float64(6e3), led_amp=np.float64(-0.1), led_tau=np.float64(2e-4), bs_win=np.float64([-0.15, -0.12]), t0_win=np.float64([-0.12, 0]), meansamp=np.intp(1e4), notbs_win=np.float64(2e-4), t_wins=np.float64([[[-2e-2, -1e-2], [-1e-3, 9e-3], [-2e-4, 4e-3]], [[-2e-2, -1e-2], [-1e-3, 9e-3], [-2e-4, 4e-3]]], ), f_bins=np.float64([[1e2, 1e3, 1e4, 1e5], [1e2, 1e3, 1e4, 1e5]]), corr_lowerf=20000, corr_upperf=40000): # Inputs: # ev: Event data (from GetEvent) # tau: The expected time-constant of the exponential decay from the filtered piezo signal # piezo1_fit_type: See corr_signal_types.py #
* sin(δ) where: ϕ - latitude [rad] δ - solar declination [rad] ω - solar time angle [rad] Parameters ---------- dt : numpy.datetime64 Moment. lat : float Decimal latitude in degrees. lon : float Decimal longitude in degrees. Returns ------- float Solar zenith angle in radians. ''' hour_angle = solar_time_angle(dt, lon) phi = np.radians(lat) declination = solar_declination(dt) return np.arccos((np.cos(phi) * np.cos(declination) * np.cos(hour_angle)) + (np.sin(phi) * np.sin(declination))) def instantaneous_exoatmospheric_irradiance(dt, lat, lon): ''' Calculates the exoatmospheric solar irradiance over a horizontal surface at a given moment. The exoatmospheric irradiance is given by Gsc * 1 / dr * cos(Φ) where: Gsc: solar constant (1366 W/m²) dr: relative earth sun distance Φ: solar zenith angle Parameters ---------- dt : numpy.datetime64 Date and time UTC. lat : float Latitude (decimal degrees). lon : float Longitude (decimal degrees). Returns ------- float instantaneous_exoatmospheric_irradiance [W/m²]. ''' dr = 1 / earth_sun_distance(dt) sz = solar_zenith_angle(dt, lat, lon) return np.fmax(1366 * dr * np.cos(sz), 0) def net_shortwave_radiation(rs, albedo = 0.23): ''' Calculates net shortwave radiation as the difference between incoming shortwave radiation and reflected shortwave radiation on a horizontal surface. Parameters ---------- rs : float Incoming shortwave radiation on a horizontal surface [energy / time / area]. albedo : float Albedo of the horizontal surface [adimensional]. The default value is 0.23, which is the albedo of the reference crop for calculation of reference evapotranspiration by means of the standardized Penman-Monteith FAO equation. Returns ------- float The difference between incoming and reflected shortwave radiation (same unit as rs). ''' return (1 - albedo) * rs def cloud_function(rs, rs0, se): ''' Calculates the cloud-dependant part of the equation for net longwave radiation. Parameters ---------- rs : float Solar global irradiance over a horizontal surface [J / m²] rs0 : float Solar global irradiance over a horizontal surface reaching the top of atmosphere [J / m²] se : float Solar elevation angle [rad] ''' rr = np.clip(rs / np.where(se > 0.3, rs0, 1), 0.3, 1) return 1.35 * rr - 0.35 def net_longwave_radiation(tmax, tmin, ea, cf = None, hourly = False): ''' Calculates net longwave radiation for daily or hourly periods. Parameters ---------- tmax : float Maximum air temperature [K]. tmin : float Minimum air temperature [K]. ea : float Water vapour pressure [Pa]. rs : float Solar radiation on a horizontal surface [J/m²]. rs0 : float Solar radiation on a horizontal surface in clear sky conditions [J/m²]. se : float, optional Solar elevation angle at the midpoint of the calculation period. Not necessary if hourly is set False. The default is None. cf_pred : float, optional DESCRIPTION. The default is None. se_threshold : float, optional DESCRIPTION. The default is 0.3. hourly : bool, optional DESCRIPTION. The default is False. Returns ------- float net longwave radiation [J/m**2]. ''' # p1 - emission of longwave radiation by air # p2 - effect of water vapour # cf - effect of cloudness mult = 3600 if (hourly) else 86400 p1 = mult * (stefan_boltzmann_law(tmax) + stefan_boltzmann_law(tmin)) / 2 p2 = 0.34 - 0.004427188724235732 * np.sqrt(ea) return -(p1 * p2 * cf) def clear_sky_radiation(z, ra): return (0.75 + 2e-5 * z) * ra def latent_heat_of_vaporization(temp): ''' Calculates the latent heat of vaporization of water as a function of temperature. Parameters ---------- temp : float Temperature [K]. Returns ------- float latent heat of vaporization of water [J/kg]. ''' return 3145907.15 - 2361 * temp def atmospheric_pressure(z, temp = 293.15, lb = 6.5e-3): """ Calculates atmospheric pressure at a given height. Parameters ---------- z : float Altitude above sea level [m]. temp : float, optional Meam atmospheric temperature [K]. The default is 288.15. lb : float, optional Temperature lapse rate [K / m] (i.e. how many Kelvin the temperature of air decreases with a 1 m increase in altitude). The default is 5e-3 K / m. Returns ------- float Atmospheric pressure at altitude z. """ p0, g, rd = 101325, 9.80665, 287.058 power = -g / (rd * lb) return p0 * ((temp + lb * z) / temp) ** power def log_wind_profile(u1, z2 = 2, z1 = 10, d = 0.084, z0 = 0.01476): """ Estimates wind speed at height z2 based on wind speed measued at height z1, given the height of the zero plane displacement and the roughness length of the surface. For a standardized FAO Peman Monteith ET0 surface you can use the default values for d and z0. If the wind speed is measured at a standard weather station, which measures wind speed at a 10m height, you can use the default value for z1. Parameters ---------- u1 : float Wind speed [m/s] measured at height z1. z2 : float Height z2 [m]. z1 : float, optional Height z1 [m]. The default is 10. d : float, optional Zero plane displacement height. If not set, a default value = 0.08 will be set, which is the zero plane displacement height estimated for a 0.12m height uniform crop. z0 : float, optional Roughness length. If not set, a default value of 0.01476 will be set, which corresponds to the roughness length of the standardized FAO ET0 Penman-Monteith equation. Returns ------- float Wind speed at height z2. """ return u1 * np.log((z2 - d) / z0) / np.log((z1 - d) / z0) def air_density(temp, patm, pw = 0): """ Calculates the density of dry air by means of the universal gas law as a function of air temperature and atmospheric pressure. m / V = [Pw / (Rv * T)] + [Pd / (Rd * T)] where: Pd: Patm - Pw Rw: specific gas constant for water vapour [Rw = 461.495 MJ/kg/K] Rv: specific gas constant for dry air [Rv = 287.058 MJ/kg/K] T: air temperature [K] m/V: density of air [kg/m³] Parameters ---------- temp : float Air temperature [K]. patm : float Atmospheric pressure [Pa]. pw : float Vapour pressure [Pa]. Default to 0 Pa (dry air). Returns ------- float Air density [kg/m³]. """ rd, rw = 287.058, 461.495 # specific gas constant for dry air and water vapour [J / (kg K)] pd = patm - pw return (pd / (rd * temp)) + (pw / (rw * temp)) def absolute_humidity(ea, temp): ''' Calculates absolute humidity from partial pressure of water vapour and air temperature. Parameters ---------- ea : float Partial pressure of water vapour [Pa]. temp : float Absolute temperature [K]. Returns ------- float Absolute humidity [kg / m**3]. ''' rw = 461.495 # specific gas constant for water vapour [J / (kg K)] return ea / (rw * temp) def specific_humidity(patm, ea, temp): ''' Calculates specific humidity of air. Parameters ---------- patm : float Atmospheric pressure [Pa]. ea : float Partial pressure of water vapour [Pa]. temp : float Absolute temperature [K]. Returns ------- float Specific humidity [kg / kg]. ''' rho = air_density(temp, patm, pw = ea) hum = absolute_humidity(ea, temp) return hum / rho def vapour_pressure_from_absolute_humidity(h, temp): """ Calculates the partial pressure of water vapour for a given absolute air humidity and temperature. Parameters ---------- h : float absolute humidity [kg/m³]. temp : float air temperature [K]. Returns ------- float Partial pressure of water vapour [Pa]. """ rw = 461.495 # specific gas constant for water vapour [J / (kg K)] return h * temp * rw def vapour_pressure_from_specific_humidity(q, patm, temp, max_iter = 20): """ Returns the partial pressure of water vapour for a given specific air humidity and atmospheric condition. Parameters ---------- q : float specific humidity of air [kg/kg]. patm : float atmospheric pressure [Pa]. temp : float air temperature [K]. max_iter : integer, optional max number of iterations until it stops. The default is 20. Returns ------- pw : float Vapour pressure [Pa] for
>= 2: print('build_schedule(): Adding input variable hook: ', in_var_hook) print('For input variable: ', ar) # Create post-run hooks for any arrays that are dynamically # allocated inside the schedule. if unique_array_index in self.dynamically_allocated_unique_index: if key in self.array_id_to_param_map: param_attribute_location = self.array_id_to_param_map[key] param_hook = (unique_array_index, param_attribute_location) self.param_post_hooks.append(param_hook) if self.verbosity_level >= 2: print('self.param_hooks: ', self.param_hooks) self.debug_print_unique_arrays_info() # todo: We can potentially reduce memory usage by freeing memory # of intermediate arrays in self.unique_arrays # once they are no longer needed in the schedule or by # parameters. print('end of build_schedule()') self.schedule_built = True def forward(self, inputs): if self.verbosity_level >= 2: print('Calling StaticScheduleFunction.forward()...') # Note: This method will be invoked every iteration starting # from the second # iteration. That is because the corresponding define-by-run # code runs instead # during the first iteration. if not self.schedule_built: raise RuntimeError('forward() was called before ' 'build_schedule()!') self.run_param_pre_hooks() self.run_in_var_hooks(inputs) if self.verbosity_level >= 2: print('Running static schedule...') # Run each function in the static schedule. for x in self.schedule_info_list: x() if self.verbosity_level >= 2: self.debug_print_unique_arrays_info() self.run_out_var_hooks() self.run_param_post_hooks() ret = [] for y in self.out_vars: if y is None or y.data is None: ret.append(None) else: # todo: add test case for an example where the following # copy is required (evaluation mode, repeated calls of # chain that reuse same schedule). ret.append(y.data.copy()) return tuple(ret) def backward(self, target_input_indexes, grad_outputs): if self.verbosity_level >= 2: print('Calling StaticScheduleFunction.backward()...') # The first time this method is called, the define-by-run code is # executed in order to create a static schedule. self.schedule_manager.end_forward() if self.backward_schedule_func is None: print('Creating new backward schedule...') # Create backward schedule and run define-by-run backward code. self.backward_schedule_func = self.get_contained_schedule() # Make local copies of the variables in grad_outputs. new_grad_outputs = [] for var in grad_outputs: # Replace each input variable with a new variable having # the same data. new_grad_outputs.append(chainer.Variable(var.data)) with chainer.using_config('schedule_func', self.backward_schedule_func): with chainer.using_config('enable_backprop', True): for ind, var in enumerate(new_grad_outputs): # todo: possibly don't need the following: self.out_vars[ind].grad = new_grad_outputs[ind].data inputs = [param for param in self.chain.params()] for var in self.in_vars: inputs.append(var) # Need shorter var to avoid "line too long error" ugh = self.enable_double_backprop chainer.grad(self.out_vars, inputs, grad_outputs=new_grad_outputs, set_grad=True, enable_double_backprop=ugh) # We no longer need the backward graph from self.out_vars, so # unchain them. # todo (vogel): enable this eventually. For now, it # causes some needed variables to be set to None # in some models such as CIFAR example. # for var in self.out_vars: # var.unchain_backward() # Note: var.grad_var is allowed to be None below: backward_out_vars = [var.grad_var for var in self.in_vars] self.backward_schedule_func.set_out_variables(backward_out_vars) for n in range(len(self.in_vars)): self.in_vars[n] = None if self.verbosity_level >= 2: print('building backward schedule.') self.backward_schedule_func.build_schedule(self.chain, new_grad_outputs) return self.backward_schedule_func.apply(grad_outputs) class ScheduleManager(object): """A manager of static schedules for a static chain. This is a container of the static schedules that are used by a static chain. Args: minimize_cache_size (bool): If `True`, attempt to reduce memory usage by clearing the cached schedules whenever the training mode changes (that is, whenever `chainer.config.train` changes value) or whenever the mini-batch size changes. """ def __init__(self, minimize_cache_size=True, verbosity_level=0): # Maps a key string to a list of schedule functions. self.schedules = dict() self.minimize_cache_size = minimize_cache_size self.in_use_count = dict() self.forward_over = False self.prev_train_config = None self.max_in_use_train = 0 self.train_count = 0 self.verbosity_level = verbosity_level def get_schedule(self, in_vars, enable_double_backprop=False): """Get a static schedule. Return a static schedule object (that is, an instance of ``StaticScheduleFunction``) that is compatible with the current configuration and input variables to the supplied chain. If there is no existing schedule available, return an empty schedule object. During the usual "training mode" (that is, when both `chainer.config.enable_backprop` and `chainer.config.train` are `True`), this method will always return a distince static schedule each time it is called within the same iteration. It will also try to reuse existing schedules across iterations. Therefore, any schedule that is returned in a given iteration cannot be returned again until the following iteration. However, if either of these flags is 'False', then this method may return the same schedule instance multiple times within the same iteration, as long as it is compatible with `in_vars`. Note that in order to implement the above behavior, the schedule manager must be informed when the current iteration has finished. This is accomplished by calling `end_forward()` after the iteration has finished. If a backward pass is performed, then `end_forward()` will be automatically called. Otherwise, it will not be called and the user will be responsible for calling it. Args: in_vars (tuple of :class:`~chainer.Variable`): The input variables to the chain. Returns: An instance of ``StaticScheduleFunction``. """ if self.forward_over: self.forward_over = False if self.minimize_cache_size: if chainer.config.train != self.prev_train_config: # Training config changed, so clear caches. self.prev_train_config = chainer.config.train if self.verbosity_level >= 2: print("Clearing schedule cache...") self.schedules.clear() self.in_use_count.clear() if (chainer.config.train is False or chainer.config.enable_backprop is False): key_str = 'test:' + \ ''.join(str(x.shape) + str(x.dtype) for x in in_vars) # If the maximum number of in-use schedules in any iteration # during training mode was exactly 1, assume it should also # be 1 for test mode. if key_str in self.schedules: sched_list = self.schedules[key_str] sched = sched_list[0] else: # avoid "line too long": vb = self.verbosity_level edb = enable_double_backprop sched = StaticScheduleFunction(self, verbosity_level=vb, enable_double_backprop=edb) self.schedules[key_str] = [sched] return sched else: key_str = 'train:' + \ ''.join(str(x.shape) + str(x.dtype) for x in in_vars) self.train_count += 1 if key_str in self.schedules: sched_list = self.schedules[key_str] available_index = self.in_use_count[key_str] if available_index >= len(sched_list): # avoid "line too long": vb = self.verbosity_level edb = enable_double_backprop sched = StaticScheduleFunction(self, verbosity_level=vb, enable_double_backprop=edb) sched_list.append(sched) sched = sched_list[available_index] self.in_use_count[key_str] = available_index + 1 else: # avoid "line too long": vb = self.verbosity_level edb = enable_double_backprop sched = StaticScheduleFunction(self, verbosity_level=vb, enable_double_backprop=edb) self.schedules[key_str] = [sched] self.in_use_count[key_str] = 1 return sched def end_forward(self): """Make in-use schedules available for use in next iteration. Set the in-use status of all schedules to "not in use" so that they can be reused in the next iteration. In the case that test mode is active (`chainer.config.train` is `False`) and the static chain corresponding to this manager was not called more than once in any iteration during training mode, then this method will be called automatically. """ if not self.forward_over: for key in self.in_use_count: self.in_use_count[key] = 0 self.forward_over = True if self.train_count > self.max_in_use_train: self.max_in_use_train = self.train_count if self.verbosity_level >= 2: print("Maximum in-use schedules per training iteration: ", self.max_in_use_train) self.train_count = 0 def __repr__(self): out = "ScheduleManager:\n" for key_str in self.schedules: out += "key string: " + key_str sched_list = self.schedules[key_str] out += " -> schedule list of length: " + \ str(len(sched_list)) + '\n' for sched in sched_list: out += str(sched) return out def static_graph(*args, **kwargs): """Decorator to mark a Chain's ``__call__()`` as a static sub-graph. This decorator marks the define-by-run code inside the `__call__()` method of a Chain instance as corresponding to a static computation graph or sub-graph. Such a chain will be referred to as a 'static chain'. This allows various "static graph" optimizations to be performed, which can result in significant speedups for some models. When this decorator is used, the chain's define-by-run code executes during the first iteration as usual. However, while the define-by-run code is executing, a trace is also performed to incrementally create a corresponding static schedule. This static schedule will only contain the subset of the computations inside the define-by-run code that actually needs to run every iteration. Specifically, this will contain the code inside any functions called that were annotated with the `@static_code` decorator, which will include all Chainer built-in functions, as well as any user-defined functions that use `@static_code`. Then, starting from the second iteration, when the static chain is called, its static schedule code will be executed instead of its define-by-run code. However, the user must also be careful of the following: - The user is responsible for applying this decorator correctly. The framework does
0.1*m.x4976 - 0.1*m.x4977 - 0.1*m.x4978 - 0.1*m.x4979 - 0.1*m.x4980 - 0.1*m.x4981 - 0.1*m.x4982 - 0.1*m.x4983 - 0.1*m.x4984 - 0.1*m.x4985 - 0.1*m.x4986 - 0.1*m.x4987 - 0.1*m.x4988 - 0.1*m.x4989 - 0.1*m.x4990 - 0.1*m.x4991 - 0.1*m.x4992 - 0.1*m.x4993 - 0.1*m.x4994 - 0.1*m.x4995 - 0.1*m.x4996 - 0.1*m.x4997 - 0.1*m.x4998 - 0.1*m.x4999 - 0.1*m.x5000 - 0.1*m.x5001 - 0.1*m.x5002 - 0.1*m.x5003 - 0.1*m.x5004 - 0.1*m.x5005 - 0.1*m.x5006 - 0.1*m.x5007 - 0.1*m.x5008 - 0.1*m.x5009 - 0.1*m.x5010 - 0.1*m.x5011 - 0.1*m.x5012 - 0.1*m.x5013 - 0.1*m.x5014 - 0.1*m.x5015 - 0.1*m.x5016 - 0.003*m.x5017 - 0.003*m.x5018 - 0.003*m.x5019 - 0.003*m.x5020 - 0.003*m.x5021 - 0.003*m.x5022 - 0.003*m.x5023 - 0.003*m.x5024 - 0.003*m.x5025 - 0.003*m.x5026 - 0.003*m.x5027 - 0.003*m.x5028 - 0.003*m.x5029 - 0.003*m.x5030 - 0.003*m.x5031 - 0.003*m.x5032 - 0.003*m.x5033 - 0.003*m.x5034 - 0.003*m.x5035 - 0.003*m.x5036 - 0.003*m.x5037 - 0.003*m.x5038 - 0.003*m.x5039 - 0.003*m.x5040 - 0.003*m.x5041 - 0.003*m.x5042 - 0.003*m.x5043 - 0.003*m.x5044 - 0.003*m.x5045 - 0.003*m.x5046 - 0.003*m.x5047 - 0.003*m.x5048 - 0.003*m.x5049 - 0.003*m.x5050 - 0.003*m.x5051 - 0.003*m.x5052 - 0.003*m.x5053 - 0.003*m.x5054 - 0.003*m.x5055 - 0.003*m.x5056 - 0.003*m.x5057 - 0.003*m.x5058 - 0.003*m.x5059 - 0.003*m.x5060 - 0.003*m.x5061 - 0.003*m.x5062 - 0.003*m.x5063 - 0.003*m.x5064 - 0.003*m.x5065 - 0.003*m.x5066 - 0.003*m.x5067 - 0.003*m.x5068 - 0.003*m.x5069 - 0.003*m.x5070 - 0.003*m.x5071 - 0.003*m.x5072 - 0.003*m.x5073 - 0.003*m.x5074 - 0.003*m.x5075 - 0.003*m.x5076 - 0.003*m.x5077 - 0.003*m.x5078 - 0.003*m.x5079 - 0.003*m.x5080 - 0.003*m.x5081 - 0.003*m.x5082 - 0.003*m.x5083 - 0.003*m.x5084 - 0.003*m.x5085 - 0.003*m.x5086 - 0.003*m.x5087 - 0.003*m.x5088 - 0.003*m.x5089 - 0.003*m.x5090 - 0.003*m.x5091 - 0.003*m.x5092 - 0.003*m.x5093 - 0.003*m.x5094 - 0.003*m.x5095 - 0.003*m.x5096 - 0.003*m.x5097 - 0.003*m.x5098 - 0.003*m.x5099 - 0.003*m.x5100 - 0.003*m.x5101 - 0.003*m.x5102 - 0.003*m.x5103 - 0.003*m.x5104 - 0.003*m.x5105 - 0.003*m.x5106 - 0.003*m.x5107 - 0.003*m.x5108 - 0.003*m.x5109 - 0.003*m.x5110 - 0.003*m.x5111 - 0.003*m.x5112 - 0.003*m.x5113 - 0.003*m.x5114 - 0.003*m.x5115 - 0.003*m.x5116 - 0.003*m.x5117 - 0.003*m.x5118 - 0.003*m.x5119 - 0.003*m.x5120 - 0.003*m.x5121 - 0.003*m.x5122 - 0.003*m.x5123 - 0.003*m.x5124 - 0.003*m.x5125 - 0.003*m.x5126 - 0.003*m.x5127 - 0.003*m.x5128 - 0.003*m.x5129 - 0.003*m.x5130 - 0.003*m.x5131 - 0.003*m.x5132 - 0.003*m.x5133 - 0.003*m.x5134 - 0.003*m.x5135 - 0.003*m.x5136 - 0.003*m.x5137 - 0.003*m.x5138 - 0.003*m.x5139 - 0.003*m.x5140 - 0.003*m.x5141 - 0.003*m.x5142 - 0.003*m.x5143 - 0.003*m.x5144 - 0.003*m.x5145 - 0.003*m.x5146 - 0.003*m.x5147 - 0.003*m.x5148 - 0.003*m.x5149 - 0.003*m.x5150 - 0.003*m.x5151 - 0.003*m.x5152 - 0.003*m.x5153 - 0.003*m.x5154 - 0.003*m.x5155 - 0.003*m.x5156 - 0.003*m.x5157 - 0.003*m.x5158 - 0.003*m.x5159 - 0.003*m.x5160 - 0.003*m.x5161 - 0.003*m.x5162 - 0.003*m.x5163 - 0.003*m.x5164 - 0.003*m.x5165 - 0.003*m.x5166 - 0.003*m.x5167 - 0.003*m.x5168 - 0.003*m.x5169 - 0.003*m.x5170 - 0.003*m.x5171 - 0.003*m.x5172 - 0.003*m.x5173 - 0.003*m.x5174 - 0.003*m.x5175 - 0.003*m.x5176 - 0.003*m.x5177 - 0.003*m.x5178 - 0.003*m.x5179 - 0.003*m.x5180 - 0.003*m.x5181 - 0.003*m.x5182 - 0.003*m.x5183 - 0.003*m.x5184 - 0.003*m.x5185 - 0.003*m.x5186 - 0.003*m.x5187 - 0.003*m.x5188 - 0.003*m.x5189 - 0.003*m.x5190 - 0.003*m.x5191 - 0.003*m.x5192 - 0.003*m.x5193 - 0.003*m.x5194 - 0.003*m.x5195 - 0.003*m.x5196 - 0.003*m.x5197 - 0.003*m.x5198 - 0.003*m.x5199 - 0.003*m.x5200 - 0.003*m.x5201 - 0.003*m.x5202 - 0.003*m.x5203 - 0.003*m.x5204 - 0.003*m.x5205 - 0.003*m.x5206 - 0.003*m.x5207 - 0.003*m.x5208 - 0.003*m.x5209 - 0.003*m.x5210 - 0.003*m.x5211 - 0.003*m.x5212 - 0.003*m.x5213 - 0.003*m.x5214 - 0.003*m.x5215 - 0.003*m.x5216 - 0.003*m.x5217 - 0.003*m.x5218 - 0.003*m.x5219 - 0.003*m.x5220 - 0.003*m.x5221 - 0.003*m.x5222 - 0.003*m.x5223 - 0.003*m.x5224 - 0.003*m.x5225 - 0.003*m.x5226 - 0.003*m.x5227 - 0.003*m.x5228 - 0.003*m.x5229 - 0.003*m.x5230 - 0.003*m.x5231 - 0.003*m.x5232 - 0.003*m.x5233 - 0.003*m.x5234 - 0.003*m.x5235 - 0.003*m.x5236 - 0.003*m.x5237 - 0.003*m.x5238 - 0.003*m.x5239 - 0.003*m.x5240 - 0.003*m.x5241 - 0.003*m.x5242 - 0.003*m.x5243 - 0.003*m.x5244 - 0.003*m.x5245 - 0.003*m.x5246 - 0.003*m.x5247 - 0.003*m.x5248 - 0.003*m.x5249 - 0.003*m.x5250 - 0.003*m.x5251 - 0.003*m.x5252 - 0.003*m.x5253 - 0.003*m.x5254 - 0.003*m.x5255 - 0.003*m.x5256 - 0.003*m.x5257 - 0.003*m.x5258 - 0.003*m.x5259 - 0.003*m.x5260 - 0.003*m.x5261 - 0.003*m.x5262 - 0.003*m.x5263 - 0.003*m.x5264 - 0.003*m.x5265 - 0.003*m.x5266 - 0.003*m.x5267 - 0.003*m.x5268 - 0.003*m.x5269 - 0.003*m.x5270 - 0.003*m.x5271 - 0.003*m.x5272 - 0.003*m.x5273 - 0.003*m.x5274 - 0.003*m.x5275 - 0.003*m.x5276 - 0.003*m.x5277 - 0.003*m.x5278 - 0.003*m.x5279 - 0.003*m.x5280 - 0.003*m.x5281 - 0.003*m.x5282 - 0.003*m.x5283 - 0.003*m.x5284 - 0.003*m.x5285 - 0.003*m.x5286 - 0.003*m.x5287 - 0.003*m.x5288 - 0.003*m.x5289 - 0.003*m.x5290 - 0.003*m.x5291 - 0.003*m.x5292 - 0.003*m.x5293 - 0.003*m.x5294 - 0.003*m.x5295 - 0.003*m.x5296 - 0.003*m.x5297 - 0.003*m.x5298 - 0.003*m.x5299 - 0.003*m.x5300 - 0.003*m.x5301 - 0.003*m.x5302 - 0.003*m.x5303 - 0.003*m.x5304 - 0.003*m.x5305 - 0.003*m.x5306 - 0.003*m.x5307 - 0.003*m.x5308 - 0.003*m.x5309 - 0.003*m.x5310 - 0.003*m.x5311 - 0.003*m.x5312 - 0.003*m.x5313 - 0.003*m.x5314 - 0.003*m.x5315 - 0.003*m.x5316 - 0.003*m.x5317 - 0.003*m.x5318 - 0.003*m.x5319 - 0.003*m.x5320 - 0.003*m.x5321 - 0.003*m.x5322 - 0.003*m.x5323 - 0.003*m.x5324 - 0.003*m.x5325 - 0.003*m.x5326 - 0.003*m.x5327 - 0.003*m.x5328 - 0.003*m.x5329 - 0.003*m.x5330 - 0.003*m.x5331 - 0.003*m.x5332 - 0.003*m.x5333 - 0.003*m.x5334 - 0.003*m.x5335 - 0.003*m.x5336 - 0.003*m.x5337 - 0.003*m.x5338 - 0.003*m.x5339 - 0.003*m.x5340 - 0.003*m.x5341 - 0.003*m.x5342 - 0.003*m.x5343 - 0.003*m.x5344 - 0.003*m.x5345 - 0.003*m.x5346 - 0.003*m.x5347 - 0.003*m.x5348 - 0.003*m.x5349 - 0.003*m.x5350 - 0.003*m.x5351 - 0.003*m.x5352 - 0.003*m.x5353 - 0.003*m.x5354 - 0.003*m.x5355 - 0.003*m.x5356 - 0.003*m.x5357 - 0.003*m.x5358 - 0.003*m.x5359 - 0.003*m.x5360 - 0.003*m.x5361 - 0.003*m.x5362 - 0.003*m.x5363 - 0.003*m.x5364 - 0.003*m.x5365 - 0.003*m.x5366 - 0.003*m.x5367 - 0.003*m.x5368 - 0.003*m.x5369 - 0.003*m.x5370 - 0.003*m.x5371 - 0.003*m.x5372 - 0.003*m.x5373 - 0.003*m.x5374 - 0.003*m.x5375 - 0.003*m.x5376 - 0.003*m.x5377 - 0.003*m.x5378 - 0.003*m.x5379 - 0.003*m.x5380 - 0.003*m.x5381 - 0.003*m.x5382 - 0.003*m.x5383 - 0.003*m.x5384 - 0.003*m.x5385 - 0.003*m.x5386 - 0.003*m.x5387 - 0.003*m.x5388 - 0.003*m.x5389 - 0.003*m.x5390 - 0.003*m.x5391 - 0.003*m.x5392 - 0.003*m.x5393 - 0.003*m.x5394 - 0.003*m.x5395 - 0.003*m.x5396 - 0.003*m.x5397 - 0.003*m.x5398 - 0.003*m.x5399 - 0.003*m.x5400 - 0.003*m.x5401 - 0.003*m.x5402 - 0.003*m.x5403 - 0.003*m.x5404 - 0.003*m.x5405 - 0.003*m.x5406 - 0.003*m.x5407 - 0.003*m.x5408 - 0.003*m.x5409 - 0.003*m.x5410 - 0.003*m.x5411 - 0.003*m.x5412 - 0.003*m.x5413 - 0.003*m.x5414 - 0.003*m.x5415 - 0.003*m.x5416 - 0.003*m.x5417 - 0.003*m.x5418 - 0.003*m.x5419 - 0.003*m.x5420 - 0.003*m.x5421 - 0.003*m.x5422 - 0.003*m.x5423 - 0.003*m.x5424 - 0.003*m.x5425 - 0.003*m.x5426 - 0.003*m.x5427 - 0.003*m.x5428 - 0.003*m.x5429 - 0.003*m.x5430 - 0.003*m.x5431 - 0.003*m.x5432 - 0.003*m.x5433 - 0.003*m.x5434 - 0.003*m.x5435 - 0.003*m.x5436 - 0.003*m.x5437 - 0.003*m.x5438 - 0.003*m.x5439 - 0.003*m.x5440 - 0.003*m.x5441 - 0.003*m.x5442 - 0.003*m.x5443 - 0.003*m.x5444 - 0.003*m.x5445 - 0.003*m.x5446 - 0.003*m.x5447 - 0.003*m.x5448 - 0.003*m.x5449 - 0.003*m.x5450 - 0.003*m.x5451 - 0.003*m.x5452 - 0.003*m.x5453 - 0.003*m.x5454 - 0.003*m.x5455 - 0.003*m.x5456 - 0.003*m.x5457 - 0.003*m.x5458 - 0.003*m.x5459 - 0.003*m.x5460 - 0.003*m.x5461 - 0.003*m.x5462 - 0.003*m.x5463 - 0.003*m.x5464 - 0.003*m.x5465 - 0.003*m.x5466 - 0.003*m.x5467 - 0.003*m.x5468 - 0.003*m.x5469 - 0.003*m.x5470 - 0.003*m.x5471 - 0.003*m.x5472 - 0.003*m.x5473 - 0.003*m.x5474 - 0.003*m.x5475 - 0.003*m.x5476 - 0.003*m.x5477 - 0.003*m.x5478 - 0.003*m.x5479 - 0.003*m.x5480 - 0.003*m.x5481 - 0.003*m.x5482 - 0.003*m.x5483 - 0.003*m.x5484 - 0.003*m.x5485 - 0.003*m.x5486 - 0.003*m.x5487 - 0.003*m.x5488 - 0.003*m.x5489 - 0.003*m.x5490 - 0.003*m.x5491 - 0.003*m.x5492 - 0.003*m.x5493 - 0.003*m.x5494 - 0.003*m.x5495 - 0.003*m.x5496 - 0.003*m.x5497 - 0.003*m.x5498 - 0.003*m.x5499 - 0.003*m.x5500 - 0.003*m.x5501 - 0.003*m.x5502 - 0.003*m.x5503 - 0.003*m.x5504 - 0.003*m.x5505 - 0.003*m.x5506 - 0.003*m.x5507 - 0.003*m.x5508 - 0.003*m.x5509 - 0.003*m.x5510 - 0.003*m.x5511 - 0.003*m.x5512 - 0.003*m.x5513 - 0.003*m.x5514 - 0.003*m.x5515 - 0.003*m.x5516 - 0.003*m.x5517 - 0.003*m.x5518 - 0.003*m.x5519 - 0.003*m.x5520 - 0.003*m.x5521 - 0.003*m.x5522 - 0.003*m.x5523 - 0.003*m.x5524 - 0.003*m.x5525 - 0.003*m.x5526 - 0.003*m.x5527 - 0.003*m.x5528 - 0.003*m.x5529 - 0.003*m.x5530 - 0.003*m.x5531 - 0.003*m.x5532 - 0.003*m.x5533 - 0.003*m.x5534 - 0.003*m.x5535 - 0.003*m.x5536 - 0.003*m.x5537 - 0.003*m.x5538 - 0.003*m.x5539 - 0.003*m.x5540 - 0.003*m.x5541 - 0.003*m.x5542 - 0.003*m.x5543 - 0.003*m.x5544 - 0.003*m.x5545 - 0.003*m.x5546 - 0.003*m.x5547 - 0.003*m.x5548 - 0.003*m.x5549 - 0.003*m.x5550 - 0.003*m.x5551 - 0.003*m.x5552 - 0.003*m.x5553 - 0.003*m.x5554 - 0.003*m.x5555 - 0.003*m.x5556 - 0.003*m.x5557 - 0.003*m.x5558 - 0.003*m.x5559 - 0.003*m.x5560 - 0.003*m.x5561 - 0.003*m.x5562 - 0.003*m.x5563 - 0.003*m.x5564 - 0.003*m.x5565 - 0.003*m.x5566 - 0.003*m.x5567 - 0.003*m.x5568 - 0.003*m.x5569 - 0.003*m.x5570 - 0.003*m.x5571 - 0.003*m.x5572 - 0.003*m.x5573 - 0.003*m.x5574 - 0.003*m.x5575 - 0.003*m.x5576 - 0.003*m.x5577 - 0.003*m.x5578 - 0.003*m.x5579 - 0.003*m.x5580 - 0.003*m.x5581 - 0.003*m.x5582 - 0.003*m.x5583 - 0.003*m.x5584 - 0.003*m.x5585 - 0.003*m.x5586 - 0.003*m.x5587 - 0.003*m.x5588 - 0.003*m.x5589 - 0.003*m.x5590 - 0.003*m.x5591 - 0.003*m.x5592 - 0.003*m.x5593 - 0.003*m.x5594 - 0.003*m.x5595 - 0.003*m.x5596 - 0.003*m.x5597 - 0.003*m.x5598 - 0.003*m.x5599 - 0.003*m.x5600 - 0.003*m.x5601 - 0.003*m.x5602 - 0.003*m.x5603 - 0.003*m.x5604 - 0.003*m.x5605 - 0.003*m.x5606 - 0.003*m.x5607 - 0.003*m.x5608 - 0.003*m.x5609 - 0.003*m.x5610 - 0.003*m.x5611 - 0.003*m.x5612 - 0.003*m.x5613 - 0.003*m.x5614 - 0.003*m.x5615 -
""" peak, center_x, center_y, radius, focus, width_x, width_y = theta if 7. < center_x < 14. and 7. < center_y < 14. and 0. < width_x < 0.25 and 0. < width_y < 0.3 and \ peakrange[0] < peak < peakrange[1] and 0.4 < radius < 2. and 0.3 < focus < 2.: return 0. else: return -np.inf def log_likelihood(theta, x, y, data, var, size): """ Logarithm of the likelihood function. """ #unpack the parameters peak, center_x, center_y, radius, focus, width_x, width_y = theta #1)Generate a model Airy disc amplitude = _amplitudeFromPeak(peak, center_x, center_y, radius, x_0=int(size[0]/2.-0.5), y_0=int(size[1]/2.-0.5)) airy = models.AiryDisk2D(amplitude, center_x, center_y, radius) adata = airy.eval(x, y, amplitude, center_x, center_y, radius).reshape(size) #2)Apply Focus f = models.Gaussian2D(1., center_x, center_y, focus, focus, 0.) focusdata = f.eval(x, y, 1., center_x, center_y, focus, focus, 0.).reshape(size) model = signal.convolve2d(adata, focusdata, mode='same') #3)Apply CCD diffusion, approximated with a Gaussian CCDdata = np.array([[0.0, width_y, 0.0], [width_x, (1.-width_y-width_y-width_x-width_x), width_x], [0.0, width_y, 0.0]]) model = signal.convolve2d(model, CCDdata, mode='same').flatten() #true for Gaussian errors #lnL = - 0.5 * np.sum((data - model)**2 / var) #<NAME>. said that this should be from the model not data so recompute var (now contains rn**2) var += model.copy() lnL = - (np.size(var)*np.sum(np.log(var))) - (0.5 * np.sum((data - model)**2 / var)) return lnL def _printResults(best_params, errors): """ Print basic results. """ print("=" * 60) print('Fitting with MCMC:') pars = ['peak', 'center_x', 'center_y', 'radius', 'focus', 'width_x', 'width_y'] print('*'*20 + ' Fitted parameters ' + '*'*20) for name, value, sig in zip(pars, best_params, errors): print("{:s} = {:e} +- {:e}" .format(name, value, sig)) print("=" * 60) def _printFWHM(sigma_x, sigma_y, sigma_xerr, sigma_yerr, req=10.8): """ Print results and compare to the requirement at 800nm. """ print("=" * 60) print 'FWHM (requirement %.1f microns):' % req print round(np.sqrt(_FWHMGauss(sigma_x)*_FWHMGauss(sigma_y)), 2), ' +/- ', \ round(np.sqrt(_FWHMGauss(sigma_xerr)*_FWHMGauss(sigma_yerr)), 3) , ' microns' print 'x:', round(_FWHMGauss(sigma_x), 2), ' +/- ', round(_FWHMGauss(sigma_xerr), 3), ' microns' print 'y:', round(_FWHMGauss(sigma_y), 2), ' +/- ', round(_FWHMGauss(sigma_yerr), 3), ' microns' print("=" * 60) def _FWHMGauss(sigma, pixel=12): """ Returns the FWHM of a Gaussian with a given sigma. The returned values is in microns (pixel = 12microns). """ return sigma*2*np.sqrt(2*np.log(2))*pixel def _ellipticityFromGaussian(sigmax, sigmay): """ Ellipticity """ return np.abs((sigmax**2 - sigmay**2) / (sigmax**2 + sigmay**2)) def _ellipticityerr(sigmax, sigmay, sigmaxerr, sigmayerr): """ Error on ellipticity. """ e = _ellipticityFromGaussian(sigmax, sigmay) err = e * np.sqrt((sigmaxerr/e)**2 + (sigmayerr/e)**2) return err def _R2FromGaussian(sigmax, sigmay, pixel=0.1): """ R2. """ return (sigmax*pixel)**2 + (sigmay*pixel)**2 def _R2err(sigmax, sigmay, sigmaxerr ,sigmayerr): """ Error on R2. """ err = np.sqrt((2*_R2FromGaussian(sigmax, sigmay))**2*sigmaxerr**2 + (2*_R2FromGaussian(sigmax, sigmay))**2*sigmayerr**2) return err def _plotDifferenceIndividualVsJoined(individuals, joined, title='800nm', sigma=3, requirementFWHM=10.8, requirementE=0.156, requirementR2=0.002, truthx=None, truthy=None, FWHMlims=(7.6, 10.3)): """ Simple plot """ ind = [] for file in g.glob(individuals): print file ind.append(fileIO.cPicleRead(file)) join = fileIO.cPicleRead(joined) xtmp = np.arange(len(ind)) + 1 #plot FWHM fig = plt.figure() ax1 = fig.add_subplot(311) ax2 = fig.add_subplot(312) ax3 = fig.add_subplot(313) fig.subplots_adjust(hspace=0, top=0.93, bottom=0.17, left=0.12, right=0.98) ax1.set_title(title) wxind = np.asarray([_FWHMGauss(data['wx']) for data in ind]) wyind = np.asarray([_FWHMGauss(data['wy']) for data in ind]) wxerr = np.asarray([sigma*_FWHMGauss(data['wxerr']) for data in ind]) wyerr = np.asarray([sigma*_FWHMGauss(data['wyerr']) for data in ind]) ax1.errorbar(xtmp, wxind, yerr=wxerr, fmt='o') ax1.errorbar(xtmp[-1]+1, _FWHMGauss(join['wx']), yerr=sigma*_FWHMGauss(join['wxerr']), fmt='s', c='r') ax2.errorbar(xtmp, wyind, yerr=wyerr, fmt='o') ax2.errorbar(xtmp[-1]+1, _FWHMGauss(join['wy']), yerr=sigma*_FWHMGauss(join['wyerr']), fmt='s', c='r') geommean = np.sqrt(wxind*wyind) err = np.sqrt(wxerr*wyerr) ax3.errorbar(xtmp, geommean, yerr=err, fmt='o') ax3.errorbar(xtmp[-1]+1, np.sqrt(_FWHMGauss(join['wx'])*_FWHMGauss(join['wy'])), yerr=sigma*np.sqrt(_FWHMGauss(join['wxerr'])*_FWHMGauss(join['wyerr'])), fmt='s', c='r') #simulations if truthx is not None: ax1.axhline(y=_FWHMGauss(truthx), label='Input', c='g') if truthy is not None: ax2.axhline(y=_FWHMGauss(truthy), label='Input', c='g') ax3.axhline(y=np.sqrt(_FWHMGauss(truthx)*_FWHMGauss(truthy)), label='Input', c='g') #requirements if requirementFWHM is not None: ax1.axhline(y=requirementFWHM, label='Requirement (800nm)', c='r', ls='--') ax2.axhline(y=requirementFWHM, label='Requirement (800nm)', c='r', ls='--') ax3.axhline(y=requirementFWHM, label='Requirement (800nm)', c='r', ls='-') plt.sca(ax1) plt.xticks(visible=False) plt.sca(ax2) plt.xticks(visible=False) plt.sca(ax3) ltmp = np.hstack((xtmp, xtmp[-1]+1)) plt.xticks(ltmp, ['Individual %i' % x for x in ltmp[:-1]] + ['Joint',], rotation=45) #ax1.set_ylim(7.1, 10.2) ax1.set_ylim(*FWHMlims) ax2.set_ylim(*FWHMlims) #ax2.set_ylim(8.6, 10.7) ax3.set_ylim(*FWHMlims) ax1.set_xlim(xtmp.min()*0.9, (xtmp.max() + 1)*1.05) ax2.set_xlim(xtmp.min()*0.9, (xtmp.max() + 1)*1.05) ax3.set_xlim(xtmp.min()*0.9, (xtmp.max() + 1)*1.05) ax1.set_ylabel(r'FWHM$_{X} \, [\mu$m$]$') ax2.set_ylabel(r'FWHM$_{Y} \, [\mu$m$]$') #ax3.set_ylabel(r'FWHM$=\sqrt{FWHM_{X}FWHM_{Y}} \quad [\mu$m$]$') ax3.set_ylabel(r'FWHM$ \, [\mu$m$]$') ax1.legend(shadow=True, fancybox=True) plt.savefig('IndividualVsJoinedFWHM%s.pdf' % title) plt.close() #plot R2 and ellipticity fig = plt.figure() ax1 = fig.add_subplot(211) ax2 = fig.add_subplot(212) fig.subplots_adjust(hspace=0, top=0.93, bottom=0.17, left=0.12, right=0.98) ax1.set_title(title) R2x = [_R2FromGaussian(data['wx'], data['wy'])*1e3 for data in ind] errR2 = [sigma*1.e3*_R2err(data['wx'], data['wy'], data['wxerr'], data['wyerr']) for data in ind] ax1.errorbar(xtmp, R2x, yerr=errR2, fmt='o') ax1.errorbar(xtmp[-1]+1, _R2FromGaussian(join['wx'], join['wy'])*1e3, yerr=sigma*1.e3*_R2err(join['wx'], join['wy'], join['wxerr'], join['wyerr']), fmt='s') ell = [_ellipticityFromGaussian(data['wx'], data['wy']) for data in ind] ellerr = [sigma*_ellipticityerr(data['wx'], data['wy'], data['wxerr'], data['wyerr']) for data in ind] ax2.errorbar(xtmp, ell, yerr=ellerr, fmt='o') ax2.errorbar(xtmp[-1]+1, _ellipticityFromGaussian(join['wx'], join['wy']), yerr=sigma*_ellipticityerr(join['wx'], join['wy'], join['wxerr'], join['wyerr']), fmt='s') if requirementE is not None: ax2.axhline(y=requirementE, label='Requirement (800nm)', c='r') if requirementR2 is not None: ax1.axhline(y=requirementR2*1e3, label='Requirement (800nm)', c='r') #simulations if truthx and truthy is not None: ax2.axhline(y=_ellipticityFromGaussian(truthx, truthy), label='Input', c='g') ax1.axhline(y= _R2FromGaussian(truthx, truthy)*1e3, label='Input', c='g') plt.sca(ax1) plt.xticks(visible=False) plt.sca(ax2) ltmp = np.hstack((xtmp, xtmp[-1]+1)) plt.xticks(ltmp, ['Individual%i' % x for x in ltmp[:-1]] + ['Joint',], rotation=45) ax1.set_ylim(0.0011*1e3, 0.003*1e3) ax2.set_ylim(0., 0.23) ax1.set_xlim(xtmp.min()*0.9, (xtmp.max() + 1)*1.05) ax2.set_xlim(xtmp.min()*0.9, (xtmp.max() + 1)*1.05) ax1.set_ylabel(r'$R^{2}$ [mas$^{2}$]') ax2.set_ylabel('ellipticity') ax1.legend(shadow=True, fancybox=True) plt.savefig('IndividualVsJoinedR2e%s.pdf' % title) plt.close() def _plotModelResiduals(id='simulated800nmJoint1', folder='results/', out='Residual.pdf', individual=False): """ Generate a plot with data, model, and residuals. """ #data if individual: data = pf.getdata(folder+id+'small.fits') data[data < 1] = 1. data = np.log10(data) else: data = pf.getdata(folder+id+'datafit.fits') data[data < 1] = 1. data = np.log10(data) #model model = pf.getdata(folder+id+'model.fits ') model[model < 1] = 1. model = np.log10(model) #residual residual = pf.getdata(folder+id+'residual.fits') #squared residual residualSQ = pf.getdata(folder+id+'residualSQ.fits') max = np.max((data.max(), model.max())) #figure fig = plt.figure(figsize=(12, 12)) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223) ax4 = fig.add_subplot(224) ax = [ax1, ax2, ax3, ax4] fig.subplots_adjust(hspace=0.05, wspace=0.3, top=0.95, bottom=0.02, left=0.02, right=0.9) ax1.set_title('Data') ax2.set_title('Model') ax3.set_title('Residual') ax4.set_title('$L^{2}$ Residual') im1 = ax1.imshow(data, interpolation='none', vmax=max, origin='lower', vmin=0.1) im2 = ax2.imshow(model, interpolation='none', vmax=max, origin='lower', vmin=0.1) im3 = ax3.imshow(residual, interpolation='none', origin='lower', vmin=-100, vmax=100) im4 = ax4.imshow(residualSQ, interpolation='none', origin='lower', vmin=0., vmax=10) divider = make_axes_locatable(ax1) cax1 = divider.append_axes("right", size="5%", pad=0.05) divider = make_axes_locatable(ax2) cax2 = divider.append_axes("right", size="5%", pad=0.05) divider = make_axes_locatable(ax3) cax3 = divider.append_axes("right", size="5%", pad=0.05) divider = make_axes_locatable(ax4) cax4 = divider.append_axes("right", size="5%", pad=0.05) cbar1 = plt.colorbar(im1, cax=cax1) cbar1.set_label(r'$\log_{10}(D_{i, j} \quad [e^{-}]$)') cbar2 = plt.colorbar(im2, cax=cax2) cbar2.set_label(r'$\log_{10}(M_{i, j} \quad [e^{-}]$)') cbar3 = plt.colorbar(im3, cax=cax3) cbar3.set_label(r'$M_{i, j} - D_{i, j} \quad [e^{-}]$') cbar4 = plt.colorbar(im4, cax=cax4) cbar4.set_label(r'$\frac{(M_{i, j} - D_{i, j})^{2}}{\sigma_{CCD}^{2}}$') for tmp in ax: plt.sca(tmp) plt.xticks(visible=False) plt.yticks(visible=False) plt.savefig(out) plt.close() def plotAllResiduals(): """ Plot residuals of all model fits. """ #Joint fits files = g.glob('results/J*.fits') individuals = [file for file in files if 'datafit' in file] for file in individuals: id = file.replace('results/', '').replace('datafit.fits', '') print 'processing:', id _plotModelResiduals(id=id, folder='results/', out='results/%sResidual.pdf' % id) #Individual fits files = g.glob('results/I*.fits') individuals = [file for file in files if 'model' in file] for file in individuals: id = file.replace('results/', '').replace('model.fits', '') print 'processing:', id _plotModelResiduals(id=id, folder='results/', out='results/%sResidual.pdf' % id, individual=True) def _amplitudeFromPeak(peak, x, y, radius, x_0=10, y_0=10): """ This function can be used to estimate an Airy disc amplitude from the peak pixel, centroid and radius. """ rz = jn_zeros(1, 1)[0] / np.pi r = np.sqrt((x - x_0) ** 2 + (y - y_0) ** 2) / (radius / rz) if r == 0.: return peak rt = np.pi * r z = (2.0 * j1(rt) / rt)**2 amp = peak / z return amp def _peakFromTruth(theta, size=21): """ Derive the peak value from the parameters used for simulations. """ amplitude, center_x, center_y, radius, focus, width_x, width_y = theta x = np.arange(0, size) y = np.arange(0, size) x, y = np.meshgrid(x, y) airy = models.AiryDisk2D(amplitude, center_x, center_y, radius) adata = airy.eval(x, y, amplitude, center_x, center_y, radius) return adata.max() def _simpleExample(CCDx=10, CCDy=10): spot = np.zeros((21, 21)) #Create the coordinates x and y x = np.arange(0, spot.shape[1]) y = np.arange(0, spot.shape[0]) #Put the coordinates in a mesh xx, yy = np.meshgrid(x, y) peak, center_x, center_y, radius, focus, width_x, width_y = (200000, 10.1, 9.95, 0.5, 0.5, 0.03, 0.06) amplitude = _amplitudeFromPeak(peak, center_x, center_y, radius, x_0=CCDx, y_0=CCDy) airy = models.AiryDisk2D(amplitude, center_x, center_y, radius) adata = airy.eval(xx, yy, amplitude, center_x, center_y, radius).reshape(spot.shape) f = models.Gaussian2D(1., center_x, center_y, focus, focus, 0.) focusdata = f.eval(xx, yy, 1., center_x, center_y, focus, focus, 0.).reshape(spot.shape) foc = signal.convolve2d(adata, focusdata, mode='same') fileIO.writeFITS(foc, 'TESTfocus.fits', int=False) CCDdata = np.array([[0.0, width_y, 0.0], [width_x, (1.-width_y-width_y-width_x-width_x),
v)) pass # # load polygons face # vIndex = 0 model = Character(modelName) model.setPythonTag('path', pmx_model.path) model.setPythonTag('version', str(pmx_model.version)) model.setPythonTag('name', modelName) model.setPythonTag('english_name', pmx_model.english_name) model.setPythonTag('comment', pmx_model.comment) model.setPythonTag('english_comment', pmx_model.english_comment) modelPath = NodePath(model) modelBody = ModelRoot('Body') modelBody.setPythonTag('Skins', skins) bodyPath = NodePath(modelBody) bodyPath.reparentTo(modelPath) materials = MaterialCollection() matIndex = 0 matCount = len(pmx_model.materials) for mat in pmx_model.materials: # # load materials # log(u'Loading Material %03d: %s' % (matIndex, mat.name), force=True) material = Material(mat.name) material.setDiffuse(VBase4(mat.diffuse_color.r, mat.diffuse_color.g, mat.diffuse_color.b, mat.alpha)) if mat.specular_factor > 0 or (mat.specular_color.r != 1 and mat.specular_color.g != 1 and mat.specular_color.b != 1): material.setSpecular(VBase4(mat.specular_color.r, mat.specular_color.g, mat.specular_color.b, 1)) material.setShininess(mat.specular_factor*20) else: material.setSpecular(VBase4(mat.ambient_color.r, mat.ambient_color.g, mat.ambient_color.b, 0.01)) material.setShininess(0) material.setAmbient(VBase4(mat.ambient_color.r, mat.ambient_color.g, mat.ambient_color.b, 1)) material.setEmission(VBase4(0, 0, 0, 1)) matflag_twoside = bool(mat.flag & 0b00000001) # 两面描画 matflag_shadowfloor = bool(mat.flag & 0b00000010) # 地面影 matflag_shadowself0 = bool(mat.flag & 0b00000100) # セルフ影マツ matflag_shadowself1 = bool(mat.flag & 0b00001000) # セルフ影 matflag_outline = bool(mat.flag & 0b00010000) # 輪郭有效 # material.setLocal(False) material.setLocal(True) if matflag_twoside: # 两面描画 material.setTwoside(True) else: material.setTwoside(False) if matflag_shadowfloor: # 地面影 pass if matflag_shadowself0: # セルフ影マツ pass if matflag_shadowself1: # セルフ影 pass if matflag_outline: # 輪郭有效 pass materials.addMaterial(material) log(u'Loaded Material %03d: %s' % (matIndex, mat.name)) # # Load vertex for every material/polygon face # prim = GeomTriangles(Geom.UHDynamic) log(u'Loading Polygons %03d: %s' % (matIndex, mat.name), force=True) for idx in range(vIndex, vIndex+mat.vertex_count, 3): # flip trig-face for inverted axis-y/axis-z prim.addVertices(pmx_model.indices[idx+2], pmx_model.indices[idx+1], pmx_model.indices[idx+0]) prim.closePrimitive() geom = Geom(vdata) geom.addPrimitive(prim) node = GeomNode(mat.name) node.addGeom(geom) nodePath = NodePath(node) nodePath.setPythonTag('english_name', mat.english_name) # # set polygon face material # # Apply the material to this nodePath tsid = matCount - matIndex tsid_main = tsid tsid_sphere = tsid tsid_toon = tsid # tsid_main = 1 # tsid_sphere = 2 # tsid_toon = 3 nodePath.setMaterial(material, tsid_main) nodePath.setTwoSided(material.getTwoside()) nodePath.setPythonTag('edge_color', mat.edge_color) nodePath.setPythonTag('edge_size', mat.edge_size) nodePath.setPythonTag('material_index', matIndex) nodePath.setPythonTag('material', material) nodePath.setPythonTag('vIndex', vIndex) nodePath.setPythonTag('vCount', mat.vertex_count) nodePath.setPythonTag('pickableObjTag', 1) if mat.texture_index < 0 and mat.sphere_texture_index < 0 and mat.toon_texture_index < 0: nodePath.setTransparency(TransparencyAttrib.MDual, matIndex) else: if mat.alpha == 1: nodePath.setTransparency(TransparencyAttrib.MNone, matIndex) else: nodePath.setTransparency(TransparencyAttrib.MAlpha, matIndex) pass # if mat.alpha<1: # nodePath.setTransparency(TransparencyAttrib.MAlpha, matIndex) # # set polygon face main textures # if mat.texture_index >= 0: # print('Texture %s : Main %03d' % (mat.name, mat.texture_index)) texMain = textures[mat.texture_index] if texMain and texMain.hasRamImage(): if matflag_outline: # 輪郭有效 texMain.setBorderColor(VBase4(mat.edge_color.r, mat.edge_color.g, mat.edge_color.b, mat.edge_color.a)) pass # texMain.setWrapU(Texture.WMClamp) ts_main = TextureStage('%3d_%s_main' % (matIndex, mat.name)) ts_main.setColor(VBase4(mat.ambient_color.r, mat.ambient_color.g, mat.ambient_color.b, 1)) ts_main.setSort(tsid_main) ts_main.setPriority(tsid_main) if hasAlpha(texMain): # if nodePath.getTransparency() != TransparencyAttrib.MNone: # pass # # it's a stupid method for setTransparency, but now i can not found another effected method # if not matflag_outline: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif matflag_outline and mat.edge_color.a != 1: nodePath.setTransparency(TransparencyAttrib.MMultisample, tsid_main) elif mat.edge_color.a == 1: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.sphere_texture_index < 0: nodePath.setTransparency(TransparencyAttrib.MAlpha, tsid_main) else: # nodePath.setTransparency(TransparencyAttrib.MAlpha, tsid_main) nodePath.setTransparency(TransparencyAttrib.MMultisample, tsid_main) # print('setting alpha except') pass # # it's a stupid method for setTransparency, but now i can not found another effected method # # print mat.name.lower()[:4] if mat.alpha == 1: if matflag_twoside and mat.specular_factor > 100: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif not matflag_twoside and mat.specular_factor > 20: nodePath.setTransparency(TransparencyAttrib.MNone, tsid_main) elif matflag_twoside and mat.specular_factor > 20: nodePath.setTransparency(TransparencyAttrib.MAlpha, tsid_main) elif matflag_twoside and mat.specular_factor > 10: pass elif matflag_twoside and 2 < mat.specular_factor <= 10: nodePath.setTransparency(TransparencyAttrib.MNone, tsid_main) pass elif matflag_twoside and mat.specular_factor >= 5: nodePath.setTransparency(TransparencyAttrib.MAlpha, tsid_main) elif matflag_twoside and mat.specular_factor > 1: nodePath.setTransparency(TransparencyAttrib.MNone, tsid_main) elif mat.alpha == 0: nodePath.setTransparency(TransparencyAttrib.MAlpha, tsid_main) elif 0.998 <= mat.alpha < 1: nodePath.setTransparency(TransparencyAttrib.MNone, tsid_main) elif mat.sphere_texture_index < 0 and mat.specular_factor > 0: nodePath.setTransparency(TransparencyAttrib.MAlpha, tsid_main) elif mat.sphere_texture_index < 0 and not matflag_twoside and mat.specular_factor > 20: nodePath.setTransparency(TransparencyAttrib.MNone, tsid_main) else: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) # nodePath.setTransparency(TransparencyAttrib.MBinary, tsid_main) # # setting alpha for transparency color mode texture # texImage = texMain.getRamImageAs('RGB') pixel_LT = texImage.getData()[0:3] # pr,pg,pb = ord(pixel_LT[0]), ord(pixel_LT[1]), ord(pixel_LT[2]) pr,pg,pb = pixel_LT[0], pixel_LT[1], pixel_LT[2] print('rgb(%d, %d, %d)' % (pr, pg, pb)) if pr == mat.diffuse_color.r*255 and pg == mat.diffuse_color.g*255 and pb == mat.diffuse_color.b*255: print('--> Left-Top Pixel is Diffuse') nodePath.setTransparency(TransparencyAttrib.MBinary, tsid_main) nodePath.setTransparency(TransparencyAttrib.MAlpha, tsid_main) pass elif pr == 0xff and pg == 0xff and pb == 0xff: print('--> Left-Top Pixel is WHITE') if(hasAlpha(texMain)): nodePath.setTransparency(TransparencyAttrib.MMultisample, tsid_main) else: nodePath.setTransparency(TransparencyAttrib.MBinary, tsid_main) # nodePath.setTransparency(TransparencyAttrib.MAlpha, tsid_main) elif pr == 0x00 and pg == 0x00 and pb == 0x00: print('--> Left-Top Pixel is BLACK') nodePath.setTransparency(TransparencyAttrib.MMultisample, tsid_main) else: if mat.alpha == 1 and not hasAlpha(texMain): nodePath.setTransparency(TransparencyAttrib.MNone, tsid_main) elif mat.edge_color.r == 1 and mat.edge_color.g == 1 and mat.edge_color.b == 1: nodePath.setTransparency(TransparencyAttrib.MMultisample, tsid_main) elif mat.edge_color.r == 0 and mat.edge_color.g == 0 and mat.edge_color.b == 0: nodePath.setTransparency(TransparencyAttrib.MMultisample, tsid_main) # else: # ts_main.setMode(TextureStage.MReplace) # nodePath.setTransparency(TransparencyAttrib.MNone, tsid_main) # # Special material alpha setting. A stupid behavior # if mat.name.lower() in ['hairshadow', 'other', 'body']: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.name.lower()[:4] in ['face']: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.name.lower()[:3] in ['eye']: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.name in ['肌', '顔', '髪影', 'レース']: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.name.find('髪') >= 0: if mat.toon_texture_index >= 0: nodePath.setTransparency(TransparencyAttrib.MNone, tsid_main) elif hasAlpha(texMain) and not matflag_outline: nodePath.setTransparency(TransparencyAttrib.MAlpha, tsid_main) elif matflag_outline: nodePath.setTransparency(TransparencyAttrib.MNone, tsid_main) # else: # # ts_main.setMode(TextureStage.MModulateGloss) # nodePath.setTransparency(TransparencyAttrib.MNone, tsid_main) elif mat.name in ['スカート']: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.name in ['瞳']: nodePath.setTransparency(TransparencyAttrib.MAlpha, tsid_main) elif mat.name.find('瞳') >= 0: # ts_main.setMode(TextureStage.MModulateGloss) nodePath.setTransparency(TransparencyAttrib.MAlpha, tsid_main) elif mat.name in ['頬']: ts_main.setMode(TextureStage.MModulateGloss) nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.name.find('頬') >= 0: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.name in ['白目']: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.name.find('マーク') >= 0: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.name.find('グレイ') >= 0: nodePath.setTransparency(TransparencyAttrib.MAlpha, tsid_main) elif mat.name.find('マーク') >= 0: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.name.find('透過') >= 0 and (0 < mat.alpha < 1): nodePath.setTransparency(TransparencyAttrib.MMultisample, tsid_main) elif mat.name.find('hair') >= 0: nodePath.setTransparency(TransparencyAttrib.MAlpha, tsid_main) elif mat.name in ['服'] or mat.name.find('服') >= 0: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.name.find('影') >= 0: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) pass if mat.name in ['顔鼻', '鼻', '顔', '鼻影']: ts_main.setMode(TextureStage.MReplace) pass if matflag_shadowfloor: # 地面影 pass if mat.alpha >= 0: nodePath.setTexture(ts_main, texMain, tsid_main) nodePath.setTexScale(ts_main, 1, -1, -1) else: if 0 < mat.alpha < 1: nodePath.setTransparency(TransparencyAttrib.MAlpha, tsid_main) pass else: if mat.name.lower() in ['hairshadow', 'other']: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.name.lower()[:4] in ['face']: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.name.lower()[:3] in ['eye']: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.name in ['肌', '顔', '髪影', 'レース']: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.name in ['スカート', '瞳']: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.name in ['白目']: nodePath.setTransparency(TransparencyAttrib.MDual, tsid_main) elif mat.name.find('髪') >= 0: nodePath.setTransparency(TransparencyAttrib.MNone, tsid_main) pass # # Set Sphere Texture # if mat.sphere_texture_index >= 0: # print('Texture %s : Sphere %03d' % (mat.name, mat.sphere_texture_index)) if mat.sphere_mode > 0: texSphere = textures[mat.sphere_texture_index] if texSphere and texSphere.hasRamImage(): if mat.sphere_mode == 1: # texMode = TextureStage.MModulateGloss texMode = TextureStage.MModulate elif mat.sphere_mode == 2: texMode = TextureStage.MAdd elif mat.sphere_mode == 3: texMode = TextureStage.MReplace else: texMode = TextureStage.MModulate ts_sphere = TextureStage('%3d_%s_sphere' % (matIndex, mat.name)) ts_sphere.setMode(texMode) ts_sphere.setColor(VBase4(mat.specular_color.r, mat.specular_color.g, mat.specular_color.b, 1)) ts_sphere.setSort(tsid_sphere) ts_sphere.setPriority(tsid_sphere) nodePath.setTexGen(ts_sphere, TexGenAttrib.MEyeSphereMap, tsid_sphere) nodePath.setTexture(ts_sphere, texSphere, tsid_sphere) nodePath.setTexScale(ts_sphere, 1, -1, -1) # nodePath.setShaderAuto(matIndex) if mat.texture_index < 0: if hasAlpha(texSphere): nodePath.setTransparency(TransparencyAttrib.MDual, tsid_sphere) # else: # nodePath.setTransparency(TransparencyAttrib.MNone, tsid_sphere) # # Set Toon Texture # if mat.toon_texture_index>=0: # print('Texture %s : Toon %03d' % (mat.name, mat.toon_texture_index)) if mat.toon_sharing_flag > 0: texToon = loadTexture(u'toon/toon%02d.bmp' % (mat.toon_texture_index+1)) elif (mat.toon_texture_index < 0) or (not textures[mat.toon_texture_index]): texToon = Texture('NULL') else: texToon = textures[mat.toon_texture_index] if texToon and texToon.hasRamImage(): # texMode = TextureStage.MDecal # texMode = TextureStage.MGloss # texMode = TextureStage.MAdd texMode = TextureStage.MModulate #Glow ts_toon = TextureStage('%3d_%s_toon' % (matIndex, mat.name)) ts_toon.setColor(VBase4(0,0,0, .18)) ts_toon.setMode(texMode) ts_toon.setSort(tsid_toon) ts_toon.setPriority(tsid_toon) nodePath.setTexGen(ts_toon, TexGenAttrib.MEyeSphereMap, tsid_toon) nodePath.setTexture(ts_toon, texToon, tsid_toon) nodePath.setTexScale(ts_toon, 1, -1, -1) pass # nodePath.setBin("unsorted", matIndex) nodePath.setAntialias(AntialiasAttrib.MAuto) # # MNone = 0, MAlpha = 1, MNotused = 2, MMultisample = 3, # MMultisampleMask = 4, MBinary = 5, MDual = 6 # # print(nodePath.getTransparency()) print(str(TransparencyAttrib.make(nodePath.getTransparency())).strip()) vIndex += mat.vertex_count # modelBody.addChild(node) nodePath.reparentTo(bodyPath) log(u'Loaded Polygons %03d: %s' % (matIndex, mat.name)) matIndex += 1 # modelPath = NodePath(model) # modelPath.setShaderAuto() return(modelPath) pass def loadPmxBone(pmx_model): def GetParentNode(root, parent_index): node = None if parent_index == -1: node = root pass else: for child in root.getChildren(): node = GetParentNode(child, parent_index) if node: break else: boneIndex = child.getPythonTag('boneIndex') if boneIndex == parent_index: node = child break pass return(node) pass # # Load Bone outline for display # data = EggData() data.read('stages/bone.egg') # data.read('stages/bone_oct.egg') # data.read('stages/bone_cone.egg') dnp = NodePath(loadEggData(data)) dnp.setColor(LVector4f(1,1,0,1)) boneOutline = dnp.node().getChild(0) min_point = LPoint3f() max_point = LPoint3f() dnp.calcTightBounds(min_point, max_point) bone_size = LPoint3f(max_point.x-min_point.x, max_point.y-min_point.y, max_point.z-min_point.z) # # Load Bone data # formatArray = GeomVertexArrayFormat() formatArray.addColumn(InternalName.make(str("vindex")), 1, Geom.NTUint32, Geom.CIndex) formatArray.addColumn(InternalName.make(str("tindex")), 1, Geom.NTFloat32, Geom.COther) formatArray.addColumn(InternalName.make(str("pindex")), 1, Geom.NTFloat32,
import typing from .._block_utils import _load_btype, BlockParam, _load_btypes from ..actions import EntityAction from ..ifs import IfEntity from ...classes import Arguments, Tag, DFNumber from ...enums import EntityTarget, EntityActionType, IfEntityType, \ BlockType, Hand, EffectParticleMode, HorseVariant, HorseColor, MooshroomVariant, \ EntityAnimation, CatType, EntityColor, FoxType, PandaGene, ParrotVariant, ArmorStandPart, RabbitType, \ TropicalFishPattern, VillagerProfession, VillagerBiome from ...typings import Textable, Numeric, Locatable, ItemParam, Potionable, ParticleParam, p_check, SpawnEggable, \ p_bool_check, Listable from ...utils import remove_u200b_from_doc __all__ = ("Entity",) class Entity: """Represents a DiamondFire Entity. Used for Entity Action and If Entity humanized methods. Parameters ----------\u200b target : Optional[:class:`~.EntityTarget`], optional The target that this instance represents (Default Entity, Last Mob, Victim etc.) or ``None`` for empty target (equivalent to leaving the target line empty on DF - becomes the current selection, or the Default Entity). Defaults to ``None``. Attributes ----------\u200b target : Optional[:class:`~.EntityTarget`] The target that this instance represents (Default Entity, Last Mob, Victim etc.) or ``None`` for empty target (equivalent to leaving the target line empty on DF - becomes the current selection, or the Default Entity). """ __slots__ = ("target",) target: typing.Optional[EntityTarget] def __init__(self, target: typing.Optional[EntityTarget]): self.target: typing.Optional[EntityTarget] = EntityTarget(target) if target else None def _digest_target(self, target: typing.Optional[EntityTarget]) -> typing.Optional[EntityTarget]: """Checks a given entity target for validity. Parameters ---------- target : Optional[:class:`~.EntityTarget`] The target to check. Returns ------- Optional[:class:`~.EntityTarget`] Returns the given target as a valid EntityTarget, or ``None``. """ return EntityTarget(target) if target else None # region:entityactions def set_armor_stand_tags( self, *, is_visible: typing.Optional[bool] = None, is_marker: typing.Optional[bool] = None, allow_item_taking_or_adding: typing.Optional[bool] = None, has_physics_or_updates: typing.Optional[bool] = None, is_small: typing.Optional[bool] = None, has_arms: typing.Optional[bool] = None, has_base_plate: typing.Optional[bool] = None, target: typing.Optional[EntityTarget] = None ): """Changes the settings of an armor stand, such as visibility. .. rank:: Mythic Parameters ---------- is_visible : Optional[:class:`bool`], optional Whether this Armor Stand is visible. Specify ``True`` or ``False`` to change this setting, or ``None`` to leave it untouched. Defaults to ``None``. is_marker : Optional[:class:`bool`], optional Whether this Armor Stand is a marker (has no hitbox). Specify ``True`` or ``False`` to change this setting, or ``None`` to leave it untouched. Defaults to ``None``. allow_item_taking_or_adding : Optional[:class:`bool`], optional Whether this armor stand should have item taking/adding allowed. Specify ``True`` or ``False`` to change this setting, or ``None`` to leave it untouched. Defaults to ``None``. has_physics_or_updates : Optional[:class:`bool`], optional Specify ``True`` or ``False`` to change this setting, or ``None`` to leave it untouched. Defaults to ``None``. is_small : Optional[:class:`bool`], optional Specify ``True`` or ``False`` to change this setting, or ``None`` to leave it untouched. Defaults to ``None``. has_arms : Optional[:class:`bool`], optional Specify ``True`` or ``False`` to change this setting, or ``None`` to leave it untouched. Defaults to ``None``. has_base_plate : Optional[:class:`bool`], optional Specify ``True`` or ``False`` to change this setting, or ``None`` to leave it untouched. Defaults to ``None``. target : Optional[:class:`~.EntityTarget`], optional The target of this :class:`~.EntityAction`, or ``None`` for the current :class:`Entity` instance's target. Defaults to ``None``. Returns ------- :class:`EntityAction` The generated EntityAction instance. Examples -------- :: last_entity.set_armor_stand_tags(is_visible=True, has_physics_or_updates=False) # selects last spawned entity # OR Entity(EntityTarget.LAST_ENTITY).set_armor_stand_tags(is_visible=True, has_physics_or_updates=False) # Makes the armor stand visible and makes it not affected by physics or updates; other params unchanged """ args = Arguments([], tags=[ # Set to True, Set to False, Don't Change Tag( "Is Visible", option="Set to True" if is_visible else ( "Set to False" if is_visible is not None else "Don't Change" ), # default is Don't Change action=EntityActionType.ARMOR_STAND_TAGS, block=BlockType.ENTITY_ACTION ), Tag( "Is Marker (No Hitbox)", option="Set to True" if is_marker else ( "Set to False" if is_marker is not None else "Don't Change" ), # default is Don't Change action=EntityActionType.ARMOR_STAND_TAGS, block=BlockType.ENTITY_ACTION ), Tag( "Allow Item Taking / Adding", option="Set to True" if allow_item_taking_or_adding else ( "Set to False" if allow_item_taking_or_adding is not None else "Don't Change" ), # default is Don't Change action=EntityActionType.ARMOR_STAND_TAGS, block=BlockType.ENTITY_ACTION ), Tag( "Has Physics / Updates", option="Set to True" if has_physics_or_updates else ( "Set to False" if has_physics_or_updates is not None else "Don't Change" ), # default is Don't Change action=EntityActionType.ARMOR_STAND_TAGS, block=BlockType.ENTITY_ACTION ), Tag( "Is Small", option="Set to True" if is_small else ( "Set to False" if is_small is not None else "Don't Change" ), # default is Don't Change action=EntityActionType.ARMOR_STAND_TAGS, block=BlockType.ENTITY_ACTION ), Tag( "Has Arms", option="Set to True" if has_arms else ( "Set to False" if has_arms is not None else "Don't Change" ), # default is Don't Change action=EntityActionType.ARMOR_STAND_TAGS, block=BlockType.ENTITY_ACTION ), Tag( "Has Base Plate", option="Set to True" if has_base_plate else ( "Set to False" if has_base_plate is not None else "Don't Change" ), # default is Don't Change action=EntityActionType.ARMOR_STAND_TAGS, block=BlockType.ENTITY_ACTION ) ]) return EntityAction( action=EntityActionType.ARMOR_STAND_TAGS, args=args, target=self._digest_target(target), append_to_reader=True ) def disguise_as_block( self, block_type: BlockParam, name: typing.Optional[Textable] = None, *, target: typing.Optional[EntityTarget] = None ): """Disguises the entity as a block. .. rank:: Overlord Parameters ---------- block_type : Union[:class:`Material`, :attr:`~.ItemParam`, :attr:`~.Textable`] The type of Block disguise. The type can be specified either as: - an instance of :class:`~.Material` (the material of the block to set); - an item (:attr:`~.ItemParam` - the item representing the block to set); - text (:attr:`~.Textable` - the material of the block to set as text). name : Optional[:attr:`~.Textable`], optional Name of disguise. Default is ``None`` (no special name). target : Optional[:class:`~.EntityTarget`], optional The target of this :class:`~.EntityAction`, or None for the current :class:`Entity` instance's target. Defaults to ``None``. Returns ------- :class:`EntityAction` The generated EntityAction instance. Examples -------- :: block_type = Material.GRASS_BLOCK # disguise as a grass block last_entity.disguise_as_block(block_type, "Some Block") # OR Entity(EntityTarget.LAST_ENTITY).disguise_as_block(block_type, "Some Block") # last spawned entity is disguised as a grass block named "Some Block" """ args = Arguments([ p_check(block_type, typing.Union[ItemParam, Textable], "block_type"), p_check(name, Textable, "name") if name is not None else None ]) return EntityAction( action=EntityActionType.BLOCK_DISGUISE, args=args, target=self._digest_target(target), append_to_reader=True ) def set_creeper_charged( self, is_charged: bool = True, *, target: typing.Optional[EntityTarget] = None ): """Sets whether a creeper has the charged effect. Parameters ---------- is_charged : :class:`bool`, optional Whether or not the target creeper should be target. Defaults to ``True`` (should be charged). target : Optional[:class:`~.EntityTarget`], optional The target of this :class:`~.EntityAction`, or None for the current :class:`Entity` instance's target. Defaults to ``None``. Returns ------- :class:`EntityAction` The generated EntityAction instance. Examples -------- :: last_entity.creeper_charged(True) # OR Entity(EntityTarget.LAST_ENTITY).creeper_charged(True) # Creeper is now charged; False for not charged. """ args = Arguments([], tags=[ Tag( "Is Charged", option=bool(is_charged), # default is True action=EntityActionType.CREEPER_CHARGED, block=BlockType.ENTITY_ACTION ) ]) return EntityAction( action=EntityActionType.CREEPER_CHARGED, args=args, target=self._digest_target(target), append_to_reader=True ) def set_creeper_ignited( self, is_ignited: bool = True, *, target: typing.Optional[EntityTarget] = None ): """Sets whether a creeper is currently ignited. (getting ready to explode) Parameters ---------- is_ignited : :class:`bool`, optional Whether or not the Creeper is ignited. Defaults to ``True`` (is ignited). target : Optional[:class:`~.EntityTarget`], optional The target of this :class:`~.EntityAction`, or None for the current :class:`Entity` instance's target. Defaults to ``None``. Returns ------- :class:`EntityAction` The generated EntityAction instance. Examples -------- :: last_mob.set_creeper_ignited(True) # works if last mob spawned is a creeper # OR Entity(EntityTarget.LAST_MOB).set_creeper_ignited(True) # creeper is now ignited; False for not ignited """ args = Arguments([], tags=[ Tag( "Is Ignited", option=bool(is_ignited), # default is True action=EntityActionType.CREEPER_IGNITED, block=BlockType.ENTITY_ACTION ) ]) return EntityAction( action=EntityActionType.CREEPER_IGNITED, args=args, target=self._digest_target(target), append_to_reader=True ) def set_creeper_max_fuse( self, ticks: Numeric, *, target: typing.Optional[EntityTarget] = None ): """Sets the starting amount of fuse ticks of a creeper. Parameters ---------- ticks : :attr:`~.Numeric` Fuse ticks. target : Optional[:class:`~.EntityTarget`], optional The target of this :class:`~.EntityAction`, or None for the current :class:`Entity` instance's target. Defaults to ``None``. Returns ------- :class:`EntityAction` The generated EntityAction instance. Examples -------- :: last_mob.set_creeper_max_fuse(40) # if last mob spawned is a creeper, this will work # OR Entity(EntityTarget.LAST_MOB).set_creeper_max_fuse(40) # fuse is now 2 seconds """ args = Arguments([ p_check(ticks, Numeric, "ticks") ]) return EntityAction( action=EntityActionType.CREEPER_MAX_FUSE, args=args, target=self._digest_target(target), append_to_reader=True ) def set_creeper_radius( self, radius: Numeric, *, target: typing.Optional[EntityTarget] = None ): """Sets the explosion radius of a creeper. Parameters ---------- radius : :attr:`~.Numeric` The new explosion radius. .. note:: The maximum radius is 25. target :
import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchtext.legacy.datasets import Multi30k from torchtext.legacy.data import Field, BucketIterator import matplotlib.pyplot as plt import matplotlib.ticker as ticker import spacy import numpy as np import random import math import time """ About: the model is made of encoder and decoder - Encoder encodes the input sequence, in the source language, into a context vector - Decoder decodes the context vector to produce the output sentence in the target language ENCODER: - The previous models had encoder that compresses an entire input sentence into a single context vector - the CS2S is different - it gets 2 context vector for each token in an input sentence - 2 context vectors per token are conved vector and combined vector. - The token is first pass thru the token embedding layer and the positional embedding layer + Positional embedding layer = elementwise summed together to get a vector which contains info about the token and also its position with in the sequence - The result is followed by a linear layer which transforms the embedding vector into a vector with the required hidden dim size - Then we pass the hidden vector into N convolutional blocks - The vector then fed thru another linear layer to transform it back to the hidden dim size into the embedding dim size => this is the conved vector - The conved vector is element wise summed with embedding vector via residual connection => this provide the combined vector for each token CONVOLUTION-ENCODER: - We will have 10 conv block with 1024 filters in each block - The input sentence is padded because the convolutional layers will reduce the length of the input sentence and we want the length of the sentence coming into the conv block to be equal to the length of it coming out of the convolution. - The filter is designed so that the output hidden dim of the filter is twice the input hidden dim - We have to double the size of the hidden dim leaving the conv layer since the GLU - gated linear units have gating mechanism (similar to GRU and LSTM) contained with activation function and actually half the size of the hidden dim - The result from GLU is now element wise summed with its own vector before it was passed thru the conv layer IMPLEMENTATION: - To make the implementation sime, we only allow for odd sized kernel, this allows padding to be added equally to both sides of the source sequence - the positional embedding is initilaied to have a vocab of 100. This means it can handle sequences up to 100 elements long DECODER: - Takes in the actual target sentence and tries to predict it. - This model differes from the RNN as it predicts all tokens within the target sentencein parallel - First, the embeddings do not have a residual connection that connects after the convolutional blocks and the transformation. Instead the embeddings are fed into the convolutional blocks to be used as residual connections there. - Second, to feed the decoder information from the encoder, the encoder conved and combined outputs are used - again, within the convolutional blocks. - Finally, the output of the decoder is a linear layer from embedding dimension to output dimension. This is used make a prediction about what the next word in the translation should be. CONVOLUTION-DECODER: IMPLEMENTATION: - As we only pad on one side the decoder is allowed to use both odd and even sized padding. Again, the scale is used to reduce variance throughout the model and the position embedding is initialized to have a "vocabulary" of 100. - This model takes in the encoder representations in its forward method and both are passed to the calculate_attention method which calculates and applies attention. It also returns the actual attention values, but we are not currently using them. """ class Encoder(nn.Module): def __init__( self, input_dim, emb_dim, hid_dim, n_layers, kernel_size, dropout, device, max_length=100, ): super().__init__() assert kernel_size % 2 == 1, "Kernel size must be odd!" self.device = device self.scale = torch.sqrt(torch.FloatTensor([0.5])).to(device) self.tok_embedding = nn.Embedding(input_dim, emb_dim) self.pos_embedding = nn.Embedding(max_length, emb_dim) self.emb2hid = nn.Linear(emb_dim, hid_dim) self.hid2emb = nn.Linear(hid_dim, emb_dim) self.convs = nn.ModuleList( [ nn.Conv1d( in_channels=hid_dim, out_channels=2 * hid_dim, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, ) for _ in range(n_layers) ] ) self.dropout = nn.Dropout(dropout) def forward(self, src): # src = [batch size, src len] batch_size = src.shape[0] src_len = src.shape[1] # create position tensor pos = ( torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(self.device) ) # pos = [0, 1, 2, 3, ..., src len - 1] # pos = [batch size, src len] # embed tokens and positions tok_embedded = self.tok_embedding(src) pos_embedded = self.pos_embedding(pos) # tok_embedded = pos_embedded = [batch size, src len, emb dim] # combine embeddings by elementwise summing embedded = self.dropout(tok_embedded + pos_embedded) # embedded = [batch size, src len, emb dim] # pass embedded through linear layer to convert from emb dim to hid dim conv_input = self.emb2hid(embedded) # conv_input = [batch size, src len, hid dim] # permute for convolutional layer conv_input = conv_input.permute(0, 2, 1) # conv_input = [batch size, hid dim, src len] # begin convolutional blocks... for i, conv in enumerate(self.convs): # pass through convolutional layer conved = conv(self.dropout(conv_input)) # conved = [batch size, 2 * hid dim, src len] # pass through GLU activation function conved = F.glu(conved, dim=1) # conved = [batch size, hid dim, src len] # apply residual connection conved = (conved + conv_input) * self.scale # conved = [batch size, hid dim, src len] # set conv_input to conved for next loop iteration conv_input = conved # ...end convolutional blocks # permute and convert back to emb dim conved = self.hid2emb(conved.permute(0, 2, 1)) # conved = [batch size, src len, emb dim] # elementwise sum output (conved) and input (embedded) to be used for attention combined = (conved + embedded) * self.scale # combined = [batch size, src len, emb dim] return conved, combined class Decoder(nn.Module): def __init__( self, output_dim, emb_dim, hid_dim, n_layers, kernel_size, dropout, trg_pad_idx, device, max_length=100, ): super().__init__() self.kernel_size = kernel_size self.trg_pad_idx = trg_pad_idx self.device = device self.scale = torch.sqrt(torch.FloatTensor([0.5])).to(device) self.tok_embedding = nn.Embedding(output_dim, emb_dim) self.pos_embedding = nn.Embedding(max_length, emb_dim) self.emb2hid = nn.Linear(emb_dim, hid_dim) self.hid2emb = nn.Linear(hid_dim, emb_dim) self.attn_hid2emb = nn.Linear(hid_dim, emb_dim) self.attn_emb2hid = nn.Linear(emb_dim, hid_dim) self.fc_out = nn.Linear(emb_dim, output_dim) self.convs = nn.ModuleList( [ nn.Conv1d( in_channels=hid_dim, out_channels=2 * hid_dim, kernel_size=kernel_size, ) for _ in range(n_layers) ] ) self.dropout = nn.Dropout(dropout) def calculate_attention(self, embedded, conved, encoder_conved, encoder_combined): # embedded = [batch size, trg len, emb dim] # conved = [batch size, hid dim, trg len] # encoder_conved = encoder_combined = [batch size, src len, emb dim] # permute and convert back to emb dim conved_emb = self.attn_hid2emb(conved.permute(0, 2, 1)) # conved_emb = [batch size, trg len, emb dim] combined = (conved_emb + embedded) * self.scale # combined = [batch size, trg len, emb dim] energy = torch.matmul(combined, encoder_conved.permute(0, 2, 1)) # energy = [batch size, trg len, src len] attention = F.softmax(energy, dim=2) # attention = [batch size, trg len, src len] attended_encoding = torch.matmul(attention, encoder_combined) # attended_encoding = [batch size, trg len, emd dim] # convert from emb dim -> hid dim attended_encoding = self.attn_emb2hid(attended_encoding) # attended_encoding = [batch size, trg len, hid dim] # apply residual connection attended_combined = (conved + attended_encoding.permute(0, 2, 1)) * self.scale # attended_combined = [batch size, hid dim, trg len] return attention, attended_combined def forward(self, trg, encoder_conved, encoder_combined): # trg = [batch size, trg len] # encoder_conved = encoder_combined = [batch size, src len, emb dim] batch_size = trg.shape[0] trg_len = trg.shape[1] # create position tensor pos = ( torch.arange(0, trg_len).unsqueeze(0).repeat(batch_size, 1).to(self.device) ) # pos = [batch size, trg len] # embed tokens and positions tok_embedded = self.tok_embedding(trg) pos_embedded = self.pos_embedding(pos) # tok_embedded = [batch size, trg len, emb dim] # pos_embedded = [batch size, trg len, emb dim] # combine embeddings by elementwise summing embedded = self.dropout(tok_embedded + pos_embedded)
**MaintenanceTrackName** *(string) --* The name of the maintenance track that the cluster will change to during the next maintenance window. - **EncryptionType** *(string) --* The encryption type for a cluster. Possible values are: KMS and None. For the China region the possible values are None, and Legacy. - **ClusterVersion** *(string) --* The version ID of the Amazon Redshift engine that is running on the cluster. - **AllowVersionUpgrade** *(boolean) --* A boolean value that, if ``true`` , indicates that major version upgrades will be applied automatically to the cluster during the maintenance window. - **NumberOfNodes** *(integer) --* The number of compute nodes in the cluster. - **PubliclyAccessible** *(boolean) --* A boolean value that, if ``true`` , indicates that the cluster can be accessed from a public network. - **Encrypted** *(boolean) --* A boolean value that, if ``true`` , indicates that data in the cluster is encrypted at rest. - **RestoreStatus** *(dict) --* A value that describes the status of a cluster restore action. This parameter returns null if the cluster was not created by restoring a snapshot. - **Status** *(string) --* The status of the restore action. Returns starting, restoring, completed, or failed. - **CurrentRestoreRateInMegaBytesPerSecond** *(float) --* The number of megabytes per second being transferred from the backup storage. Returns the average rate for a completed backup. - **SnapshotSizeInMegaBytes** *(integer) --* The size of the set of snapshot data used to restore the cluster. - **ProgressInMegaBytes** *(integer) --* The number of megabytes that have been transferred from snapshot storage. - **ElapsedTimeInSeconds** *(integer) --* The amount of time an in-progress restore has been running, or the amount of time it took a completed restore to finish. - **EstimatedTimeToCompletionInSeconds** *(integer) --* The estimate of the time remaining before the restore will complete. Returns 0 for a completed restore. - **DataTransferProgress** *(dict) --* - **Status** *(string) --* Describes the status of the cluster. While the transfer is in progress the status is ``transferringdata`` . - **CurrentRateInMegaBytesPerSecond** *(float) --* Describes the data transfer rate in MB's per second. - **TotalDataInMegaBytes** *(integer) --* Describes the total amount of data to be transfered in megabytes. - **DataTransferredInMegaBytes** *(integer) --* Describes the total amount of data that has been transfered in MB's. - **EstimatedTimeToCompletionInSeconds** *(integer) --* Describes the estimated number of seconds remaining to complete the transfer. - **ElapsedTimeInSeconds** *(integer) --* Describes the number of seconds that have elapsed during the data transfer. - **HsmStatus** *(dict) --* A value that reports whether the Amazon Redshift cluster has finished applying any hardware security module (HSM) settings changes specified in a modify cluster command. Values: active, applying - **HsmClientCertificateIdentifier** *(string) --* Specifies the name of the HSM client certificate the Amazon Redshift cluster uses to retrieve the data encryption keys stored in an HSM. - **HsmConfigurationIdentifier** *(string) --* Specifies the name of the HSM configuration that contains the information the Amazon Redshift cluster can use to retrieve and store keys in an HSM. - **Status** *(string) --* Reports whether the Amazon Redshift cluster has finished applying any HSM settings changes specified in a modify cluster command. Values: active, applying - **ClusterSnapshotCopyStatus** *(dict) --* A value that returns the destination region and retention period that are configured for cross-region snapshot copy. - **DestinationRegion** *(string) --* The destination region that snapshots are automatically copied to when cross-region snapshot copy is enabled. - **RetentionPeriod** *(integer) --* The number of days that automated snapshots are retained in the destination region after they are copied from a source region. - **ManualSnapshotRetentionPeriod** *(integer) --* The number of days that automated snapshots are retained in the destination region after they are copied from a source region. If the value is -1, the manual snapshot is retained indefinitely. The value must be either -1 or an integer between 1 and 3,653. - **SnapshotCopyGrantName** *(string) --* The name of the snapshot copy grant. - **ClusterPublicKey** *(string) --* The public key for the cluster. - **ClusterNodes** *(list) --* The nodes in the cluster. - *(dict) --* The identifier of a node in a cluster. - **NodeRole** *(string) --* Whether the node is a leader node or a compute node. - **PrivateIPAddress** *(string) --* The private IP address of a node within a cluster. - **PublicIPAddress** *(string) --* The public IP address of a node within a cluster. - **ElasticIpStatus** *(dict) --* The status of the elastic IP (EIP) address. - **ElasticIp** *(string) --* The elastic IP (EIP) address for the cluster. - **Status** *(string) --* The status of the elastic IP (EIP) address. - **ClusterRevisionNumber** *(string) --* The specific revision number of the database in the cluster. - **Tags** *(list) --* The list of tags for the cluster. - *(dict) --* A tag consisting of a name/value pair for a resource. - **Key** *(string) --* The key, or name, for the resource tag. - **Value** *(string) --* The value for the resource tag. - **KmsKeyId** *(string) --* The AWS Key Management Service (AWS KMS) key ID of the encryption key used to encrypt data in the cluster. - **EnhancedVpcRouting** *(boolean) --* An option that specifies whether to create the cluster with enhanced VPC routing enabled. To create a cluster that uses enhanced VPC routing, the cluster must be in a VPC. For more information, see `Enhanced VPC Routing <https://docs.aws.amazon.com/redshift/latest/mgmt/enhanced-vpc-routing.html>`__ in the Amazon Redshift Cluster Management Guide. If this option is ``true`` , enhanced VPC routing is enabled. Default: false - **IamRoles** *(list) --* A list of AWS Identity and Access Management (IAM) roles that can be used by the cluster to access other AWS services. - *(dict) --* An AWS Identity and Access Management (IAM) role that can be used by the associated Amazon Redshift cluster to access other AWS services. - **IamRoleArn** *(string) --* The Amazon Resource Name (ARN) of the IAM role, for example, ``arn:aws:iam::123456789012:role/RedshiftCopyUnload`` . - **ApplyStatus** *(string) --* A value that describes the status of the IAM role's association with an Amazon Redshift cluster. The following are possible statuses and descriptions. * ``in-sync`` : The role is available for use by the cluster. * ``adding`` : The role is in the process of being associated with the cluster. * ``removing`` : The role is in the process of being disassociated with the cluster. - **PendingActions** *(list) --* Cluster operations that are waiting to be started. - *(string) --* - **MaintenanceTrackName** *(string) --* The name of the maintenance track for the cluster. - **ElasticResizeNumberOfNodeOptions** *(string) --* The number of nodes that you can resize the cluster to with the elastic resize method. - **DeferredMaintenanceWindows** *(list) --* Describes a group of ``DeferredMaintenanceWindow`` objects. - *(dict) --* Describes a deferred maintenance window - **DeferMaintenanceIdentifier** *(string) --* A unique identifier for the maintenance window. - **DeferMaintenanceStartTime** *(datetime) --* A timestamp for the beginning of the time period when we defer maintenance. - **DeferMaintenanceEndTime** *(datetime) --* A timestamp for the end of the time period when we defer maintenance. - **SnapshotScheduleIdentifier** *(string) --* A unique identifier for the cluster snapshot schedule. - **SnapshotScheduleState** *(string) --* The current state of the cluster snapshot schedule. - **ResizeInfo** *(dict) --* Returns the following: * AllowCancelResize: a boolean value indicating if the resize operation can be cancelled. * ResizeType: Returns ClassicResize - **ResizeType** *(string) --* Returns the value ``ClassicResize`` . - **AllowCancelResize** *(boolean) --* A boolean value indicating if the
<reponame>hu120051/cybercafe_management from flask import Flask from flask import render_template from flask import request import pymysql import datetime app = Flask(__name__) app.config['SECRET_KEY'] = '123456' @app.route('/') # 进入首页 def index(): return render_template('index.html') # ########管理员端######## # @app.route('/adminlogin/', methods=['GET', 'POST']) # 管理员登录页面 def adminlogin(): if request.method == 'GET': return render_template('adminlogin.html') else: username = request.form['username'] password = request.form['password'] db = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='<PASSWORD>', db='cybercafe') cur1 = db.cursor() sql_select01 = '''SELECT Staff_ID FROM Staff WHERE Staff_ID=('%s') AND Password=('%s') ''' % (username, password) cur1.execute(sql_select01) return1 = cur1.fetchall() if len(return1): # 对js和flask很不熟练,没想到更好的方法,这种方法只要管理员进入系统就要把所有表查一遍 cur1.execute('''select ca.Card_ID, cu.CName, ca.Password, ca.Using_Status, ca.Checkout_Status, ca.Account_Balance FROM Card ca, Customer cu WHERE ca.C_ID = cu.C_ID ORDER BY ca.Card_ID asc''') d = cur1.fetchall() cur1.execute('''select o.Order_ID, o.Card_ID, o.Order_Time, s.SName, o.Quantity, o.Amount, o.Order_Status FROM Order_T o, Snacks s WHERE o.S_ID = s.S_ID ORDER BY o.Order_ID desc''') c = cur1.fetchall() cur1.execute('''select * FROM Bill ORDER BY B_ID desc''') b = cur1.fetchall() cur1.execute('''select * FROM Computer ORDER BY PC_ID asc''') a = cur1.fetchall() cur1.execute('''select * FROM Snacks ''') e = cur1.fetchall() users = [] orders = [] bills = [] computers = [] snacks = [] # 录入users所有用户信息 for value in d: data = {} data['a'] = value[0] data['b'] = value[1] data['c'] = value[2] data['d'] = value[3] data['e'] = value[4] data['f'] = value[5] users.append(data) # 录入orders所有零食订单信息 for value in c: data = {} data['a'] = value[0] data['b'] = value[1] data['c'] = value[2] data['d'] = value[3] data['e'] = value[4] data['f'] = value[5] data['g'] = value[6] orders.append(data) # 录入bills所有的上机账单信息 for value in b: data = {} data['a'] = value[0] data['b'] = value[1] data['c'] = value[2] data['d'] = value[3] data['e'] = value[4] data['f'] = value[5] data['g'] = value[6] bills.append(data) # 录入computers所有的上机账单信息 for value in a: data = {} data['a'] = value[0] data['b'] = value[1] data['c'] = value[2] computers.append(data) # 录入snacks所有的零食信息 for value in e: data = {} data['a'] = value[0] data['b'] = value[1] data['c'] = value[2] data['d'] = value[3] snacks.append(data) return render_template('adminmain.html', users=users, orders=orders, bills=bills, computers=computers, snacks=snacks) else: return render_template("adminlogin.html", tips='用户名或密码错误') # flash('username or password is wrong') # return render_template("adminlogin.html") @app.route('/addusers/', methods=['GET', 'POST']) # 在系统里面添加新用户 def addusers(): if request.method == 'GET': return render_template('addusers.html') else: c_id = request.form['CustomerID'] cname = request.form['Cname'] age = request.form['Age'] gender = request.form['Gender'] card_id = request.form['Card_ID'] password = u'<PASSWORD>' # 初始密码均为<PASSWORD> account_balance = request.form['Account_Balance'] db = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='<PASSWORD>', db='cybercafe') cur = db.cursor() sql_insert1 = '''INSERT INTO Customer VALUES ('%s', '%s', '%s', '%s')''' % (c_id, cname, age, gender) sql_insert2 = '''INSERT INTO Card VALUES ('%s','%s','Free','Paid','%s','%s')''' \ % (card_id, password, account_balance, c_id) cur.execute(sql_insert1) cur.execute(sql_insert2) db.commit() db.close() return render_template('close.html') @app.route('/changecharge/', methods=['GET', 'POST']) # 充值/退款 def changecharge(): if request.method == 'GET': return render_template('changecharge.html') else: card_id = request.form['CardID'] change = int(request.form['Change']) db = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='<PASSWORD>', db='cybercafe') cur = db.cursor() sql_insert1 = '''UPDATE Card SET Account_Balance = (Account_Balance+(%d)) WHERE Card_ID= '%s' ''' % (change, card_id) cur.execute(sql_insert1) print(sql_insert1) db.commit() db.close() return render_template('close.html') @app.route('/updateusers/', methods=['GET', 'POST']) # 在系统里面更新用户信息 def updateusers(): if request.method == 'GET': return render_template('updateusers.html') else: card_id = request.form['CardID'] cname = request.form['Cname'] age = request.form['Age'] gender = request.form['Gender'] password = request.form['Password'] using_status = request.form['Using_Status'] checkout_status = request.form['Checkout_Status'] account_balance = request.form['Account_Balance'] db = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='<PASSWORD>', db='cybercafe') cur = db.cursor() sql_insert1 = '''UPDATE Customer SET Cname='%s', Age='%s', Gender='%s' WHERE (C_ID=(SELECT C_ID FROM Card WHERE Card_ID='%s')) ''' % (cname, age, gender, card_id) sql_insert2 = '''UPDATE Card SET Password='%s', Using_Status='%s', Checkout_Status='%s', Account_Balance='%s' WHERE (Card_ID='%s') ''' % (password, using_status, checkout_status, account_balance, card_id) cur.execute(sql_insert1) cur.execute(sql_insert2) db.commit() db.close() return render_template('close.html') @app.route('/deleteuser/<id>', methods=['GET', 'POST']) # 删除系统中的用户 def deleteuser(id): db = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='<PASSWORD>', db='cybercafe') cur = db.cursor() sql_select1 = '''SELECT C_ID FROM Card WHERE Card_ID='%s' ''' % id cur.execute(sql_select1) c = cur.fetchone() cid = c[0] sql_delete1 = '''DELETE FROM Customer WHERE C_ID='%s' ''' % cid sql_delete2 = '''DELETE FROM Card WHERE Card_ID = '%s' ''' % id # 由于card表里C_ID是外键,参考Customer表,所以删除时应先删除有外键的值 cur.execute(sql_delete2) cur.execute(sql_delete1) db.commit() db.close() return render_template('adminmain.html') @app.route('/finishorder/<id>', methods=['GET', 'POST']) # 完成零食订单(完成时不扣钱,结算账单时统一结算) def finishorder(id): db = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='<PASSWORD>', db='cybercafe') cur = db.cursor() sql_insert1 = '''UPDATE Order_T SET Order_Status = 'Finished' WHERE Order_ID='%s' ''' % id print(sql_insert1) cur.execute(sql_insert1) db.commit() db.close() return render_template('adminmain.html') @app.route('/deleteorder/<id>', methods=['GET', 'POST']) # 删除零食订单 def deleteorder(id): db = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='<PASSWORD>', db='cybercafe') cur = db.cursor() sql_insert1 = '''delete FROM Order_T WHERE Order_ID='%s' ''' % id print(sql_insert1) cur.execute(sql_insert1) db.commit() db.close() return render_template('adminmain.html') @app.route('/addbills/', methods=['GET', 'POST']) # 添加上机账单 def addbills(): if request.method == 'GET': return render_template('addbills.html') else: starttime = request.form['Start_Time'] card_id = request.form['Card_ID'] pc_id = request.form['PC_ID'] staff_id = request.form['Staff_ID'] db = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='<PASSWORD>', db='cybercafe') cur = db.cursor() cur.execute('''SELECT MAX(B_ID) FROM Bill''') num = cur.fetchone() bill_id = num[0]+1 #bill_id依次自动生成 sql_insert1 = '''INSERT INTO Bill VALUES ('%s', '%s', null, null, '%s', '%s' ,'%s')''' \ % (bill_id, starttime, card_id, pc_id, staff_id) sql_update1 = '''UPDATE Card SET Using_Status='Using', Checkout_Status='Unpaid' WHERE (Card_ID='%s')''' \ % card_id sql_update2 = '''UPDATE Computer SET Card_ID='%s' WHERE (PC_ID='%s')''' % (card_id, pc_id) ''' insert1:在bill表中添加新订单,结束时间和结算金额在结账时由管理员操作 update1:在card表中将此卡使用状态设置为使用中,结算状态设置为未结算 update2:将computer表中此计算机的使用用户设置为此卡 ''' cur.execute(sql_insert1) cur.execute(sql_update1) cur.execute(sql_update2) db.commit() db.close() return render_template('close.html') @app.route('/finishbills/', methods=['GET', 'POST']) # 结算账单 def finishbills(): if request.method == 'GET': return render_template('finishbills.html') else: bill_id = request.form['Bill_ID'] endtime = request.form['End_Time'] total_amount = request.form['Total_Amount'] db = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='hhy123', db='cybercafe') cur = db.cursor() ''' 结算对三个表进行处理: 1.会员卡状态改为空闲,结算状态改为已结算,余额扣费 2.账单表完善下机时间,总金额信息 3.电脑表将使用状态的计算机的使用卡号改为null,即计算机空闲 ''' sql_update1 = '''UPDATE Card SET Using_Status='Free', Checkout_Status='Paid', Account_Balance= (Account_Balance-%s) WHERE Card_ID=(SELECT Card_ID FROM Bill WHERE B_ID = '%s')''' % (total_amount, bill_id) sql_update2 = '''UPDATE Bill SET End_Time='%s', Total_Amount='%s' WHERE (B_ID='%s')''' \ % (endtime, total_amount, bill_id) sql_update3 = '''UPDATE Computer SET Card_ID=null WHERE Card_ID= (SELECT Card_ID FROM Bill WHERE B_ID = '%s')''' % bill_id cur.execute(sql_update1) cur.execute(sql_update2) cur.execute(sql_update3) db.commit() db.close() return render_template('close.html') @app.route('/addcomputer/', methods=['GET', 'POST']) # 添加计算机 def addcomputer(): if request.method == 'GET': return render_template('addcomputer.html') else: computer_id = request.form['Computer_ID'] price = request.form['Price_Per_Hour'] db = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='<PASSWORD>', db='cybercafe') cur = db.cursor() sql_insert1 = '''INSERT INTO Computer VALUES ('%s', '%s', null)''' % (computer_id, price) cur.execute(sql_insert1) db.commit() db.close() return render_template('close.html') @app.route('/changeadpwd/', methods=['GET', 'POST']) # 修改管理员密码 def changeadpwd(): if request.method == 'GET': return render_template('adminmain.html') else: staff_id = request.form['Staff_ID'] opwd = request.form['Old_Pwd'] npwd = request.form['New_Pwd'] db = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='<PASSWORD>', db='cybercafe') cur = db.cursor() sql_update1 = '''UPDATE Staff SET Password='%s' WHERE Staff_ID='%s' AND Password='%s' ''' % (npwd, staff_id, opwd) print(sql_update1) cur.execute(sql_update1) db.commit() db.close() return render_template('adminmain.html') @app.route('/deletesnack/<id>', methods=['GET', 'POST']) # 删除零食信息 def deletesnack(id): db = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='<PASSWORD>', db='cybercafe') cur = db.cursor() sql_delete1 = '''delete FROM Snacks WHERE S_ID='%s' ''' % id cur.execute(sql_delete1) db.commit() db.close() return render_template('adminmain.html') @app.route('/changesnack/', methods=['GET', 'POST']) # 修改零食信息 def changesnack(): if request.method == 'GET': return render_template('adminmain.html') else: s_id = request.form['Snack_ID'] sname = request.form['SName'] sprice = request.form['SPrice'] snack_status = request.form['Snack_Status'] db = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='<PASSWORD>', db='cybercafe') cur = db.cursor() sql_update1 = '''UPDATE Snacks SET SName='%s', SPrice='%s', Snack_Status='%s' WHERE S_ID='%s' ''' \ % (sname, sprice, snack_status, s_id) print(sql_update1) cur.execute(sql_update1) db.commit() db.close() return render_template('adminmain.html') @app.route('/addsnack/', methods=['GET', 'POST']) # 添加零食 def addsnack(): if request.method == 'GET': return render_template('addsnack.html') else: s_id = request.form['Snack_ID'] sname = request.form['SName'] sprice = request.form['SPrice'] snack_status = request.form['Snack_Status'] db = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='<PASSWORD>', db='cybercafe') cur = db.cursor() sql_insert1 = '''INSERT INTO Snacks VALUES ('%s', '%s', '%s', '%s')''' % (s_id, sname, sprice, snack_status) cur.execute(sql_insert1) db.commit() db.close() return render_template('close.html') # ########用户端######## # @app.route('/userlogin/', methods=['GET', 'POST']) # 用户端 def userlogin(): if request.method == 'GET': return render_template('userlogin.html') else: username = request.form['username'] password = request.form['password'] db = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='<PASSWORD>', db='cybercafe') cur2 = db.cursor() sql_select02 = '''SELECT Card_ID FROM Card WHERE Card_ID=('%s') AND Password=('%s')''' % (username, password) cur2.execute(sql_select02) return2 = cur2.fetchall() if len(return2): sql_select01 = '''select ca.Card_ID, cu.CName, ca.Using_Status, ca.Checkout_Status, ca.Account_Balance FROM Card ca, Customer cu WHERE ca.C_ID=cu.C_ID AND Card_ID='%s' ''' % username cur2.execute(sql_select01) k = cur2.fetchall() sql_select03 = '''select * FROM Bill WHERE Card_ID='%s' ORDER BY B_ID desc''' % username cur2.execute(sql_select03) j = cur2.fetchall() sql_select04 = '''select * FROM Snacks WHERE Snack_Status='Onsale' ORDER BY S_ID asc''' cur2.execute(sql_select04) l = cur2.fetchall() member = [] bills = [] snacks = [] for value in k: data = {} data['a'] = value[0] data['b'] = value[1] data['c'] = value[2] data['d'] = value[3] data['e'] = value[4] member.append(data) for value in j: data = {} data['a'] = value[0] data['b'] = value[1] data['c'] = value[2] data['d'] = value[3] data['e'] = value[4] data['f'] = value[5] data['g'] = value[6] bills.append(data) for value in l: data = {} data['a'] = value[0]
default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_nk_tags_rel_fk_put_with_http_info(id, nk, fk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str nk: Foreign key for designs. (required) :param str fk: Foreign key for tags (required) :param DesignTag data: :return: DesignTag If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'nk', 'fk', 'data'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method portals_id_designs_nk_tags_rel_fk_put" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `portals_id_designs_nk_tags_rel_fk_put`") # verify the required parameter 'nk' is set if ('nk' not in params) or (params['nk'] is None): raise ValueError("Missing the required parameter `nk` when calling `portals_id_designs_nk_tags_rel_fk_put`") # verify the required parameter 'fk' is set if ('fk' not in params) or (params['fk'] is None): raise ValueError("Missing the required parameter `fk` when calling `portals_id_designs_nk_tags_rel_fk_put`") collection_formats = {} resource_path = '/Portals/{id}/designs/{nk}/tags/rel/{fk}'.replace('{format}', 'json') path_params = {} if 'id' in params: path_params['id'] = params['id'] if 'nk' in params: path_params['nk'] = params['nk'] if 'fk' in params: path_params['fk'] = params['fk'] query_params = {} header_params = {} form_params = [] local_var_files = {} body_params = None if 'data' in params: body_params = params['data'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/xml', 'text/xml', 'application/javascript', 'text/javascript']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json', 'application/x-www-form-urlencoded', 'application/xml', 'text/xml']) # Authentication setting auth_settings = ['access_token'] return self.api_client.call_api(resource_path, 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='DesignTag', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), collection_formats=collection_formats) def portals_id_designs_nk_team_get(self, id, nk, **kwargs): """ Fetches belongsTo relation team. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_nk_team_get(id, nk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str nk: Foreign key for designs. (required) :param bool refresh: :return: Team If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.portals_id_designs_nk_team_get_with_http_info(id, nk, **kwargs) else: (data) = self.portals_id_designs_nk_team_get_with_http_info(id, nk, **kwargs) return data def portals_id_designs_nk_team_get_with_http_info(self, id, nk, **kwargs): """ Fetches belongsTo relation team. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_nk_team_get_with_http_info(id, nk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str nk: Foreign key for designs. (required) :param bool refresh: :return: Team If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'nk', 'refresh'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method portals_id_designs_nk_team_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `portals_id_designs_nk_team_get`") # verify the required parameter 'nk' is set if ('nk' not in params) or (params['nk'] is None): raise ValueError("Missing the required parameter `nk` when calling `portals_id_designs_nk_team_get`") collection_formats = {} resource_path = '/Portals/{id}/designs/{nk}/team'.replace('{format}', 'json') path_params = {} if 'id' in params: path_params['id'] = params['id'] if 'nk' in params: path_params['nk'] = params['nk'] query_params = {} if 'refresh' in params: query_params['refresh'] = params['refresh'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/xml', 'text/xml', 'application/javascript', 'text/javascript']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json', 'application/x-www-form-urlencoded', 'application/xml', 'text/xml']) # Authentication setting auth_settings = ['access_token'] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Team', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), collection_formats=collection_formats) def portals_id_designs_nk_template_get(self, id, nk, **kwargs): """ Fetches belongsTo relation template. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_nk_template_get(id, nk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str nk: Foreign key for designs. (required) :param bool refresh: :return: Template If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.portals_id_designs_nk_template_get_with_http_info(id, nk, **kwargs) else: (data) = self.portals_id_designs_nk_template_get_with_http_info(id, nk, **kwargs) return data def portals_id_designs_nk_template_get_with_http_info(self, id, nk, **kwargs): """ Fetches belongsTo relation template. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_nk_template_get_with_http_info(id, nk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str nk: Foreign key for designs. (required) :param bool refresh: :return: Template If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'nk', 'refresh'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method portals_id_designs_nk_template_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `portals_id_designs_nk_template_get`") # verify the required parameter 'nk' is set if ('nk' not in params) or (params['nk'] is None): raise ValueError("Missing the required parameter `nk` when calling `portals_id_designs_nk_template_get`") collection_formats = {} resource_path = '/Portals/{id}/designs/{nk}/template'.replace('{format}', 'json') path_params = {} if 'id' in params: path_params['id'] = params['id'] if 'nk' in params: path_params['nk'] = params['nk'] query_params = {} if 'refresh' in params: query_params['refresh'] = params['refresh'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/xml', 'text/xml', 'application/javascript', 'text/javascript']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json', 'application/x-www-form-urlencoded', 'application/xml', 'text/xml']) # Authentication setting auth_settings = ['access_token'] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Template', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), collection_formats=collection_formats) def portals_id_designs_post(self, id, **kwargs): """ Creates a new instance in designs of this model. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_post(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param Design data: :return: Design If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.portals_id_designs_post_with_http_info(id, **kwargs) else: (data) = self.portals_id_designs_post_with_http_info(id, **kwargs) return data def portals_id_designs_post_with_http_info(self, id, **kwargs): """ Creates a new instance in designs of this model. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_post_with_http_info(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param Design data: :return: Design If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'data'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got
# MIT License # # Copyright (c) 2019 TU Delft Embedded and Networked Systems Group/ # Sustainable Systems Laboratory. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Script used in generating results for the following paper # # @inproceedings{kortbeek_asplos2020, # author = "Vito {Kortbeek} and <NAME> {Yildirim} and Abu {Bakar} and Jacob {Sorber} # and Josiah {Hester} and Przemys{\l}}aw {Pawe{\l}czak}", # title = "Time-sensitive Intermittent Computing Meets Legacy Software", # year = "2020", # booktitle = "Proc. ASPLOS", # address = "Lausanne, Switzerland", # month = mar # " 16--20,", # publisher = "ACM" # } from pathlib import Path from scipy import stats import pandas as pd import re import matplotlib.pyplot as plt import numpy as np import sys # Read file of survey results results_folder = Path("../user-study-results/surveygizmo") results_file = results_folder / "20190109034400-SurveyExport_anonymized.csv" # results used in [kortbeek_asplos2020] results_data = pd.read_csv(results_file, keep_default_na=False) # replace empty fields with "-" #results_data = results_data[results_data['Status'] == 'Complete'] # Remove incomplete responses print('---------------------') # program begin marker try: results_data['Extended Referer'] except: # Surveygizmo CSV export does not contain "Extended Referer" and "Extended User Agent" fields after 4 December 2019 # add these here, as columns are addressed by numbers, not by names later on results_data.insert(8, "Extended Referer", results_data['Referer']) results_data.insert(12, "Extended User Agent", results_data['User Agent']) # Read file of MTurk results # Note: all results - fron MTurk and non-MTurk users were used in ASPLOS 2020 paper [kortbeek_asplos2020]; # feel free to experiment by chosing different uses cohorts mturk_folder = Path("../user-study-results/mturk") mturk_file = mturk_folder / "Batch_3492166_batch_results_anonymized.csv" mturk_data = pd.read_csv(mturk_file, keep_default_na=False) # replace empty fields with "-" # Use only MTurk results # results_data = results_data[results_data['Confirmation code'].isin(list(set(mturk_data['Answer.surveycode'])))] # Exclude MTurk results # results_data = results_data[~results_data['Confirmation code'].isin(list(set(mturk_data['Answer.surveycode'])))] # General stats no_responses = len(results_data.iloc[0:,1]) # pick any random column to measure number of respondents print("No. responses:", no_responses) print("") # Find information about countries of respondents unique_countries = sorted(list(set(results_data['Country'].sort_values()))) no_unique_countries = len(unique_countries) print("Countries:", unique_countries) print("No. Countries:", no_unique_countries) print("") # Find information about cities of respondents unique_cities = sorted(list(set(results_data['City'].sort_values()))) no_unique_cities = len(unique_cities) print("Cities:", unique_cities) print("No. Cities:", no_unique_cities) print("") ind_time_explanation_noutl = results_data[results_data['Time spend on explanation'] < results_data['Time spend on explanation'].mean() + 3 * results_data['Time spend on explanation'].std()].index.tolist() # Find information about time spent on reading `Explanation` section of the survey time_explanation_avg = results_data['Time spend on explanation'][ind_time_explanation_noutl].mean()/60 time_explanation_std = results_data['Time spend on explanation'][ind_time_explanation_noutl].std()/60 time_explanation_min = results_data['Time spend on explanation'][ind_time_explanation_noutl].min()/60 time_explanation_max = results_data['Time spend on explanation'][ind_time_explanation_noutl].max()/60 print("Avg Time Spent on `Explanation` (s):", time_explanation_avg) print("Std Time Spent on `Explanation` (s):", time_explanation_std) print("") # Find information about finding bug in `swap' program with `checkpoints` correct_line_swap_c = 'Line 9' # correct line for `swap' program with `checkpoints` line_swap_c = results_data.iloc[0:,23] # address by column number, not by name - name is too long # (Note: works for surveygizmo exports before 4 December 2019 - # "Extended referer" and "Extended user agent" column does not exist any more) no_correct_line_swap_c = len([x for x in list(line_swap_c) if correct_line_swap_c in x]) # number of correct responses print("No. Correct Responses (Swap/Chechpoint):", no_correct_line_swap_c) print("Correct Responses (Swap/Chechpoint) (%):", no_correct_line_swap_c / no_responses * 100) correct_expr_swap_c = 'a=a-b' # correct expression for `swap' program with `checkpoints` expr_swap_c = list(results_data.iloc[0:,24]) # address by column number, not by name - name is too long # (Note: see comment for line_swap_c eariler) no_correct_expr_swap_c = 0 for i in range(0, len(expr_swap_c)): expr_swap_c[i] = expr_swap_c[i].replace(' ', '') # remove spaces expr_swap_c[i] = expr_swap_c[i].replace(';', '') # remove ";" (we assume to accept missing ";") if bool(re.search(correct_expr_swap_c, expr_swap_c[i])): no_correct_expr_swap_c = no_correct_expr_swap_c + 1 print("No. Correct Expressions (Swap/Chechpoint):", no_correct_line_swap_c) print("Correct Expressions (Swap/Chechpoint) (%):", no_correct_line_swap_c / no_responses * 100) # Find all values except outlier ind_swap_c_noutl = results_data[results_data['Time spent swap checkpoint'] < results_data['Time spent swap checkpoint'].mean() + 3 * results_data['Time spent swap checkpoint'].std()].index.tolist() time_swap_c_avg = results_data['Time spent swap checkpoint'][ind_swap_c_noutl].mean()/60 time_swap_c_std = results_data['Time spent swap checkpoint'][ind_swap_c_noutl].std()/60 time_swap_c_min = results_data['Time spent swap checkpoint'][ind_swap_c_noutl].min()/60 time_swap_c_max = results_data['Time spent swap checkpoint'][ind_swap_c_noutl].max()/60 print("Avg Time Spent on `Swap/Chechpoint` (s):", time_swap_c_avg) print("Std Time Spent on `Swap/Chechpoint` (s):", time_swap_c_std) print("") # # Find information about finding bug in `swap' program with `tasks` correct_line_swap_t = 'Line 25' # correct line for `swap' program with `tasks` line_swap_t = results_data.iloc[0:,26] # address by column number, not by name - name is too long # (Note: see comment for line_swap_c eariler) no_correct_line_swap_t = len([x for x in list(line_swap_t) if correct_line_swap_t in x]) # number of correct responses print("No. Correct Responses (Swap/Task):", no_correct_line_swap_t) print("Correct Responses (Swap/Task) (%):", no_correct_line_swap_t / no_responses * 100) correct_expr_swap_t = 'SET\(a,GET\(a\)-GET\(b\)\)' # correct expression for `swap' program with `tasks` expr_swap_t = list(results_data.iloc[0:,27]) # address by column number, not by name - name is too long # (Note: see comment for line_swap_c eariler) no_correct_expr_swap_t = 0 for i in range(0, len(expr_swap_t)): expr_swap_t[i] = expr_swap_t[i].replace(' ', '') # remove spaces expr_swap_t[i] = expr_swap_t[i].replace(';', '') # remove ";" (we assume to accept missing ";") if bool(re.search(correct_expr_swap_t, expr_swap_t[i], re.IGNORECASE)): no_correct_expr_swap_t = no_correct_expr_swap_t + 1 print("No. Correct Expressions (Swap/Task):", no_correct_expr_swap_t) print("Correct Expressions (Swap/Task) (%):", no_correct_expr_swap_t / no_responses * 100) # Find all values except outlier ind_swap_t_noutl = results_data[results_data['Time spent swap task'] < results_data['Time spent swap task'].mean() + 3 * results_data['Time spent swap task'].std()].index.tolist() time_swap_t_avg = results_data['Time spent swap task'][ind_swap_t_noutl].mean()/60 time_swap_t_std = results_data['Time spent swap task'][ind_swap_t_noutl].std()/60 time_swap_t_min = results_data['Time spent swap task'][ind_swap_t_noutl].min()/60 time_swap_t_max = results_data['Time spent swap task'][ind_swap_t_noutl].max()/60 print("Avg Time Spent on `Swap/Task` (s):", time_swap_t_avg) print("Std Time Spent on `Swap/Task` (s):", time_swap_t_std) print("") # Find information about finding bug in `Bubble sort' program with `checkpoints` correct_line_bubble_c = 'Line 16' # correct line for `swap' program with `checkpoints` line_bubble_c = results_data.iloc[0:,29] # address by column number, not by name - name is too long # (Note: see comment for line_swap_c eariler) no_correct_line_bubble_c = len([x for x in list(line_bubble_c) if correct_line_bubble_c in x]) # number of correct responses print("No. Correct Responses (Bubble/Chechpoint):", no_correct_line_bubble_c) print("Correct Responses (Bubble/Chechpoint) (%):", no_correct_line_bubble_c / no_responses * 100) correct_expr_bubble_c = 'i\+\+' # correct expression for `swap' program with `checkpoints` expr_bubble_c = list(results_data.iloc[0:,30]) # address by column number, not by name - name is too long no_correct_expr_bubble_c = 0 for i in range(0, len(expr_bubble_c)): expr_bubble_c[i] = expr_bubble_c[i].replace(' ', '') # remove spaces expr_bubble_c[i] = expr_bubble_c[i].replace(';', '') # remove ";" (we assume to accept missing ";") if bool(re.search(correct_expr_bubble_c, expr_bubble_c[i])): no_correct_expr_bubble_c = no_correct_expr_bubble_c + 1 print("No. Correct Expressions (Bubble/Chechpoint):", no_correct_line_bubble_c) print("Correct Expressions (Bubble/Chechpoint) (%):", no_correct_line_bubble_c / no_responses * 100) # Find all values except outlier ind_bubble_c_noutl = results_data[results_data['Time spent bubble sort checkpoint'] < results_data['Time spent bubble sort checkpoint'].mean() + 3 * results_data['Time spent bubble sort checkpoint'].std()].index.tolist() time_bubble_c_avg = results_data['Time spent bubble sort checkpoint'][ind_bubble_c_noutl].mean()/60 time_bubble_c_std = results_data['Time spent bubble sort checkpoint'][ind_bubble_c_noutl].std()/60 time_bubble_c_min = results_data['Time spent bubble sort checkpoint'][ind_bubble_c_noutl].min()/60 time_bubble_c_max = results_data['Time spent bubble sort checkpoint'][ind_bubble_c_noutl].max()/60 print("Avg Time Spent on `Bubble/Chechpoint` (s):", time_bubble_c_avg) print("Std Time Spent on `Bubble/Chechpoint` (s):", time_bubble_c_std) print("") # Find information about finding bug in `Bubble sort' program with `tasks` correct_line_bubble_t = 'Line 48' # correct line for `swap' program with `checkpoints` line_bubble_t = results_data.iloc[0:,32] # address by column number, not by name - name is too long no_correct_line_bubble_t = len([x for x in list(line_bubble_t) if correct_line_bubble_t in x]) # number of correct responses print("No. Correct Responses (Bubble/Task):", no_correct_line_bubble_t) print("Correct Responses (Bubble/Task) (%):", no_correct_line_bubble_t / no_responses * 100) correct_expr_bubble_t = 'returntask_array_loop_incr' # correct expression for `swap' program with `checkpoints` expr_bubble_t = list(results_data.iloc[0:,33]) # address by column number, not by name - name is too long no_correct_expr_bubble_t = 0 for i in range(0, len(expr_bubble_t)): expr_bubble_t[i] = expr_bubble_t[i].replace(' ', '') # remove spaces expr_bubble_t[i] = expr_bubble_t[i].replace(';', '') # remove ";" (we assume to accept missing ";") if bool(re.search(correct_expr_bubble_t, expr_bubble_t[i])): no_correct_expr_bubble_t = no_correct_expr_bubble_t + 1 print("No. Correct Expressions (Bubble/Task):", no_correct_line_bubble_t) print("Correct Expressions (Bubble/Task) (%):", no_correct_line_bubble_t / no_responses * 100) # Find all values except outlier ind_bubble_t_noutl = results_data[results_data['Time spent bubble sort task'] < results_data['Time spent bubble sort task'].mean() + 3 * results_data['Time spent bubble
will be sampled per image (again, used for both x- and y-axis). * If a dictionary, then it is expected to have the keys "x" and/or "y". Each of these keys can have the same values as described before for this whole parameter (`scale`). Using a dictionary allows to set different values for the axis. If they are set to the same ranges, different values may still be sampled per axis. translate_percent : float or tuple of two floats or StochasticParameter or dict {"x": float/tuple/StochasticParameter, "y": float/tuple/StochasticParameter}, optional(default=1.0) Translation in percent relative to the image height/width (x-translation, y-translation) to use, where 0 represents no change and 0.5 is half of the image height/width. * If a single float, then that value will be used for all images. * If a tuple (a, b), then a value will be sampled from the range a <= x <= b per image. That percent value will be used identically for both x- and y-axis. * If a StochasticParameter, then from that parameter a value will be sampled per image (again, used for both x- and y-axis). * If a dictionary, then it is expected to have the keys "x" and/or "y". Each of these keys can have the same values as described before for this whole parameter (`translate_percent`). Using a dictionary allows to set different values for the axis. If they are set to the same ranges, different values may still be sampled per axis. translate_px : int or tuple of two ints or StochasticParameter or dict {"x": int/tuple/StochasticParameter, "y": int/tuple/StochasticParameter}, optional(default=1.0) Translation in pixels. * If a single int, then that value will be used for all images. * If a tuple (a, b), then a value will be sampled from the discrete range [a .. b] per image. That number will be used identically for both x- and y-axis. * If a StochasticParameter, then from that parameter a value will be sampled per image (again, used for both x- and y-axis). * If a dictionary, then it is expected to have the keys "x" and/or "y". Each of these keys can have the same values as described before for this whole parameter (`translate_px`). Using a dictionary allows to set different values for the axis. If they are set to the same ranges, different values may still be sampled per axis. rotate : float or int or tuple of two floats/ints or StochasticParameter, optional(default=0) Rotation in degrees (NOT radians), i.e. expected value range is 0 to 360 for positive rotations (may also be negative). * If a float/int, then that value will be used for all images. * If a tuple (a, b), then a value will be sampled per image from the range a <= x <= b and be used as the rotation value. * If a StochasticParameter, then this parameter will be used to sample the rotation value per image. shear : float or int or tuple of two floats/ints or StochasticParameter, optional(default=0) Shear in degrees (NOT radians), i.e. expected value range is 0 to 360 for positive shear (may also be negative). * If a float/int, then that value will be used for all images. * If a tuple (a, b), then a value will be sampled per image from the range a <= x <= b and be used as the rotation value. * If a StochasticParameter, then this parameter will be used to sample the shear value per image. order : int or iterable of int or ia.ALL or StochasticParameter, optional(default=1) Interpolation order to use. Same meaning as in skimage: * 0: Nearest-neighbor * 1: Bi-linear (default) * 2: Bi-quadratic (not recommended by skimage) * 3: Bi-cubic * 4: Bi-quartic * 5: Bi-quintic Method 0 and 1 are fast, 3 is a bit slower, 4 and 5 are very slow. * If a single int, then that order will be used for all images. * If an iterable, then for each image a random value will be sampled from that iterable (i.e. list of allowed order values). * If ia.ALL, then equivalant to list [0, 1, 3, 4, 5]. * If StochasticParameter, then that parameter is queried per image to sample the order value to use. cval : number or tuple of two number or ia.ALL or StochasticParameter, optional(default=0) The constant value used for skimage's transform function. This is the value used to fill up pixels in the result image that didn't exist in the input image (e.g. when translating to the left, some new pixels are created at the right). Such a fill-up with a constant value only happens, when `mode` is "constant". For standard uint8 images (value range 0-255), this value may also come from the range 0-255. It may be a float value, even for integer image dtypes. * If this is a single int or float, then that value will be used (e.g. 0 results in black pixels). * If a tuple (a, b), then a random value from the range a <= x <= b is picked per image. * If ia.ALL, a value from the discrete range [0 .. 255] will be sampled per image. * If a StochasticParameter, a new value will be sampled from the parameter per image. mode : string or list of string or ia.ALL or StochasticParameter, optional(default="constant") Parameter that defines the handling of newly created pixels. Same meaning as in skimage (and numpy.pad): * "constant": Pads with a constant value * "edge": Pads with the edge values of array * "symmetric": Pads with the reflection of the vector mirrored along the edge of the array. * "reflect": Pads with the reflection of the vector mirrored on the first and last values of the vector along each axis. * "wrap": Pads with the wrap of the vector along the axis. The first values are used to pad the end and the end values are used to pad the beginning. The datatype of the parameter may be: * If a single string, then that mode will be used for all images. * If a list of strings, then per image a random mode will be picked from that list. * If ia.ALL, then a random mode from all possible modes will be picked. * If StochasticParameter, then the mode will be sampled from that parameter per image, i.e. it must return only the above mentioned strings. name : string, optional(default=None) See `Augmenter.__init__()` deterministic : bool, optional(default=False) See `Augmenter.__init__()` random_state : int or np.random.RandomState or None, optional(default=None) See `Augmenter.__init__()` Examples -------- >>> aug = iaa.Affine(scale=2.0) zooms all images by a factor of 2. >>> aug = iaa.Affine(translate_px=16) translates all images on the x- and y-axis by 16 pixels (to the right/top), fills up any new pixels with zero (black values). >>> aug = iaa.Affine(translate_percent=0.1) translates all images on the x- and y-axis by 10 percent of their width/height (to the right/top), fills up any new pixels with zero (black values). >>> aug = iaa.Affine(rotate=35) rotates all images by 35 degrees, fills up any new pixels with zero (black values). >>> aug = iaa.Affine(shear=15) rotates all images by 15 degrees, fills up any new pixels with zero (black values). >>> aug = iaa.Affine(translate_px=(-16, 16)) translates all images on the x- and y-axis by a random value between -16 and 16 pixels (to the right/top) (same for both axis, i.e. sampled once per image), fills up any new pixels with zero (black values). >>> aug = iaa.Affine(translate_px={"x": (-16, 16), "y": (-4, 4)}) translates all images on the x-axis by a random value between -16 and 16 pixels (to the right) and on the y-axis by a random value between -4 and 4 pixels to the top. Even if both ranges
== 0 return_node = expand_func(game, parent) assert len(botbowl.D6.FixedRolls) == 0 game.revert(parent.step_nbr) return return_node try: with only_fixed_rolls(game): game.step() except AttributeError as e: raise e action_node = ActionNode(game, parent) game.revert(parent.step_nbr) assert parent.step_nbr == game.get_step() return action_node def expand_throw_in(game: botbowl.Game, parent: Node) -> Node: # noinspection PyTypeChecker active_proc: procedures.ThrowIn = game.get_procedure() assert type(active_proc) is procedures.ThrowIn d6_fixes = [] d3_fixes = [2] # direction roll if game.config.throw_in_dice == "2d6": d6_fixes = [3, 4] elif game.config.throw_in_dice == "d6": d6_fixes = [4] elif game.config.throw_in_dice == "d3": d3_fixes.append = [1] # distance roll is sampled after direction roll with only_fixed_rolls(game, d3=d3_fixes, d6=d6_fixes): game.step() assert active_proc is not game.get_procedure() return expand_none_action(game, parent) def expand_bounce(game: botbowl.Game, parent: Node) -> Node: # noinspection PyTypeChecker active_proc: procedures.Bounce = game.get_procedure() assert type(active_proc) is procedures.Bounce new_parent = ChanceNode(game, parent) ball_pos = active_proc.piece.position # todo: consider ball bouncing out. sq_to_num_tz = {} for sq in game.get_adjacent_squares(ball_pos, occupied=False, out=True): if sq.out_of_bounds: sq_to_num_tz[sq] = 'out' else: home_tz = len(game.get_adjacent_players(sq, team=game.state.home_team, standing=True)) away_tz = len(game.get_adjacent_players(sq, team=game.state.away_team, standing=True)) sq_to_num_tz[sq] = (home_tz, away_tz) num_squares = len(sq_to_num_tz) if not (num_squares > 0): raise AssertionError(f"num_squares should be non-zero! ball_pos={ball_pos}") num_tz_to_sq = {} for sq, num_tz in sq_to_num_tz.items(): num_tz_to_sq.setdefault(num_tz, []).append(sq) for num_tz, count in collections.Counter(sq_to_num_tz.values()).items(): possible_squares = num_tz_to_sq[num_tz] square = np.random.choice(possible_squares, 1)[0] roll = botbowl.D8.d8_from_xy[(square.x - ball_pos.x, square.y - ball_pos.y)] expand_with_fixes(game, new_parent, probability=count / num_squares, d8=[roll]) assert game.get_step() == new_parent.step_nbr sum_prob = sum(new_parent.child_probability) # new_parent.child_probability = [prob/sum_prob for prob in new_parent.child_probability] assert sum(new_parent.child_probability) == approx(1.0, abs=1e-9) assert game.get_step() == new_parent.step_nbr return new_parent def expand_pickup(game: botbowl.Game, parent: Node) -> Node: # noinspection PyTypeChecker active_proc: procedures.Pickup = game.get_procedure() assert type(active_proc) is procedures.Pickup assert active_proc.roll is None probability_success = game.get_pickup_prob(active_proc.player, active_proc.ball.position) new_parent = ChanceNode(game, parent) # SUCCESS SCENARIO with only_fixed_rolls(game, d6=[6]): game.step() success_node = expand_none_action(game, new_parent, pickup_handled=True) new_parent.connect_child(success_node, probability_success) assert game.get_step() == new_parent.step_nbr # FAILURE SCENARIO fixes = [1] if active_proc.player.has_skill(Skill.SURE_HANDS): fixes.append(1) with only_fixed_rolls(game, d6=fixes): while len(botbowl.D6.FixedRolls) > 0: game.step() fail_node = expand_none_action(game, new_parent, pickup_handled=True) new_parent.connect_child(fail_node, 1 - probability_success) assert game.get_step() == new_parent.step_nbr return new_parent def expand_moving(game: botbowl.Game, parent: Node) -> Node: # noinspection PyTypeChecker active_proc: Union[procedures.GFI, procedures.Dodge] = game.get_procedure() assert type(active_proc) is procedures.Dodge or type(active_proc) is procedures.GFI move_action_proc: procedures.MoveAction = first(proc for proc in reversed(game.state.stack.items) if isinstance(proc, procedures.MoveAction)) is_blitz = type(move_action_proc) is procedures.BlitzAction is_handoff = type(move_action_proc) is procedures.HandoffAction player = move_action_proc.player if move_action_proc.steps is not None: final_step = move_action_proc.steps[-1] else: if is_blitz: block_proc: procedures.Block = first( filter(lambda proc: type(proc) is procedures.Block, game.state.stack.items)) final_step = block_proc.defender.position elif is_handoff: raise ValueError() else: final_step = active_proc.position is_pickup = game.get_ball().position == final_step and not game.get_ball().is_carried path = move_action_proc.paths[final_step] if len(path.rolls) != len(path.steps): raise AssertionError("wrong!") """ This block of code sets two important variables: probability_success - probability of the remaining path rolls - list[int] - the remaining rolls of the path Normal case we just fetch this from the path object. If we're in a rerolled proc, it's nasty... """ if active_proc.roll is None: probability_success = path.prob rolls = list(collapse(path.rolls)) if is_pickup: # remove the pickup roll and probability rolls.pop() probability_success /= game.get_pickup_prob(active_proc.player, final_step) else: with only_fixed_rolls(game): game.step() new_proc = game.get_procedure() if type(new_proc) not in {procedures.GFI, procedures.Dodge}: assert not active_proc.reroll.use_reroll return expand_none_action(game, parent) # if we get here, it means that a reroll was used. assert new_proc is active_proc assert active_proc.roll is None assert active_proc.reroll is None current_step = active_proc.position try: assert player.position.distance(current_step) == 1 or is_pickup or is_blitz except AssertionError as e: raise e i = 0 while path.steps[i] != current_step: i += 1 remaining_current_step_rolls = path.rolls[i][:] if is_pickup and current_step == final_step: remaining_current_step_rolls.pop() num_current_step_remaining_rolls = 0 gfi_proc = game.get_proc(procedures.GFI) dodge_proc = game.get_proc(procedures.Dodge) block_proc = game.get_proc(procedures.Block) if dodge_proc is not None: num_current_step_remaining_rolls += 1 if gfi_proc is not None and block_proc is None: num_current_step_remaining_rolls += 1 remaining_current_step_rolls = remaining_current_step_rolls[ len(remaining_current_step_rolls) - num_current_step_remaining_rolls:] probability_success = reduce(operator.mul, map(lambda d: (7 - d) / 6, remaining_current_step_rolls), 1.0) rolls = list(collapse(remaining_current_step_rolls)) if current_step != final_step: step_count = game.get_step() if block_proc is not None: player.state.moves -= 1 if player.position != current_step: try: game.move(player, current_step) except AssertionError as e: raise e new_path = pf.get_safest_path(game, player, final_step, blitz=is_blitz) game.revert(step_count) # try: # # assert new_path.steps == path.steps[-len(new_path):] this assert can't be made because of small randomness in pathfinder # assert list(collapse(new_path.rolls)) == list(collapse(path.rolls[-len(new_path):])), f"{new_path.rolls} != {path.rolls[-len(new_path):]}" # except AssertionError as e: # raise e try: if new_path is not None: rolls.extend(collapse(new_path.rolls)) probability_success *= new_path.prob except AttributeError as e: raise e if is_pickup: # remove the pickup roll and probability rolls.pop() probability_success /= game.get_pickup_prob(active_proc.player, final_step) try: p = np.array(rolls) / sum(rolls) index_of_failure = np.random.choice(range(len(rolls)), 1, p=p)[0] except ValueError as e: raise e # STEP UNTIL FAILURE (possibly no steps at all) with only_fixed_rolls(game, d6=[6] * index_of_failure): while len(botbowl.D6.FixedRolls) > 0: if len(game.get_available_actions()) > 0: raise AttributeError("wrong") game.step() new_parent = ChanceNode(game, parent) debug_step_count = game.get_step() # SUCCESS SCENARIO with only_fixed_rolls(game, d6=[6] * (len(rolls) - index_of_failure)): while len(botbowl.D6.FixedRolls) > 0: if type(game.get_procedure()) not in {procedures.GFI, procedures.Block, procedures.Dodge, procedures.Move, procedures.MoveAction, procedures.BlitzAction, procedures.HandoffAction}: raise AttributeError("wrong") if len(game.get_available_actions()) > 0: raise AttributeError("wrong") if type(game.get_procedure()) is procedures.Block and not game.get_procedure().gfi: raise AttributeError("wrong") game.step() success_node = expand_none_action(game, new_parent, moving_handled=True) new_parent.connect_child(success_node, probability_success) assert debug_step_count == game.get_step() # FAILURE SCENARIO fail_rolls = [1] if type(game.get_procedure()) is procedures.Dodge and player.can_use_skill(Skill.DODGE): fail_rolls.append(1) with only_fixed_rolls(game, d6=fail_rolls): while len(botbowl.D6.FixedRolls) > 0: if len(game.get_available_actions()) > 0: raise AttributeError("wrong") game.step() if type(game.get_procedure()) is procedures.Reroll and len(game.get_available_actions()) == 0: with only_fixed_rolls(game): game.step() if type(game.get_procedure()) is {procedures.Dodge, procedures.GFI}: raise ValueError() fail_node = expand_none_action(game, new_parent, moving_handled=True) new_parent.connect_child(fail_node, 1 - probability_success) assert debug_step_count == game.get_step() return new_parent def expand_armor(game: botbowl.Game, parent: Node) -> Node: # noinspection PyTypeChecker proc: procedures.Armor = game.get_procedure() assert not proc.foul p_armorbreak = accumulated_prob_2d_roll[proc.player.get_av() + 1] new_parent = ChanceNode(game, parent) expand_with_fixes(game, new_parent, p_armorbreak, d6=[6, 6]) # Armor broken expand_with_fixes(game, new_parent, 1 - p_armorbreak, d6=[1, 1]) # Armor not broken return new_parent def expand_injury(game: botbowl.Game, parent: Node) -> Node: # noinspection PyTypeChecker proc: procedures.Injury = game.get_procedure() assert not proc.foul if proc.in_crowd: with only_fixed_rolls(game, d6=[5, 4]): # straight to KO game.step() return expand_none_action(game, parent) p_removal = accumulated_prob_2d_roll[8] new_parent = ChanceNode(game, parent) expand_with_fixes(game, new_parent, p_removal, d6=[5, 4]) # KO expand_with_fixes(game, new_parent, 1 - p_removal, d6=[1, 1]) # Stun return new_parent def expand_block(game: botbowl.Game, parent: Node) -> Node: proc: botbowl.Block = game.get_procedure() assert type(proc) is botbowl.Block assert not proc.gfi, "Can't handle GFI:s here =( " assert proc.roll is None attacker: botbowl.Player = proc.attacker defender: botbowl.Player = proc.defender dice = game.num_block_dice(attacker, defender) num_dice = abs(dice) # initialize as 1d block without skills dice_outcomes = np.array([2, 2, 1, 1], dtype=int) DEF_DOWN, NOONE_DOWN, ALL_DOWN, ATT_DOWN = (0, 1, 2, 3) die_results = ([BBDieResult.DEFENDER_DOWN, BBDieResult.DEFENDER_STUMBLES], [BBDieResult.PUSH], [BBDieResult.BOTH_DOWN], [BBDieResult.ATTACKER_DOWN]) who_has_block = (attacker.has_skill(Skill.BLOCK), defender.has_skill(Skill.BLOCK)) if any(who_has_block): dice_outcomes[ALL_DOWN] = 0 die_results[ALL_DOWN].clear() if who_has_block == (True, True): # both dice_outcomes[NOONE_DOWN] += 1 die_results[NOONE_DOWN].append(BBDieResult.BOTH_DOWN) elif who_has_block == (True, False): # only attacker dice_outcomes[DEF_DOWN] += 1 die_results[DEF_DOWN].append(BBDieResult.BOTH_DOWN) elif who_has_block == (False, True): # only defender dice_outcomes[ATT_DOWN] += 1 die_results[ATT_DOWN].append(BBDieResult.BOTH_DOWN) crowd_surf: bool = game.get_push_squares(attacker.position, defender.position)[0].out_of_bounds if crowd_surf: dice_outcomes[DEF_DOWN] += 2 dice_outcomes[NOONE_DOWN] -= 2 die_results[DEF_DOWN].append(BBDieResult.PUSH) die_results[NOONE_DOWN].remove(BBDieResult.PUSH) elif defender.has_skill(Skill.DODGE): # and not attacker.has_skill(Skill.TACKLE): dice_outcomes[DEF_DOWN] -= 1 dice_outcomes[NOONE_DOWN] += 1 die_results[DEF_DOWN].remove(BBDieResult.DEFENDER_STUMBLES) die_results[NOONE_DOWN].append(BBDieResult.DEFENDER_STUMBLES) prob = np.zeros(4) probability_left = 1.0 available_dice = 6 evaluation_order = [DEF_DOWN, NOONE_DOWN, ALL_DOWN, ATT_DOWN] if dice < 0: evaluation_order = reversed(evaluation_order) for i in evaluation_order: prob[i] = probability_left * (1 - (1 - dice_outcomes[i] / available_dice) ** num_dice) available_dice -= dice_outcomes[i] probability_left -= prob[i] assert available_dice == 0 and probability_left == approx(0) and prob.sum() == approx(1) new_parent = ChanceNode(game, parent) for prob, die_res in zip(prob, die_results): if prob == approx(0) or len(die_res) == 0: assert prob == approx(0) and len(die_res) == 0 continue expand_with_fixes(game, new_parent, prob, block_dice=np.random.choice(die_res, num_dice)) assert sum(new_parent.child_probability) == approx(1.0) return new_parent def expand_catch(game: botbowl.Game, parent: Node) -> Node: # noinspection PyTypeChecker proc: procedures.Catch = game.get_procedure() assert type(proc) is procedures.Catch if not proc.player.can_catch(): with only_fixed_rolls(game): game.step() assert game.get_procedure() is not proc return expand_none_action(game, parent) if proc.roll is not None: with only_fixed_rolls(game): game.step() if game.get_procedure() is not proc: # If the catch proc was removed from the stack, we just
'Hexacom'}, '9173008':{'en': 'Hexacom'}, '55839932':{'en': 'Claro BR'}, '65913':{'en': 'SingTel'}, '55839930':{'en': 'Claro BR'}, '55839931':{'en': 'Claro BR'}, '65916':{'en': 'StarHub'}, '65917':{'en': 'SingTel'}, '65914':{'en': 'StarHub'}, '65915':{'en': 'SingTel'}, '558799639':{'en': 'TIM'}, '558799638':{'en': 'TIM'}, '9177658':{'en': 'Airtel'}, '558799633':{'en': 'TIM'}, '558799632':{'en': 'TIM'}, '558799631':{'en': 'TIM'}, '558799637':{'en': 'TIM'}, '558799636':{'en': 'TIM'}, '558799635':{'en': 'TIM'}, '558799634':{'en': 'TIM'}, '9173719':{'en': 'Idea'}, '556998465':{'en': 'Brasil Telecom GSM'}, '556998467':{'en': 'Brasil Telecom GSM'}, '556998466':{'en': 'Brasil Telecom GSM'}, '556998461':{'en': 'Brasil Telecom GSM'}, '556998463':{'en': 'Brasil Telecom GSM'}, '556998462':{'en': 'Brasil Telecom GSM'}, '57310':{'en': 'Claro'}, '8536694':{'en': '3'}, '8536695':{'en': '3'}, '8536696':{'en': 'CTM'}, '8536697':{'en': '3'}, '8536690':{'en': 'Kong Seng'}, '8536691':{'en': 'Kong Seng'}, '8536692':{'en': 'CTM'}, '8536693':{'en': 'CTM'}, '62218964':{'en': 'Esia'}, '62218965':{'en': 'Esia'}, '62218966':{'en': 'Esia'}, '62218960':{'en': 'Esia'}, '62218961':{'en': 'Esia'}, '62218962':{'en': 'Esia'}, '559399156':{'en': 'Vivo'}, '9181770':{'en': 'Tata Docomo'}, '9181778':{'en': 'Telewings'}, '918169':{'en': 'Reliance Jio'}, '57312':{'en': 'Claro'}, '918168':{'en': 'Reliance Jio'}, '85577':{'en': 'Cellcard'}, '85570':{'en': 'Smart'}, '85571':{'en': 'Metfone'}, '85578':{'en': 'Cellcard'}, '9175897':{'en': 'Reliance Jio'}, '9181820':{'en': 'Dishnet'}, '56972':{'en': 'Claro'}, '658399':{'en': 'SingTel'}, '658653':{'en': 'SingTel'}, '658398':{'en': 'SingTel'}, '9181198':{'en': 'Hexacom'}, '556398409':{'en': 'Brasil Telecom GSM'}, '658393':{'en': 'SingTel'}, '918299':{'en': 'Reliance Jio'}, '6011209':{'en': 'XOX'}, '6011208':{'en': 'XOX'}, '557499123':{'en': 'TIM'}, '557499122':{'en': 'TIM'}, '557499125':{'en': 'TIM'}, '557499124':{'en': 'TIM'}, '6226391':{'en': 'Esia'}, '6011201':{'en': 'Talk Focus'}, '6011200':{'en': 'Talk Focus'}, '6011203':{'en': 'Talk Focus'}, '6011202':{'en': 'Talk Focus'}, '6011205':{'en': 'XOX'}, '6011204':{'en': 'Talk Focus'}, '6011207':{'en': 'XOX'}, '6011206':{'en': 'XOX'}, '556398408':{'en': 'Brasil Telecom GSM'}, '9176529':{'en': 'CellOne'}, '658396':{'en': 'StarHub'}, '5699785':{'en': 'Entel'}, '5699784':{'en': 'Entel'}, '555399911':{'en': 'TIM'}, '5699786':{'en': 'Entel'}, '5699781':{'en': 'Movistar'}, '5699780':{'en': 'Movistar'}, '5699783':{'en': 'Movistar'}, '5699782':{'en': 'Movistar'}, '9183840':{'en': 'Reliance Jio'}, '5699789':{'en': 'Entel'}, '5699788':{'en': 'Entel'}, '8536640':{'en': 'SmarTone'}, '559498133':{'en': 'TIM'}, '556499907':{'en': 'Vivo'}, '8536645':{'en': '3'}, '8536644':{'en': '3'}, '559898161':{'en': 'TIM'}, '559898162':{'en': 'TIM'}, '559898163':{'en': 'TIM'}, '559898164':{'en': 'TIM'}, '559898165':{'en': 'TIM'}, '559898166':{'en': 'TIM'}, '559898167':{'en': 'TIM'}, '559898168':{'en': 'TIM'}, '559898169':{'en': 'TIM'}, '6236299':{'en': 'Esia'}, '569620':{'en': 'Entel'}, '569621':{'en': 'Entel'}, '569622':{'en': 'Entel'}, '569623':{'en': 'Entel'}, '569624':{'en': 'Entel'}, '569625':{'en': 'Claro'}, '569626':{'en': 'Claro'}, '569627':{'en': 'Claro'}, '569628':{'en': 'Movistar'}, '569629':{'en': 'Movistar'}, '559999173':{'en': 'Vivo'}, '6231931':{'en': 'Esia'}, '559999172':{'en': 'Vivo'}, '559498137':{'en': 'TIM'}, '556498136':{'en': 'TIM'}, '85264511':{'en': 'CITIC', 'zh': u('\u4e2d\u4fe1\u56fd\u9645\u7535\u8baf'), 'zh_Hant': u('\u4e2d\u4fe1\u570b\u969b\u96fb\u8a0a')}, '85264510':{'en': 'CITIC', 'zh': u('\u4e2d\u4fe1\u56fd\u9645\u7535\u8baf'), 'zh_Hant': u('\u4e2d\u4fe1\u570b\u969b\u96fb\u8a0a')}, '559999176':{'en': 'Vivo'}, '9173490':{'en': 'Airtel'}, '9173491':{'en': 'Airtel'}, '9173492':{'en': 'Airtel'}, '9173493':{'en': 'Airtel'}, '9173494':{'en': 'Airtel'}, '556498132':{'en': 'TIM'}, '9173496':{'en': 'Airtel'}, '9173497':{'en': 'Airtel'}, '9173498':{'en': 'Vodafone'}, '9173499':{'en': 'Vodafone'}, '559999174':{'en': 'Vivo'}, '9177588':{'en': 'Airtel'}, '852593':{'en': 'China Mobile', 'zh': u('\u4e2d\u56fd\u79fb\u52a8'), 'zh_Hant': u('\u4e2d\u570b\u79fb\u52d5')}, '852592':{'en': '1O1O / One2Free', 'zh': '1O1O / One2Free', 'zh_Hant': '1O1O / One2Free'}, '852591':{'en': '1O1O / One2Free', 'zh': '1O1O / One2Free', 'zh_Hant': '1O1O / One2Free'}, '852597':{'en': '3', 'zh': '3', 'zh_Hant': '3'}, '852596':{'en': '3', 'zh': '3', 'zh_Hant': '3'}, '852594':{'en': 'PCCW Mobile', 'zh': u('\u9999\u6e2f\u79fb\u52a8\u901a\u8baf'), 'zh_Hant': u('\u9999\u6e2f\u79fb\u52d5\u901a\u8a0a')}, '852599':{'en': '1O1O / One2Free', 'zh': '1O1O / One2Free', 'zh_Hant': '1O1O / One2Free'}, '852598':{'en': 'China Mobile', 'zh': u('\u4e2d\u56fd\u79fb\u52a8'), 'zh_Hant': u('\u4e2d\u570b\u79fb\u52d5')}, '658649':{'en': 'SingTel'}, '9177000':{'en': 'Airtel'}, '9177009':{'en': 'Airtel'}, '9177008':{'en': 'Airtel'}, '556298118':{'en': 'TIM'}, '9173940':{'en': 'Telenor'}, '9173948':{'en': 'Telenor'}, '9173949':{'en': 'Telenor'}, '9176059':{'en': 'Airtel'}, '917827':{'en': 'Reliance'}, '917826':{'en': 'Vodafone'}, '917825':{'en': 'Vodafone'}, '917824':{'en': 'Vodafone'}, '917822':{'en': 'Reliance'}, '917821':{'en': 'Reliance'}, '917820':{'en': 'Reliance'}, '917829':{'en': 'Vodafone'}, '917828':{'en': 'Reliance'}, '559399144':{'en': 'Vivo'}, '559399145':{'en': 'Vivo'}, '559399146':{'en': 'Vivo'}, '559399147':{'en': 'Vivo'}, '559399141':{'en': 'Vivo'}, '559399142':{'en': 'Vivo'}, '559399143':{'en': 'Vivo'}, '9176058':{'en': 'Airtel'}, '559399148':{'en': 'Vivo'}, '559399149':{'en': 'Vivo'}, '62536204':{'en': 'Esia'}, '9176270':{'en': 'CellOne'}, '62536200':{'en': 'Esia'}, '62536201':{'en': 'Esia'}, '62536202':{'en': 'Esia'}, '62536203':{'en': 'Esia'}, '9181348':{'en': 'Airtel'}, '555598134':{'en': 'TIM'}, '555598135':{'en': 'TIM'}, '555598136':{'en': 'TIM'}, '555598137':{'en': 'TIM'}, '555598131':{'en': 'TIM'}, '555598132':{'en': 'TIM'}, '555598133':{'en': 'TIM'}, '555598138':{'en': 'TIM'}, '555598139':{'en': 'TIM'}, '917411':{'en': 'Tata Docomo'}, '555499628':{'en': 'Vivo'}, '555499629':{'en': 'Vivo'}, '555499624':{'en': 'Vivo'}, '555499625':{'en': 'Vivo'}, '555499626':{'en': 'Vivo'}, '555499627':{'en': 'Vivo'}, '555499621':{'en': 'Vivo'}, '555499622':{'en': 'Vivo'}, '555499623':{'en': 'Vivo'}, '557199157':{'en': 'TIM'}, '557199156':{'en': 'TIM'}, '557199155':{'en': 'TIM'}, '557199154':{'en': 'TIM'}, '557199153':{'en': 'TIM'}, '557199152':{'en': 'TIM'}, '557199151':{'en': 'TIM'}, '62823':{'en': 'Telkomsel'}, '62822':{'en': 'Telkomsel'}, '62821':{'en': 'Telkomsel'}, '917415':{'en': 'Tata Docomo'}, '557199159':{'en': 'TIM'}, '557199158':{'en': 'TIM'}, '917418':{'en': 'Tata Docomo'}, '556198568':{'en': 'Brasil Telecom GSM'}, '556198569':{'en': 'Brasil Telecom GSM'}, '598921':{'en': 'Antel'}, '598920':{'en': 'Antel'}, '601128':{'en': 'U Mobile'}, '601129':{'en': 'Celecom'}, '9174628':{'en': 'Airtel'}, '9174629':{'en': 'Airtel'}, '601124':{'en': 'Maxis'}, '601125':{'en': 'Maxis'}, '601126':{'en': 'DiGi'}, '556198563':{'en': 'Brasil Telecom GSM'}, '556198564':{'en': 'Brasil Telecom GSM'}, '601121':{'en': 'U Mobile'}, '601122':{'en': 'Clixster'}, '601123':{'en': 'Maxis'}, '556199619':{'en': 'Vivo'}, '59891':{'en': 'Antel'}, '59893':{'en': 'Movistar'}, '59894':{'en': 'Movistar'}, '59895':{'en': 'Movistar'}, '59896':{'en': 'Claro'}, '59897':{'en': 'Claro'}, '59898':{'en': 'Antel'}, '59899':{'en': 'Antel'}, '556199613':{'en': 'Vivo'}, '556199612':{'en': 'Vivo'}, '556199615':{'en': 'Vivo'}, '556199614':{'en': 'Vivo'}, '556199617':{'en': 'Vivo'}, '556199616':{'en': 'Vivo'}, '559699114':{'en': 'Vivo'}, '559699115':{'en': 'Vivo'}, '559699116':{'en': 'Vivo'}, '559699117':{'en': 'Vivo'}, '559699111':{'en': 'Vivo'}, '559699112':{'en': 'Vivo'}, '559699113':{'en': 'Vivo'}, '559699118':{'en': 'Vivo'}, '559699119':{'en': 'Vivo'}, '9181520':{'en': 'Idea'}, '852561':{'en': 'China Mobile', 'zh': u('\u4e2d\u56fd\u79fb\u52a8'), 'zh_Hant': u('\u4e2d\u570b\u79fb\u52d5')}, '9181529':{'en': 'Idea'}, '9181528':{'en': 'Idea'}, '9177010':{'en': 'Tata Docomo'}, '9180120':{'en': 'Aircel'}, '9184119':{'en': 'Vodafone'}, '9184118':{'en': 'Vodafone'}, '658505':{'en': 'StarHub'}, '658500':{'en': 'M1'}, '658501':{'en': 'StarHub'}, '658503':{'en': 'StarHub'}, '658508':{'en': 'StarHub'}, '658509':{'en': 'StarHub'}, '558299340':{'en': 'Claro BR'}, '558299341':{'en': 'Claro BR'}, '558299342':{'en': 'Claro BR'}, '558299343':{'en': 'Claro BR'}, '557598275':{'en': 'Claro BR'}, '557598274':{'en': 'Claro BR'}, '557598276':{'en': 'Claro BR'}, '557598271':{'en': 'Claro BR'}, '557598270':{'en': 'Claro BR'}, '557598273':{'en': 'Claro BR'}, '557598272':{'en': 'Claro BR'}, '918171':{'en': 'Airtel'}, '558599943':{'en': 'TIM'}, '558599942':{'en': 'TIM'}, '558599941':{'en': 'TIM'}, '558599947':{'en': 'TIM'}, '558599946':{'en': 'TIM'}, '558599945':{'en': 'TIM'}, '558599944':{'en': 'TIM'}, '558599949':{'en': 'TIM'}, '558599948':{'en': 'TIM'}, '55849812':{'en': 'Vivo'}, '55849813':{'en': 'Vivo'}, '55849810':{'en': 'Vivo'}, '55849811':{'en': 'Vivo'}, '917225':{'en': 'Airtel'}, '917224':{'en': 'Airtel'}, '917227':{'en': 'Airtel'}, '917226':{'en': 'Airtel'}, '917221':{'en': 'Aircel'}, '917220':{'en': 'Aircel'}, '917223':{'en': 'Airtel'}, '917222':{'en': 'Aircel'}, '58412':{'en': 'Digitel GSM'}, '58416':{'en': 'Movilnet'}, '58414':{'en': 'movistar'}, '67576':{'en': 'bmobile'}, '9174868':{'en': 'Airtel'}, '559899974':{'en': 'Oi'}, '559899975':{'en': 'Oi'}, '559899976':{'en': 'Oi'}, '559899970':{'en': 'Oi'}, '559899971':{'en': 'Oi'}, '559899972':{'en': 'Oi'}, '559899973':{'en': 'Oi'}, '917049':{'en': 'Idea'}, '917048':{'en': 'Tata Docomo'}, '917041':{'en': 'Telewings'}, '917040':{'en': 'Aircel'}, '917043':{'en': 'Airtel'}, '917042':{'en': 'Airtel'}, '917045':{'en': 'Vodafone'}, '917044':{'en': 'Airtel'}, '917047':{'en': 'Airtel'}, '917046':{'en': 'Idea'}, '9175898':{'en': 'Reliance Jio'}, '9175899':{'en': 'Reliance Jio'}, '918345':{'en': 'Idea'}, '8526459':{'en': 'CITIC', 'zh': u('\u4e2d\u4fe1\u56fd\u9645\u7535\u8baf'), 'zh_Hant': u('\u4e2d\u4fe1\u570b\u969b\u96fb\u8a0a')}, '8526458':{'en': 'CITIC', 'zh': u('\u4e2d\u4fe1\u56fd\u9645\u7535\u8baf'), 'zh_Hant': u('\u4e2d\u4fe1\u570b\u969b\u96fb\u8a0a')}, '8526457':{'en': 'CITIC', 'zh': u('\u4e2d\u4fe1\u56fd\u9645\u7535\u8baf'), 'zh_Hant': u('\u4e2d\u4fe1\u570b\u969b\u96fb\u8a0a')}, '8526456':{'en': 'CITIC', 'zh': u('\u4e2d\u4fe1\u56fd\u9645\u7535\u8baf'), 'zh_Hant': u('\u4e2d\u4fe1\u570b\u969b\u96fb\u8a0a')}, '8526455':{'en': 'CITIC', 'zh': u('\u4e2d\u4fe1\u56fd\u9645\u7535\u8baf'), 'zh_Hant': u('\u4e2d\u4fe1\u570b\u969b\u96fb\u8a0a')}, '8526454':{'en': 'CITIC', 'zh': u('\u4e2d\u4fe1\u56fd\u9645\u7535\u8baf'), 'zh_Hant': u('\u4e2d\u4fe1\u570b\u969b\u96fb\u8a0a')}, '9175896':{'en': 'Reliance Jio'}, '8526452':{'en': 'CITIC', 'zh': u('\u4e2d\u4fe1\u56fd\u9645\u7535\u8baf'), 'zh_Hant': u('\u4e2d\u4fe1\u570b\u969b\u96fb\u8a0a')}, '8526450':{'en': 'CITIC', 'zh': u('\u4e2d\u4fe1\u56fd\u9645\u7535\u8baf'), 'zh_Hant': u('\u4e2d\u4fe1\u570b\u969b\u96fb\u8a0a')}, '918349':{'en': 'Airtel'}, '918348':{'en': 'Vodafone'}, '67575':{'en': 'bmobile'}, '658823':{'en': 'M1'}, '918223':{'en': 'Idea'}, '558899968':{'en': 'TIM'}, '558899969':{'en': 'TIM'}, '9176279':{'en': 'Hexacom'}, '9176278':{'en': 'CellOne'}, '558899962':{'en': 'TIM'}, '558899963':{'en': 'TIM'}, '558899961':{'en': 'TIM'}, '558899966':{'en': 'TIM'}, '558899967':{'en': 'TIM'}, '558899964':{'en': 'TIM'}, '558899965':{'en': 'TIM'}, '658821':{'en': 'M1'}, '6225132':{'en': 'Esia'}, '6225133':{'en': 'Esia'}, '9172958':{'en': 'Hexacom'}, '6225131':{'en': 'Esia'}, '9172950':{'en': 'Hexacom'}, '65932':{'en': 'M1'}, '65934':{'en': 'M1'}, '65936':{'en': 'M1'}, '65938':{'en': 'StarHub'}, '65939':{'en': 'SingTel'}, '9173029':{'en': 'Vodafone'}, '658820':{'en': 'M1'}, '9173021':{'en': 'Hexacom'}, '9173020':{'en': 'Hexacom'}, '9173023':{'en': 'Hexacom'}, '9173022':{'en': 'Hexacom'}, '9173025':{'en': 'Vodafone'}, '9173024':{'en': 'Hexacom'}, '9173027':{'en': 'Vodafone'}, '9173026':{'en': 'Vodafone'}, '9177638':{'en': 'Airtel'}, '9177639':{'en': 'Airtel'}, '556998449':{'en': 'Brasil Telecom GSM'}, '556998448':{'en': 'Brasil Telecom GSM'}, '556998443':{'en': 'Brasil Telecom GSM'}, '556998442':{'en': 'Brasil Telecom GSM'}, '556998441':{'en': 'Brasil Telecom GSM'}, '556998447':{'en': 'Brasil Telecom GSM'}, '556998446':{'en': 'Brasil Telecom GSM'}, '556998445':{'en': 'Brasil Telecom GSM'}, '556998444':{'en': 'Brasil Telecom GSM'}, '556699638':{'en': 'Vivo'}, '556699639':{'en': 'Vivo'}, '556699632':{'en': 'Vivo'}, '556699633':{'en': 'Vivo'}, '556699631':{'en': 'Vivo'}, '556699636':{'en': 'Vivo'}, '556699637':{'en': 'Vivo'}, '556699634':{'en': 'Vivo'}, '556699635':{'en': 'Vivo'}, '9181147':{'en': 'Airtel'}, '9176528':{'en': 'CellOne'}, '9181410':{'en': 'Vodafone'}, '9174640':{'en': 'Airtel'}, '918013':{'en': 'Aircel'}, '558999984':{'en': 'TIM'}, '9181149':{'en': 'Airtel'}, '9181758':{'en': 'Airtel'}, '9181759':{'en': 'Tata Docomo'}, '9181230':{'en': 'Tata Docomo'}, '5696770':{'en': 'Celupago'}, '5696775':{'en': 'Entel'}, '5696777':{'en': 'Entel'}, '5696776':{'en': 'Entel'}, '5696779':{'en': 'Entel'}, '5696778':{'en': 'Entel'}, '658339':{'en': 'SingTel'}, '658338':{'en': 'SingTel'}, '658333':{'en': 'M1'}, '658332':{'en': 'StarHub'}, '658331':{'en': 'StarHub'}, '658330':{'en': 'StarHub'}, '658337':{'en': 'StarHub'}, '658336':{'en': 'StarHub'}, '658335':{'en': 'StarHub'}, '658334':{'en': 'StarHub'}, '85365470':{'en': 'CTM'}, '85365471':{'en': 'CTM'}, '85365472':{'en': 'CTM'}, '85365473':{'en': 'CTM'}, '85365474':{'en': 'CTM'}, '85365475':{'en': 'SmarTone'}, '85365476':{'en': 'SmarTone'}, '85365477':{'en': 'SmarTone'}, '85365478':{'en': 'SmarTone'}, '85365479':{'en': 'SmarTone'}, '9175708':{'en': 'Vodafone'}, '9175709':{'en': 'Vodafone'}, '6243899':{'en': 'Esia'}, '9176369':{'en': 'Airtel'}, '56958':{'en': 'Movistar'}, '56959':{'en': 'Claro'}, '56954':{'en': 'Claro'}, '56956':{'en': 'Entel'}, '56957':{'en': 'Entel'}, '56950':{'en': 'Claro'}, '56953':{'en': 'Movistar'}, '556499998':{'en': 'Vivo'}, '9181570':{'en': 'Idea'}, '556499991':{'en': 'Vivo'}, '556499995':{'en': 'Vivo'}, '556499994':{'en': 'Vivo'}, '556499997':{'en': 'Vivo'}, '556499996':{'en': 'Vivo'}, '5574989':{'en': 'Oi'}, '5574988':{'en': 'Oi'}, '5574987':{'en': 'Oi'}, '5574986':{'en': 'Oi'}, '5574985':{'en': 'Oi'}, '9180800':{'en': 'Reliance'}, '658197':{'en': 'M1'}, '658196':{'en': 'M1'}, '658195':{'en': 'M1'}, '658194':{'en': 'M1'}, '658193':{'en': 'M1'}, '658192':{'en': 'M1'}, '658191':{'en': 'M1'}, '658190':{'en': 'M1'}, '6227391':{'en': 'Esia'}, '658199':{'en': 'M1'}, '658198':{'en': 'StarHub'}, '5577988':{'en': 'Oi'}, '5577989':{'en': 'Oi'}, '5577986':{'en': 'Oi'}, '5577987':{'en': 'Oi'}, '5577985':{'en': 'Oi'}, '62232933':{'en': 'Esia'}, '62232932':{'en': 'Esia'}, '62232931':{'en': 'Esia'}, '62232930':{'en': 'Esia'}, '62232937':{'en': 'Esia'}, '62232936':{'en': 'Esia'}, '62232935':{'en': 'Esia'}, '62232934':{'en': 'Esia'}, '918019':{'en': 'Tata Docomo'}, '62232938':{'en': 'Esia'}, '917698':{'en': 'Idea'}, '917699':{'en': 'Idea'}, '917694':{'en': 'Idea'}, '917695':{'en': 'Reliance'}, '917696':{'en': 'Tata Docomo'}, '917697':{'en': 'Idea'}, '917690':{'en': 'Idea'}, '917691':{'en': 'Idea'}, '917692':{'en': 'Idea'}, '917693':{'en': 'Idea'}, '918011':{'en': 'Airtel'}, '918279':{'en': 'Reliance Jio'}, '9173700':{'en': 'Idea'}, '569648':{'en': 'Movistar'}, '569649':{'en': 'Movistar'}, '569642':{'en': 'WOM'}, '569643':{'en': 'WOM'}, '569640':{'en': 'Movistar'}, '569641':{'en': 'WOM'}, '569646':{'en': 'Movistar'}, '569647':{'en': 'Movistar'}, '569644':{'en': 'WOM'}, '569645':{'en': 'WOM'}, '5598989':{'en': 'Oi'}, '55759993':{'en': 'Vivo'}, '55759992':{'en': 'Vivo'}, '55759991':{'en': 'Vivo'}, '55759990':{'en': 'Vivo'}, '55759995':{'en': 'Vivo'}, '55759994':{'en': 'Vivo'}, '9176480':{'en': 'CellOne'}, '9176488':{'en': 'CellOne'}, '9176489':{'en': 'CellOne'}, '559799179':{'en': 'Vivo'}, '559799178':{'en': 'Vivo'}, '559799171':{'en': 'Vivo'}, '559799173':{'en': 'Vivo'}, '559799172':{'en': 'Vivo'}, '559799175':{'en': 'Vivo'}, '559799174':{'en': 'Vivo'}, '559799177':{'en': 'Vivo'}, '559799176':{'en': 'Vivo'}, '9176784':{'en': 'Reliance Jio'}, '85264539':{'en': 'CITIC', 'zh': u('\u4e2d\u4fe1\u56fd\u9645\u7535\u8baf'), 'zh_Hant': u('\u4e2d\u4fe1\u570b\u969b\u96fb\u8a0a')}, '85264538':{'en': 'CITIC', 'zh': u('\u4e2d\u4fe1\u56fd\u9645\u7535\u8baf'), 'zh_Hant': u('\u4e2d\u4fe1\u570b\u969b\u96fb\u8a0a')}, '62216064':{'en': 'Esia'}, '62216063':{'en': 'Esia'}, '62216062':{'en': 'Esia'}, '62216061':{'en': 'Esia'}, '62216060':{'en': 'Esia'}, '9176738':{'en': 'Reliance'}, '9176739':{'en': 'Airtel'}, '917841':{'en': 'Telewings'}, '917843':{'en': 'Dishnet'}, '917842':{'en': 'Tata Docomo'}, '917845':{'en': 'Tata Docomo'}, '917844':{'en': 'Dishnet'}, '917847':{'en': 'Reliance'}, '917846':{'en': 'Reliance'}, '917849':{'en': 'Reliance'}, '917848':{'en': 'Reliance'}, '614888':{'en': 'My Number'}, '9177919':{'en': 'Aircel'}, '9177918':{'en': 'Aircel'}, '918017':{'en': 'Vodafone'}, '9175806':{'en': 'Vodafone'}, '9173278':{'en': 'Airtel'},
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright 2016-2018 by I3py Authors, see AUTHORS for more details. # # Distributed under the terms of the BSD license. # # The full license is in the file LICENCE, distributed with this software. # ----------------------------------------------------------------------------- """Tools for instruments relying on the VISA protocol. """ import logging import os from inspect import cleandoc from time import sleep from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union from pyvisa import errors from pyvisa.highlevel import ResourceManager from pyvisa.rname import assemble_canonical_name, to_canonical_name from ...core import subsystem from ...core.actions import BaseAction from ...core.base_driver import BaseDriver from ...core.composition import SupportMethodCustomization from ...core.errors import I3pyInterfaceNotSupported from ...core.features import AbstractFeature _RESOURCE_MANAGERS = None def get_visa_resource_manager(backend='default'): """Access a VISA resource manager in use by I3py. """ global _RESOURCE_MANAGERS if not _RESOURCE_MANAGERS: _RESOURCE_MANAGERS = {} if backend not in _RESOURCE_MANAGERS: if backend == 'default': def_backend = os.environ.get('I3PY_VISA', '@ni') mess = cleandoc('''Creating default Visa resource manager for I3py with backend {}.'''.format(def_backend)) logging.debug(mess) _RESOURCE_MANAGERS[backend] = ResourceManager(def_backend) elif '@' in backend: _RESOURCE_MANAGERS[backend] = ResourceManager(backend) return _RESOURCE_MANAGERS[backend] def set_visa_resource_manager(rm, backend='default'): """Set a VISA resource manager in use by I3py. This operation can only be performed once per backend id, and should be performed before any driver relying on this backend is created.. Parameters ---------- rm : ResourceManager Instance to use as Lantz resource manager. backend : str Id of the backend. """ global _RESOURCE_MANAGERS assert isinstance(rm, ResourceManager) if _RESOURCE_MANAGERS and backend in _RESOURCE_MANAGERS: msg = 'Cannot set I3py VISA resource manager once one already exists.' raise ValueError(msg) if not _RESOURCE_MANAGERS: _RESOURCE_MANAGERS = {backend: rm} else: _RESOURCE_MANAGERS[backend] = rm class VisaFeature(SupportMethodCustomization, property): """Special property used to wrap a property present in a Pyvisa resource. Visa properties are expected to be defined on the visa_resource subsystem. """ def __init__(self, settable=True, deleter=None): super(VisaFeature, self).__init__(self._get, self._set if settable else None, deleter) self.name = None def clone(self): """Clone itself by inspecting the presence of setter/deleter. """ return type(self)(self.fset is not None, self.fdel) def create_default_settings(self): """A visa feature has no dynamic features. """ return {} def make_doc(self, doc): """Do not alter the user doc. """ return doc @property def self_alias(self) -> str: """For features self is replaced by feat in function signature. """ return 'feat' def analyse_function(self, method_name: str, func: Callable, specifiers: Tuple[str, ...]): """Check the signature of the function. """ raise RuntimeError('VisaFeatures do not support customization.') def _get(self, obj): if obj.parent._resource: return getattr(obj.parent._resource, self.name) else: return obj.parent.resource_kwargs.get(self.name) def _set(self, obj, value): obj.parent.resource_kwargs[self.name] = value if obj.parent._resource: setattr(obj.parent._resource, self.name, value) AbstractFeature.register(VisaFeature) class VisaAction(BaseAction): """Action used for method modifying the VISA resource state. By default all calls to visa actions acquie the instrument lock to protect the instrument. """ def __init__(self, **kwargs): kwargs.setdefault('lock', True) super().__init__(**kwargs) def timeout_deleter(obj): del obj.parent.resource_kwargs['timeout'] if obj.parent._resource: del obj.parent._resource.timeout class BaseVisaDriver(BaseDriver): """Base class for instrument communicating through the VISA protocol. It handles the connection management, but not the subsequent communication. That's why driver should not inherit from it but from one of its derived class (save for very peculiar use). Parameters ---------- resource_name : str, optional Name of the visa resource. can be specified as positional argument. backend : str, optional The PyVISA backend to use. This can either be a backend alias declared using set_visa_resource_manager or a valid string to create a pyvisa resource manager. parameters : dict, optional A dict to alter the driver attributes. caching_allowed : bool, optional Boolean use to determine if instrument properties can be cached kwargs : Arguments that PyVISA can use to build a resource name. Those depend on the interface type (*interface_type* keyword), please see PyVisa documentation for ore details. """ #: Exceptions triggering a new communication attempts for Features with a #: non zero retries values. retries_exceptions = (TimeoutError, errors.VisaIOError, # type: ignore errors.InvalidSession) #: Interfaces supported by the instrument. #: For each type of interface a dictionary (or a list of dictionary), #: specifying the default arguments to use should be provided. #: For example:: #: #: {'USB': [{'resource_class': 'INSTR'}, #: {'resource_class': 'RAW'}], #: 'TCPIP': {'resource_class': 'SOCKET', #: 'port': '50000'} INTERFACES: ClassVar[Dict[str, Union[Dict[str, str], List[Dict[str, str]]]]] = {} #: Default arguments passed to the Resource constructor on initialize. #: It should be specified in two layers, the first indicating the #: interface type and the second the corresponding arguments. #: The key COMMON is used to indicate keywords for all interfaces. #: For example: #: #: {'ASRL': {'read_termination': '\n', #: 'baud_rate': 9600}, #: 'USB': {'read_termination': \r'}, #: 'COMMON': {'write_termination': '\n'} #: } DEFAULTS: ClassVar[Optional[Dict[str, Dict[str, Any]]]] = None #: Tuple of keywords unrelated to Visa resource name. Used to remove them #: from the kwargs when building the resource name. NON_VISA_NAMES: ClassVar[Tuple[str, ...]] = ('parameters', 'backend') def __init__(self, *args, **kwargs): super(BaseVisaDriver, self).__init__(*args, **kwargs) # This entry is populated by the compute_id class method (called by the # the metaclass) from the provided information. r_name = kwargs['resource_name'] rm = get_visa_resource_manager(kwargs.get('backend', 'default')) self._resource_manager = rm # Does not work with Visa alias r_info = self._resource_manager.resource_info(r_name) if r_info: #: Keyword arguments passed to the resource during initialization. kw = self._get_defaults_kwargs(r_info.interface_type.name.upper(), r_info.resource_class, kwargs.get('parameters', {})) self.resource_kwargs = kw else: # Allow to at least get the COMMON parameters. kw = self._get_defaults_kwargs(None, None, kwargs.get('parameters', {})) self.resource_kwargs = kw #: The resource name self.resource_name = r_name # The resource will be created when the driver is initialized. self._resource = None @classmethod def compute_id(cls, args, kwargs): """Assemble the resource name from the provided info. """ rname = None if args: msg = 'A single positional argument is allowed for %s' % cls assert len(args) == 1, msg rname = args[0] elif 'resource_name' in kwargs: rname = kwargs['resource_name'] if rname: try: kwargs['resource_name'] = to_canonical_name(rname) except Exception: # TODO Use a more adequate exception # Fail silently to allow the use of VISA alias kwargs['resource_name'] = rname else: visa_infos = cls._get_visa_infos(kwargs) kwargs['resource_name'] =\ assemble_canonical_name(**visa_infos) return kwargs['resource_name'] @classmethod def _get_visa_infos(cls, connection_infos): """Filter out non-VISA related keywords and fill the gaps using INTERFACES """ interface_type = connection_infos['interface_type'] default_protocol = cls.INTERFACES.get(interface_type, {}) if not isinstance(default_protocol, dict): default_protocol = default_protocol[0] visa_infos = {k: v for k, v in connection_infos.items() if k not in cls.NON_VISA_NAMES} default_protocol.update(visa_infos) return default_protocol @classmethod def _get_defaults_kwargs(cls, interface_type, resource_class, user_kwargs): """Compute the default keyword arguments. This is done by combining: - user provided keyword arguments. - (interface_type, resource_class) keyword arguments. - interface_type keyword arguments. - resource_class keyword arguments. - common keyword arguments. (the first ones have precedence) Parameters ---------- interface_type : str|None, {'ASRL', 'USB', 'TCPIP', 'GPIB', 'PXI'} Type of interface. resource_class : str|None, {'INSTR', 'SOCKET', 'RAW'} Class of resource. Returns ------- kwargs : dict The keyword arguments to use when opening a session. """ if cls.DEFAULTS: kwargs = {} for key in ('COMMON', resource_class, interface_type, (interface_type, resource_class)): if key not in cls.DEFAULTS: continue value = cls.DEFAULTS[key] if value is None: msg = 'An %s instrument is not supported by the driver %s' raise I3pyInterfaceNotSupported(msg, key, cls.__name__) if value: kwargs.update(value) if user_kwargs: kwargs.update(user_kwargs) return kwargs else: return user_kwargs def initialize(self): rm = self._resource_manager self._resource = rm.open_resource(self.resource_name, **self.resource_kwargs) def finalize(self): self._resource.close() self._resource = None def reopen_connection(self): """Close and re-open a suspicious connection. A VISA clear command is issued after re-opening the connection to make sure the instrument queues do not keep corrupted data. This might be an issue with some instruments in such a case simply override this method. """ self.finalize() self.initialize() self._resource.clear() # Make sure the clear command completed before sending more commands. sleep(0.3) # --- Pyvisa wrappers #: Direct access to the visa resource. visa_resource = subsystem() with visa_resource as vr: #: The timeout in milliseconds for all resource I/O operations. #: #: None is mapped to VI_TMO_INFINITE. #: A value less than 1 is mapped to VI_TMO_IMMEDIATE. vr.timeout = VisaFeature(True, timeout_deleter) #: Pyvisa resource info. vr.resource_info = VisaFeature(settable=False) #: Pyvisa interface type vr.interface_type = VisaFeature(settable=False) @vr @VisaAction() def clear(self): """Clears this resource. """ self.parent._resource.clear() @vr @VisaAction() def install_handler(self, event_type, handler, user_handle=None): """See Pyvisa docs. """ return self.parent._resource.install_handler(event_type, handler, user_handle) @vr @VisaAction() def uninstall_handler(self, event_type, handler, user_handle=None): """See
<gh_stars>0 # -*- coding: utf-8 -*- # Copyright 2011 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of Unix-like rm command for cloud storage providers.""" from __future__ import absolute_import from gslib.cloud_api import BucketNotFoundException from gslib.cloud_api import NotEmptyException from gslib.cloud_api import NotFoundException from gslib.cloud_api import ServiceException from gslib.command import Command from gslib.command import GetFailureCount from gslib.command import ResetFailureCount from gslib.command_argument import CommandArgument from gslib.cs_api_map import ApiSelector from gslib.exception import CommandException from gslib.name_expansion import NameExpansionIterator from gslib.storage_url import StorageUrlFromString from gslib.translation_helper import PreconditionsFromHeaders from gslib.util import GetCloudApiInstance from gslib.util import NO_MAX from gslib.util import Retry from gslib.util import StdinIterator _SYNOPSIS = """ gsutil rm [-f] [-r] url... gsutil rm [-f] [-r] -I """ _DETAILED_HELP_TEXT = (""" <B>SYNOPSIS</B> """ + _SYNOPSIS + """ <B>DESCRIPTION</B> The gsutil rm command removes objects. For example, the command: gsutil rm gs://bucket/subdir/* will remove all objects in gs://bucket/subdir, but not in any of its sub-directories. In contrast: gsutil rm gs://bucket/subdir/** will remove all objects under gs://bucket/subdir or any of its subdirectories. You can also use the -r option to specify recursive object deletion. Thus, for example, either of the following two commands will remove gs://bucket/subdir and all objects and subdirectories under it: gsutil rm gs://bucket/subdir** gsutil rm -r gs://bucket/subdir The -r option will also delete all object versions in the subdirectory for versioning-enabled buckets, whereas the ** command will only delete the live version of each object in the subdirectory. Running gsutil rm -r on a bucket will delete all versions of all objects in the bucket, and then delete the bucket: gsutil rm -r gs://bucket If you want to delete all objects in the bucket, but not the bucket itself, this command will work: gsutil rm gs://bucket/** If you have a large number of objects to remove you might want to use the gsutil -m option, to perform a parallel (multi-threaded/multi-processing) removes: gsutil -m rm -r gs://my_bucket/subdir You can pass a list of URLs (one per line) to remove on stdin instead of as command line arguments by using the -I option. This allows you to use gsutil in a pipeline to remove objects identified by a program, such as: some_program | gsutil -m rm -I The contents of stdin can name cloud URLs and wildcards of cloud URLs. Note that gsutil rm will refuse to remove files from the local file system. For example this will fail: gsutil rm *.txt WARNING: Object removal cannot be undone. Google Cloud Storage is designed to give developers a high amount of flexibility and control over their data, and Google maintains strict controls over the processing and purging of deleted data. To protect yourself from mistakes, you can configure object versioning on your bucket(s). See 'gsutil help versions' for details. <B>DATA RESTORATION FROM ACCIDENTAL DELETION OR OVERWRITES</B> Google Cloud Storage does not provide support for restoring data lost or overwritten due to customer errors. If you have concerns that your application software (or your users) may at some point erroneously delete or overwrite data, you can protect yourself from that risk by enabling Object Versioning (see "gsutil help versioning"). Doing so increases storage costs, which can be partially mitigated by configuring Lifecycle Management to delete older object versions (see "gsutil help lifecycle"). <B>OPTIONS</B> -f Continues silently (without printing error messages) despite errors when removing multiple objects. If some of the objects could not be removed, gsutil's exit status will be non-zero even if this flag is set. This option is implicitly set when running "gsutil -m rm ...". -I Causes gsutil to read the list of objects to remove from stdin. This allows you to run a program that generates the list of objects to remove. -R, -r The -R and -r options are synonymous. Causes bucket or bucket subdirectory contents (all objects and subdirectories that it contains) to be removed recursively. If used with a bucket-only URL (like gs://bucket), after deleting objects and subdirectories gsutil will delete the bucket. This option implies the -a option and will delete all object versions. -a Delete all versions of an object. """) def _RemoveExceptionHandler(cls, e): """Simple exception handler to allow post-completion status.""" if not cls.continue_on_error: cls.logger.error(str(e)) # TODO: Use shared state to track missing bucket names when we get a # BucketNotFoundException. Then improve bucket removal logic and exception # messages. if isinstance(e, BucketNotFoundException): cls.bucket_not_found_count += 1 cls.logger.error(str(e)) else: cls.op_failure_count += 1 # pylint: disable=unused-argument def _RemoveFoldersExceptionHandler(cls, e): """When removing folders, we don't mind if none exist.""" if (isinstance(e, CommandException.__class__) and 'No URLs matched' in e.message) or isinstance(e, NotFoundException): pass else: raise e def _RemoveFuncWrapper(cls, name_expansion_result, thread_state=None): cls.RemoveFunc(name_expansion_result, thread_state=thread_state) class RmCommand(Command): """Implementation of gsutil rm command.""" # Command specification. See base class for documentation. command_spec = Command.CreateCommandSpec( 'rm', command_name_aliases=['del', 'delete', 'remove'], usage_synopsis=_SYNOPSIS, min_args=0, max_args=NO_MAX, supported_sub_args='afIrR', file_url_ok=False, provider_url_ok=False, urls_start_arg=0, gs_api_support=[ApiSelector.XML, ApiSelector.JSON], gs_default_api=ApiSelector.JSON, argparse_arguments=[ CommandArgument.MakeZeroOrMoreCloudURLsArgument() ] ) # Help specification. See help_provider.py for documentation. help_spec = Command.HelpSpec( help_name='rm', help_name_aliases=['del', 'delete', 'remove'], help_type='command_help', help_one_line_summary='Remove objects', help_text=_DETAILED_HELP_TEXT, subcommand_help_text={}, ) def RunCommand(self): """Command entry point for the rm command.""" # self.recursion_requested is initialized in command.py (so it can be # checked in parent class for all commands). self.continue_on_error = self.parallel_operations self.read_args_from_stdin = False self.all_versions = False if self.sub_opts: for o, unused_a in self.sub_opts: if o == '-a': self.all_versions = True elif o == '-f': self.continue_on_error = True elif o == '-I': self.read_args_from_stdin = True elif o == '-r' or o == '-R': self.recursion_requested = True self.all_versions = True if self.read_args_from_stdin: if self.args: raise CommandException('No arguments allowed with the -I flag.') url_strs = StdinIterator() else: if not self.args: raise CommandException('The rm command (without -I) expects at ' 'least one URL.') url_strs = self.args # Tracks if any deletes failed. self.op_failure_count = 0 # Tracks if any buckets were missing. self.bucket_not_found_count = 0 bucket_urls_to_delete = [] bucket_strings_to_delete = [] if self.recursion_requested: bucket_fields = ['id'] for url_str in url_strs: url = StorageUrlFromString(url_str) if url.IsBucket() or url.IsProvider(): for blr in self.WildcardIterator(url_str).IterBuckets( bucket_fields=bucket_fields): bucket_urls_to_delete.append(blr.storage_url) bucket_strings_to_delete.append(url_str) self.preconditions = PreconditionsFromHeaders(self.headers or {}) try: # Expand wildcards, dirs, buckets, and bucket subdirs in URLs. name_expansion_iterator = NameExpansionIterator( self.command_name, self.debug, self.logger, self.gsutil_api, url_strs, self.recursion_requested, project_id=self.project_id, all_versions=self.all_versions, continue_on_error=self.continue_on_error or self.parallel_operations) # Perform remove requests in parallel (-m) mode, if requested, using # configured number of parallel processes and threads. Otherwise, # perform requests with sequential function calls in current process. self.Apply(_RemoveFuncWrapper, name_expansion_iterator, _RemoveExceptionHandler, fail_on_error=(not self.continue_on_error), shared_attrs=['op_failure_count', 'bucket_not_found_count']) # Assuming the bucket has versioning enabled, url's that don't map to # objects should throw an error even with all_versions, since the prior # round of deletes only sends objects to a history table. # This assumption that rm -a is only called for versioned buckets should be # corrected, but the fix is non-trivial. except CommandException as e: # Don't raise if there are buckets to delete -- it's valid to say: # gsutil rm -r gs://some_bucket # if the bucket is empty. if not bucket_urls_to_delete and not self.continue_on_error: raise # Reset the failure count if we failed due to an empty bucket that we're # going to delete. msg = 'No URLs matched: ' if msg in str(e): parts = str(e).split(msg) if len(parts) == 2 and parts[1] in bucket_strings_to_delete: ResetFailureCount() else: raise except ServiceException, e: if not self.continue_on_error: raise if self.bucket_not_found_count: raise CommandException('Encountered non-existent bucket during listing') if self.op_failure_count and not self.continue_on_error: raise CommandException('Some files could not be removed.') # If this was a gsutil rm -r command covering any bucket subdirs, # remove any dir_$folder$ objects (which are created by various web UI # tools to simulate folders). if self.recursion_requested: had_previous_failures = GetFailureCount() > 0 folder_object_wildcards = [] for url_str in url_strs:
<reponame>Guts/feedparser # Support for the GeoRSS format # Copyright 2010-2020 <NAME> <<EMAIL>> # Copyright 2002-2008 <NAME> # All rights reserved. # # This file is a part of feedparser. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import absolute_import from __future__ import unicode_literals from __future__ import generator_stop from ..util import FeedParserDict class Namespace(object): supported_namespaces = { "http://www.w3.org/2003/01/geo/wgs84_pos#": "geo", "http://www.georss.org/georss": "georss", "http://www.opengis.net/gml": "gml", } def __init__(self): self.ingeometry = 0 super(Namespace, self).__init__() def _start_georssgeom(self, attrs_d): self.push("geometry", 0) context = self._get_context() context["where"] = FeedParserDict() _start_georss_point = _start_georssgeom _start_georss_line = _start_georssgeom _start_georss_polygon = _start_georssgeom _start_georss_box = _start_georssgeom def _save_where(self, geometry): context = self._get_context() context["where"].update(geometry) def _end_georss_point(self): geometry = _parse_georss_point(self.pop("geometry")) if geometry: self._save_where(geometry) def _end_georss_line(self): geometry = _parse_georss_line(self.pop("geometry")) if geometry: self._save_where(geometry) def _end_georss_polygon(self): this = self.pop("geometry") geometry = _parse_georss_polygon(this) if geometry: self._save_where(geometry) def _end_georss_box(self): geometry = _parse_georss_box(self.pop("geometry")) if geometry: self._save_where(geometry) def _start_where(self, attrs_d): self.push("where", 0) context = self._get_context() context["where"] = FeedParserDict() _start_georss_where = _start_where def _parse_srs_attrs(self, attrs_d): srs_name = attrs_d.get("srsname") try: srs_dimension = int(attrs_d.get("srsdimension", "2")) except ValueError: srs_dimension = 2 context = self._get_context() context["where"]["srsName"] = srs_name context["where"]["srsDimension"] = srs_dimension def _start_gml_point(self, attrs_d): self._parse_srs_attrs(attrs_d) self.ingeometry = 1 self.push("geometry", 0) def _start_gml_linestring(self, attrs_d): self._parse_srs_attrs(attrs_d) self.ingeometry = "linestring" self.push("geometry", 0) def _start_gml_polygon(self, attrs_d): self._parse_srs_attrs(attrs_d) self.push("geometry", 0) def _start_gml_exterior(self, attrs_d): self.push("geometry", 0) def _start_gml_linearring(self, attrs_d): self.ingeometry = "polygon" self.push("geometry", 0) def _start_gml_pos(self, attrs_d): self.push("pos", 0) def _end_gml_pos(self): this = self.pop("pos") context = self._get_context() srs_name = context["where"].get("srsName") srs_dimension = context["where"].get("srsDimension", 2) swap = True if srs_name and "EPSG" in srs_name: epsg = int(srs_name.split(":")[-1]) swap = bool(epsg in _geogCS) geometry = _parse_georss_point(this, swap=swap, dims=srs_dimension) if geometry: self._save_where(geometry) def _start_gml_poslist(self, attrs_d): self.push("pos", 0) def _end_gml_poslist(self): this = self.pop("pos") context = self._get_context() srs_name = context["where"].get("srsName") srs_dimension = context["where"].get("srsDimension", 2) swap = True if srs_name and "EPSG" in srs_name: epsg = int(srs_name.split(":")[-1]) swap = bool(epsg in _geogCS) geometry = _parse_poslist(this, self.ingeometry, swap=swap, dims=srs_dimension) if geometry: self._save_where(geometry) def _end_geom(self): self.ingeometry = 0 self.pop("geometry") _end_gml_point = _end_geom _end_gml_linestring = _end_geom _end_gml_linearring = _end_geom _end_gml_exterior = _end_geom _end_gml_polygon = _end_geom def _end_where(self): self.pop("where") _end_georss_where = _end_where # GeoRSS geometry parsers. Each return a dict with 'type' and 'coordinates' # items, or None in the case of a parsing error. def _parse_poslist(value, geom_type, swap=True, dims=2): if geom_type == "linestring": return _parse_georss_line(value, swap, dims) elif geom_type == "polygon": ring = _parse_georss_line(value, swap, dims) return {"type": "Polygon", "coordinates": (ring["coordinates"],)} else: return None def _gen_georss_coords(value, swap=True, dims=2): # A generator of (lon, lat) pairs from a string of encoded GeoRSS # coordinates. Converts to floats and swaps order. latlons = (float(ll) for ll in value.replace(",", " ").split()) while True: try: t = [next(latlons), next(latlons)][:: swap and -1 or 1] if dims == 3: t.append(next(latlons)) yield tuple(t) except StopIteration: return def _parse_georss_point(value, swap=True, dims=2): # A point contains a single latitude-longitude pair, separated by # whitespace. We'll also handle comma separators. try: coords = list(_gen_georss_coords(value, swap, dims)) return {"type": "Point", "coordinates": coords[0]} except (IndexError, ValueError): return None def _parse_georss_line(value, swap=True, dims=2): # A line contains a space separated list of latitude-longitude pairs in # WGS84 coordinate reference system, with each pair separated by # whitespace. There must be at least two pairs. try: coords = list(_gen_georss_coords(value, swap, dims)) return {"type": "LineString", "coordinates": coords} except (IndexError, ValueError): return None def _parse_georss_polygon(value, swap=True, dims=2): # A polygon contains a space separated list of latitude-longitude pairs, # with each pair separated by whitespace. There must be at least four # pairs, with the last being identical to the first (so a polygon has a # minimum of three actual points). try: ring = list(_gen_georss_coords(value, swap, dims)) except (IndexError, ValueError): return None if len(ring) < 4: return None return {"type": "Polygon", "coordinates": (ring,)} def _parse_georss_box(value, swap=True, dims=2): # A bounding box is a rectangular region, often used to define the extents # of a map or a rough area of interest. A box contains two space separate # latitude-longitude pairs, with each pair separated by whitespace. The # first pair is the lower corner, the second is the upper corner. try: coords = list(_gen_georss_coords(value, swap, dims)) return {"type": "Box", "coordinates": tuple(coords)} except (IndexError, ValueError): return None # The list of EPSG codes for geographic (latitude/longitude) coordinate # systems to support decoding of GeoRSS GML profiles. _geogCS = [ 3819, 3821, 3824, 3889, 3906, 4001, 4002, 4003, 4004, 4005, 4006, 4007, 4008, 4009, 4010, 4011, 4012, 4013, 4014, 4015, 4016, 4018, 4019, 4020, 4021, 4022, 4023, 4024, 4025, 4027, 4028, 4029, 4030, 4031, 4032, 4033, 4034, 4035, 4036, 4041, 4042, 4043, 4044, 4045, 4046, 4047, 4052, 4053, 4054, 4055, 4075, 4081, 4120, 4121, 4122, 4123, 4124, 4125, 4126, 4127, 4128, 4129, 4130, 4131, 4132, 4133, 4134, 4135, 4136, 4137, 4138, 4139, 4140, 4141, 4142, 4143, 4144, 4145, 4146, 4147, 4148, 4149, 4150, 4151, 4152, 4153, 4154, 4155, 4156, 4157, 4158, 4159, 4160, 4161, 4162, 4163, 4164, 4165, 4166, 4167, 4168, 4169, 4170, 4171, 4172, 4173, 4174, 4175, 4176, 4178, 4179, 4180, 4181, 4182, 4183, 4184, 4185, 4188, 4189, 4190, 4191, 4192, 4193, 4194, 4195, 4196, 4197, 4198, 4199, 4200, 4201, 4202, 4203, 4204, 4205, 4206, 4207, 4208, 4209, 4210, 4211, 4212, 4213, 4214, 4215, 4216, 4218, 4219, 4220, 4221, 4222, 4223, 4224, 4225, 4226, 4227, 4228, 4229, 4230, 4231, 4232, 4233, 4234, 4235, 4236, 4237, 4238, 4239, 4240, 4241, 4242, 4243, 4244, 4245, 4246, 4247, 4248, 4249, 4250, 4251, 4252, 4253, 4254, 4255, 4256, 4257, 4258, 4259, 4260, 4261, 4262, 4263, 4264, 4265, 4266, 4267, 4268, 4269, 4270, 4271, 4272, 4273, 4274, 4275, 4276, 4277, 4278, 4279, 4280, 4281, 4282, 4283, 4284, 4285, 4286, 4287, 4288, 4289, 4291, 4292, 4293, 4294, 4295, 4296, 4297, 4298, 4299, 4300, 4301, 4302, 4303, 4304, 4306, 4307, 4308, 4309, 4310, 4311, 4312, 4313, 4314, 4315, 4316, 4317, 4318, 4319, 4322, 4324, 4326, 4463, 4470, 4475, 4483, 4490, 4555, 4558, 4600, 4601, 4602, 4603, 4604, 4605, 4606, 4607, 4608, 4609, 4610, 4611, 4612, 4613, 4614, 4615, 4616, 4617, 4618, 4619, 4620, 4621, 4622, 4623, 4624, 4625, 4626, 4627, 4628, 4629, 4630, 4631, 4632, 4633, 4634, 4635, 4636, 4637, 4638, 4639, 4640, 4641, 4642, 4643, 4644, 4645, 4646, 4657, 4658, 4659, 4660, 4661, 4662, 4663, 4664, 4665, 4666, 4667, 4668, 4669, 4670, 4671, 4672, 4673, 4674, 4675, 4676, 4677, 4678, 4679, 4680, 4681, 4682, 4683, 4684, 4685, 4686, 4687, 4688, 4689, 4690, 4691, 4692, 4693, 4694, 4695, 4696, 4697, 4698, 4699, 4700, 4701, 4702, 4703, 4704, 4705, 4706, 4707, 4708, 4709, 4710, 4711, 4712, 4713, 4714, 4715, 4716, 4717, 4718, 4719, 4720, 4721, 4722, 4723, 4724, 4725, 4726, 4727, 4728, 4729, 4730, 4731, 4732, 4733, 4734, 4735, 4736, 4737, 4738, 4739, 4740, 4741, 4742, 4743, 4744, 4745, 4746, 4747, 4748, 4749, 4750, 4751, 4752, 4753, 4754, 4755, 4756, 4757, 4758, 4759, 4760, 4761, 4762, 4763, 4764, 4765, 4801, 4802, 4803, 4804, 4805, 4806, 4807, 4808, 4809, 4810, 4811, 4813, 4814, 4815, 4816, 4817, 4818, 4819, 4820,
<reponame>mfeed/PySwitchLib<filename>pyswitchlib/asset.py import requests import weakref import re import os import sys import threading import xml.etree.ElementTree as ElementTree import xmltodict import json import atexit import Pyro4 import Pyro4.util import Pyro4.errors from distutils.sysconfig import get_python_lib import time from requests.packages.urllib3.exceptions import SubjectAltNameWarning requests.packages.urllib3.disable_warnings(SubjectAltNameWarning) from pyswitchlib.util.configFile import ConfigFileUtil import pyswitchlib.exceptions locals().update(pyswitchlib.exceptions.__dict__) sys.excepthook = Pyro4.util.excepthook class Asset(object): """ This is an auto-generated class for the PySwitchLib device asset. Asset provides connection information for PySwitchLib APIs. """ def __init__(self, ip_addr='', auth=('<PASSWORD>', 'password'), rest_proto=None, cacert=None, fw_ver='', timeout='', api_port=None): def on_deletion (killed_ref): self._cleanup_timer_handle() self._session.close() self._response.close() atexit.register(self._cleanup_timer_handle) self._weakref = weakref.ref(self, on_deletion) self._ip_addr = ip_addr self._auth = auth self._rest_proto_input = '' self._rest_protocol = 'http' self._attempted_rest_protocols = [] self._enabled_rest_protocols = [] self._cacert_input = '' self._os_type = 'unknown' self._os_ver = fw_ver self._os_full_ver = fw_ver self._default_connection_timeout = 60 self._default_response_timeout = 1800 self._default_session_verify = False self._session_timeout = (self._default_connection_timeout, self._default_response_timeout) self._session = requests.Session() self._response = requests.Response() self._overall_success = True self._overall_status = [] self._exc_info = None self._rest_session_auth_max_retries = 1 self._rest_session_auth_token_expiration = 160 self._rest_session_auth_token_expired = '_EXPIRED_' self._rest_session_auth_token = self._rest_session_auth_token_expired self._rest_session_timer_handle = None self._rest_config_path = '/rest/config/running' self._rest_operational_path = '/rest/operational-state' self._rest_rpc_path = '/rest/operational-state' self._rest_discover_path = '/rest' self._yang_list = None self._module_obj = None self._pyro_ns_port = None self._pyro_proxy_name = '' self._pyro_daemon_id = 'default' self._pyro_bind_max_retries = 30 self._ns_pid_file = os.path.join(os.sep, 'etc', 'pyswitchlib', '.pyswitchlib_ns.pid') self._pyswitchlib_conf_filename = os.path.join(os.sep, 'etc', 'pyswitchlib', 'pyswitchlib.conf') self._pyswitchlib_ns_daemon_filename = os.path.join(os.sep, 'etc', 'pyswitchlib', '.pyswitchlib_ns_daemon.uri') self._pyswitchlib_conf = ConfigFileUtil().read(filename=self._pyswitchlib_conf_filename) self._pyswitchlib_ns_daemon = ConfigFileUtil().read(filename=self._pyswitchlib_ns_daemon_filename) for key in self._pyswitchlib_conf: if 'ns_port' == key: self._pyro_ns_port = int(self._pyswitchlib_conf[key]) elif 'api_daemon_' in key: if sys.prefix in self._pyswitchlib_conf[key]: self._pyro_daemon_id = key elif 'cacert' == key: if cacert is None: cacert = self._pyswitchlib_conf[key] if api_port: self._pyro_ns_port = api_port if os.path.exists(self._ns_pid_file): self._pyro_proxy_name = 'PYRONAME:PySwitchLib.' + self._pyro_daemon_id if self._pyro_ns_port: self._pyro_proxy_name += '@localhost:' + str(self._pyro_ns_port) else: if self._pyswitchlib_ns_daemon: if self._pyro_daemon_id in self._pyswitchlib_ns_daemon: self._pyro_proxy_name = self._pyswitchlib_ns_daemon[self._pyro_daemon_id] if rest_proto is not None: if rest_proto.lower() == 'http' or rest_proto.lower() == 'https' or rest_proto.lower() == 'auto': self._rest_proto_input = rest_proto.lower() if self._rest_proto_input == 'http' or self._rest_proto_input == 'https': self._rest_protocol = self._rest_proto_input else: raise RestProtocolTypeError("Rest protocol type must be 'http', 'https', or 'auto'. '" + rest_proto + "' was specified.") if cacert is not None: self._cacert_input = cacert if cacert: if self._rest_protocol == 'https' or self._rest_proto_input == 'auto': if os.path.isfile(cacert): self._default_session_verify = cacert else: raise CACertificateNotFoundError("The CA certificate file '" + cacert + "' could not be found.") else: self._default_session_verify = False elif cacert is False: self._default_session_verify = False else: raise CACertificateNotSpecifiedError("The path to the CA certificate file is not specified.") else: self._default_session_verify = False if timeout != '': self._session_timeout = timeout self._create_timer_handle() self._discover_rest_protocol_and_paths() self._update_fw_version() self._supported_module_name = self._get_supported_module() with Pyro4.Proxy(self._pyro_proxy_name) as pyro_proxy: for n in range(self._pyro_bind_max_retries): try: pyro_proxy._pyroBind() except (Pyro4.errors.NamingError, Pyro4.errors.CommunicationError) as e: if n == 0: if self._pyswitchlib_conf and 'ns_port' in self._pyswitchlib_conf: bound_api_port = int(self._pyswitchlib_conf['ns_port']) if bound_api_port and self._pyro_ns_port and bound_api_port != self._pyro_ns_port: raise ExistingApiPortBound("API port: " + str(bound_api_port) + " is already bound.") pyswitchlib_api_daemon = os.path.join(get_python_lib(), 'pyswitchlib', 'pyswitchlib_api_daemon.py') pyswitchlib_api_start_string = 'python ' + pyswitchlib_api_daemon + ' start' if self._pyro_ns_port: pyswitchlib_api_start_string += ' ' + str(self._pyro_ns_port) os.system(pyswitchlib_api_start_string) else: break time.sleep(1) else: raise ApiDaemonConnectionError("Cannot connect to pyswitchlib_api_daemon.py.") self._proxied = pyro_proxy def __getattr__(self, name): if hasattr(self._proxied, name): def getattr_wrapper(*args, **kwargs): self._proxied.api_acquire() self._proxied.module_name(module_name=self._supported_module_name) rest_operation_tuple = () try: rest_operation_tuple = getattr(self._proxied, name)(*args, **kwargs) except Exception as e: raise e finally: self._proxied.api_release() return self._rest_operation(rest_commands=rest_operation_tuple[0], yang_list=rest_operation_tuple[1], timeout=rest_operation_tuple[2]) return getattr_wrapper else: raise AttributeError(name) def _rest_operation(self, rest_commands=None, yang_list=None, rest_proto=None, cacert=None, timeout=None): auth = self._auth auth_retries = 0 index = 0 rest_protocol = None del self._overall_status[:] if rest_proto is not None: rest_protocol = rest_proto else: rest_protocol = self._rest_protocol if cacert is not None: self._session.verify = cacert else: self._session.verify = self._default_session_verify if isinstance(timeout, basestring): if timeout == '': timeout = self._session_timeout self._cleanup_timer_handle() self._create_timer_handle() while index < len(rest_commands): rest_cmd = rest_commands[index] if len(rest_cmd) < 4: rest_cmd.append ("config") if rest_cmd[3] == "config": uri_prefix_path = self._rest_config_path elif rest_cmd[3] == "operational": uri_prefix_path = self._rest_operational_path elif rest_cmd[3] == "rpc": uri_prefix_path = self._rest_rpc_path elif rest_cmd[3] == "discover": uri_prefix_path = self._rest_discover_path header = {"Resource-Depth" : str(rest_cmd[4])} url = rest_protocol+"://"+self._ip_addr+uri_prefix_path self._session.headers.update({'Content-Type': 'application/x-www-form-urlencoded'}) if self._rest_session_auth_token != self._rest_session_auth_token_expired: self._session.headers.update({'Authentication-Token': self._rest_session_auth_token}) else: if 'Authentication-Token' in self._session.headers: self._session.headers.pop('Authentication-Token') if rest_cmd[0] == "GET": if self._rest_session_auth_token == self._rest_session_auth_token_expired: self._response = self._session.get(url + rest_cmd[1], headers=header, auth=auth, timeout=timeout) else: self._response = self._session.get(url + rest_cmd[1], headers=header, timeout=timeout) elif rest_cmd[0] == "POST": if self._rest_session_auth_token == self._rest_session_auth_token_expired: self._response = self._session.post(url + rest_cmd[1], auth=auth, data=rest_cmd[2], timeout=timeout) else: self._response = self._session.post(url + rest_cmd[1], data=rest_cmd[2], timeout=timeout) elif rest_cmd[0] == "PUT": if self._rest_session_auth_token == self._rest_session_auth_token_expired: self._response = self._session.put(url + rest_cmd[1], auth=auth, data=rest_cmd[2], timeout=timeout) else: self._response = self._session.put(url + rest_cmd[1], data=rest_cmd[2], timeout=timeout) elif rest_cmd[0] == "PATCH": if self._rest_session_auth_token == self._rest_session_auth_token_expired: self._response = self._session.patch(url + rest_cmd[1], auth=auth, data=rest_cmd[2], timeout=timeout) else: self._response = self._session.patch(url + rest_cmd[1], data=rest_cmd[2], timeout=timeout) elif rest_cmd[0] == "DELETE": if self._rest_session_auth_token == self._rest_session_auth_token_expired: self._response = self._session.delete(url + rest_cmd[1], auth=auth, timeout=timeout) else: self._response = self._session.delete(url + rest_cmd[1], timeout=timeout) if 'Authentication-Token' in self._response.headers: self._rest_session_auth_token = self._response.headers['Authentication-Token'] json_output = json.loads('{"output": ""}') text_response = self._response.text if self._response.status_code >= 200 and self._response.status_code <= 299: if re.match('^<', self._response.text): if rest_cmd[3] != "rpc": text_response = '<output>\r\n' + self._response.text + '</output>\r\n' json_output = json.loads(self._xml_to_json(text_response)) else: self._auth_token_expiration() if self._response.status_code == 401 and auth_retries < self._rest_session_auth_max_retries: auth_retries += 1 continue if re.match('^<', self._response.text): if re.match('^<output', self._response.text): json_output = json.loads(self._xml_to_json(text_response)) else: json_output = json.loads('{"output": ' + self._xml_to_json(text_response) + '}') else: json_output = json.loads('{"output": ' + json.dumps(str(self._response.text)) + '}') if yang_list: self._format_dict_output(container=json_output, keys=yang_list) self._overall_status.append({self._ip_addr : {'request': {'op_code': rest_cmd[0], 'uri': rest_cmd[1], 'data': rest_cmd[2]}, 'response': {'status_code': self._response.status_code, 'url': self._response.url, 'text': self._response.text, 'json': json_output}}}) index += 1 if not self._rest_session_timer_handle.is_alive(): self._rest_session_timer_handle.start() return self._get_results() def _get_results(self): self._overall_success = True if self._overall_status: for status in self._overall_status: for key in status: if (status[key]['response']['status_code'] < 200) or (status[key]['response']['status_code'] > 299): self._overall_success = False else: self._overall_success = False return self._overall_success, self._overall_status def _discover_rest_protocol_and_paths(self): status, result = self._do_rest_protocol_discovery(self._rest_proto_input) if status == False: self._raise_rest_validation_exception(result) self._update_uri_prefix_paths(result) def _update_fw_version(self): rest_command = ( ["POST", "/show-firmware-version", "", "rpc", 1], ) self._rest_operation(rest_command, timeout=(self._default_connection_timeout, self._default_connection_timeout*2)) status, result = self._get_results() if status == False: self._raise_rest_validation_exception(result) try: rest_root = ElementTree.fromstring(re.sub(' xmlns[^ \t\n\r\f\v>]+', '', result[0][self._ip_addr]['response']['text'])) if rest_root.find('show-firmware-version').find('os-name') is not None: if 'Network Operating System' in rest_root.find('show-firmware-version').find('os-name').text: self._os_type = 'nos' elif 'SLX' in rest_root.find('show-firmware-version').find('os-name').text: self._os_type = 'slxos' if 'Server' in self._response.headers: if 'NOS' in self._response.headers['Server']: self._os_type = 'nos' elif 'SLX' in self._response.headers['Server']: self._os_type = 'slxos' if rest_root.find('show-firmware-version').find('firmware-full-version') is not None: self._os_full_ver = rest_root.find('show-firmware-version').find('firmware-full-version').text if rest_root.find('show-firmware-version').find('os-version') is not None: self._os_ver = rest_root.find('show-firmware-version').find('os-version').text if self._os_type == 'slxos': slxos_ver = self._os_ver.split('.') if len(slxos_ver) >= 2: slxos_pattern_string = '^({0}[rs]{{1}})\.{1}\.'.format(slxos_ver[0], slxos_ver[1]) elif len(slxos_ver) == 1: slxos_pattern_string = '^({0}[rs]{{1}})\.'.format(slxos_ver[0]) else: slxos_pattern_string = '^(\d+[rs]{1})\.' slxos_pattern = re.compile(slxos_pattern_string) match = slxos_pattern.match(self._os_full_ver) if match: slxos_ver[0] = match.group(1) self._os_ver = '.'.join(slxos_ver) except: pass def _do_rest_protocol_discovery(self, rest_proto_input): rest_command = ( ["GET", "", "", "discover", 1], ) overall_status = None overall_result = None if rest_proto_input == 'auto': self._attempted_rest_protocols.append('http') try: self._rest_operation(rest_command, rest_proto='http', timeout=(self._default_connection_timeout, self._default_connection_timeout*2)) except: pass finally: overall_status, overall_result = self._get_results() if (overall_status == True): self._enabled_rest_protocols.append('http') self._attempted_rest_protocols.append('https') try: self._rest_operation(rest_command, rest_proto='https', cacert=False, timeout=(self._default_connection_timeout, self._default_connection_timeout*2)) except: pass finally: status, result = self._get_results() if (status == True): self._session.close() self._session = requests.Session() self._session.verify = self._default_session_verify self._enabled_rest_protocols.append('https') self._rest_protocol = 'https' overall_status = status overall_result = result else: self._attempted_rest_protocols.append(self._rest_protocol) try: self._rest_operation(rest_command, timeout=(self._default_connection_timeout, self._default_connection_timeout*2)) except: self._exc_info = sys.exc_info() finally: overall_status, overall_result = self._get_results() if (overall_status == True): self._enabled_rest_protocols.append(self._rest_protocol) return overall_status, overall_result def _update_uri_prefix_paths(self, result): try: rest_root = ElementTree.fromstring(re.sub(' xmlns[^ \t\n\r\f\v>]+|y:', '', result[0][self._ip_addr]['response']['text'])) if rest_root.find('config').find('running') is not None: self._rest_config_path = rest_root.find('config').find('running').get('self') if rest_root.find('operational-state') is not None: self._rest_rpc_path = rest_root.find('operational-state').get('self') self._rest_operational_path = rest_root.find('operational-state').get('self') if rest_root.find('operations') is not None: self._rest_rpc_path = rest_root.find('operations').get('self') except: pass def _raise_rest_validation_exception(self, result): if result: if result[0][self._ip_addr]['response']['status_code'] == 401: raise InvalidAuthenticationCredentialsError('Status Code: ' + str(result[0][self._ip_addr]['response']['status_code']) + ', Error: Invalid Authentication Credentials.') elif result[0][self._ip_addr]['response']['status_code'] == 404: raise RestInterfaceError('Status Code: ' + str(result[0][self._ip_addr]['response']['status_code']) + ', Error: Not Found.') else: try: if self._exc_info: raise self._exc_info[0], self._exc_info[1], self._exc_info[2] except Exception as e: raise RestInterfaceError('Could not establish a connection to ' + self._ip_addr + ' using ' + str(self._attempted_rest_protocols) + '. Reason: ' + str(e)) def _update_max_keep_alive_requests(self, max_requests=0): return self.run_command(command="unhide foscmd;fibranne;foscmd sed \\'s/MaxKeepAliveRequests [0-9]*/MaxKeepAliveRequests " + str(max_requests) + "/\\' /fabos/webtools/bin/httpd.conf > /fabos/webtools/bin/httpd.conf.temp&&mv /fabos/webtools/bin/httpd.conf.temp /fabos/webtools/bin/httpd.conf&&/usr/apache/bin/apachectl -k restart &") def _xml_to_json(self, xml=''): return json.dumps(xmltodict.parse(xml)) def _get_supported_module(self): pybind_dir = '' site_dir = sys.path for site_path in site_dir: pybind_dir = os.path.join(site_path, 'pybind') if
- 2""" self.create_clean_ou("OU=ou1," + self.base_dn) mod = "(A;CI;LC;;;%s)(A;CI;LC;;;%s)" % (str(self.user_sid), str(self.group_sid)) self.sd_utils.dacl_add_ace("OU=ou1," + self.base_dn, mod) tmp_desc = security.descriptor.from_sddl("D:(A;;RPWPCRCCDCLCLORCWOWDSDDTSW;;;DA)" + mod, self.domain_sid) self.ldb_admin.create_ou("OU=ou2,OU=ou1," + self.base_dn, sd=tmp_desc) self.ldb_admin.create_ou("OU=ou3,OU=ou2,OU=ou1," + self.base_dn, sd=tmp_desc) self.ldb_admin.create_ou("OU=ou4,OU=ou2,OU=ou1," + self.base_dn, sd=tmp_desc) self.ldb_admin.create_ou("OU=ou5,OU=ou3,OU=ou2,OU=ou1," + self.base_dn, sd=tmp_desc) self.ldb_admin.create_ou("OU=ou6,OU=ou4,OU=ou2,OU=ou1," + self.base_dn, sd=tmp_desc) print "Testing correct behavior on nonaccessible search base" try: self.ldb_user3.search("OU=ou3,OU=ou2,OU=ou1," + self.base_dn, expression="(objectClass=*)", scope=SCOPE_BASE) except LdbError, (num, _): self.assertEquals(num, ERR_NO_SUCH_OBJECT) else: self.fail() mod = "(D;;LC;;;%s)(D;;LC;;;%s)" % (str(self.user_sid), str(self.group_sid)) self.sd_utils.dacl_add_ace("OU=ou2,OU=ou1," + self.base_dn, mod) ok_list = [Dn(self.ldb_admin, "OU=ou2,OU=ou1," + self.base_dn), Dn(self.ldb_admin, "OU=ou1," + self.base_dn)] res = self.ldb_user3.search("OU=ou1," + self.base_dn, expression="(objectClass=*)", scope=SCOPE_SUBTREE) res_list = [ x["dn"] for x in res if x["dn"] in ok_list ] self.assertEquals(sorted(res_list), sorted(ok_list)) ok_list = [Dn(self.ldb_admin, "OU=ou2,OU=ou1," + self.base_dn), Dn(self.ldb_admin, "OU=ou1," + self.base_dn), Dn(self.ldb_admin, "OU=ou5,OU=ou3,OU=ou2,OU=ou1," + self.base_dn), Dn(self.ldb_admin, "OU=ou6,OU=ou4,OU=ou2,OU=ou1," + self.base_dn)] #should not see ou3 and ou4, but should see ou5 and ou6 res = self.ldb_user.search("OU=ou1," + self.base_dn, expression="(objectClass=*)", scope=SCOPE_SUBTREE) self.assertEquals(len(res), 4) res_list = [ x["dn"] for x in res if x["dn"] in ok_list ] self.assertEquals(sorted(res_list), sorted(ok_list)) res = self.ldb_user2.search("OU=ou1," + self.base_dn, expression="(objectClass=*)", scope=SCOPE_SUBTREE) self.assertEquals(len(res), 4) res_list = [ x["dn"] for x in res if x["dn"] in ok_list ] self.assertEquals(sorted(res_list), sorted(ok_list)) def test_search4(self): """There is no difference in visibility if the user is also creator""" self.create_clean_ou("OU=ou1," + self.base_dn) mod = "(A;CI;CC;;;%s)" % (str(self.user_sid)) self.sd_utils.dacl_add_ace("OU=ou1," + self.base_dn, mod) tmp_desc = security.descriptor.from_sddl("D:(A;;RPWPCRCCDCLCLORCWOWDSDDTSW;;;DA)" + mod, self.domain_sid) self.ldb_user.create_ou("OU=ou2,OU=ou1," + self.base_dn, sd=tmp_desc) self.ldb_user.create_ou("OU=ou3,OU=ou2,OU=ou1," + self.base_dn, sd=tmp_desc) self.ldb_user.create_ou("OU=ou4,OU=ou2,OU=ou1," + self.base_dn, sd=tmp_desc) self.ldb_user.create_ou("OU=ou5,OU=ou3,OU=ou2,OU=ou1," + self.base_dn, sd=tmp_desc) self.ldb_user.create_ou("OU=ou6,OU=ou4,OU=ou2,OU=ou1," + self.base_dn, sd=tmp_desc) ok_list = [Dn(self.ldb_admin, "OU=ou2,OU=ou1," + self.base_dn), Dn(self.ldb_admin, "OU=ou1," + self.base_dn)] res = self.ldb_user3.search("OU=ou1," + self.base_dn, expression="(objectClass=*)", scope=SCOPE_SUBTREE) self.assertEquals(len(res), 2) res_list = [ x["dn"] for x in res if x["dn"] in ok_list ] self.assertEquals(sorted(res_list), sorted(ok_list)) res = self.ldb_user.search("OU=ou1," + self.base_dn, expression="(objectClass=*)", scope=SCOPE_SUBTREE) self.assertEquals(len(res), 2) res_list = [ x["dn"] for x in res if x["dn"] in ok_list ] self.assertEquals(sorted(res_list), sorted(ok_list)) def test_search5(self): """Make sure users can see only attributes they are allowed to see""" self.create_clean_ou("OU=ou1," + self.base_dn) mod = "(A;CI;LC;;;%s)" % (str(self.user_sid)) self.sd_utils.dacl_add_ace("OU=ou1," + self.base_dn, mod) tmp_desc = security.descriptor.from_sddl("D:(A;;RPWPCRCCDCLCLORCWOWDSDDTSW;;;DA)" + mod, self.domain_sid) self.ldb_admin.create_ou("OU=ou2,OU=ou1," + self.base_dn, sd=tmp_desc) # assert user can only see dn res = self.ldb_user.search("OU=ou2,OU=ou1," + self.base_dn, expression="(objectClass=*)", scope=SCOPE_SUBTREE) ok_list = ['dn'] self.assertEquals(len(res), 1) res_list = res[0].keys() self.assertEquals(res_list, ok_list) res = self.ldb_user.search("OU=ou2,OU=ou1," + self.base_dn, expression="(objectClass=*)", scope=SCOPE_BASE, attrs=["ou"]) self.assertEquals(len(res), 1) res_list = res[0].keys() self.assertEquals(res_list, ok_list) #give read property on ou and assert user can only see dn and ou mod = "(OA;;RP;bf9679f0-0de6-11d0-a285-00aa003049e2;;%s)" % (str(self.user_sid)) self.sd_utils.dacl_add_ace("OU=ou1," + self.base_dn, mod) self.sd_utils.dacl_add_ace("OU=ou2,OU=ou1," + self.base_dn, mod) res = self.ldb_user.search("OU=ou2,OU=ou1," + self.base_dn, expression="(objectClass=*)", scope=SCOPE_SUBTREE) ok_list = ['dn', 'ou'] self.assertEquals(len(res), 1) res_list = res[0].keys() self.assertEquals(sorted(res_list), sorted(ok_list)) #give read property on Public Information and assert user can see ou and other members mod = "(OA;;RP;e48d0154-bcf8-11d1-8702-00c04fb96050;;%s)" % (str(self.user_sid)) self.sd_utils.dacl_add_ace("OU=ou1," + self.base_dn, mod) self.sd_utils.dacl_add_ace("OU=ou2,OU=ou1," + self.base_dn, mod) res = self.ldb_user.search("OU=ou2,OU=ou1," + self.base_dn, expression="(objectClass=*)", scope=SCOPE_SUBTREE) ok_list = ['dn', 'objectClass', 'ou', 'distinguishedName', 'name', 'objectGUID', 'objectCategory'] res_list = res[0].keys() self.assertEquals(sorted(res_list), sorted(ok_list)) def test_search6(self): """If an attribute that cannot be read is used in a filter, it is as if the attribute does not exist""" self.create_clean_ou("OU=ou1," + self.base_dn) mod = "(A;CI;LCCC;;;%s)" % (str(self.user_sid)) self.sd_utils.dacl_add_ace("OU=ou1," + self.base_dn, mod) tmp_desc = security.descriptor.from_sddl("D:(A;;RPWPCRCCDCLCLORCWOWDSDDTSW;;;DA)" + mod, self.domain_sid) self.ldb_admin.create_ou("OU=ou2,OU=ou1," + self.base_dn, sd=tmp_desc) self.ldb_user.create_ou("OU=ou3,OU=ou2,OU=ou1," + self.base_dn, sd=tmp_desc) res = self.ldb_user.search("OU=ou1," + self.base_dn, expression="(ou=ou3)", scope=SCOPE_SUBTREE) #nothing should be returned as ou is not accessible self.assertEquals(len(res), 0) #give read property on ou and assert user can only see dn and ou mod = "(OA;;RP;bf9679f0-0de6-11d0-a285-00aa003049e2;;%s)" % (str(self.user_sid)) self.sd_utils.dacl_add_ace("OU=ou3,OU=ou2,OU=ou1," + self.base_dn, mod) res = self.ldb_user.search("OU=ou1," + self.base_dn, expression="(ou=ou3)", scope=SCOPE_SUBTREE) self.assertEquals(len(res), 1) ok_list = ['dn', 'ou'] res_list = res[0].keys() self.assertEquals(sorted(res_list), sorted(ok_list)) #give read property on Public Information and assert user can see ou and other members mod = "(OA;;RP;e48d0154-bcf8-11d1-8702-00c04fb96050;;%s)" % (str(self.user_sid)) self.sd_utils.dacl_add_ace("OU=ou2,OU=ou1," + self.base_dn, mod) res = self.ldb_user.search("OU=ou1," + self.base_dn, expression="(ou=ou2)", scope=SCOPE_SUBTREE) self.assertEquals(len(res), 1) ok_list = ['dn', 'objectClass', 'ou', 'distinguishedName', 'name', 'objectGUID', 'objectCategory'] res_list = res[0].keys() self.assertEquals(sorted(res_list), sorted(ok_list)) #tests on ldap delete operations class AclDeleteTests(AclTests): def setUp(self): super(AclDeleteTests, self).setUp() self.regular_user = "acl_delete_user1" # Create regular user self.ldb_admin.newuser(self.regular_user, self.user_pass) self.ldb_user = self.get_ldb_connection(self.regular_user, self.user_pass) def tearDown(self): super(AclDeleteTests, self).tearDown() delete_force(self.ldb_admin, self.get_user_dn("test_delete_user1")) delete_force(self.ldb_admin, self.get_user_dn(self.regular_user)) delete_force(self.ldb_admin, self.get_user_dn("test_anonymous")) def test_delete_u1(self): """User is prohibited by default to delete another User object""" # Create user that we try to delete self.ldb_admin.newuser("test_delete_user1", self.user_pass) # Here delete User object should ALWAYS through exception try: self.ldb_user.delete(self.get_user_dn("test_delete_user1")) except LdbError, (num, _): self.assertEquals(num, ERR_INSUFFICIENT_ACCESS_RIGHTS) else: self.fail() def test_delete_u2(self): """User's group has RIGHT_DELETE to another User object""" user_dn = self.get_user_dn("test_delete_user1") # Create user that we try to delete self.ldb_admin.newuser("test_delete_user1", self.user_pass) mod = "(A;;SD;;;AU)" self.sd_utils.dacl_add_ace(user_dn, mod) # Try to delete User object self.ldb_user.delete(user_dn) res = self.ldb_admin.search(self.base_dn, expression="(distinguishedName=%s)" % user_dn) self.assertEqual(len(res), 0) def test_delete_u3(self): """User indentified by SID has RIGHT_DELETE to another User object""" user_dn = self.get_user_dn("test_delete_user1") # Create user that we try to delete self.ldb_admin.newuser("test_delete_user1", self.user_pass) mod = "(A;;SD;;;%s)" % self.sd_utils.get_object_sid(self.get_user_dn(self.regular_user)) self.sd_utils.dacl_add_ace(user_dn, mod) # Try to delete User object self.ldb_user.delete(user_dn) res = self.ldb_admin.search(self.base_dn, expression="(distinguishedName=%s)" % user_dn) self.assertEqual(len(res), 0) def test_delete_anonymous(self): """Test add operation with anonymous user""" anonymous = SamDB(url=ldaphost, credentials=self.creds_tmp, lp=lp) self.ldb_admin.newuser("test_anonymous", "samba123@") try: anonymous.delete(self.get_user_dn("test_anonymous")) except LdbError, (num, _): self.assertEquals(num, ERR_OPERATIONS_ERROR) else: self.fail() #tests on ldap rename operations class AclRenameTests(AclTests): def setUp(self): super(AclRenameTests, self).setUp() self.regular_user = "acl_rename_user1" self.ou1 = "OU=test_rename_ou1" self.ou2 = "OU=test_rename_ou2" self.ou3 = "OU=test_rename_ou3,%s" % self.ou2 self.testuser1 = "test_rename_user1" self.testuser2 = "test_rename_user2" self.testuser3 = "test_rename_user3" self.testuser4 = "test_rename_user4" self.testuser5 = "test_rename_user5" # Create regular user self.ldb_admin.newuser(self.regular_user, self.user_pass) self.ldb_user = self.get_ldb_connection(self.regular_user, self.user_pass) def tearDown(self): super(AclRenameTests, self).tearDown() # Rename OU3 delete_force(self.ldb_admin, "CN=%s,%s,%s" % (self.testuser1, self.ou3, self.base_dn)) delete_force(self.ldb_admin, "CN=%s,%s,%s" % (self.testuser2, self.ou3, self.base_dn)) delete_force(self.ldb_admin, "CN=%s,%s,%s" % (self.testuser5, self.ou3, self.base_dn)) delete_force(self.ldb_admin, "%s,%s" % (self.ou3, self.base_dn)) # Rename OU2 delete_force(self.ldb_admin, "CN=%s,%s,%s" % (self.testuser1, self.ou2, self.base_dn)) delete_force(self.ldb_admin, "CN=%s,%s,%s" % (self.testuser2, self.ou2, self.base_dn)) delete_force(self.ldb_admin, "CN=%s,%s,%s" % (self.testuser5, self.ou2, self.base_dn)) delete_force(self.ldb_admin, "%s,%s" % (self.ou2, self.base_dn)) # Rename OU1 delete_force(self.ldb_admin, "CN=%s,%s,%s" % (self.testuser1, self.ou1, self.base_dn)) delete_force(self.ldb_admin, "CN=%s,%s,%s" % (self.testuser2, self.ou1, self.base_dn)) delete_force(self.ldb_admin, "CN=%s,%s,%s" % (self.testuser5, self.ou1, self.base_dn)) delete_force(self.ldb_admin, "OU=test_rename_ou3,%s,%s" % (self.ou1, self.base_dn)) delete_force(self.ldb_admin, "%s,%s" % (self.ou1, self.base_dn)) delete_force(self.ldb_admin, self.get_user_dn(self.regular_user)) def test_rename_u1(self): """Regular user fails to rename 'User object' within single OU""" # Create OU structure self.ldb_admin.create_ou("OU=test_rename_ou1," + self.base_dn) self.ldb_admin.newuser(self.testuser1, self.user_pass, userou=self.ou1) try: self.ldb_user.rename("CN=%s,%s,%s" % (self.testuser1, self.ou1, self.base_dn), \ "CN=%s,%s,%s" % (self.testuser5, self.ou1, self.base_dn)) except LdbError, (num, _): self.assertEquals(num, ERR_INSUFFICIENT_ACCESS_RIGHTS) else: self.fail() def test_rename_u2(self): """Grant WRITE_PROPERTY to AU so regular user can rename 'User object' within single OU""" ou_dn = "OU=test_rename_ou1," + self.base_dn user_dn = "CN=test_rename_user1," + ou_dn rename_user_dn = "CN=test_rename_user5," + ou_dn # Create OU structure self.ldb_admin.create_ou(ou_dn) self.ldb_admin.newuser(self.testuser1, self.user_pass, userou=self.ou1) mod = "(A;;WP;;;AU)" self.sd_utils.dacl_add_ace(user_dn, mod) # Rename 'User object' having WP to AU self.ldb_user.rename(user_dn, rename_user_dn) res = self.ldb_admin.search(self.base_dn, expression="(distinguishedName=%s)" % user_dn) self.assertEqual(len(res), 0) res = self.ldb_admin.search(self.base_dn, expression="(distinguishedName=%s)" % rename_user_dn) self.assertNotEqual(len(res), 0) def test_rename_u3(self): """Test rename with rights granted to 'User object' SID""" ou_dn = "OU=test_rename_ou1," + self.base_dn user_dn = "CN=test_rename_user1," + ou_dn rename_user_dn = "CN=test_rename_user5," + ou_dn # Create OU structure self.ldb_admin.create_ou(ou_dn) self.ldb_admin.newuser(self.testuser1, self.user_pass, userou=self.ou1) sid = self.sd_utils.get_object_sid(self.get_user_dn(self.regular_user)) mod = "(A;;WP;;;%s)" % str(sid) self.sd_utils.dacl_add_ace(user_dn, mod) # Rename 'User object' having WP to AU self.ldb_user.rename(user_dn, rename_user_dn) res = self.ldb_admin.search(self.base_dn, expression="(distinguishedName=%s)" % user_dn) self.assertEqual(len(res), 0) res = self.ldb_admin.search(self.base_dn, expression="(distinguishedName=%s)" % rename_user_dn) self.assertNotEqual(len(res), 0) def test_rename_u4(self): """Rename 'User object' cross OU with WP, SD and CC right granted on reg. user to AU""" ou1_dn = "OU=test_rename_ou1," + self.base_dn ou2_dn = "OU=test_rename_ou2," + self.base_dn user_dn = "CN=test_rename_user2," + ou1_dn rename_user_dn = "CN=test_rename_user5," + ou2_dn # Create OU structure self.ldb_admin.create_ou(ou1_dn) self.ldb_admin.create_ou(ou2_dn) self.ldb_admin.newuser(self.testuser2, self.user_pass, userou=self.ou1) mod = "(A;;WPSD;;;AU)" self.sd_utils.dacl_add_ace(user_dn, mod) mod = "(A;;CC;;;AU)" self.sd_utils.dacl_add_ace(ou2_dn, mod) # Rename 'User object' having SD and CC to AU self.ldb_user.rename(user_dn, rename_user_dn) res = self.ldb_admin.search(self.base_dn, expression="(distinguishedName=%s)" % user_dn) self.assertEqual(len(res), 0) res = self.ldb_admin.search(self.base_dn, expression="(distinguishedName=%s)" % rename_user_dn) self.assertNotEqual(len(res), 0) def test_rename_u5(self): """Test rename with rights granted to 'User object' SID""" ou1_dn = "OU=test_rename_ou1," + self.base_dn ou2_dn = "OU=test_rename_ou2," + self.base_dn user_dn = "CN=test_rename_user2," + ou1_dn rename_user_dn = "CN=test_rename_user5," + ou2_dn # Create OU structure self.ldb_admin.create_ou(ou1_dn) self.ldb_admin.create_ou(ou2_dn) self.ldb_admin.newuser(self.testuser2, self.user_pass, userou=self.ou1) sid = self.sd_utils.get_object_sid(self.get_user_dn(self.regular_user)) mod = "(A;;WPSD;;;%s)" % str(sid) self.sd_utils.dacl_add_ace(user_dn, mod) mod = "(A;;CC;;;%s)" % str(sid) self.sd_utils.dacl_add_ace(ou2_dn, mod) # Rename 'User object' having SD and CC to AU self.ldb_user.rename(user_dn, rename_user_dn) res
# Copyright (c) 2017-2021, Lawrence Livermore National Security, LLC and # other Shroud Project Developers. # See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (BSD-3-Clause) """ """ import yaml from . import util # The tree of c and fortran statements. cf_tree = {} fc_dict = {} # dictionary of Scope of all expanded fc_statements. default_scopes = dict() def lookup_c_statements(arg): """Look up the c_statements for an argument. If the argument type is a template, look for template specialization. Args: arg - """ arg_typemap = arg.typemap specialize = [] if arg.template_arguments: arg_typemap = arg.template_arguments[0].typemap specialize.append(arg_typemap.sgroup) return arg_typemap, specialize def lookup_fc_stmts(path): return lookup_stmts_tree(cf_tree, path) def compute_name(path, char="_"): """ Compute a name from a list of components. Blank entries are filtered out. Used to find C_error_pattern. Args: path - list of name components. """ work = [ part for part in path if part ] # skip empty components return char.join(work) def lookup_local_stmts(path, parent, node): """Look in node.fstatements for additional statements. XXX - Only used with result. mode - "update", "replace" Args: path - list of path components ["c", "buf"] parent - parent Scope. node - FunctionNode. """ name = compute_name(path) blk = node.fstatements.get(name, None) if blk: mode = blk.get("mode", "update") if mode == "update": blk.reparent(parent) return blk return parent def assign_buf_variable_names(attrs, meta, options, fmt, rootname): """ Transfer names from attribute to fmt. """ # XXX - make sure they don't conflict with other names. if meta["capsule"]: fmt.c_var_capsule = options.C_var_capsule_template.format( c_var=rootname) if attrs["cdesc"]: # XXX - c_var_cdesc is set via Stmts.temps=["cdesc"] # XXX not sure if this is needed still. fmt.c_var_cdesc2 = options.C_var_context_template.format( c_var=rootname) def compute_return_prefix(arg, local_var): """Compute how to access variable: dereference, address, as-is""" if local_var == "scalar": if arg.is_pointer(): return "&" else: return "" elif local_var == "pointer": if arg.is_pointer(): return "" else: return "*" elif local_var == "funcptr": return "" elif arg.is_reference(): # Convert a return reference into a pointer. return "&" else: return "" def update_statements_for_language(language): """Preprocess statements for lookup. Update statements for c or c++. Fill in cf_tree. Parameters ---------- language : str "c" or "c++" """ update_for_language(fc_statements, language) update_stmt_tree(fc_statements, fc_dict, cf_tree, default_stmts) def update_for_language(stmts, lang): """ Move language specific entries to current language. stmts=[ dict( name='foo_bar', c_declare=[], cxx_declare=[], ), ... ] For lang==c, foo_bar["declare"] = foo_bar["c_declare"] """ for item in stmts: for clause in [ "impl_header", "cxx_local_var", "declare", "post_parse", "pre_call", "post_call", "cleanup", "fail", ]: specific = lang + "_" + clause if specific in item: # XXX - maybe make sure clause does not already exist. item[clause] = item[specific] def compute_stmt_permutations(out, parts): """Expand parts which have multiple values Ex: parts = [['c'], ['in', 'out', 'inout'], ['native'], ['*'], ['cfi']] Three entries will be appended to out: ['c', 'in', 'native', '*', 'cfi'] ['c', 'out', 'native', '*', 'cfi'] ['c', 'inout', 'native', '*', 'cfi'] Parameters ---------- out : list Results are appended to the list. parts : """ tmp = [] for i, part in enumerate(parts): if isinstance(part, list): if len(part) == 1: tmp.append(part[0]) else: for expand in part: compute_stmt_permutations( out, tmp + [expand] + parts[i+1:]) break else: tmp.append(part) else: out.append(tmp) def add_statement_to_tree(tree, nodes, node_stmts, node, steps): """Add node to tree. Parameters ---------- tree : dict The accumulated tree. nodes : dict Scopes indexed by name to implement 'base'. node_stmts : dict nodes indexed by name to implement 'mixin'. node : dict A 'statements' dict from fc_statement to add. steps : list of str ['c', 'native', '*', 'in', 'cfi'] """ step = tree label = [] for part in steps: step = step.setdefault(part, {}) label.append(part) step["_key"] = "_".join(label) if "base" in node: step['_node'] = node scope = util.Scope(nodes[node["base"]]) else: step['_node'] = node scope = util.Scope(default_scopes[steps[0]]) if "mixin" in node: for mpart in node["mixin"]: scope.update(node_stmts[mpart]) scope.update(node) step["_stmts"] = scope name = step["_key"] # Name scope using variant name (ex in/out/inout). scope.name = name nodes[name] = scope node_stmts[name] = node return scope def update_stmt_tree(stmts, nodes, tree, defaults): """Update tree by adding stmts. Each key in stmts is split by underscore then inserted into tree to form nested dictionaries to the values from stmts. The end key is named _node, since it is impossible to have an intermediate element with that name (since they're split on underscore). Implement "base" field. Base must be defined before use. Add "_key" to tree to aid debugging. Each typemap is converted into a Scope instance with the parent based on the language (c or f) and added as "scope" field. This additional layer of indirection is needed to implement base. stmts = [ {name="c_in_native",} # value1 {name="c_out_native",} # value2 {name="c_out_native_pointer",} # value3 {name="c_in_string",} # value4 ] tree = { "c": { "in": { "native": {"_node":value1}, "string": {"_node":value4}, }, "out": { "native":{"_node":value2}, "pointer":{ "out":{"_node":value3}, }, }, }, } Parameters ---------- stmts : dict nodes : dict Created Scope members for 'base'. tree : dict defaults: dict """ # Convert defaults into Scope nodes. for key, node in defaults.items(): default_scopes[key] = node # Index by name to find alias, base, mixin. node_stmts = {} # Dict from fc_statements for 'mixin'. nodes.clear() # Allow function to be called multiple times. for node in stmts: # node is a dict. if "name" not in node: raise RuntimeError("Missing name in statements: {}". format(str(node))) for node in stmts: key = node["name"] steps = key.split("_") substeps = [] for part in steps: subparts = part.split("/") substeps.append(subparts) expanded = [] compute_stmt_permutations(expanded, substeps) for namelst in expanded: name = "_".join(namelst) if name in nodes: raise RuntimeError("Duplicate key in statements: {}". format(name)) stmt = add_statement_to_tree(tree, nodes, node_stmts, node, namelst) stmt.intent = namelst[1] # check for consistency if key[0] == "c": if (stmt.c_arg_decl is not None or stmt.f_arg_decl is not None or stmt.f_c_arg_names is not None): err = False if stmt.c_arg_decl is None: err = True print("Missing c_arg_decl in", node["name"]) if stmt.f_arg_decl is None: err = True print("Missing f_arg_decl in", node["name"]) if stmt.f_c_arg_names is None: err = True print("Missing f_c_arg_names in", node["name"]) if err: raise RuntimeError( "c_arg_decl, f_arg_decl and f_c_arg_names must all exist") length = len(stmt.c_arg_decl) if any(len(lst) != length for lst in [stmt.f_arg_decl, stmt.f_c_arg_names]): raise RuntimeError( "c_arg_decl, f_arg_decl and f_c_arg_names " "must all be same length in {}".format(node["name"])) def write_cf_tree(fp): """Write out statements tree. Parameters ---------- fp : file """ lines = [] print_tree_index(cf_tree, lines) fp.writelines(lines) print_tree_statements(fp, fc_dict, default_stmts) def print_tree_index(tree, lines, indent=""): """Print statements search tree index. Intermediate nodes are prefixed with --. Useful for debugging. Parameters ---------- fp : file lines : list list of output lines indent : str indention for recursion. """ parts = tree.get('_key', 'root').split('_') if "_node" in tree: # final = '' # + tree["_node"]["scope"].name + '-' origname = tree["_node"]["name"] lines.append("{}{} -- {}\n".format(indent, parts[-1], origname)) else: lines.append("{}{}\n".format(indent, parts[-1])) indent += ' ' for key in sorted(tree.keys()): if key == '_node': continue if key == 'scope': continue if key == '_key': continue value = tree[key] if isinstance(value, dict): print_tree_index(value, lines, indent) def print_tree_statements(fp, statements, defaults): """Print expanded statements. Statements may not have all values directly defined since 'base' and 'mixin' brings in other values. This will dump the values as used by Shroud. Statements ---------- fp : file statements : dict defaults : dict """ # Convert Scope into a dictionary for YAML. # Add all non-null values from the default dict. yaml.SafeDumper.ignore_aliases = lambda *args : True complete = {} for name in sorted(statements.keys()): root = name.split("_", 1)[0] base = defaults[root] value = statements[name] all = {} for key in base.__dict__.keys(): if key[0] == "_": continue if value[key]: all[key] = value[key] complete[name] = all yaml.safe_dump(complete, fp) def lookup_stmts_tree(tree, path): """ Lookup path in statements tree. Look for longest path which matches. Used to find specific cases first, then fall back to general. ex path = ['result', 'allocatable'] Finds 'result_allocatable' if it exists, else 'result'. If not found, return an empty dictionary. path typically consists of: in, out, inout, result generated_clause - buf deref - allocatable Args: tree - dictionary of nested dictionaries path - list of name components. Blank
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2021 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import re import json import copy from enum import Enum from vulkan_header_parser.vulkan_class_name import vulkan_class_name from vulkan_header_parser.to_extension_name_def import to_extension_name_def e_rule = re.compile( '^e(.*)' ) class vulkan_enum: def __init__( self, name_, ext_, defs_ ): self.name = vulkan_class_name( name_ ) self.ext = ext_ self.ext_def = to_extension_name_def( self.ext ) self.static_defs = copy.deepcopy( defs_ ) self.from_table = [] self.to_table = [] self.conditional = len( self.static_defs ) != 0 def add( self, name_, cname_, defs_ ): xor_defs = {} for d in defs_.keys(): if not d in self.static_defs: xor_defs[ d ] = defs_[ d ] e_match = re.match( e_rule, name_ ) if e_match: self.from_table.append( ( e_match.group( 1 ), name_, xor_defs ) ) self.from_table.append( ( name_, name_, xor_defs ) ) self.from_table.append( ( cname_, name_, xor_defs ) ) self.to_table.append( ( name_, e_match.group( 1 ), xor_defs ) ) if len( xor_defs ): self.conditional = True def __str__( self ): return json.dumps( { "ext_suffix" : self.name.ext_suffix, "version_suffix" : self.name.version_suffix, "name" : self.name.get_enum(), "ext" : self.ext, "ext_def" : self.ext_def, "from_table": [ [ v[ 0 ], v[ 1 ] ] for v in self.from_table ], "to_table": [ [ v[ 0 ], v[ 1 ] ] for v in self.to_table ] }, indent=2 ) def generate_impl( self ): name = self.name.get_name() cname = self.name.get_cname() inline = "" if self.conditional: inline = "inline " m = "" if len( self.static_defs ): m += '#if ' + ' && '.join( [ x for x in self.static_defs.keys() ] ) + '\n' m += "namespace VULKAN_HPP_NAMESPACE {\n" m += "%svoid to_json( nlohmann::json &j, const %s &p ) {\n" % ( inline, name ) for v in self.to_table: if len( v[ 2 ] ): m += "#if " + ' && '.join( [ x for x in v[ 2 ].keys() ] ) + '\n' m += " if( %s :: %s == p ) {\n j = \"%s\";\n return;\n }\n" % ( name, v[ 0 ], v[ 1 ] ) if len( v[ 2 ] ): m += "#endif\n" m += "}\n" m += "}\n" m += "%svoid to_json( nlohmann::json &j, const %s &p ) {\n" % ( inline, cname ) m += " to_json( j, VULKAN_HPP_NAMESPACE :: %s ( p ) );\n" % name m += "}\n" m += "namespace VULKAN_HPP_NAMESPACE {\n" m += "%svoid from_json( const nlohmann::json &j, %s &p ) {\n" % ( inline, name ) m += " if( j.is_string() ) {\n" for v in self.from_table: if len( v[ 2 ] ): m += "#if " + ' && '.join( [ x for x in v[ 2 ].keys() ] ) + '\n' m += " if( \"%s\" == j.get< std::string >() ) {\n p = %s :: %s ;\n return;\n }\n" % ( v[ 0 ], name, v[ 1 ] ) if len( v[ 2 ] ): m += "#endif\n" m += " throw vulkan2json::invalid_enum_value( \"unknown enum name for %s\" );\n" % name m += " }\n" m += " if( j.is_number() ) {\n" m += " p = %s ( j.get< std::int64_t >() );\n" % name m += " }\n" m += " throw vulkan2json::invalid_enum_value( \"incompatible value for %s\" );\n" % name m += "}\n" m += "}\n" m += "%svoid from_json( const nlohmann::json &j, %s &p ) {\n" % ( inline, cname ) m += " VULKAN_HPP_NAMESPACE :: %s temp;\n" % name m += " from_json( j, temp );\n" m += " p = %s ( temp );\n" % cname m += "}\n" if len( self.static_defs ): m += "#endif\n" return m; def generate_forward( self ): name = self.name.get_name() cname = self.name.get_cname() m = "" if len( self.static_defs ): m += '#if ' + ' && '.join( [ x for x in self.static_defs.keys() ] ) + '\n' m += "namespace VULKAN_HPP_NAMESPACE {\n" m += "void to_json( nlohmann::json &j, const %s &p );\n" % name m += "}\n" m += "void to_json( nlohmann::json &j, const %s &p );\n" % cname m += "namespace VULKAN_HPP_NAMESPACE {\n" m += "void from_json( const nlohmann::json &j, %s &p );\n" % name m += "}\n" m += "void from_json( const nlohmann::json &j, %s &p );\n" % cname if len( self.static_defs ): m += "#endif\n" return m; def generate_test( self ): name = self.name.get_name() cname = self.name.get_cname() m = "" m += "#include <vulkan2json/%s.hpp>\n" % name m += "BOOST_AUTO_TEST_CASE(%s) {\n" % name if len( self.static_defs ): m += '#if ' + ' && '.join( [ x for x in self.static_defs.keys() ] ) + '\n' for v in self.to_table: if len( v[ 2 ] ): m += "#if " + ' && '.join( [ x for x in v[ 2 ].keys() ] ) + '\n' m += " {\n"; m += " const auto original = VULKAN_HPP_NAMESPACE :: %s :: %s ;\n" % ( name, v[ 0 ] ) m += " const nlohmann::json expected = \"%s\";\n" % v[ 1 ] m += " const nlohmann::json serialized = original;\n" m += " const auto deserialized = VULKAN_HPP_NAMESPACE :: %s ( serialized );\n" % name m += " BOOST_CHECK( deserialized == original );\n" m += " }\n"; if len( v[ 2 ] ): m += "#endif\n" if len( self.static_defs ): m += "#endif\n" m += "}\n" return m; class vulkan_flag: def __init__( self, name_, ext_, defs_, has_cname_ ): self.name = vulkan_class_name( name_ ) self.name.remove_flagbits() self.ext = ext_ self.ext_def = to_extension_name_def( self.ext ) self.static_defs = defs_ self.from_table = [] self.to_table = [] self.has_cname = has_cname_ self.conditional = len( self.static_defs ) != 0 def add( self, name_, cname_, defs_ ): xor_defs = {} for d in defs_.keys(): if d in self.static_defs: xor_defs[ d ] = defs_[ d ] e_match = re.match( e_rule, name_ ) if e_match: self.from_table.append( ( e_match.group( 1 ), name_, xor_defs ) ) self.from_table.append( ( name_, name_, xor_defs ) ) self.from_table.append( ( cname_, name_, xor_defs ) ) self.to_table.append( ( name_, e_match.group( 1 ), xor_defs ) ) if len( xor_defs ): self.conditional = True def __str__( self ): return json.dumps( { "ext_suffix" : self.name.ext_suffix, "version_suffix" : self.name.version_suffix, "name" : self.name.name, "ext" : self.ext, "ext_def" : self.ext_def, "has_cname" : self.has_cname, "from_table": [ [ v[ 0 ], v[ 1 ] ] for v in self.from_table ], "to_table": [ [ v[ 0 ], v[ 1 ] ] for v in self.to_table ] }, indent=2 ) def generate_impl( self ): flagbits = self.name.get_flagbits() flags = self.name.get_flags() inline = "" if self.conditional: inline = "inline " m = "" if len( self.static_defs ): m += "#if " + ' && '.join( [ x for x in v[ 2 ].keys() ] ) + '\n' m += "namespace VULKAN_HPP_NAMESPACE {\n" m += "%svoid to_json( nlohmann::json &j, const %s &p ) {\n" % ( inline, flagbits ) for v in self.to_table: if len( v[ 2 ] ): m += "#if " + ' && '.join( [ x for x in v[ 2 ].keys() ] ) + '\n'
#!/usr/bin/python from p4_hlir.main import HLIR from p4_hlir.hlir.p4_parser import p4_parse_state import p4_hlir from p4_hlir.hlir.p4_tables import p4_table from compiler import HP4Compiler, CodeRepresentation import argparse import itertools import code from inspect import currentframe, getframeinfo import sys import math from math import ceil import json import pkg_resources SEB = 320 METADATA_WIDTH = 256 PS_RET_TYPE = 0 PS_RET_CRITERIA = 1 PS_RET_BRANCHES = 2 PS_RET_IMM_STATE = 1 PS_CALL_TYPE = 0 PS_CALL_H_INST = 1 OFFSET = 0 WIDTH = 1 BRANCH_VALUES = 0 BRANCH_STATE = 1 VAL_TYPE = 0 VAL_VALUE = 1 MAX_BYTE = 100 T_NAME = 0 L_BOUND = 1 U_BOUND = 2 HIGHEST_PRIORITY = '0' LOWEST_PRIORITY = '2147483646' VBITS_WIDTH = 80 MATCH_TYPE = 1 MATCH_FIELD = 0 PRIM_TYPE = 0 PRIM_SUBTYPE = 1 P4_CALL_PRIMITIVE = 0 P4_CALL_PARAMS = 1 PARAM = 0 PARAM_TYPE = 1 MATCH_OBJECT = 0 MATCH_TYPE = 1 EXT_FIRST_WIDTH = 40 # in bytes EXT_START_INDEX = 2 parse_select_table_boundaries = [0, 20, 30, 40, 50, 60, 70, 80, 90, 100] primitive_ID = {'modify_field': '[MODIFY_FIELD]', 'add_header': '[ADD_HEADER]', 'copy_header': '[COPY_HEADER]', 'remove_header': '[REMOVE_HEADER]', 'modify_field_with_hash_based_offset': '[MODIFY_FIELD_WITH_HBO]', 'modify_field_rng_uniform': '[MODIFY_FIELD_RNG_U]', 'truncate': '[TRUNCATE]', 'drop': '[DROP]', 'no_op': '[NO_OP]', 'push': '[PUSH]', 'pop': '[POP]', 'count': '[COUNT]', 'execute_meter': '[METER]', 'generate_digest': '[GENERATE_DIGEST]', 'recirculate': '[RECIRCULATE]', 'resubmit': '[RESUBMIT]', 'clone_ingress_pkt_to_egress': '[CLONE_INGRESS_EGRESS]', 'clone_egress_pkt_to_egress': '[CLONE_EGRESS_EGRESS]', 'multicast': '[MULTICAST]', 'add_to_field': '[MATH_ON_FIELD]', 'bit_xor': '[BIT_XOR]'} primitive_tnames = {'modify_field': 'mod', 'add_header': 'addh', 'copy_header': '', 'remove_header': 'removeh', 'modify_field_with_hash_based_offset': '', 'modify_field_rng_uniform': 'mod_rng', 'truncate' : 'truncate', 'drop' : 'drop', 'no_op' : '', 'push' : '', 'pop' : '', 'count' : '', 'execute_meter': '', 'generate_digest': '', 'recirculate': '', 'resubmit': '', 'clone_ingress_pkt_to_egress': '', 'clone_egress_pkt_to_egress': '', 'multicast': 'multicast', 'add_to_field': 'math_on_field', 'bit_xor': 'bit_xor'} mf_prim_subtype_ID = {('meta', 'ingress_port'): '1', ('meta', 'packet_length'): '2', ('meta', 'egress_spec'): '3', ('meta', 'egress_port'): '4', ('meta', 'egress_instance'): '5', ('meta', 'instance_type'): '6', ('egress_spec', 'meta'): '7', ('meta', 'const'): '8', ('egress_spec', 'const'): '9', ('ext', 'const'): '10', ('egress_spec', 'ingress_port'): '11', ('ext', 'ext'): '12', ('meta', 'ext'): '13', ('ext', 'meta'): '14'} mf_prim_subtype_action = {'1': 'mod_meta_stdmeta_ingressport', '2': 'mod_meta_stdmeta_packetlength', '3': 'mod_meta_stdmeta_egressspec', '4': 'mod_meta_stdmeta_egressport', '5': 'mod_meta_stdmeta_egressinst', '6': 'mod_meta_stdmeta_insttype', '7': 'mod_stdmeta_egressspec_meta', '8': 'mod_meta_const', '9': 'mod_stdmeta_egressspec_const', '10': 'mod_extracted_const', '11': 'mod_stdmeta_egressspec_stdmeta_ingressport', '12': 'mod_extracted_extracted', '13': 'mod_meta_extracted', '14': 'mod_extracted_meta'} a2f_prim_subtype_ID = {'add': '1', 'sub': '2'} a2f_prim_subtype_action = {'1': 'a_add2f_extracted_const_u', '2': 'a_subff_extracted_const_u'} bx_prim_subtype_ID = {('meta', 'meta', 'const'): '1', ('ext', 'ext', 'const'): '2', ('meta', 'ext', 'const'): '3'} bx_prim_subtype_action = {'1': 'bit_xor_meta_meta_const', '2': 'bit_xor_extracted_extracted_const', '3': 'bit_xor_meta_extracted_const'} gen_prim_subtype_action = {'add_header': 'a_addh', 'copy_header': '', 'remove_header': 'a_removeh', 'modify_field_with_hash_based_offset': '', 'modify_field_rng_uniform': 'mod_extracted_rng', 'truncate': 'a_truncate', 'drop': 'a_drop', 'no_op': '', 'push': '', 'pop': '', 'count': '', 'execute_meter': '', 'recirculate': '', 'resubmit': '', 'clone_ingress_pkt_to_egress': '', 'clone_egress_pkt_to_egress': '', 'multicast': 'a_multicast'} current_call = tuple def debug(): """ Break and enter interactive method after printing location info """ # written before I knew about the pdb module caller = currentframe().f_back method_name = caller.f_code.co_name line_no = getframeinfo(caller).lineno print(method_name + ": line " + str(line_no)) code.interact(local=dict(globals(), **caller.f_locals)) def unsupported(msg): print(msg) exit() def convert_to_builtin_type(obj): d = { '__class__':obj.__class__.__name__, '__module__':obj.__module__, } d.update(obj.__dict__) return d class HP4_Command(object): def __init__(self, command='table_add', table='', action='', match_params=[], action_params=[]): self.command = command self.table = table self.action = action self.match_params = match_params self.action_params = action_params def __str__(self): """ assumes command is \'table_add\' """ if self.command != 'table_add': debug() raise Exception("Incorrect table command %s, table %s" % (self.command, self.table)) ret = self.table + ' ' + self.action + ' :' ret += ' '.join(self.match_params) ret += ':' ret += ' '.join(self.action_params) return ret class HP4_Match_Command(HP4_Command): def __init__(self, source_table='', source_action='', **kwargs): super(HP4_Match_Command, self).__init__(**kwargs) self.source_table = source_table self.source_action = source_action class HP4_Primitive_Command(HP4_Command): def __init__(self, source_table, source_action, command, table, action, mparams, aparams, src_aparam_id): HP4_Command.__init__(self, command, table, action, mparams, aparams) self.source_table = source_table self.source_action = source_action self.src_aparam_id = src_aparam_id class DAG_Topo_Sorter(): def __init__(self, p4_tables): self.unmarked = [] self.tempmarked = [] self.permmarked = [] self.L = [] for key in p4_tables: self.unmarked.append(p4_tables[key]) def visit(self, n): if n.control_flow_parent == 'egress': unsupported("ERROR: Not yet supported: tables in egress (" + n.name + ")") if n in self.tempmarked: unsupported("ERROR: not a DAG") if n in self.unmarked: self.unmarked.remove(n) self.tempmarked.append(n) for m in n.next_.values(): if m != None: self.visit(m) self.permmarked.append(n) self.tempmarked.remove(n) self.L.insert(0, n) def sort(self): while len(self.unmarked) > 0: # while there are unmarked nodes do n = self.unmarked[0] self.visit(n) return self.L class Table_Rep(): def __init__(self, stage, match_type, source_type, field_name): self.stage = stage # int self.match_type = match_type self.source_type = source_type self.field_name = field_name self.name = 't' + str(self.stage) + '_' if source_type == 'standard_metadata': self.name += 'stdmeta_' + field_name + '_' elif source_type == 'metadata': self.name += 'metadata_' elif source_type == 'extracted': self.name += 'extracted_' if match_type == 'P4_MATCH_EXACT': self.name += 'exact' elif match_type == 'P4_MATCH_VALID': self.name += 'valid' elif match_type == 'P4_MATCH_TERNARY': self.name += 'ternary' elif match_type == 'MATCHLESS': self.name += 'matchless' def table_type(self): if self.source_type == 'standard_metadata': if self.match_type == 'P4_MATCH_EXACT': if self.field_name == 'ingress_port': return '[STDMETA_INGRESS_PORT_EXACT]' elif self.field_name == 'packet_length': return '[STDMETA_PACKET_LENGTH_EXACT]' elif self.field_name == 'instance_type': return '[STDMETA_INSTANCE_TYPE_EXACT]' elif self.field_name == 'egress_spec': return '[STDMETA_EGRESS_SPEC_EXACT]' else: unsupported("Not supported: standard_metadata field %s" \ % self.field_name) else: unsupported("Not supported: standard_metadata with %s match type" \ % self.match_type) elif self.source_type == 'metadata': if self.match_type == 'P4_MATCH_EXACT': return '[METADATA_EXACT]' elif self.match_type == 'P4_MATCH_TERNARY': return '[METADATA_TERNARY]' else: unsupported("Not supported: metadata with %s match type" \ % self.match_type) elif self.source_type == 'extracted': if self.match_type == 'P4_MATCH_EXACT': return '[EXTRACTED_EXACT]' elif self.match_type == 'P4_MATCH_VALID': return '[EXTRACTED_VALID]' elif self.match_type == 'P4_MATCH_TERNARY': return '[EXTRACTED_TERNARY]' else: unsupported("Not supported: extracted with %s match type" \ % self.match_type) elif self.source_type == '': if self.match_type == 'MATCHLESS': return '[MATCHLESS]' else: unsupported("Not supported: [no source] with %s match type" \ % self.match_type) else: unsupported("Not supported: source type %s, match type %s" \ % (self.source_type, self.match_type)) def __str__(self): return self.name class Action_Rep(): def __init__(self): self.stages = set() self.tables = {} # {stage (int) : table_name (str)} self.next = {} # {table_name (str) : (next_stage (int), next_table_code (int))} self.call_sequence = [] class PC_State(object): newid = itertools.count().next def __init__(self, hp4_bits_extracted=SEB, p4_bits_extracted=0, ps_path=[], pcs_path=[], parse_state=None, entry_table='tset_parse_control', **kwargs): self.hp4_bits_extracted = hp4_bits_extracted self.p4_bits_extracted = p4_bits_extracted self.ps_path = ps_path self.pcs_path = pcs_path self.pcs_id = PC_State.newid() self.parse_state = parse_state self.entry_table = entry_table # TODO: Delete if we don't need this self.children = [] self.header_offsets = {} # header name (str) : hp4 bit offset (int) for pcs in self.pcs_path: self.header_offsets.update(pcs.header_offsets) self.select_criteria = [] # list of (offset, width) tuples, each # element corresponding to a criteria in the # select statement, representing the hp4 view self.select_values = [] # list of lists: each member a list of values, # each value corresponding to a criteria in # select_criteria def __str__(self): ret = 'ID: ' + str(self.pcs_id) + '; ' + self.parse_state.name + '\n' ret += 'hp4_bits_extracted: ' + str(self.hp4_bits_extracted) + '\n' ret += 'p4_bits_extracted: ' + str(self.p4_bits_extracted) + '\n' ret += 'ps_path: ' + str(self.ps_path) + '\n' ret += 'pcs_path: ' for pcs in self.pcs_path: ret += str(pcs.pcs_id) + '(' + pcs.parse_state.name + ') ' ret += '\n' ret += 'children: ' for child in self.children: ret += child.parse_state.name + ' ' return ret def collect_meta(headers): """ Classify headers (metadata | parsed representation) - For metadata: assign each field an offset into meta.data - NOTE: the same cannot be done for parsed representation headers until we traverse the parse tree, because each path through the parse tree potentially yields a distinct set of field offsets into pr.data. """ meta_offsets = {} metadata_offset = 0 for header_key in headers.keys(): header = headers[header_key] if header.name == 'standard_metadata': continue if header.name == 'intrinsic_metadata': continue if header.metadata == True: for field in header.fields: fullname = header.name + '.' + field.name meta_offsets[fullname] = metadata_offset metadata_offset += field.width if metadata_offset > METADATA_WIDTH: unsupported("Error: out of metadata memory with %s" % fullname) return meta_offsets def collect_actions(actions): """ Uniquely number each action """ action_ID = {} actionID = 1 for action in actions: if action.lineno > 0: # is action from source (else built-in)? action_ID[action] = actionID actionID += 1 return action_ID def get_prim_subtype(p4_call): """ p4_call: (p4_action, [list of parameters]) """ primitive = p4_call[P4_CALL_PRIMITIVE] params = p4_call[P4_CALL_PARAMS] if (primitive.name == 'drop' or primitive.name == 'add_header' or primitive.name == 'remove_header' or primitive.name == 'modify_field_rng_uniform'): return '0' elif primitive.name == 'add_to_field': if type(params[0]) is p4_hlir.hlir.p4_headers.p4_field: if params[0].instance.metadata == True: unsupported("Not supported: metadata (%s) as dst field in \ add_to_field" % params[0].instance.name) else: if type(params[1]) is int: if params[1] < 0: return(a2f_prim_subtype_ID['sub']) else: return(a2f_prim_subtype_ID['add']) else: unsupported("ERROR: Not supported: %s type for src field in \ add_to_field" % type(params[1])) else: unsupported("ERROR: dst field type %s in add_to_field" %
is # behaving as a mailing list if shared.safeConfigGetBoolean(toAddress, 'mailinglist') and messageEncodingType != 0: try: mailingListName = shared.config.get( toAddress, 'mailinglistname') except: mailingListName = '' # Let us send out this message as a broadcast subject = self.addMailingListNameToSubject( subject, mailingListName) # Let us now send this message out as a broadcast message = time.strftime("%a, %Y-%m-%d %H:%M:%S UTC", time.gmtime( )) + ' Message ostensibly from ' + fromAddress + ':\n\n' + body fromAddress = toAddress # The fromAddress for the broadcast that we are about to send is the toAddress (my address) for the msg message we are currently processing. ackdataForBroadcast = OpenSSL.rand( 32) # We don't actually need the ackdataForBroadcast for acknowledgement since this is a broadcast message but we can use it to update the user interface when the POW is done generating. toAddress = '[Broadcast subscribers]' ripe = '' # We really should have a discussion about how to # set the TTL for mailing list broadcasts. This is obviously # hard-coded. TTL = 2*7*24*60*60 # 2 weeks t = ('', toAddress, ripe, fromAddress, subject, message, ackdataForBroadcast, int(time.time()), # sentTime (this doesn't change) int(time.time()), # lastActionTime 0, 'broadcastqueued', 0, 'sent', 2, TTL) helper_sent.insert(t) shared.UISignalQueue.put(('displayNewSentMessage', ( toAddress, '[Broadcast subscribers]', fromAddress, subject, message, ackdataForBroadcast))) shared.workerQueue.put(('sendbroadcast', '')) # Don't send ACK if invalid, blacklisted senders, invisible messages, disabled or chan if self.ackDataHasAValidHeader(ackData) and \ not blockMessage and \ messageEncodingType != 0 and \ not shared.safeConfigGetBoolean(toAddress, 'dontsendack') and \ not shared.safeConfigGetBoolean(toAddress, 'chan'): shared.checkAndShareObjectWithPeers(ackData[24:]) # Display timing data timeRequiredToAttemptToDecryptMessage = time.time( ) - messageProcessingStartTime shared.successfullyDecryptMessageTimings.append( timeRequiredToAttemptToDecryptMessage) sum = 0 for item in shared.successfullyDecryptMessageTimings: sum += item logger.debug('Time to decrypt this message successfully: %s\n\ Average time for all message decryption successes since startup: %s.' % (timeRequiredToAttemptToDecryptMessage, sum / len(shared.successfullyDecryptMessageTimings)) ) def processbroadcast(self, data): messageProcessingStartTime = time.time() shared.numberOfBroadcastsProcessed += 1 shared.UISignalQueue.put(( 'updateNumberOfBroadcastsProcessed', 'no data')) inventoryHash = calculateInventoryHash(data) readPosition = 20 # bypass the nonce, time, and object type broadcastVersion, broadcastVersionLength = decodeVarint( data[readPosition:readPosition + 9]) readPosition += broadcastVersionLength if broadcastVersion < 4 or broadcastVersion > 5: logger.info('Cannot decode incoming broadcast versions less than 4 or higher than 5. Assuming the sender isn\'t being silly, you should upgrade Bitmessage because this message shall be ignored.') return cleartextStreamNumber, cleartextStreamNumberLength = decodeVarint( data[readPosition:readPosition + 10]) readPosition += cleartextStreamNumberLength if broadcastVersion == 4: """ v4 broadcasts are encrypted the same way the msgs are encrypted. To see if we are interested in a v4 broadcast, we try to decrypt it. This was replaced with v5 broadcasts which include a tag which we check instead, just like we do with v4 pubkeys. """ signedData = data[8:readPosition] initialDecryptionSuccessful = False for key, cryptorObject in shared.MyECSubscriptionCryptorObjects.items(): try: if initialDecryptionSuccessful: # continue decryption attempts to avoid timing attacks cryptorObject.decrypt(data[readPosition:]) else: decryptedData = cryptorObject.decrypt(data[readPosition:]) toRipe = key # This is the RIPE hash of the sender's pubkey. We need this below to compare to the RIPE hash of the sender's address to verify that it was encrypted by with their key rather than some other key. initialDecryptionSuccessful = True logger.info('EC decryption successful using key associated with ripe hash: %s' % hexlify(key)) except Exception as err: pass # print 'cryptorObject.decrypt Exception:', err if not initialDecryptionSuccessful: # This is not a broadcast I am interested in. logger.debug('Length of time program spent failing to decrypt this v4 broadcast: %s seconds.' % (time.time() - messageProcessingStartTime,)) return elif broadcastVersion == 5: embeddedTag = data[readPosition:readPosition+32] readPosition += 32 if embeddedTag not in shared.MyECSubscriptionCryptorObjects: logger.debug('We\'re not interested in this broadcast.') return # We are interested in this broadcast because of its tag. signedData = data[8:readPosition] # We're going to add some more data which is signed further down. cryptorObject = shared.MyECSubscriptionCryptorObjects[embeddedTag] try: decryptedData = cryptorObject.decrypt(data[readPosition:]) logger.debug('EC decryption successful') except Exception as err: logger.debug('Broadcast version %s decryption Unsuccessful.' % broadcastVersion) return # At this point this is a broadcast I have decrypted and am # interested in. readPosition = 0 sendersAddressVersion, sendersAddressVersionLength = decodeVarint( decryptedData[readPosition:readPosition + 9]) if broadcastVersion == 4: if sendersAddressVersion < 2 or sendersAddressVersion > 3: logger.warning('Cannot decode senderAddressVersion other than 2 or 3. Assuming the sender isn\'t being silly, you should upgrade Bitmessage because this message shall be ignored.') return elif broadcastVersion == 5: if sendersAddressVersion < 4: logger.info('Cannot decode senderAddressVersion less than 4 for broadcast version number 5. Assuming the sender isn\'t being silly, you should upgrade Bitmessage because this message shall be ignored.') return readPosition += sendersAddressVersionLength sendersStream, sendersStreamLength = decodeVarint( decryptedData[readPosition:readPosition + 9]) if sendersStream != cleartextStreamNumber: logger.info('The stream number outside of the encryption on which the POW was completed doesn\'t match the stream number inside the encryption. Ignoring broadcast.') return readPosition += sendersStreamLength behaviorBitfield = decryptedData[readPosition:readPosition + 4] readPosition += 4 sendersPubSigningKey = '\x04' + \ decryptedData[readPosition:readPosition + 64] readPosition += 64 sendersPubEncryptionKey = '\x04' + \ decryptedData[readPosition:readPosition + 64] readPosition += 64 if sendersAddressVersion >= 3: requiredAverageProofOfWorkNonceTrialsPerByte, varintLength = decodeVarint( decryptedData[readPosition:readPosition + 10]) readPosition += varintLength logger.debug('sender\'s requiredAverageProofOfWorkNonceTrialsPerByte is %s' % requiredAverageProofOfWorkNonceTrialsPerByte) requiredPayloadLengthExtraBytes, varintLength = decodeVarint( decryptedData[readPosition:readPosition + 10]) readPosition += varintLength logger.debug('sender\'s requiredPayloadLengthExtraBytes is %s' % requiredPayloadLengthExtraBytes) endOfPubkeyPosition = readPosition sha = hashlib.new('sha512') sha.update(sendersPubSigningKey + sendersPubEncryptionKey) ripeHasher = hashlib.new('ripemd160') ripeHasher.update(sha.digest()) calculatedRipe = ripeHasher.digest() if broadcastVersion == 4: if toRipe != calculatedRipe: logger.info('The encryption key used to encrypt this message doesn\'t match the keys inbedded in the message itself. Ignoring message.') return elif broadcastVersion == 5: calculatedTag = hashlib.sha512(hashlib.sha512(encodeVarint( sendersAddressVersion) + encodeVarint(sendersStream) + calculatedRipe).digest()).digest()[32:] if calculatedTag != embeddedTag: logger.debug('The tag and encryption key used to encrypt this message doesn\'t match the keys inbedded in the message itself. Ignoring message.') return messageEncodingType, messageEncodingTypeLength = decodeVarint( decryptedData[readPosition:readPosition + 9]) if messageEncodingType == 0: return readPosition += messageEncodingTypeLength messageLength, messageLengthLength = decodeVarint( decryptedData[readPosition:readPosition + 9]) readPosition += messageLengthLength message = decryptedData[readPosition:readPosition + messageLength] readPosition += messageLength readPositionAtBottomOfMessage = readPosition signatureLength, signatureLengthLength = decodeVarint( decryptedData[readPosition:readPosition + 9]) readPosition += signatureLengthLength signature = decryptedData[ readPosition:readPosition + signatureLength] signedData += decryptedData[:readPositionAtBottomOfMessage] if not highlevelcrypto.verify(signedData, signature, hexlify(sendersPubSigningKey)): logger.debug('ECDSA verify failed') return logger.debug('ECDSA verify passed') sigHash = hashlib.sha512(hashlib.sha512(signature).digest()).digest()[32:] # Used to detect and ignore duplicate messages in our inbox fromAddress = encodeAddress( sendersAddressVersion, sendersStream, calculatedRipe) logger.info('fromAddress: %s' % fromAddress) # Let's store the public key in case we want to reply to this person. sqlExecute('''INSERT INTO pubkeys VALUES (?,?,?,?,?)''', fromAddress, sendersAddressVersion, decryptedData[:endOfPubkeyPosition], int(time.time()), 'yes') # Check to see whether we happen to be awaiting this # pubkey in order to send a message. If we are, it will do the POW # and send it. self.possibleNewPubkey(fromAddress) fromAddress = encodeAddress( sendersAddressVersion, sendersStream, calculatedRipe) logger.debug('fromAddress: ' + fromAddress) if messageEncodingType == 2: subject, body = self.decodeType2Message(message) logger.info('Broadcast subject (first 100 characters): %s' % repr(subject)[:100]) elif messageEncodingType == 1: body = message subject = '' elif messageEncodingType == 0: logger.info('messageEncodingType == 0. Doing nothing with the message.') return else: body = 'Unknown encoding type.\n\n' + repr(message) subject = '' toAddress = '[Broadcast subscribers]' if helper_inbox.isMessageAlreadyInInbox(sigHash): logger.info('This broadcast is already in our inbox. Ignoring it.') return t = (inventoryHash, toAddress, fromAddress, subject, int( time.time()), body, 'inbox', messageEncodingType, 0, sigHash) helper_inbox.insert(t) shared.UISignalQueue.put(('displayNewInboxMessage', ( inventoryHash, toAddress, fromAddress, subject, body))) # If we are behaving as an API then we might need to run an # outside command to let some program know that a new message # has arrived. if shared.safeConfigGetBoolean('bitmessagesettings', 'apienabled'): try: apiNotifyPath = shared.config.get( 'bitmessagesettings', 'apinotifypath') except: apiNotifyPath = '' if apiNotifyPath != '': call([apiNotifyPath, "newBroadcast"]) # Display timing data logger.info('Time spent processing this interesting broadcast: %s' % (time.time() - messageProcessingStartTime,)) def possibleNewPubkey(self, address): """ We have inserted a pubkey into our pubkey table which we received from a pubkey, msg, or broadcast message. It might be one that we have been waiting for. Let's check. """ # For address versions <=
# This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild from pkg_resources import parse_version import kaitaistruct from kaitaistruct import KaitaiStruct, KaitaiStream, BytesIO from enum import Enum import collections if parse_version(kaitaistruct.__version__) < parse_version('0.9'): raise Exception("Incompatible Kaitai Struct Python API: 0.9 or later is required, but you have %s" % (kaitaistruct.__version__)) class Specpr(KaitaiStruct): """Specpr records are fixed format, 1536 bytes/record. Record number counting starts at 0. Binary data are in IEEE format real numbers and non-byte swapped integers (compatiible with all Sun Microsystems, and Hewlett Packard workstations (Intel and some DEC machines are byte swapped relative to Suns and HPs). Each record may contain different information according to the following scheme. You can get some library of spectra from ftp://ftpext.cr.usgs.gov/pub/cr/co/denver/speclab/pub/spectral.library/splib06.library/ """ class RecordType(Enum): data_initial = 0 text_initial = 1 data_continuation = 2 text_continuation = 3 SEQ_FIELDS = ["records"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['records']['start'] = self._io.pos() self.records = [] i = 0 while not self._io.is_eof(): if not 'arr' in self._debug['records']: self._debug['records']['arr'] = [] self._debug['records']['arr'].append({'start': self._io.pos()}) _t_records = self._root.Record(self._io, self, self._root) _t_records._read() self.records.append(_t_records) self._debug['records']['arr'][len(self.records) - 1]['end'] = self._io.pos() i += 1 self._debug['records']['end'] = self._io.pos() class DataInitial(KaitaiStruct): SEQ_FIELDS = ["ids", "iscta", "isctb", "jdatea", "jdateb", "istb", "isra", "isdec", "itchan", "irmas", "revs", "iband", "irwav", "irespt", "irecno", "itpntr", "ihist", "mhist", "nruns", "siangl", "seangl", "sphase", "iwtrns", "itimch", "xnrm", "scatim", "timint", "tempd", "data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['ids']['start'] = self._io.pos() self.ids = self._root.Identifiers(self._io, self, self._root) self.ids._read() self._debug['ids']['end'] = self._io.pos() self._debug['iscta']['start'] = self._io.pos() self.iscta = self._root.CoarseTimestamp(self._io, self, self._root) self.iscta._read() self._debug['iscta']['end'] = self._io.pos() self._debug['isctb']['start'] = self._io.pos() self.isctb = self._root.CoarseTimestamp(self._io, self, self._root) self.isctb._read() self._debug['isctb']['end'] = self._io.pos() self._debug['jdatea']['start'] = self._io.pos() self.jdatea = self._io.read_s4be() self._debug['jdatea']['end'] = self._io.pos() self._debug['jdateb']['start'] = self._io.pos() self.jdateb = self._io.read_s4be() self._debug['jdateb']['end'] = self._io.pos() self._debug['istb']['start'] = self._io.pos() self.istb = self._root.CoarseTimestamp(self._io, self, self._root) self.istb._read() self._debug['istb']['end'] = self._io.pos() self._debug['isra']['start'] = self._io.pos() self.isra = self._io.read_s4be() self._debug['isra']['end'] = self._io.pos() self._debug['isdec']['start'] = self._io.pos() self.isdec = self._io.read_s4be() self._debug['isdec']['end'] = self._io.pos() self._debug['itchan']['start'] = self._io.pos() self.itchan = self._io.read_s4be() self._debug['itchan']['end'] = self._io.pos() self._debug['irmas']['start'] = self._io.pos() self.irmas = self._io.read_s4be() self._debug['irmas']['end'] = self._io.pos() self._debug['revs']['start'] = self._io.pos() self.revs = self._io.read_s4be() self._debug['revs']['end'] = self._io.pos() self._debug['iband']['start'] = self._io.pos() self.iband = [None] * (2) for i in range(2): if not 'arr' in self._debug['iband']: self._debug['iband']['arr'] = [] self._debug['iband']['arr'].append({'start': self._io.pos()}) self.iband[i] = self._io.read_s4be() self._debug['iband']['arr'][i]['end'] = self._io.pos() self._debug['iband']['end'] = self._io.pos() self._debug['irwav']['start'] = self._io.pos() self.irwav = self._io.read_s4be() self._debug['irwav']['end'] = self._io.pos() self._debug['irespt']['start'] = self._io.pos() self.irespt = self._io.read_s4be() self._debug['irespt']['end'] = self._io.pos() self._debug['irecno']['start'] = self._io.pos() self.irecno = self._io.read_s4be() self._debug['irecno']['end'] = self._io.pos() self._debug['itpntr']['start'] = self._io.pos() self.itpntr = self._io.read_s4be() self._debug['itpntr']['end'] = self._io.pos() self._debug['ihist']['start'] = self._io.pos() self.ihist = (KaitaiStream.bytes_strip_right(self._io.read_bytes(60), 32)).decode(u"ascii") self._debug['ihist']['end'] = self._io.pos() self._debug['mhist']['start'] = self._io.pos() self.mhist = [None] * (4) for i in range(4): if not 'arr' in self._debug['mhist']: self._debug['mhist']['arr'] = [] self._debug['mhist']['arr'].append({'start': self._io.pos()}) self.mhist[i] = (self._io.read_bytes(74)).decode(u"ascii") self._debug['mhist']['arr'][i]['end'] = self._io.pos() self._debug['mhist']['end'] = self._io.pos() self._debug['nruns']['start'] = self._io.pos() self.nruns = self._io.read_s4be() self._debug['nruns']['end'] = self._io.pos() self._debug['siangl']['start'] = self._io.pos() self.siangl = self._root.IllumAngle(self._io, self, self._root) self.siangl._read() self._debug['siangl']['end'] = self._io.pos() self._debug['seangl']['start'] = self._io.pos() self.seangl = self._root.IllumAngle(self._io, self, self._root) self.seangl._read() self._debug['seangl']['end'] = self._io.pos() self._debug['sphase']['start'] = self._io.pos() self.sphase = self._io.read_s4be() self._debug['sphase']['end'] = self._io.pos() self._debug['iwtrns']['start'] = self._io.pos() self.iwtrns = self._io.read_s4be() self._debug['iwtrns']['end'] = self._io.pos() self._debug['itimch']['start'] = self._io.pos() self.itimch = self._io.read_s4be() self._debug['itimch']['end'] = self._io.pos() self._debug['xnrm']['start'] = self._io.pos() self.xnrm = self._io.read_f4be() self._debug['xnrm']['end'] = self._io.pos() self._debug['scatim']['start'] = self._io.pos() self.scatim = self._io.read_f4be() self._debug['scatim']['end'] = self._io.pos() self._debug['timint']['start'] = self._io.pos() self.timint = self._io.read_f4be() self._debug['timint']['end'] = self._io.pos() self._debug['tempd']['start'] = self._io.pos() self.tempd = self._io.read_f4be() self._debug['tempd']['end'] = self._io.pos() self._debug['data']['start'] = self._io.pos() self.data = [None] * (256) for i in range(256): if not 'arr' in self._debug['data']: self._debug['data']['arr'] = [] self._debug['data']['arr'].append({'start': self._io.pos()}) self.data[i] = self._io.read_f4be() self._debug['data']['arr'][i]['end'] = self._io.pos() self._debug['data']['end'] = self._io.pos() @property def phase_angle_arcsec(self): """The phase angle between iangl and eangl in seconds.""" if hasattr(self, '_m_phase_angle_arcsec'): return self._m_phase_angle_arcsec if hasattr(self, '_m_phase_angle_arcsec') else None self._m_phase_angle_arcsec = (self.sphase / 1500) return self._m_phase_angle_arcsec if hasattr(self, '_m_phase_angle_arcsec') else None class CoarseTimestamp(KaitaiStruct): SEQ_FIELDS = ["scaled_seconds"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['scaled_seconds']['start'] = self._io.pos() self.scaled_seconds = self._io.read_s4be() self._debug['scaled_seconds']['end'] = self._io.pos() @property def seconds(self): if hasattr(self, '_m_seconds'): return self._m_seconds if hasattr(self, '_m_seconds') else None self._m_seconds = (self.scaled_seconds * 24000) return self._m_seconds if hasattr(self, '_m_seconds') else None class Icflag(KaitaiStruct): """it is big endian.""" SEQ_FIELDS = ["reserved", "isctb_type", "iscta_type", "coordinate_mode", "errors", "text", "continuation"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.read_bits_int(26) self._debug['reserved']['end'] = self._io.pos() self._debug['isctb_type']['start'] = self._io.pos() self.isctb_type = self._io.read_bits_int(1) != 0 self._debug['isctb_type']['end'] = self._io.pos() self._debug['iscta_type']['start'] = self._io.pos() self.iscta_type = self._io.read_bits_int(1) != 0 self._debug['iscta_type']['end'] = self._io.pos() self._debug['coordinate_mode']['start'] = self._io.pos() self.coordinate_mode = self._io.read_bits_int(1) != 0 self._debug['coordinate_mode']['end'] = self._io.pos() self._debug['errors']['start'] = self._io.pos() self.errors = self._io.read_bits_int(1) != 0 self._debug['errors']['end'] = self._io.pos() self._debug['text']['start'] = self._io.pos() self.text = self._io.read_bits_int(1) != 0 self._debug['text']['end'] = self._io.pos() self._debug['continuation']['start'] = self._io.pos() self.continuation = self._io.read_bits_int(1) != 0 self._debug['continuation']['end'] = self._io.pos() @property def type(self): if hasattr(self, '_m_type'): return self._m_type if hasattr(self, '_m_type') else None self._m_type = KaitaiStream.resolve_enum(self._root.RecordType, ((int(self.text) * 1) + (int(self.continuation) * 2))) return self._m_type if hasattr(self, '_m_type') else None class DataContinuation(KaitaiStruct): SEQ_FIELDS = ["cdata"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['cdata']['start'] = self._io.pos() self.cdata = [None] * (383) for i in range(383): if not 'arr' in self._debug['cdata']: self._debug['cdata']['arr'] = [] self._debug['cdata']['arr'].append({'start': self._io.pos()}) self.cdata[i] = self._io.read_f4be() self._debug['cdata']['arr'][i]['end'] = self._io.pos() self._debug['cdata']['end'] = self._io.pos() class Identifiers(KaitaiStruct): SEQ_FIELDS = ["ititle", "usernm"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['ititle']['start'] = self._io.pos() self.ititle = (KaitaiStream.bytes_strip_right(self._io.read_bytes(40), 32)).decode(u"ascii") self._debug['ititle']['end'] = self._io.pos() self._debug['usernm']['start'] = self._io.pos() self.usernm = (self._io.read_bytes(8)).decode(u"ascii") self._debug['usernm']['end'] = self._io.pos() class IllumAngle(KaitaiStruct): SEQ_FIELDS = ["angl"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['angl']['start'] = self._io.pos() self.angl = self._io.read_s4be() self._debug['angl']['end'] = self._io.pos() @property def seconds_total(self): if hasattr(self, '_m_seconds_total'): return self._m_seconds_total if hasattr(self, '_m_seconds_total') else None self._m_seconds_total = self.angl // 6000 return self._m_seconds_total if hasattr(self, '_m_seconds_total') else None @property def minutes_total(self): if hasattr(self, '_m_minutes_total'): return self._m_minutes_total if hasattr(self, '_m_minutes_total') else None self._m_minutes_total = self.seconds_total // 60 return self._m_minutes_total if hasattr(self, '_m_minutes_total') else None @property def degrees_total(self): if hasattr(self, '_m_degrees_total'): return self._m_degrees_total if hasattr(self, '_m_degrees_total') else None self._m_degrees_total = self.minutes_total // 60 return self._m_degrees_total if hasattr(self, '_m_degrees_total') else None class TextInitial(KaitaiStruct): SEQ_FIELDS = ["ids", "itxtpt", "itxtch", "itext"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['ids']['start'] = self._io.pos() self.ids = self._root.Identifiers(self._io, self, self._root) self.ids._read() self._debug['ids']['end'] = self._io.pos() self._debug['itxtpt']['start'] = self._io.pos() self.itxtpt = self._io.read_u4be() self._debug['itxtpt']['end'] = self._io.pos() self._debug['itxtch']['start'] = self._io.pos() self.itxtch = self._io.read_s4be() self._debug['itxtch']['end'] = self._io.pos() self._debug['itext']['start'] = self._io.pos() self.itext = (self._io.read_bytes(1476)).decode(u"ascii") self._debug['itext']['end'] = self._io.pos() class Record(KaitaiStruct): SEQ_FIELDS = ["icflag", "content"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['icflag']['start'] = self._io.pos() self.icflag = self._root.Icflag(self._io, self, self._root) self.icflag._read() self._debug['icflag']['end'] = self._io.pos() self._debug['content']['start'] = self._io.pos() _on = self.icflag.type if _on == self._root.RecordType.data_initial: self._raw_content = self._io.read_bytes((1536 - 4)) _io__raw_content = KaitaiStream(BytesIO(self._raw_content)) self.content = self._root.DataInitial(_io__raw_content, self, self._root) self.content._read() elif _on == self._root.RecordType.data_continuation: self._raw_content = self._io.read_bytes((1536 - 4)) _io__raw_content = KaitaiStream(BytesIO(self._raw_content)) self.content = self._root.DataContinuation(_io__raw_content, self, self._root) self.content._read() elif _on == self._root.RecordType.text_continuation: self._raw_content = self._io.read_bytes((1536 - 4)) _io__raw_content = KaitaiStream(BytesIO(self._raw_content)) self.content = self._root.TextContinuation(_io__raw_content, self, self._root) self.content._read() elif _on == self._root.RecordType.text_initial: self._raw_content = self._io.read_bytes((1536 - 4)) _io__raw_content = KaitaiStream(BytesIO(self._raw_content)) self.content = self._root.TextInitial(_io__raw_content, self, self._root) self.content._read() else: self.content = self._io.read_bytes((1536 - 4)) self._debug['content']['end'] = self._io.pos() class TextContinuation(KaitaiStruct): SEQ_FIELDS = ["tdata"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self
get_row(self, idx: int) -> List[float]: """ TODO: Method docstring """ return self._A[idx] def get_col(self, idx: int) -> List[float]: """ TODO: Method docstring """ return [row[idx] for row in self._A] def transpose(self) -> 'Matrix': """ Returns the transpose of the calling matrix. """ M = Matrix.zeros(self.num_cols, self.num_rows) for i in range(self.num_rows): for j in range(self.num_cols): M[j,i] = self[i,j] return M def determinant(self) -> float: """ Returns the determinant of the calling matrix. """ m, n = self.size if m != n: raise ValueError("The calling matrix is not square and the determinant does not exist.") if m == 2: d = self[0,0] * self[1,1] - self[0,1] * self[1,0] else: d = 0.0 for j in range(self.num_cols): A_temp = copy(self[:, :]) A_temp[0, :] = Matrix.empty() A_temp[:, j] = Matrix.empty() d += (self[0, j] * pow(-1, j) * A_temp.determinant()) return d def inverse(self) -> 'Matrix': """ Returns the inverse of the calling matrix, computed using the cofactor method. """ def compute_cofactor_matrix(A: 'Matrix') -> 'Matrix': """ Returns the cofactor matrix computed from the input matrix. """ m, n = A.size if m != n: raise ValueError("The input matrix is not square. The cofactor matrix does not " "exist.") M = Matrix.zeros(*A.size) for i in range(A.num_rows): for j in range(A.num_cols): A_temp = A[:, :] A_temp[i, :] = Matrix.empty() A_temp[:, j] = Matrix.empty() M[i, j] = pow(-1, i + j) * A_temp.determinant() return M m,n = self.size if m != n: raise ValueError("The calling matrix is not square. The matrix inverse does not exist.") d = self.determinant() if not d: raise ValueError("The calling matrix is singular. The matrix inverse does not exist.") return (1 / d) * compute_cofactor_matrix(self).transpose() def is_row_matrix(self) -> bool: """ Returns True if the calling Matrix is a row matrix (i.e. has one row and one or more columns), False otherwise. Returns: bool: Boolean indicator of whether or not the calling matrix is a row matrix. """ return self.num_rows == 1 def is_column_matrix(self) -> bool: """ Returns True if the calling Matrix is a column matrix (i.e. has one column and one or more rows), False otherwise. Returns: bool: Boolean indicator of whether or not the calling matrix is a column matrix. """ return self.num_cols == 1 def is_square(self) -> bool: """ Returns True if the calling Matrix is square (i.e. the number of rows equals the number of columns), False otherwise. Returns: bool: Boolean indicator of whether or not the calling matrix is square. """ return self.num_rows == self.num_cols def to_column_matrix(self) -> 'Matrix': """ Returns a copy of the calling Matrix expressed as a column matrix, with each row stacked in sequence. Returns: Matrix: A copy of the calling matrix, in column matrix form. """ return Matrix.from_column_matrices([row.transpose() for row in self]) class Vector3(Matrix): """ Class represents a Euclidean vector. """ #pylint: disable=arguments-differ @staticmethod def zeros() -> 'Vector3': """ TODO: Method docstring """ return Vector3(0, 0, 0) #pylint: disable=arguments-differ @staticmethod def ones() -> 'Vector3': """ TODO: Method docstring """ return Vector3(1,1,1) @staticmethod def identity(dim: int) -> 'Vector3': raise NotImplementedError @staticmethod def fill(num_rows: int, num_cols: int, fill_value: float) -> 'Vector3': raise NotImplementedError @staticmethod def empty() -> 'Vector3': raise NotImplementedError @staticmethod def from_matrix(M: Matrix) -> 'Vector3': """ Factory method to construct a Vector3 from a Matrix. The input Matrix must be of size 3x1 or 1x3 for this operation to be successful. Args: M (Matrix): The Matrix from which to construct the Vector3. Returns: Vector3: The instantiated Vector3 object. Raises: ValueError: Raised if the input Matrix is not of size 3x1 or 1x3. """ if M.size not in {(3, 1), (1, 3)}: raise ValueError("Input matrix must be a row or column matrix of length three.") return Vector3(*(M.get_col(0) if M.size == (3, 1) else M.get_row(0))) def __init__(self, x: float = 0.0, y: float = 0.0, z: float = 0.0): super().__init__([[x], [y], [z]]) @property def x(self) -> float: """ TODO: Property docstring """ return self[0, 0] @x.setter def x(self, value: float): """ TODO: Property docstring """ self[0,0] = value @property def y(self) -> float: """ TODO: Property docstring """ return self[1,0] @y.setter def y(self, value: float): """ TODO: Property docstring """ self[1,0] = value @property def z(self) -> float: """ TODO: Property docstring """ return self[2,0] @z.setter def z(self, value: float): """ TODO: Property docstring """ self[2,0] = value def __str__(self) -> str: return f'[x = {self.x}, y = {self.y}, z = {self.z}]' def __repr__(self) -> str: return f'[{self.x}, {self.y}, {self.z}]' def __add__(self, other: Union[Matrix, 'Vector3']) -> 'Vector3': return Vector3.from_matrix(super().__add__(other)) def __sub__(self, other: Union[Matrix, 'Vector3']) -> 'Vector3': return Vector3.from_matrix(super().__sub__(other)) def __rsub__(self, other: Union[Matrix, 'Vector3']) -> 'Vector3': return Vector3.from_matrix(super().__rsub__(other)) def __abs__(self) -> 'Vector3': return Vector3.from_matrix(super().__abs__()) def __neg__(self) -> 'Vector3': return Vector3.from_matrix(super().__neg__()) def norm(self) -> float: """ Returns the Euclidean norm of the calling vector. """ return sqrt(self.x**2 + self.y**2 + self.z**2) def norm_2(self) -> float: """ Returns the square of the Euclidean norm of the calling vector. """ return self.x**2 + self.y**2 + self.z**2 def cross(self, other: 'Vector3') -> 'Vector3': """ Returns the cross product of the calling vector with the argument vector, computed as C = A x B for C = A.cross(B). """ if not isinstance(other, Vector3): return NotImplemented x = self.y * other.z - self.z * other.y y = self.z * other.x - self.x * other.z z = self.x * other.y - self.y * other.x return Vector3(x, y, z) def dot(self, other: 'Vector3') -> float: """ Returns the dot product of the calling vector with the argument vector, computed as C = A * B for C = A.dot(B). """ if not isinstance(other, Vector3): return NotImplemented return self.x * other.x + self.y * other.y + self.z * other.z def vertex_angle(self, other: 'Vector3') -> float: """ Returns the angle between the calling vector and the argument vector, measured from the calling vector. If either vector is a zero vector an angle of 0.0 radians will be returned. Args: other (Vector3): Vector to which to compute the vertex angle. Returns: float: The angle between the two vectors, expressed in radians. """ if not isinstance(other, Vector3): return NotImplemented m = self.norm() #TODO Replace hard-zero check below with machine precision-tolerant division return acos(self.dot(other) / (m * other.norm())) if m else 0.0 def normalize(self) -> 'Vector3': """ Normalizes the calling vector in place by its Euclidean norm. """ m = self.norm() self[0, 0] /= m self[1, 0] /= m self[2, 0] /= m def normalized(self) -> 'Vector3': """ Returns the calling vector, normalized by its Euclidean norm. """ m = self.norm() #TODO Replace hard-zero check below with machine precision-tolerant division return Vector3(self.x / m, self.y / m, self.z / m) if m else Vector3.zeros() class TimeSpan: """ Class represents a time structure supporting nanosecond precision. """ @staticmethod def undefined() -> 'TimeSpan': """ Factory method to create an undefined TimeSpan. """ return TimeSpan(None, None) @staticmethod def zero() -> 'TimeSpan': """ Factory method to create a zero TimeSpan. """ return TimeSpan(0, 0) @staticmethod def from_seconds(seconds: float) -> 'TimeSpan': """ Factory method to create a TimeSpan from a number of seconds. """ return TimeSpan(*_decompose_decimal_seconds(seconds)) @staticmethod def from_minutes(minutes: float) -> 'TimeSpan': """ Factory method to create a TimeSpan from a number of minutes. """ return TimeSpan(*_decompose_decimal_seconds(minutes * SECONDS_PER_MINUTE)) @staticmethod def from_hours(minutes: float) -> 'TimeSpan': """ Factory method to create a TimeSpan from a number of hours. """ return TimeSpan(*_decompose_decimal_seconds(minutes * SECONDS_PER_HOUR)) @staticmethod def from_days(days: float) -> 'TimeSpan': """ Factory method to create a TimeSpan from a number of mean solar days. """ return TimeSpan(*_decompose_decimal_seconds(days * SECONDS_PER_SOLAR_DAY)) def __init__(self, whole_seconds: int, nano_seconds: int): def normalize_time(ws: int, ns: int) -> Tuple[int, int]: """ Function for normalizing whole vs sub-second digits. """ ws += (copysign(1,ns) * 1) ns -= (copysign(1,ns) * NANOSECONDS_PER_SECOND) return ws, ns self._whole_seconds = None self._nano_seconds = None if (whole_seconds is not None) and (nano_seconds is not None): while abs(nano_seconds) >= NANOSECONDS_PER_SECOND: whole_seconds, nano_seconds = normalize_time(whole_seconds, nano_seconds)
<filename>vis_utils/animation/skeleton_animation_controller.py #!/usr/bin/env python # # Copyright 2019 DFKI GmbH. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the # following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE # USE OR OTHER DEALINGS IN THE SOFTWARE. import numpy as np import json from copy import deepcopy from PySignal import Signal from .animation_controller import AnimationController, CONTROLLER_TYPE_ANIMATION from .skeleton_visualization import SkeletonVisualization, SKELETON_DRAW_MODE_NONE, SKELETON_DRAW_MODE_LINES, SKELETON_DRAW_MODE_BOXES, SKELETON_DRAW_MODE_CS from .point_cloud_animation_controller import PointCloudAnimationController from vis_utils.scene.components import ComponentBase from vis_utils.io import load_model_from_fbx_file, load_json_file from vis_utils.scene.utils import get_random_color from anim_utils.animation_data import BVHReader, BVHWriter, MotionVector, parse_amc_file from anim_utils.retargeting import retarget_from_src_to_target, retarget_from_point_cloud_to_target from vis_utils.io.fbx_io import export_motion_vector_to_fbx_file from anim_utils.animation_data.motion_state import MotionState from .skeleton_mirror_component import SkeletonMirrorComponent class SkeletonAnimationControllerBase(ComponentBase): updated_animation_frame = Signal() reached_end_of_animation = Signal() update_scene_object = Signal() def __init__(self, scene_object): ComponentBase.__init__(self, scene_object) class LegacySkeletonAnimationController(SkeletonAnimationControllerBase, AnimationController): def __init__(self, scene_object): SkeletonAnimationControllerBase.__init__(self, scene_object) AnimationController.__init__(self) self._motion = None def get_semantic_annotation(self): return None def draw(self, modelMatrix, viewMatrix, projectionMatrix, lightSources): if self.isLoadedCorrectly(): self._visualization.draw(modelMatrix, viewMatrix, projectionMatrix, lightSources) def update(self, dt): """ update current frame and global joint transformation matrices """ if not self.isLoadedCorrectly(): return dt *= self.animationSpeed if self.playAnimation: self.animationTime += dt self.currentFrameNumber = int(self.animationTime / self.getFrameTime()) self.updateTransformation() # update gui if self.currentFrameNumber > self.getNumberOfFrames(): self.resetAnimationTime() self.reached_end_of_animation.emit(self.loopAnimation) else: self.updated_animation_frame.emit(self.currentFrameNumber) def isLoadedCorrectly(self): return self._motion is not None def updateTransformation(self): if 0 <= self.currentFrameNumber < self.getNumberOfFrames(): current_frame = self._motion.frames[self.currentFrameNumber] self._visualization.updateTransformation(current_frame, self.scene_object.transformation) def updateTransformationFromFrame(self, frame): self._visualization.updateTransformation(frame, self.scene_object.transformation) def resetAnimationTime(self): self.currentFrameNumber = 0 self.animationTime = 0 self.updateTransformation() def setCurrentFrameNumber(self, frame_idx): self.currentFrameNumber = frame_idx self.animationTime = self.getFrameTime() * frame_idx self.updateTransformation() def getNumberOfFrames(self): return self._motion.n_frames def getFrameTime(self): if self.isLoadedCorrectly(): return self._motion.frame_time else: return 0 def toggle_animation_loop(self): self.loopAnimation = not self.loopAnimation class SkeletonAnimationController(SkeletonAnimationControllerBase): """ The class controls the pose of a skeleton based on an instance of a MotionState class. The scene containing a controller connects to signals emitted by an instance of the class and relays them to the GUI. """ def __init__(self, scene_object): SkeletonAnimationControllerBase.__init__(self, scene_object) self.loadedCorrectly = False self.hasVisualization = False self.filePath = "" self.name = "" self._visualization = None self._motion = None self.markers = dict() self.recorder = None self.relative_root = False self.root_pos = None self.root_q = None self.type = CONTROLLER_TYPE_ANIMATION self.animationSpeed = 1.0 self.loopAnimation = False self.activate_emit = True self.visualize = True def set_skeleton(self, skeleton, visualize=True): self.visualize = visualize if visualize: self._visualization.set_skeleton(skeleton, visualize) def set_motion(self, motion): self._motion = MotionState(motion) def set_color_annotation(self, semantic_annotation, color_map): self._motion.set_color_annotation(semantic_annotation, color_map) def set_time_function(self, time_function): self._motion.set_time_function(time_function) def set_color_annotation_legacy(self, annotation, color_map): self._motion.set_color_annotation_legacy(annotation, color_map) def set_random_color_annotation(self): self._motion.set_random_color_annotation() def set_visualization(self, visualization, draw_mode=SKELETON_DRAW_MODE_BOXES): self._visualization = visualization self._visualization.draw_mode = draw_mode self._visualization.updateTransformation(self._motion.get_pose(), self.scene_object.scale_matrix) def update(self, dt): """ update current frame and global joint transformation matrices """ if not self.isLoadedCorrectly(): return reset = self._motion.update(dt*self.animationSpeed) if self._motion.play: self.updateTransformation() # update gui if reset: self.reached_end_of_animation.emit(self.loopAnimation) self._motion.play = self.loopAnimation else: if self.activate_emit: self.updated_animation_frame.emit(self._motion.get_current_frame_idx()) def draw(self, modelMatrix, viewMatrix, projectionMatrix, lightSources): if self.isLoadedCorrectly(): self._visualization.draw(modelMatrix, viewMatrix, projectionMatrix, lightSources) def updateTransformation(self): if self.relative_root: return self.set_transformation_from_frame(self._motion.get_pose()) def set_transformation_from_frame(self, frame): if frame is None: return self._visualization.updateTransformation(frame, self.scene_object.scale_matrix) #self.update_markers() self.updateAnnotation() def updateAnnotation(self): if self._motion.get_current_frame_idx() < self._motion.get_n_annotations(): current_annotation = self._motion.get_current_annotation() self._visualization.set_color(current_annotation["color"]) def get_current_annotation_label(self): return self._motion.get_current_annotation_label() def resetAnimationTime(self): self._motion.reset() self.updateTransformation() def setCurrentFrameNumber(self, frame_idx): self._motion.set_frame_idx(frame_idx) self.updateTransformation() #self.update_markers() def getNumberOfFrames(self): return self._motion.get_n_frames() def isLoadedCorrectly(self): return self._motion is not None def getFrameTime(self): if self.isLoadedCorrectly(): # print self.frameTime return self._motion.get_frame_time() else: return 0 def getScaleFactor(self): if self.isLoadedCorrectly(): return self.scaleFactor else: return -1 def getFilePath(self): if self.isLoadedCorrectly(): return self.filePath def getNumberOfJoints(self): return len(self._visualization.skeleton.get_n_joints()) def setColor(self, color): print("set color", color) self._visualization.set_color(color) def getColor(self): return self._visualization.color def getPosition(self): m = self.scene_object.transformation if self._motion is not None: root = self._visualization.skeleton.root pos = self._visualization.skeleton.nodes[root].offset + self._motion.get_pose()[:3] pos = [pos[0], pos[1], pos[2], 1] pos = np.dot(m, pos)[:3] return np.array(pos) else: return m[3,:3] def get_visualization(self): return self._visualization def create_ragdoll(self, use_reference_frame=True, create_markers=True): if self._motion is not None and self._visualization.skeleton.skeleton_model is not None: frame = self._motion.get_pose() skeleton = self._visualization.skeleton if use_reference_frame: frame = skeleton.get_reduced_reference_frame() o = self.scene_object.scene.object_builder.create_component("ragdoll_from_skeleton", skeleton, frame, figure_def, add_contact_vis=False) #o = self.scene_object.scene.object_builder.create_ragdoll_from_skeleton(self._visualization.skeleton, frame) self.scene_object.scene.addAnimationController(o, "character_animation_recorder") self.recorder = o._components["character_animation_recorder"] if create_markers: self.create_markers() def create_markers(self, figure_def, scale=1.0): if self.recorder is not None: markers = self.recorder.generate_constraint_markers_v9(self, scale, figure_def) self.attach_constraint_markers(markers) def attach_constraint_markers(self, markers): self.markers = markers def detach_constraint_markers(self): self.markers = dict() def update_markers(self): frame = self._motion.get_pose() scale = self.scene_object.scale_matrix[0][0] for joint in list(self.markers.keys()): for marker in self.markers[joint]: m = self._visualization.skeleton.nodes[joint].get_global_matrix(frame, True) position = np.dot(m, marker["relative_trans"])[:3, 3] marker["object"].setPosition(position*scale) def toggle_animation_loop(self): self.loopAnimation = not self.loopAnimation def get_bvh_string(self): skeleton = self._visualization.skeleton print("generate bvh string", len(skeleton.animated_joints)) frames = self._motion.get_frames() frames = skeleton.add_fixed_joint_parameters_to_motion(frames) frame_time = self._motion.get_frame_time() bvh_writer = BVHWriter(None, skeleton, frames, frame_time, True) return bvh_writer.generate_bvh_string() def get_json_data(self): self._motion.mv.skeleton = self._visualization.skeleton return self._motion.mv.to_db_format() def export_to_file(self, filename, export_format="bvh", frame_range=None): if self._motion is not None: frame_time = self._motion.get_frame_time() if export_format == "bvh": skeleton = self._visualization.skeleton frames = self._motion.get_frames() frames = np.array(frames) if frames is not None: print("frames shape", frames.shape) else: print("frames is none") print("ref framee length",skeleton.reference_frame_length) joint_count = 0 for joint_name in skeleton.nodes.keys(): if len(skeleton.nodes[joint_name].children) > 0 and "EndSite" not in joint_name: joint_count+=1 skeleton.reference_frame_length = joint_count * 4 + 3 frames = skeleton.add_fixed_joint_parameters_to_motion(frames) if frame_range is not None: bvh_writer = BVHWriter(None, skeleton, frames[frame_range[0]:frame_range[1],:], frame_time, True) else: bvh_writer = BVHWriter(None, skeleton, frames, frame_time, True) bvh_writer.write(filename) elif export_format == "fbx": export_motion_vector_to_fbx_file(self._visualization.skeleton, self._motion, filename) elif export_format == "json": self._visualization.skeleton.save_to_json(filename) else: print("unsupported format", export_format) def retarget_from_src(self, src_controller, scale_factor=1.0, src_model=None, target_model=None, frame_range=None): target_skeleton = self._visualization.skeleton frame_time = src_controller.get_frame_time() if target_model is not None: target_skeleton.skeleton_model = target_model new_frames = None if type(src_controller) == SkeletonAnimationController: src_skeleton = src_controller._visualization.skeleton src_frames = src_controller._motion.get_frames() if src_model is not None: src_skeleton.skeleton_model = src_model if src_skeleton.identity_frame is None or target_skeleton.identity_frame is None: raise Exception("Error identiframe is None") new_frames = retarget_from_src_to_target(src_skeleton, target_skeleton, src_frames, scale_factor=scale_factor, frame_range=frame_range) elif type(src_controller) == PointCloudAnimationController: src_joints = src_controller._joints src_frames = src_controller._animated_points if src_model is None: src_model = src_controller.skeleton_model new_frames = retarget_from_point_cloud_to_target(src_joints, src_model, target_skeleton, src_frames, scale_factor=scale_factor, frame_range=frame_range) if new_frames is not None: self._motion.mv.frames = new_frames self._motion.mv.n_frames = len(new_frames) self._motion.frame_idx = 0 self._motion.mv.frame_time = frame_time self.currentFrameNumber = 0 self.updateTransformation() self.update_scene_object.emit(-1) self.updated_animation_frame.emit(self.currentFrameNumber) print("finished retargeting", self._motion.get_n_frames(), "frames") return self._motion.get_n_frames() def retarget_from_frames(self, src_skeleton, src_frames, scale_factor=1.0, target_model=None, frame_range=None, place_on_ground=False, joint_filter=None): target_skeleton = self._visualization.skeleton if target_model is not None: target_skeleton.skeleton_model = target_model new_frames = retarget_from_src_to_target(src_skeleton, target_skeleton, src_frames, scale_factor=scale_factor, frame_range=frame_range, place_on_ground=place_on_ground, joint_filter=joint_filter) if new_frames is not None: self._motion.mv.frames = new_frames self._motion.mv.n_frames = len(new_frames) print("finished retargeting", self._motion.get_n_frames(), "frames") return self._motion.get_n_frames() def set_scale(self, scale_factor): #self._visualization.set_scale(scale_factor) color = self._visualization.color #self._motion.mv.frames[:,:3] *= scale_factor skeleton = self._visualization.skeleton skeleton.scale(scale_factor) self._motion.mv.scale_root(scale_factor) self._visualization = SkeletonVisualization(self.scene_object, color) self._visualization.set_skeleton(skeleton) self.updateTransformation() self.scene_object.transformation = np.eye(4) def load_annotation(self, filename): with open(filename, "r") as in_file: annotation_data = json.load(in_file) semantic_annotation = annotation_data["semantic_annotation"] color_map = annotation_data["color_map"] self.set_color_annotation(semantic_annotation, color_map) def save_annotation(self, filename): with open(filename, "w") as out_file: data = dict() data["semantic_annotation"] = self._motion._semantic_annotation data["color_map"] = self._motion.label_color_map json.dump(data, out_file) def plot_joint_trajectories(self, joint_list): joint_objects = [] for j in joint_list: o = self.plot_joint_trajectory(j) if o is not None: joint_objects.append(o) return joint_objects def plot_joint_trajectory(self, joint_name): scene_object = None if joint_name in list(self._visualization.skeleton.nodes.keys()): trajectory = list() for f in self._motion.get_frames(): p = self.get_joint_position(joint_name, f) if p is not None: trajectory.append(p) if len(trajectory) > 0: name = self.scene_object.name + "_" + joint_name + "_trajectory" scene_object = self.scene_object.scene.addSplineObject(name, trajectory, get_random_color(), granularity=500) else: print("No points to plot for joint", joint_name) return scene_object def get_joint_position(self, joint_name, frame): if joint_name in self._visualization.skeleton.nodes.keys(): return self._visualization.skeleton.nodes[joint_name].get_global_position(frame) else: return None def get_skeleton_copy(self): return deepcopy(self._visualization.skeleton) def get_motion_vector_copy(self, start_frame=0, end_frame=-1): mv_copy = MotionVector() if end_frame > 0: mv_copy.frames = deepcopy(self._motion.mv.frames[start_frame: end_frame]) else: mv_copy.frames = np.array(self._motion.mv.frames) mv_copy.n_frames = len(mv_copy.frames) mv_copy.frame_time = self._motion.mv.frame_time return mv_copy def get_current_frame(self): return
# Save the official application info. They will be # persisted in the next status update app.regenerate_application_info(name, version, patches) if not cutils.verify_checksum(app.inst_path): _handle_extract_failure('checksum validation failed.') mname, mfile = self._utils._find_manifest_file(app.inst_path) # Save the official manifest file info. They will be persisted # in the next status update app.regenerate_manifest_filename(mname, os.path.basename(mfile)) else: name, version, patches = cutils.find_metadata_file( app.inst_path, constants.APP_METADATA_FILE) app.patch_dependencies = patches self._utils._extract_helm_charts(app.inst_path) except exception.SysinvException as e: _handle_extract_failure(str(e)) except OSError as e: LOG.error(e) _handle_extract_failure() finally: os.chown(constants.APP_INSTALL_ROOT_PATH, orig_uid, orig_gid) def get_image_tags_by_charts(self, app_images_file, app_manifest_file, overrides_dir): """ Mine the image tags for charts from the images file. Add the image tags to the manifest file if the image tags from the charts do not exist in the manifest file. Convert the image tags in in both override files and manifest file. Intended for both system and custom apps. The image tagging conversion(local docker registry address prepended): ${LOCAL_REGISTRY_SERVER}:${REGISTRY_PORT}/<image-name> (ie..registry.local:9001/docker.io/mariadb:10.2.13) """ app_imgs = [] manifest_update_required = False if os.path.exists(app_images_file): with io.open(app_images_file, 'r', encoding='utf-8') as f: images_file = yaml.safe_load(f) if os.path.exists(app_manifest_file): with io.open(app_manifest_file, 'r', encoding='utf-8') as f: # The RoundTripLoader removes the superfluous quotes by default, # resulting the dumped out charts not readable in Armada. # Set preserve_quotes=True to preserve all the quotes. charts = list(yaml.load_all( f, Loader=yaml.RoundTripLoader, preserve_quotes=True)) for chart in charts: if "armada/Chart/" in chart['schema']: chart_data = chart['data'] chart_name = chart_data['chart_name'] chart_namespace = chart_data['namespace'] # Get the image tags by chart from the images file helm_chart_imgs = {} if chart_name in images_file: helm_chart_imgs = images_file[chart_name] # Get the image tags from the chart overrides file overrides = chart_namespace + '-' + chart_name + '.yaml' app_overrides_file = os.path.join(overrides_dir, overrides) overrides_file = {} if os.path.exists(app_overrides_file): with io.open(app_overrides_file, 'r', encoding='utf-8') as f: overrides_file = yaml.safe_load(f) override_imgs = self._image.find_images_in_dict( overrides_file.get('data', {}).get('values', {})) override_imgs_copy = copy.deepcopy(override_imgs) # Get the image tags from the armada manifest file armada_chart_imgs = self._image.find_images_in_dict( chart_data.get('values', {})) armada_chart_imgs_copy = copy.deepcopy(armada_chart_imgs) armada_chart_imgs = self._image.merge_dict(helm_chart_imgs, armada_chart_imgs) # Update image tags with local registry prefix override_imgs = self._image.update_images_with_local_registry(override_imgs) armada_chart_imgs = self._image.update_images_with_local_registry(armada_chart_imgs) # Generate a list of required images by chart download_imgs = copy.deepcopy(armada_chart_imgs) download_imgs = self._image.merge_dict(download_imgs, override_imgs) download_imgs_list = self._image.generate_download_images_list(download_imgs, []) app_imgs.extend(download_imgs_list) # Update chart override file if needed if override_imgs != override_imgs_copy: with open(app_overrides_file, 'w') as f: try: overrides_file['data']['values'] = self._image.merge_dict( overrides_file['data']['values'], override_imgs) yaml.safe_dump(overrides_file, f, default_flow_style=False) LOG.info("Overrides file %s updated with new image tags" % app_overrides_file) except (TypeError, KeyError): LOG.error("Overrides file %s fails to update" % app_overrides_file) # Update armada chart if needed if armada_chart_imgs != armada_chart_imgs_copy: # This is to convert a empty orderedDict to dict if 'values' in chart_data: if not chart_data['values']: chart_data['values'] = {} chart_data['values'] = self._image.merge_dict( chart_data.get('values', {}), armada_chart_imgs) manifest_update_required = True # Update manifest file if needed if manifest_update_required: with open(app_manifest_file, 'w') as f: try: yaml.dump_all(charts, f, Dumper=yaml.RoundTripDumper, explicit_start=True, default_flow_style=False) LOG.info("Manifest file %s updated with new image tags" % app_manifest_file) except Exception as e: LOG.error("Manifest file %s fails to update with " "new image tags: %s" % (app_manifest_file, e)) return list(set(app_imgs)) def _register_embedded_images(self, app): """ TODO(tngo): When we're ready to support air-gap scenario and private images, the following need to be done: a. load the embedded images b. tag and push them to the docker registery on the controller c. find image tag IDs in each chart and replace their values with new tags. Alternatively, document the image tagging convention ${LOCAL_REGISTRY_SERVER}:${REGISTRY_PORT}/<image-name> (e.g. registry.local:9001/prom/mysqld-exporter) to be referenced in the application Helm charts. """ raise exception.KubeAppApplyFailure( name=app.name, version=app.version, reason="embedded images are not yet supported.") def _save_images_list(self, app): # Extract the list of images from the charts and overrides where # applicable. Save the list to the same location as the armada manifest # so it can be sync'ed. app.charts = self._get_list_of_charts(app.sync_armada_mfile) self._plugins.activate_plugins(app) LOG.info("Generating application overrides to discover required images.") self._helm.generate_helm_application_overrides( app.sync_overrides_dir, app.name, mode=None, cnamespace=None, armada_format=True, armada_chart_info=app.charts, combined=True) self._plugins.deactivate_plugins(app) self._save_images_list_by_charts(app) # Get the list of images from the updated images overrides images_to_download = self.get_image_tags_by_charts( app.sync_imgfile, app.sync_armada_mfile, app.sync_overrides_dir) if not images_to_download: # TODO(tngo): We may want to support the deployment of apps that # set up resources only in the future. In which case, generate # an info log and let it advance to the next step. raise exception.KubeAppUploadFailure( name=app.name, version=app.version, reason="charts specify no docker images.") with open(app.sync_imgfile, 'a') as f: yaml.safe_dump({"download_images": images_to_download}, f, default_flow_style=False) def _save_images_list_by_charts(self, app): from six.moves.urllib.parse import urlparse # Mine the images from values.yaml files in the charts directory. # The list of images for each chart are saved to the images file. images_by_charts = {} for chart in app.charts: chart_name = os.path.join(app.inst_charts_dir, chart.name) if not os.path.exists(chart_name): # If the helm chart name is not the same as the armada # chart name in the manifest, try using the source # to find the chart directory. try: # helm charts should be of the standard format: # <chartname>-X.X.X.tgz url_path = os.path.basename(urlparse(chart.location).path) # strip the .tgz chart_and_version = re.sub('\.tgz$', '', url_path) # strip the version chart_name_no_version = re.sub('-(0|[1-9]\d*)\.(0|[1-9]\d*)\.(0|[1-9]\d*)', '', chart_and_version) chart_name = os.path.join(app.inst_charts_dir, chart_name_no_version) except Exception as e: LOG.info("Cannot parse chart path: %s" % e) pass chart_path = os.path.join(chart_name, 'values.yaml') if os.path.exists(chart_path): with io.open(chart_path, 'r', encoding='utf-8') as f: y = yaml.safe_load(f) chart_images = self._image.find_images_in_dict(y) if chart_images: images_by_charts.update({chart.name: chart_images}) with open(app.sync_imgfile, 'w') as f: yaml.safe_dump(images_by_charts, f, explicit_start=True, default_flow_style=False) def _retrieve_images_list(self, app_images_file): with io.open(app_images_file, 'r', encoding='utf-8') as f: images_list = yaml.safe_load(f) return images_list def download_images(self, app): if os.path.isdir(app.inst_images_dir): return self._register_embedded_images(app) if app.system_app: # Some images could have been overwritten via user overrides # between upload and apply, or between applies. Refresh the # saved images list. saved_images_list = self._retrieve_images_list(app.sync_imgfile) saved_download_images_list = list(saved_images_list.get("download_images")) images_to_download = self.get_image_tags_by_charts( app.sync_imgfile, app.sync_armada_mfile, app.sync_overrides_dir) if set(saved_download_images_list) != set(images_to_download): saved_images_list.update({"download_images": images_to_download}) with open(app.sync_imgfile, 'w') as f: yaml.safe_dump(saved_images_list, f, explicit_start=True, default_flow_style=False) else: images_to_download = self._retrieve_images_list( app.sync_imgfile).get("download_images") total_count = len(images_to_download) threads = min(MAX_DOWNLOAD_THREAD, total_count) start = time.time() try: registries_info = self._docker.retrieve_specified_registries() except Exception as e: raise exception.KubeAppApplyFailure( name=app.name, version=app.version, reason=str(e)) for idx in reversed(range(MAX_DOWNLOAD_ATTEMPTS)): pool = greenpool.GreenPool(size=threads) for tag, success in pool.imap( functools.partial(self._docker.download_an_image, app.name, registries_info), images_to_download): if success: continue if AppOperator.is_app_aborted(app.name): raise exception.KubeAppApplyFailure( name=app.name, version=app.version, reason="operation aborted by user.") else: LOG.info("Failed to download image: %s", tag) break else: elapsed = time.time() - start LOG.info("All docker images for application %s were successfully " "downloaded in %d seconds", app.name, elapsed) break # don't sleep after last download attempt if idx: LOG.info("Retry docker images download for application %s " "after %d seconds", app.name, DOWNLOAD_WAIT_BEFORE_RETRY) time.sleep(DOWNLOAD_WAIT_BEFORE_RETRY) else: raise exception.KubeAppApplyFailure( name=app.name, version=app.version, reason=constants.APP_PROGRESS_IMAGES_DOWNLOAD_FAILED) def _validate_helm_charts(self, app): failed_charts = [] for r, f in cutils.get_files_matching(app.inst_charts_dir, 'Chart.yaml'): # Eliminate redundant validation for system app if app.system_app and '/charts/helm-toolkit' in r: continue try: output = subprocess.check_output( # pylint: disable=not-callable ['helm', 'lint', r], universal_newlines=True) if "linted, 0 chart(s) failed" in output: LOG.info("Helm chart %s validated" % os.path.basename(r)) else: LOG.error("Validation failed for helm chart %s" % os.path.basename(r)) failed_charts.append(r) except Exception as e: raise exception.KubeAppUploadFailure( name=app.name, version=app.version, reason=str(e)) if len(failed_charts) > 0: raise exception.KubeAppUploadFailure( name=app.name, version=app.version, reason="one or more charts failed validation.") def _get_chart_data_from_metadata(self, app): """Get chart related data from application metadata This extracts the helm repo from the application metadata where the chart should be loaded. This also returns the list of charts that are disabled by default. :param app: application """ repo = common.HELM_REPO_FOR_APPS disabled_charts = [] lfile = os.path.join(app.inst_path, constants.APP_METADATA_FILE) if os.path.exists(lfile) and os.path.getsize(lfile) > 0: with io.open(lfile, 'r', encoding='utf-8') as f: try: y = yaml.safe_load(f) repo = y.get('helm_repo', common.HELM_REPO_FOR_APPS) disabled_charts = y.get('disabled_charts', []) except KeyError: pass LOG.info("Application %s (%s) will load charts to chart repo %s" % ( app.name, app.version, repo)) LOG.info("Application %s (%s) will disable charts %s by default" % ( app.name, app.version, disabled_charts)) return (repo, disabled_charts) def _upload_helm_charts(self, app): # Set env path for helm-upload execution env = os.environ.copy() env['PATH'] = '/usr/local/sbin:' + env['PATH'] charts = [os.path.join(r, f) for r, f in cutils.get_files_matching(app.inst_charts_dir, '.tgz')] orig_uid, orig_gid = get_app_install_root_path_ownership() (helm_repo, disabled_charts) = self._get_chart_data_from_metadata(app) try: # Temporarily change /scratch group ownership to sys_protected os.chown(constants.APP_INSTALL_ROOT_PATH, orig_uid, grp.getgrnam(constants.SYSINV_SYSADMIN_GRPNAME).gr_gid) with open(os.devnull, "w") as fnull: for chart
u0 {3,D} 7 C u0 {4,D} """, thermo = u'Cds-(Cdd-O2d)(Cds-Cds)Cb', shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-S2d)(Cds-Cd)Cb", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 Cd u0 {1,S} {6,D} 4 Cb u0 {1,S} 5 S2d u0 {2,D} 6 C u0 {3,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-S2d)(Cds-Cds)Cb", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 Cd u0 {1,S} {6,D} 4 Cb u0 {1,S} 5 S2d u0 {2,D} 6 Cd u0 {3,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-S2d)(Cds-Cdd)Cb", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 Cd u0 {1,S} {6,D} 4 Cb u0 {1,S} 5 S2d u0 {2,D} 6 Cdd u0 {3,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-S2d)(Cds-Cdd-S2d)Cb", group = """ 1 * Cd u0 {2,S} {3,D} {5,S} 2 Cd u0 {1,S} {4,D} 3 Cdd u0 {1,D} {6,D} 4 Cdd u0 {2,D} {7,D} 5 Cb u0 {1,S} 6 S2d u0 {3,D} 7 S2d u0 {4,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-S2d)(Cds-Cdd-Cd)Cb", group = """ 1 * Cd u0 {2,S} {3,D} {5,S} 2 Cd u0 {1,S} {4,D} 3 Cdd u0 {1,D} {6,D} 4 Cdd u0 {2,D} {7,D} 5 Cb u0 {1,S} 6 S2d u0 {3,D} 7 C u0 {4,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = 318, label = "Cds-(Cdd-Cd)(Cds-Cd)Cb", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 Cd u0 {1,S} {6,D} 4 Cb u0 {1,S} 5 C u0 {2,D} 6 C u0 {3,D} """, thermo = u'Cds-(Cdd-Cd)(Cds-Cds)Cb', shortDesc = u"""""", longDesc = u""" """, ) entry( index = 319, label = "Cds-(Cdd-Cd)(Cds-Cds)Cb", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 Cd u0 {1,S} {6,D} 4 Cb u0 {1,S} 5 C u0 {2,D} 6 Cd u0 {3,D} """, thermo = u'Cds-Cds(Cds-Cds)Cb', shortDesc = u"""""", longDesc = u""" """, ) entry( index = 320, label = "Cds-(Cdd-Cd)(Cds-Cdd)Cb", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 Cd u0 {1,S} {6,D} 4 Cb u0 {1,S} 5 C u0 {2,D} 6 Cdd u0 {3,D} """, thermo = u'Cds-(Cdd-Cd)(Cds-Cdd-Cd)Cb', shortDesc = u"""""", longDesc = u""" """, ) entry( index = 321, label = "Cds-(Cdd-Cd)(Cds-Cdd-O2d)Cb", group = """ 1 * Cd u0 {2,S} {3,D} {5,S} 2 Cd u0 {1,S} {4,D} 3 Cdd u0 {1,D} {6,D} 4 Cdd u0 {2,D} {7,D} 5 Cb u0 {1,S} 6 C u0 {3,D} 7 O2d u0 {4,D} """, thermo = u'Cds-Cds(Cds-Cdd-O2d)Cb', shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-Cd)(Cds-Cdd-S2d)Cb", group = """ 1 * Cd u0 {2,S} {3,D} {5,S} 2 Cd u0 {1,S} {4,D} 3 Cdd u0 {1,D} {6,D} 4 Cdd u0 {2,D} {7,D} 5 Cb u0 {1,S} 6 C u0 {3,D} 7 S2d u0 {4,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = 322, label = "Cds-(Cdd-Cd)(Cds-Cdd-Cd)Cb", group = """ 1 * Cd u0 {2,S} {3,D} {5,S} 2 Cd u0 {1,S} {4,D} 3 Cdd u0 {1,D} {6,D} 4 Cdd u0 {2,D} {7,D} 5 Cb u0 {1,S} 6 C u0 {3,D} 7 C u0 {4,D} """, thermo = u'Cds-(Cdd-Cd)(Cds-Cds)Cb', shortDesc = u"""""", longDesc = u""" """, ) entry( index = 323, label = "Cds-CddCbCt", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} 3 Cb u0 {1,S} 4 Ct u0 {1,S} """, thermo = u'Cds-(Cdd-Cd)CbCt', shortDesc = u"""""", longDesc = u""" """, ) entry( index = 324, label = "Cds-(Cdd-O2d)CbCt", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 Cb u0 {1,S} 4 Ct u0 {1,S} 5 O2d u0 {2,D} """, thermo = u'Cds-(Cdd-O2d)(Cds-Cds)Ct', shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-S2d)CbCt", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 Cb u0 {1,S} 4 Ct u0 {1,S} 5 S2d u0 {2,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = 325, label = "Cds-(Cdd-Cd)CbCt", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 Cb u0 {1,S} 4 Ct u0 {1,S} 5 C u0 {2,D} """, thermo = u'Cds-CdsCbCt', shortDesc = u"""""", longDesc = u""" """, ) entry( index = 326, label = "Cds-CddCbCb", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} 3 Cb u0 {1,S} 4 Cb u0 {1,S} """, thermo = u'Cds-(Cdd-Cd)CbCb', shortDesc = u"""""", longDesc = u""" """, ) entry( index = 327, label = "Cds-(Cdd-O2d)CbCb", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 Cb u0 {1,S} 4 Cb u0 {1,S} 5 O2d u0 {2,D} """, thermo = u'Cds-(Cdd-O2d)(Cds-Cds)(Cds-Cds)', shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-S2d)CbCb", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 Cb u0 {1,S} 4 Cb u0 {1,S} 5 S2d u0 {2,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = 328, label = "Cds-(Cdd-Cd)CbCb", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 Cb u0 {1,S} 4 Cb u0 {1,S} 5 C u0 {2,D} """, thermo = u'Cds-CdsCbCb', shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-CdsC=SC=S", group = """ 1 * Cd u0 {2,S} {3,S} {4,D} 2 CS u0 {1,S} {5,D} 3 CS u0 {1,S} {6,D} 4 Cd u0 {1,D} 5 S2d u0 {2,D} 6 S2d u0 {3,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-Cd)C=S(Cds-Cd)", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 CS u0 {1,S} {7,D} 4 Cd u0 {1,S} {6,D} 5 C u0 {2,D} 6 C u0 {4,D} 7 S2d u0 {3,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-Cd)C=S(Cds-Cds)", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 CS u0 {1,S} {7,D} 4 Cd u0 {1,S} {6,D} 5 C u0 {2,D} 6 Cd u0 {4,D} 7 S2d u0 {3,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-Cd)C=S(Cds-Cdd)", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 CS u0 {1,S} {7,D} 4 Cd u0 {1,S} {6,D} 5 C u0 {2,D} 6 Cdd u0 {4,D} 7 S2d u0 {3,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-Cd)C=S(Cds-Cdd-Cd)", group = """ 1 * Cd u0 {2,S} {3,D} {4,S} 2 Cd u0 {1,S} {5,D} 3 Cdd u0 {1,D} {6,D} 4 CS u0 {1,S} {7,D} 5 Cdd u0 {2,D} {8,D} 6 C u0 {3,D} 7 S2d u0 {4,D} 8 C u0 {5,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-Cd)C=S(Cds-Cdd-S2d)", group = """ 1 * Cd u0 {2,S} {3,D} {4,S} 2 Cd u0 {1,S} {5,D} 3 Cdd u0 {1,D} {6,D} 4 CS u0 {1,S} {7,D} 5 Cdd u0 {2,D} {8,D} 6 C u0 {3,D} 7 S2d u0 {4,D} 8 S2d u0 {5,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-S2d)C=SCs", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 CS u0 {1,S} {6,D} 4 Cs u0 {1,S} 5 S2d u0 {2,D} 6 S2d u0 {3,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-S2d)C=SCt", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 CS u0 {1,S} {6,D} 4 Ct u0 {1,S} 5 S2d u0 {2,D} 6 S2d u0 {3,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-S2d)C=SCb", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 CS u0 {1,S} {6,D} 4 Cb u0 {1,S} 5 S2d u0 {2,D} 6 S2d u0 {3,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-Cd)C=SC=S", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 CS u0 {1,S} {6,D} 4 CS u0 {1,S} {7,D} 5 C u0 {2,D} 6 S2d u0 {3,D} 7 S2d u0 {4,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-S2d)(Cds-Cd)C=S", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 Cd u0 {1,S} {6,D} 4 CS u0 {1,S} {7,D} 5 S2d u0 {2,D} 6 C u0 {3,D} 7 S2d u0 {4,D} """, thermo = None, shortDesc = u"""""", longDesc = u""" """, ) entry( index = -1, label = "Cds-(Cdd-S2d)(Cds-Cds)C=S", group = """ 1 * Cd u0 {2,D} {3,S} {4,S} 2 Cdd u0 {1,D} {5,D} 3 Cd
import os import logging import functools from typing import Dict, List from sqlalchemy import create_engine, inspect, Table from sqlalchemy.schema import CreateSchema from snowflake.sqlalchemy import URL, TIMESTAMP_NTZ from snowflake.connector.errors import ProgrammingError from snowflake.connector.network import ReauthenticationRequest from target_snowflake.utils.error import SchemaUpdateError from target_snowflake.utils.snowflake_helpers import get_reserved_keywords # Don't show all the info log messages from Snowflake for logger_name in ["snowflake.connector", "botocore", "boto3"]: logger = logging.getLogger(logger_name) logger.setLevel(logging.WARNING) # Map sqlalchemy types to Snowflake Types # Required for two reasons: # 1. Compare the sqlalchemy Table definition to what is defined in Snowflake # 2. Use the type to manually execute an ALTER TABLE for updating or # adding new columns MAP_SQLALCHEMY_TO_SNOWFLAKE_TYPE = { "BIGINT": "DECIMAL(38, 0)", "FLOAT": "FLOAT", "VARCHAR": "VARCHAR(16777216)", "BOOLEAN": "BOOLEAN", "TIMESTAMP": "TIMESTAMP_NTZ", } # Type updates allowed. # There is a limitation in Snowflake that really limits the possible transitions: # https://docs.snowflake.net/manuals/sql-reference/sql/alter-table-column.html # When setting the TYPE for a column, the specified type (i.e. type) # must be a text data type (VARCHAR, STRING, TEXT, etc.). # Also, TYPE can be used only to increase the length of a text column. # That means that no INT --> FLOAT or INT --> STRING, etc type upgrades # are allowed by Snowflake. # Together with the fact that sqlalchemy uses the maximum type length, # only the following 2 type upgrades are valid (which never occur # but are added for completeness and in order to support updates in # SnowflakeLoader for future proofing): ALLOWED_TYPE_TRANSITIONS = [ ("VARCHAR(16777216)", "STRING"), ("VARCHAR(16777216)", "TEXT"), ] # How many times are we going to try to run functions with # @handle_token_expiration when they raise exceptions. TokenExpirationMaxTries = 2 def handle_token_expiration(func): """ Wrap SnowflakeLoader methods in order to catch token expiration errors, refresh the engine and retry. If the session stays idle for 4 hours, then the master token that snowflake.sqlalchemy has stored expires and a new session token can not be automatically renewed. In that case, the following exceptions are raised: snowflake.connector.errors.ProgrammingError: 390114 (08001) snowflake.connector.network.ReauthenticationRequest: 390114 (08001) Authentication token has expired. The user must authenticate again. We only retry once: The first try is the normal excecution that will fail if 4 hours have passed since the last query. The second try follows a refresh_engine() and should succeed. If it fails again, then something else happens and we should stop the execution and report the error. """ @functools.wraps(func) def wrapper(self, *args, **kwargs): last_exception = None for retry in range(TokenExpirationMaxTries): try: return func(self, *args, **kwargs) except (ProgrammingError, ReauthenticationRequest) as exc: if "390114" in str(exc): last_exception = exc self.refresh_engine() else: raise exc # If we tried TokenExpirationMaxTries times and we keep on getting errors, # just stop trying and raise the last exception caught raise last_exception return wrapper class SnowflakeEngineFactory: def __init__(self, config: Dict) -> None: # Keep the config in the EngineFactory in order to be able to refresh # the engine if the master token expires self._config = config def create_engine(self): return create_engine( URL( user=self._config["username"], password=self._config["password"], account=self._config["account"], database=self._config["database"], role=self._config["role"], warehouse=self._config["warehouse"], ) ) class SnowflakeLoader: def __init__(self, table: Table, config: Dict) -> None: self.table = table # Add a schema to the provided sqlalchemy Table as it is agnostic # on wich schema we want to use (defined in config) self.table.schema = config["schema"] # Keep the database name and the role name as they are required # for granting privileges to new entities. self.database = config["database"] self.role = config["role"] # Create a SnowflakeEngineFactory with the provided config # and use it to generate a new engine for connecting to Snowflake self._engine_factory = SnowflakeEngineFactory(config) self.engine = self._engine_factory.create_engine() def refresh_engine(self) -> None: if self.engine: self.engine.dispose() self.engine = self._engine_factory.create_engine() def quoted_table_name(self) -> str: """ Get the FULL, quoted, table name with everything in caps. e.g. "TEST_DB"."TARGET_SNOWFLAKE_TEST"."TEST_TABLE" """ return f'"{self.database}"."{self.table.schema}"."{self.table.name.upper()}"' def attribute_names(self) -> List[str]: """ Get the attribute(column) names for the associated Table """ return [column.name for column in self.table.columns] def empty_record(self) -> Dict: """ Get a dictionary representing an empty (all attributes None) record for the table associated with this SnowflakeLoader instance. Used as a template in order to normalize (map) all imported records to the full schema they are defined for. Important for records with multiple optional attributes that are not always there, like for example Multi Level JSON objects that are flattened before uploaded to SNowflake. Guards against sqlalchemy errors for missing required values for bind parameters. """ return dict.fromkeys(column.name for column in self.table.columns) @handle_token_expiration def schema_apply(self) -> None: """ Apply the schema defined for self.table to the Database we connect to """ grant_required = False inspector = inspect(self.engine) all_schema_names = inspector.get_schema_names() if not (self.table.schema.lower() in all_schema_names): logging.debug(f"Schema {self.table.schema} does not exist -> creating it ") self.engine.execute(CreateSchema(self.table.schema)) grant_required = True all_table_names = inspector.get_table_names(self.table.schema) if not (self.table.name.lower() in all_table_names): logging.debug(f"Table {self.table.name} does not exist -> creating it ") self.table.create(self.engine) grant_required = True else: # There is an existing Table: Check if a schema update is required self.schema_update(inspector) if grant_required: self.grant_privileges(self.role) def schema_update(self, inspector) -> None: """ Check if there is a schema diff between the new Table and the existing one and if the changes can be supported, update the table with the diff. Rules: 1. Only support type upgrades (e.g. STRING -> VARCHAR) for existing columns 2. If a not supported type update is requested (e.g. float --> int) raise a SchemaUpdateError exception. 2. Never drop columns, only update or add new ones """ existing_columns = {} columns_to_add = [] columns_to_update = [] # Fetch the existing defined tables and store them in a format useful # for comparisors. all_columns = inspector.get_columns(self.table.name, schema=self.table.schema) for column in all_columns: if isinstance(column["type"], TIMESTAMP_NTZ): existing_columns[column["name"]] = "TIMESTAMP_NTZ" else: existing_columns[column["name"]] = f"{column['type']}" # Check the new Table definition for new attributes or attributes # with an updated data type for column in self.table.columns: if isinstance(column.type, TIMESTAMP_NTZ): column_type = "TIMESTAMP_NTZ" else: column_type = MAP_SQLALCHEMY_TO_SNOWFLAKE_TYPE[f"{column.type}"] if column.name not in existing_columns: # A new column to be added to the table columns_to_add.append((column.name, column_type)) elif column_type != existing_columns[column.name]: # An existing column with a different data type # Check if the update is allowed transition = (existing_columns[column.name], column_type) if transition not in ALLOWED_TYPE_TRANSITIONS: raise SchemaUpdateError( f"Not allowed type update for {self.table.name}.{column.name}: {transition}" ) columns_to_update.append((column.name, column_type)) # If there are any columns to add or update, make the schema update for (name, type) in columns_to_add: self.add_column(name, type) for (name, type) in columns_to_update: self.update_column(name, type) def add_column(self, col_name: str, col_data_type: str) -> None: """ Add the requested column to the Snowflake Table defined by self.table """ full_name = self.quoted_table_name() alter_stmt = f"ALTER TABLE {full_name} ADD COLUMN {col_name} {col_data_type}" logging.debug(f"Adding COLUMN {col_name} ({col_data_type}) to {full_name}") with self.engine.connect() as connection: connection.execute(alter_stmt) def update_column(self, col_name: str, col_data_type: str) -> None: """ Update the requested column to the new type col_data_type """ full_name = self.quoted_table_name() alter_stmt = f"ALTER TABLE {full_name} ALTER {col_name} TYPE {col_data_type}" logging.debug(f"ALTERING COLUMN {full_name}.{col_name} to {col_data_type}") with self.engine.connect() as connection: connection.execute(alter_stmt) @handle_token_expiration def load(self, data: List[Dict]) -> None: """ Load the data provided as a list of dictionaries to the given Table If there are Primary Keys defined, then we UPSERT them by loading the data to a temporary table and then using Snowflake's MERGE operation """ if not data: return logging.debug(f"Loading data to Snowflake for {self.table.name}") if self.table.primary_key: # We have to use Snowflake's Merge in order to Upsert # Create Temporary table to load the data to tmp_table = self.create_tmp_table() with self.engine.connect() as connection: connection.execute(tmp_table.insert(), data) # Merge Temporary Table into the Table we want to load data into merge_stmt = self.generate_merge_stmt(tmp_table.name) connection.execute(merge_stmt) # Drop the Temporary Table tmp_table.drop(self.engine) else: # Just Insert (append) as no conflicts can arise with self.engine.connect() as connection: connection.execute(self.table.insert(), data) def create_tmp_table(self) -> Table: """ Create a temporary table in Snowflake based on the Table definition we have stored in self.table. """ columns = [c.copy() for c in self.table.columns] tmp_table = Table( f"TMP_{self.table.name.upper()}", self.table.metadata, *columns, schema=self.table.schema, keep_existing=True, ) tmp_table.drop(self.engine, checkfirst=True) tmp_table.create(self.engine) return tmp_table def generate_merge_stmt(self, tmp_table_name: str) -> str: """ Generate a merge statement for Merging a temporary table into the main table. The
1.0, 3.0, 2.0], [21.0, 0.0, 1.0, 33.0], ] ) expected = array( [ [1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0], [4.0, 1.0, 3.0, 2.0], [21.0, 0.0, 1.0, 33.0], ] ) filter_exclude_positions(aln, m) assert_allclose(m, expected) # filter zero positions (max_exclude_percentage = percent exclude) aln = make_aligned_seqs( data={"1": "-CDE", "2": "A-DE", "3": "AC-E", "4": "ACD-"}, moltype=PROTEIN, array_align=True, ) m = array( [ [1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0], [4.0, 1.0, 3.0, 2.0], [21.0, 0.0, 1.0, 33.0], ] ) expected = array( [ [1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0], [4.0, 1.0, 3.0, 2.0], [21.0, 0.0, 1.0, 33.0], ] ) filter_exclude_positions(aln, m, max_exclude_percent=0.25) assert_allclose(m, expected) # filter zero positions (max_exclude_percentage too high) aln = make_aligned_seqs( data={"1": "-CDE", "2": "A-DE", "3": "AC-E", "4": "ACD-"}, moltype=PROTEIN, array_align=True, ) m = array( [ [1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0], [4.0, 1.0, 3.0, 2.0], [21.0, 0.0, 1.0, 33.0], ] ) expected = array( [ [1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0], [4.0, 1.0, 3.0, 2.0], [21.0, 0.0, 1.0, 33.0], ] ) filter_exclude_positions(aln, m, max_exclude_percent=0.5) assert_allclose(m, expected) # filter one position (defualt max_exclude_percentage) aln = make_aligned_seqs( data={"1": "-CDE", "2": "ACDE", "3": "ACDE", "4": "ACDE"}, moltype=PROTEIN, array_align=True, ) m = array( [ [1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0], [4.0, 1.0, 3.0, 2.0], [21.0, 0.0, 1.0, 33.0], ] ) expected = array( [ [DEFAULT_NULL_VALUE] * 4, [DEFAULT_NULL_VALUE, 18.0, 5.0, 6.0], [DEFAULT_NULL_VALUE, 1.0, 3.0, 2.0], [DEFAULT_NULL_VALUE, 0.0, 1.0, 33.0], ] ) filter_exclude_positions(aln, m) assert_allclose(m, expected) # filter one position (non-defualt max_exclude_percentage) aln = make_aligned_seqs( data={"1": "-CDE", "2": "ACDE", "3": "ACDE", "4": "-CDE"}, moltype=PROTEIN, array_align=True, ) m = array( [ [1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0], [4.0, 1.0, 3.0, 2.0], [21.0, 0.0, 1.0, 33.0], ] ) expected = array( [ [DEFAULT_NULL_VALUE] * 4, [DEFAULT_NULL_VALUE, 18.0, 5.0, 6.0], [DEFAULT_NULL_VALUE, 1.0, 3.0, 2.0], [DEFAULT_NULL_VALUE, 0.0, 1.0, 33.0], ] ) filter_exclude_positions(aln, m, max_exclude_percent=0.49) assert_allclose(m, expected) # filter all positions (defualt max_exclude_percentage) aln = make_aligned_seqs( data={"1": "----", "2": "ACDE", "3": "ACDE", "4": "ACDE"}, moltype=PROTEIN, array_align=True, ) m = array( [ [1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0], [4.0, 1.0, 3.0, 2.0], [21.0, 0.0, 1.0, 33.0], ] ) expected = array([[DEFAULT_NULL_VALUE] * 4] * 4) filter_exclude_positions(aln, m) assert_allclose(m, expected) # filter all positions (non-defualt max_exclude_percentage) aln = make_aligned_seqs( data={"1": "----", "2": "A-DE", "3": "AC--", "4": "-CDE"}, moltype=PROTEIN, array_align=True, ) m = array( [ [1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0], [4.0, 1.0, 3.0, 2.0], [21.0, 0.0, 1.0, 3.0], ] ) expected = array([[DEFAULT_NULL_VALUE] * 4] * 4) filter_exclude_positions(aln, m, max_exclude_percent=0.49) assert_allclose(m, expected) # filter one position (defualt max_exclude_percentage, # non-defualt excludes) aln = make_aligned_seqs( data={"1": "WCDE", "2": "ACDE", "3": "ACDE", "4": "ACDE"}, moltype=PROTEIN, array_align=True, ) m = array( [ [1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0], [4.0, 1.0, 3.0, 2.0], [21.0, 0.0, 1.0, 33.0], ] ) expected = array( [ [DEFAULT_NULL_VALUE] * 4, [DEFAULT_NULL_VALUE, 18.0, 5.0, 6.0], [DEFAULT_NULL_VALUE, 1.0, 3.0, 2.0], [DEFAULT_NULL_VALUE, 0.0, 1.0, 33.0], ] ) filter_exclude_positions(aln, m, excludes="W") assert_allclose(m, expected) # filter one position (defualt max_exclude_percentage, # non-defualt null_value) aln = make_aligned_seqs( data={"1": "-CDE", "2": "ACDE", "3": "ACDE", "4": "ACDE"}, moltype=PROTEIN, array_align=True, ) m = array( [ [1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0], [4.0, 1.0, 3.0, 2.0], [21.0, 0.0, 1.0, 33.0], ] ) expected = array( [ [999.0] * 4, [999.0, 18.0, 5.0, 6.0], [999.0, 1.0, 3.0, 2.0], [999.0, 0.0, 1.0, 33.0], ] ) filter_exclude_positions(aln, m, null_value=999.0) assert_allclose(m, expected) def test_filter_exclude_positions_intermolecular(self): """filter_exclude_positions: functions for intermolecular data""" # these tests correspond to alignments of length 4 and 2 positions # respectively, hence a coevolution_matrix with shape = (2,4) # filter zero positions (no excludes) merged_aln = make_aligned_seqs( data={"1": "WCDEDE", "2": "ACDEDE", "3": "ACDEDE", "4": "ACDEDE"}, moltype=PROTEIN, array_align=True, ) m = array([[1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0]]) expected = array([[1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0]]) filter_exclude_positions(merged_aln, m, intermolecular_data_only=True) assert_allclose(m, expected) # filter one position (aln1) merged_aln = make_aligned_seqs( data={"1": "WC-EDE", "2": "ACDEDE", "3": "ACDEDE", "4": "ACDEDE"}, moltype=PROTEIN, array_align=True, ) m = array([[1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0]]) expected = array( [[1.0, 10.0, DEFAULT_NULL_VALUE, 3.0], [9.0, 18.0, DEFAULT_NULL_VALUE, 6.0]] ) filter_exclude_positions(merged_aln, m, intermolecular_data_only=True) assert_allclose(m, expected) # filter one position (aln2) merged_aln = make_aligned_seqs( data={"1": "WCEEDE", "2": "ACDEDE", "3": "ACDEDE", "4": "ACDED-"}, moltype=PROTEIN, array_align=True, ) m = array([[1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0]]) expected = array([[1.0, 10.0, 4.0, 3.0], [DEFAULT_NULL_VALUE] * 4]) filter_exclude_positions(merged_aln, m, intermolecular_data_only=True) assert_allclose(m, expected) # filter two positions (aln1 & aln2) merged_aln = make_aligned_seqs( data={"1": "-CEEDE", "2": "ACDEDE", "3": "ACDEDE", "4": "ACDED-"}, moltype=PROTEIN, array_align=True, ) m = array([[1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0]]) expected = array( [[DEFAULT_NULL_VALUE, 10.0, 4.0, 3.0], [DEFAULT_NULL_VALUE] * 4] ) filter_exclude_positions(merged_aln, m, intermolecular_data_only=True) assert_allclose(m, expected) # filter two positions (aln1 & aln2, alt excludes) merged_aln = make_aligned_seqs( data={"1": "WCEEDE", "2": "ACDEDE", "3": "ACDEDE", "4": "ACDEDW"}, moltype=PROTEIN, array_align=True, ) m = array([[1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0]]) expected = array( [[DEFAULT_NULL_VALUE, 10.0, 4.0, 3.0], [DEFAULT_NULL_VALUE] * 4] ) filter_exclude_positions( merged_aln, m, intermolecular_data_only=True, excludes="W" ) assert_allclose(m, expected) # filter two positions (aln1 & aln2, alt null_value) merged_aln = make_aligned_seqs( data={"1": "-CEEDE", "2": "ACDEDE", "3": "ACDEDE", "4": "ACDED-"}, moltype=PROTEIN, array_align=True, ) m = array([[1.0, 10.0, 4.0, 3.0], [9.0, 18.0, 5.0, 6.0]]) expected = array([[999.0, 10.0, 4.0, 3.0], [999.0] * 4]) filter_exclude_positions( merged_aln, m, intermolecular_data_only=True, null_value=999.0 ) assert_allclose(m, expected) def test_filter_threshold_based_multiple_interdependency_intermolecular(self): "multiple interdependency filter functions with intermolecular data" ## cmp_function = ge # lower boundary null = DEFAULT_NULL_VALUE m = array( [ [0.63, 0.00, null], [0.75, 0.10, 0.45], [0.95, 0.32, 0.33], [1.00, 0.95, 0.11], ] ) expected = array( [ [null, null, null], [null, null, 0.45], [null, null, null], [null, null, null], ] ) actual = filter_threshold_based_multiple_interdependency( None, m, 0.95, 0, greater_equal, True ) assert_allclose(actual, expected) # realisitic test case m = array( [ [0.63, 0.00, null], [0.75, 0.10, 0.45], [0.95, 0.32, 0.33], [1.00, 0.95, 0.11], ] ) expected = array( [ [null, 0.00, null], [null, 0.10, 0.45], [null, 0.32, 0.33], [null, null, null], ] ) actual = filter_threshold_based_multiple_interdependency( None, m, 0.95, 1, greater_equal, True ) assert_allclose(actual, expected) # upper boundary, nothing filtered null = DEFAULT_NULL_VALUE m = array( [ [0.63, 0.00, null], [0.75, 0.10, 0.45], [0.95, 0.32, 0.33], [1.00, 0.95, 0.11], ] ) expected = m actual = filter_threshold_based_multiple_interdependency( None, m, 0.95, 5, greater_equal, True ) assert_allclose(actual, expected) # cmp_function = less_equal, realistic test case m = array( [ [0.63, 0.00, null], [0.75, 0.10, 0.45], [0.95, 0.32, 0.33], [1.00, 0.95, 0.11], ] ) expected = array( [ [0.63, null, null], [0.75, null, null], [null, null, null], [1.00, null, null], ] ) actual = filter_threshold_based_multiple_interdependency( None, m, 0.35, 1, less_equal, True ) assert_allclose(actual, expected) def test_filter_threshold_based_multiple_interdependency_intramolecular(self): "multiple interdependency filter functions with intramolecular data" null = DEFAULT_NULL_VALUE ## cmp_function = ge # lower bound, everything filtered m = array( [ [0.63, 0.75, 0.95, 1.00], [0.75, 0.10, null, 0.95], [0.95, null, 0.33, 0.11], [1.00, 0.95, 0.11, 1.00], ] ) expected = array( [ [null, null, null, null], [null, null, null, null], [null, null, null, null], [null, null, null, null], ] ) actual = filter_threshold_based_multiple_interdependency( None, m, 0.95, 0, greater_equal ) assert_allclose(actual, expected) # realistic test case m = array( [ [0.63, 0.75, 0.95, 1.00], [0.75, 0.10, null, 0.95], [0.95, null, 0.33, 0.11], [1.00, 0.95, 0.11, 1.00], ] ) expected = array( [ [null, null, null, null], [null, 0.10, null, null], [null, null, 0.33, null], [null, null, null, null], ] ) actual = filter_threshold_based_multiple_interdependency( None, m, 0.95, 1, greater_equal ) assert_allclose(actual, expected) # upper boundary, nothing filtered m = array( [ [0.63, 0.75, 0.95, 1.00], [0.75, 0.10, null, 0.95], [0.95, null, 0.33, 0.11], [1.00, 0.95, 0.11, 1.00], ] ) expected = m actual = filter_threshold_based_multiple_interdependency( None, m, 0.95, 5, greater_equal ) assert_allclose(actual, expected) ## cmp_function = le # realistic test case m = array( [ [0.63, 0.75, 0.95, 1.00], [0.75, 0.10,
to ensure that the initial # incrementation of this index by the _enqueue_hint_child() directly called # below initializes index 0 of the "hints_meta" fixed list. hints_meta_index_last = -1 # ..................{ FUNC ~ code }.................. # Python code snippet type-checking the current pith against the currently # visited hint (to be appended to the "func_wrapper_code" string). func_curr_code: str = None # type: ignore[assignment] # ..................{ FUNC ~ code : locals }.................. # Local scope (i.e., dictionary mapping from the name to value of each # attribute referenced in the signature) of this wrapper function required # by this Python code snippet. func_wrapper_locals: CallableScope = {} # True only if one or more PEP-compliant type hints visitable from this # root hint require a pseudo-random integer. If true, the higher-level # beartype._decor._code.codemain.generate_code() function prefixes the body # of this wrapper function with code generating such an integer. is_var_random_int_needed = False # ..................{ CLOSURES }.................. # Closures centralizing frequently repeated logic and thus addressing any # Don't Repeat Yourself (DRY) concerns during the breadth-first search # (BFS) performed below. def _enqueue_hint_child(pith_child_expr: str) -> str: ''' **Enqueue** (i.e., append) a new tuple of metadata describing the currently iterated child hint to the end of the ``hints_meta`` queue, enabling this hint to be visited by the ongoing breadth-first search (BFS) traversing over this queue. Parameters ---------- pith_child_expr : str Python code snippet evaluating to the child pith to be type-checked against the currently iterated child hint. This closure also implicitly expects the following local variables of the outer scope to be set to relevant values: hint_child : object Currently iterated PEP-compliant child hint subscripting the currently visited hint. Returns ---------- str Placeholder string to be subsequently replaced by code type-checking this child pith against this child hint. ''' # Allow these local variables of the outer scope to be modified below. nonlocal hint_child_placeholder_id, hints_meta_index_last # Increment the 0-based index of metadata describing the last visitable # hint in the "hints_meta" list *BEFORE* overwriting the existing # metadata at this index. # # Note this index is guaranteed to *NOT* exceed the fixed length of # this list, by prior validation. hints_meta_index_last += 1 # Increment the unique identifier of the currently iterated child hint. hint_child_placeholder_id += 1 # Placeholder string to be globally replaced by code type-checking the # child pith against this child hint, intentionally prefixed and # suffixed by characters that: # # * Are intentionally invalid as Python code, guaranteeing that the # top-level call to the exec() builtin performed by the @beartype # decorator will raise a "SyntaxError" exception if the caller fails # to replace all placeholder substrings generated by this method. # * Protect the identifier embedded in this substring against ambiguous # global replacements of larger identifiers containing this # identifier. If this identifier were *NOT* protected in this manner, # then the first substring "0" generated by this method would # ambiguously overlap with the subsequent substring "10" generated by # this method, which would then produce catastrophically erroneous # and non-trivial to debug Python code. hint_child_placeholder = ( f'{PEP_CODE_HINT_CHILD_PLACEHOLDER_PREFIX}' f'{str(hint_child_placeholder_id)}' f'{PEP_CODE_HINT_CHILD_PLACEHOLDER_SUFFIX}' ) # Create and insert a new tuple of metadata describing this child hint # at this index of this list. # # Note that this assignment is guaranteed to be safe, as "SIZE_BIG" is # guaranteed to be substantially larger than "hints_meta_index_last". hints_meta[hints_meta_index_last] = ( hint_child, hint_child_placeholder, pith_child_expr, indent_child, ) # Return this placeholder string. return hint_child_placeholder # ..................{ CLOSURES ~ locals }.................. # Local variables calling one or more closures declared above and thus # deferred until after declaring those closures. # Placeholder string to be globally replaced in the Python code snippet to # be returned (i.e., "func_wrapper_code") by a Python code snippet # type-checking the child pith expression (i.e., "pith_child_expr") against # the currently iterated child hint (i.e., "hint_child"), initialized to a # placeholder describing the root hint. hint_child_placeholder = _enqueue_hint_child(pith_root_expr) # Python code snippet type-checking the root pith against the root hint, # localized separately from the "func_wrapper_code" snippet to enable this # function to validate this code to be valid *BEFORE* returning this code. func_root_code = ( f'{_PEP_CODE_CHECK_HINT_ROOT_PREFIX}{hint_child_placeholder}') # Python code snippet to be returned, seeded with a placeholder to be # replaced on the first iteration of the breadth-first search performed # below with a snippet type-checking the root pith against the root hint. func_wrapper_code = func_root_code # ..................{ SEARCH }.................. # While the 0-based index of metadata describing the next visited hint in # the "hints_meta" list does *NOT* exceed that describing the last # visitable hint in this list, there remains at least one hint to be # visited in the breadth-first search performed by this iteration. while hints_meta_index_curr <= hints_meta_index_last: # Metadata describing the currently visited hint. hint_curr_meta = hints_meta[hints_meta_index_curr] # Assert this metadata is a tuple as expected. This enables us to # distinguish between proper access of used items and improper access # of unused items of the parent fixed list containing this tuple, since # an unused item of this list is initialized to "None" by default. assert hint_curr_meta.__class__ is tuple, ( f'Current hint metadata {repr(hint_curr_meta)} at ' f'index {hints_meta_index_curr} not tuple.') # Localize metadatum for both efficiency and f-string purposes. hint_curr = hint_curr_meta[_HINT_META_INDEX_HINT] hint_curr_placeholder = hint_curr_meta[_HINT_META_INDEX_PLACEHOLDER] pith_curr_expr = hint_curr_meta[_HINT_META_INDEX_PITH_EXPR] indent_curr = hint_curr_meta[_HINT_META_INDEX_INDENT] #FIXME: This test can be trivially avoided by: #* Initializing "hint_curr_label = HINT_ROOT_LABEL" above. #* Unconditionally setting "hint_curr_label = HINT_CHILD_LABEL" # below at the end of each iteration of this loop. # #Since we're going to be fundamentally refactoring this entire #algorithm into a two-phase algorithm, let's hold off on that until the #radioactive dust settles, shall we? # Human-readable label prefixing the machine-readable representation of # the currently visited type hint in exception and warning messages. # # Note that this label intentionally only describes the root and # currently iterated child hints rather than the root hint, the # currently iterated child hint, and all interim child hints leading # from the former to the latter. The latter approach would be # non-human-readable and insane. hint_curr_label = ( HINT_ROOT_LABEL if hints_meta_index_curr == 0 else HINT_CHILD_LABEL ) # ................{ REDUCTION }................ #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # CAVEATS: Synchronize changes here with the corresponding block of the # beartype._decor._error._errorsleuth.CauseSleuth.__init__() # method. #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # Reduce the currently visited hint to a lower-level hint-like object # associated with this hint if this hint satisfies a condition. # # This decision is intentionally implemented as a linear series of # tests ordered in descending likelihood for efficiency. While # alternative implementations (that are more readily readable and # maintainable) do exist, these alternatives all appear to be # substantially less efficient. # # ................{ REDUCTION ~ pep 484 ~ none }................ # If this is the PEP 484-compliant "None" singleton, reduce this hint # to the type of that singleton. While not explicitly defined by the # "typing" module, PEP 484 explicitly supports this singleton: # When used in a type hint, the expression None is considered # equivalent to type(None). # The "None" singleton is used to type callables lacking an explicit # "return" statement and thus absurdly common. Ergo, detect this first. if hint_curr is None: hint_curr = NoneType # ................{ REDUCTION ~ pep 593 }................ # If this is a PEP 593-compliant type metahint... # # Metahints form the core backbone of our beartype-specific data # validation API and are thus also extremely common. Ergo, detect these # next-to-first. elif is_hint_pep593(hint_curr): # If this metahint is beartype-specific (i.e., its second argument # is an instance of the "beartype._vale._valesub._SubscriptedIs" # class produced by subscripting the "Is" class), ignore all # annotations on this hint by reducing this hint to its origin # (e.g.,
# %% from functools import partial import logging import numpy as np import torch import colorsys from torchvtk.utils import make_5d, tex_from_pts # Persistent Homology peak extraction class Peak: def __init__(self, startidx): self.born = self.left = self.right = startidx self.died = None def get_persistence(self, seq): return seq[self.born] if self.died is None else seq[self.born] - seq[self.died] def get_persistent_homology(seq): peaks = [] # Maps indices to peaks idxtopeak = [None for s in seq] # Sequence indices sorted by values indices = range(len(seq)) indices = sorted(indices, key = lambda i: seq[i], reverse=True) # Process each sample in descending order for idx in indices: lftdone = (idx > 0 and idxtopeak[idx-1] is not None) rgtdone = (idx < len(seq)-1 and idxtopeak[idx+1] is not None) il = idxtopeak[idx-1] if lftdone else None ir = idxtopeak[idx+1] if rgtdone else None # New peak born if not lftdone and not rgtdone: peaks.append(Peak(idx)) idxtopeak[idx] = len(peaks)-1 # Directly merge to next peak left if lftdone and not rgtdone: peaks[il].right += 1 idxtopeak[idx] = il # Directly merge to next peak right if not lftdone and rgtdone: peaks[ir].left -= 1 idxtopeak[idx] = ir # Merge left and right peaks if lftdone and rgtdone: # Left was born earlier: merge right to left if seq[peaks[il].born] > seq[peaks[ir].born]: peaks[ir].died = idx peaks[il].right = peaks[ir].right idxtopeak[peaks[il].right] = idxtopeak[idx] = il else: peaks[il].died = idx peaks[ir].left = peaks[il].left idxtopeak[peaks[ir].left] = idxtopeak[idx] = ir # This is optional convenience return sorted(peaks, key=lambda p: p.get_persistence(seq), reverse=True) def distinguishable_color_generator(): ''' Generates distinguishable colors, compare http://alumni.media.mit.edu/~wad/color/numbers.html ''' colors = np.array([ [173, 35, 35], [42, 75, 215], [29, 105, 20], [129, 74, 25], [129, 38, 192], [160, 160, 160], [129, 197, 122], [157, 175, 255], [41, 208, 208], [255, 146, 51], [255, 238, 51], [255, 205, 243], [255, 255, 255] ], dtype=np.float32) / 255.0 np.random.shuffle(colors) for color in colors: yield color def random_color_generator(): ''' Generates random colors ''' while True: h, s, l = np.random.rand(), 0.2 + np.random.rand() * 0.8, 0.35 + np.random.rand() * 0.3 yield np.array([float(255*i) for i in colorsys.hls_to_rgb(h,l,s)], dtype=np.float32) / 255.0 def fixed_color_generator(color=(180, 170, 170.0)): while True: yield np.array(color).astype(np.float32) / 255.0 def get_histogram_peaks(data, bins=1024, skip_outlier=True): vals, ranges = np.histogram(data, bins) peaks = get_persistent_homology(vals) ret = np.array(list(map(lambda p: ( (ranges[p.born] + ranges[p.born+1])/2.0, # intensity value p.get_persistence(vals)), peaks # persistence for peak importance ))) return np.stack([ret[:, 0], ret[:, 1] / peaks[0].get_persistence(vals)], axis=1) def overlaps_trapeze(trap, ts): for t in ts: if trap[0,0] < t[5,0] and trap[5,0] > t[0,0]: return True return False def includes_maxvalue(trap, vol=None): return trap[5, 0] >= (1.0 if vol is None else vol.max()) def includes_minvalue(trap, vol=None, eps=1e-2): return trap[0, 0] <= (eps if vol is None else vol.min() + eps) def flatten_clip_sort_peaks(peaks): if len(peaks) == 0: peaks = np.zeros((1,5)) arr = np.clip(np.stack(peaks).reshape((-1, 5)), 0, 1) idx = np.argsort(arr[:, 0]) return arr[idx] def colorize_trapeze(t, color): res = np.zeros((t.shape[0], 5)) res[:, 0] = t[:, 0] res[:, 1:4] = color res[:, 4] = t[:, 1] return res def make_trapezoid(c, top_height, bot_width, fixed_shape=False): # bot_width = bot_width * c + 1e-2 # allow for wider peaks in higher density # int_contrib = np.clip(c * (1/0.6), 0, 1) # higher opacity on higher density (usually bones, which are often occluded) # top_height = (int_contrib + top_height) / 2.0 # allow for mostly low peaks on skin, higher peaks on bones if fixed_shape: bot_height = top_height top_width = bot_width else: bot_height = np.random.rand(1).item() * top_height top_width = np.random.rand(1).item() * bot_width return np.stack([ np.array([c - bot_width/2 -2e-2, 0]), # left wall ____________ __ top_height np.array([c - bot_width/2, bot_height]), # bottom left / top_width \ np.array([c - top_width/2, top_height]), # top left /__ bot_width __\__ bot_height np.array([c + top_width/2, top_height]), # top right | | np.array([c + bot_width/2, bot_height]), # bottom right | right wall ->| np.array([c + bot_width/2 +2e-2, 0]) # right wall |<- left wall | ]) def get_tf_pts_from_peaks(peaks, colors='random', height_range=(0.1, 0.9), width_range=(0.02, 0.2), peak_center_noise_std=0.05, max_num_peaks=5, peak_valid_fn=None, fixed_shape=False): ''' Compute transfer function with non-overlapping trapezoids around given peaks Args: peaks (np.array of [intensity, persistence]): The histogram peaks colors (str): Either "distinguishable", "random" or "fixed" height_range (tuple of floats): Range in which to draw trapezoid height (=opacity). Max range is (0, 1) width_range (tuple of floats): Range in which to draw trapezoid width around peak. Max range is (0, 1) peak_center_noise_std (float): Standard deviation of the Gaussian noise applied to peak centers, to shift those randomly. max_num_peaks (int): Maximum number of peaks in the histogram. The number will be drawn as U(1, max_num_peaks) peak_valid_fn (func): Function that gets the old TF without a new peak and the TF with the new peak and decides wether to add the peak (return True) or not (return False). fixed_shape (bool): If True produces a classic ramp peak, if False it has random double ramps Returns: [ np.array [x, y] ]: List of TF primitives (List of coordinates [0,1]²) to be lerped ''' if peak_valid_fn is None: peak_valid_fn = lambda a, b: True if max_num_peaks is None: n_peaks = len(peaks) elif isinstance(max_num_peaks, (tuple, list)) and len(max_num_peaks) == 2: n_peaks = np.random.randint(max_num_peaks[0], max_num_peaks[1] + 1) else: n_peaks = np.random.randint(1, max_num_peaks+1) height_range_len = height_range[1] - height_range[0] width_range_len = width_range[1] - width_range[0] if colors == 'distinguishable': color_gen = distinguishable_color_generator() elif colors == 'random': color_gen = random_color_generator() elif colors == 'fixed': color_gen = fixed_color_generator() else: raise Exception(f'Invalid colors argument ({colors}). Use either "distinguishable" or "random".') # | c |__ 0 if peaks is None: peaks = np.random.rand(100, 2) peaks = np.stack([np.linspace(0.05, 0.75, 15)]*2, axis=1) trapezes = [make_trapezoid(c + np.random.randn() * peak_center_noise_std, # Center of peak top_height= height_range_len * np.random.rand(1).item() + height_range[0], bot_width = width_range_len * np.random.rand(1).item() + width_range[0], fixed_shape=fixed_shape ) for c, p in peaks] result = [] np.random.shuffle(trapezes) fail_count = 0 for t in trapezes: if overlaps_trapeze(t, result) or includes_maxvalue(t) or includes_minvalue(t): continue else: trap = colorize_trapeze(t, next(color_gen)) if peak_valid_fn( tf_pts_border(flatten_clip_sort_peaks(result)), tf_pts_border(flatten_clip_sort_peaks(result + [trap]))): fail_count = 0 # reset fail count if peak gets added result.append(trap) else: fail_count += 1 # failed in that the new TF does produce a too similar image if len(result) >= n_peaks or fail_count > 5: break # max 5 render tries return flatten_clip_sort_peaks(result) def create_peaky_tf(peaks, widths, default_color=(0.7, 0.66, 0.66), default_height=0.99, warn_overlap=True): ''' Creates a peaky tf with given peak centers, widths and optional rgb, o Beware: The output of this function is undefined for overlapping trapezes! A warning will be printed. Args: peaks (array): Array of shape (N) only peak centers / (N, 2) centers and opacity / (N, 4) centers and rgb / (N, 5) centers, opacity and rgb. widths (array): Array of shape (N), same length as peaks. default_color (array, optional): RGB value as array. Defaults to (0.7, 0.66, 0.66). default_height (float, optional): Default opacity of none is given in peaks. Defaults to 0.99. warn_overlap (bool, optional): Prints a warning if the resulting Transfer Function has overlapping trapezes. Defaults to True. Returns: Array: Point-based Transfer Function (N, 5) with the given peaks ''' trapezes = [] for p, w in zip(peaks, widths): if not hasattr(p, '__len__'): c, o, rgb = p, default_height, default_color elif len(p) == 2: c, o, rgb = p[0], p[1], default_color elif len(p) == 4: c, o, rgb = p[0], default_height, p[1:] elif len(p) == 5: c, o, rgb = p[0], p[1], p[2:] else: raise Exception(f'Invalid input for peaks: list of {p}. See docstring of create_peaky_tf()') if warn_overlap and overlaps_trapeze(make_trapezoid(c, o, w, fixed_shape=True), trapezes): logging.warning(f'create_peaky_tf() has overlapping trapezes. First overlapping trapeze in the sequence: (center={c}, width={w}, index={len(trapezes)})') trapezes.append(colorize_trapeze(make_trapezoid(c, o, w, fixed_shape=True), rgb)) return tf_pts_border(flatten_clip_sort_peaks(trapezes)) def create_cos_tf(phases, amplitudes, frequencies=range): n = len(phases) if not torch.is_tensor(phases): phases = torch.Tensor(phases) if not torch.is_tensor(amplitudes): amplitudes = torch.Tensor(amplitudes) if hasattr(frequencies, __call__): freqs = torch.Tensor(frequencies(n)) else: assert len(frequencies) == n def tf(x): x.expand(*([-1]*x.ndim), n) torch.cos(freqs * (x + phases)) * amplitudes def tries(): n = 20 amps = torch.rand(n) #freqs = torch.cat([torch.arange(2, 2+n//2), torch.arange(n//2, n)**1.4]).round() freqs = torch.arange(2, n+2)**1.2 phases = torch.rand(n) * pi x = torch.linspace(0,1,100).unsqueeze(-1).expand(-1, n) plt.ylim((0,1)) pts = (torch.cos(pi * freqs * (x +
# streamclone.py - producing and consuming streaming repository data # # Copyright 2015 <NAME> <<EMAIL>> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import import struct import time from .i18n import _ from . import ( branchmap, error, store, util, ) def canperformstreamclone(pullop, bailifbundle2supported=False): """Whether it is possible to perform a streaming clone as part of pull. ``bailifbundle2supported`` will cause the function to return False if bundle2 stream clones are supported. It should only be called by the legacy stream clone code path. Returns a tuple of (supported, requirements). ``supported`` is True if streaming clone is supported and False otherwise. ``requirements`` is a set of repo requirements from the remote, or ``None`` if stream clone isn't supported. """ repo = pullop.repo remote = pullop.remote bundle2supported = False if pullop.canusebundle2: if 'v1' in pullop.remotebundle2caps.get('stream', []): bundle2supported = True # else # Server doesn't support bundle2 stream clone or doesn't support # the versions we support. Fall back and possibly allow legacy. # Ensures legacy code path uses available bundle2. if bailifbundle2supported and bundle2supported: return False, None # Ensures bundle2 doesn't try to do a stream clone if it isn't supported. #elif not bailifbundle2supported and not bundle2supported: # return False, None # Streaming clone only works on empty repositories. if len(repo): return False, None # Streaming clone only works if all data is being requested. if pullop.heads: return False, None streamrequested = pullop.streamclonerequested # If we don't have a preference, let the server decide for us. This # likely only comes into play in LANs. if streamrequested is None: # The server can advertise whether to prefer streaming clone. streamrequested = remote.capable('stream-preferred') if not streamrequested: return False, None # In order for stream clone to work, the client has to support all the # requirements advertised by the server. # # The server advertises its requirements via the "stream" and "streamreqs" # capability. "stream" (a value-less capability) is advertised if and only # if the only requirement is "revlogv1." Else, the "streamreqs" capability # is advertised and contains a comma-delimited list of requirements. requirements = set() if remote.capable('stream'): requirements.add('revlogv1') else: streamreqs = remote.capable('streamreqs') # This is weird and shouldn't happen with modern servers. if not streamreqs: return False, None streamreqs = set(streamreqs.split(',')) # Server requires something we don't support. Bail. if streamreqs - repo.supportedformats: return False, None requirements = streamreqs return True, requirements def maybeperformlegacystreamclone(pullop): """Possibly perform a legacy stream clone operation. Legacy stream clones are performed as part of pull but before all other operations. A legacy stream clone will not be performed if a bundle2 stream clone is supported. """ supported, requirements = canperformstreamclone(pullop) if not supported: return repo = pullop.repo remote = pullop.remote # Save remote branchmap. We will use it later to speed up branchcache # creation. rbranchmap = None if remote.capable('branchmap'): rbranchmap = remote.branchmap() repo.ui.status(_('streaming all changes\n')) fp = remote.stream_out() l = fp.readline() try: resp = int(l) except ValueError: raise error.ResponseError( _('unexpected response from remote server:'), l) if resp == 1: raise error.Abort(_('operation forbidden by server')) elif resp == 2: raise error.Abort(_('locking the remote repository failed')) elif resp != 0: raise error.Abort(_('the server sent an unknown error code')) l = fp.readline() try: filecount, bytecount = map(int, l.split(' ', 1)) except (ValueError, TypeError): raise error.ResponseError( _('unexpected response from remote server:'), l) with repo.lock(): consumev1(repo, fp, filecount, bytecount) # new requirements = old non-format requirements + # new format-related remote requirements # requirements from the streamed-in repository repo.requirements = requirements | ( repo.requirements - repo.supportedformats) repo._applyopenerreqs() repo._writerequirements() if rbranchmap: branchmap.replacecache(repo, rbranchmap) repo.invalidate() def allowservergeneration(ui): """Whether streaming clones are allowed from the server.""" return ui.configbool('server', 'uncompressed', True, untrusted=True) # This is it's own function so extensions can override it. def _walkstreamfiles(repo): return repo.store.walk() def generatev1(repo): """Emit content for version 1 of a streaming clone. This returns a 3-tuple of (file count, byte size, data iterator). The data iterator consists of N entries for each file being transferred. Each file entry starts as a line with the file name and integer size delimited by a null byte. The raw file data follows. Following the raw file data is the next file entry, or EOF. When used on the wire protocol, an additional line indicating protocol success will be prepended to the stream. This function is not responsible for adding it. This function will obtain a repository lock to ensure a consistent view of the store is captured. It therefore may raise LockError. """ entries = [] total_bytes = 0 # Get consistent snapshot of repo, lock during scan. with repo.lock(): repo.ui.debug('scanning\n') for name, ename, size in _walkstreamfiles(repo): if size: entries.append((name, size)) total_bytes += size repo.ui.debug('%d files, %d bytes to transfer\n' % (len(entries), total_bytes)) svfs = repo.svfs oldaudit = svfs.mustaudit debugflag = repo.ui.debugflag svfs.mustaudit = False def emitrevlogdata(): try: for name, size in entries: if debugflag: repo.ui.debug('sending %s (%d bytes)\n' % (name, size)) # partially encode name over the wire for backwards compat yield '%s\0%d\n' % (store.encodedir(name), size) if size <= 65536: with svfs(name, 'rb') as fp: yield fp.read(size) else: for chunk in util.filechunkiter(svfs(name), limit=size): yield chunk finally: svfs.mustaudit = oldaudit return len(entries), total_bytes, emitrevlogdata() def generatev1wireproto(repo): """Emit content for version 1 of streaming clone suitable for the wire. This is the data output from ``generatev1()`` with a header line indicating file count and byte size. """ filecount, bytecount, it = generatev1(repo) yield '%d %d\n' % (filecount, bytecount) for chunk in it: yield chunk def generatebundlev1(repo, compression='UN'): """Emit content for version 1 of a stream clone bundle. The first 4 bytes of the output ("HGS1") denote this as stream clone bundle version 1. The next 2 bytes indicate the compression type. Only "UN" is currently supported. The next 16 bytes are two 64-bit big endian unsigned integers indicating file count and byte count, respectively. The next 2 bytes is a 16-bit big endian unsigned short declaring the length of the requirements string, including a trailing \0. The following N bytes are the requirements string, which is ASCII containing a comma-delimited list of repo requirements that are needed to support the data. The remaining content is the output of ``generatev1()`` (which may be compressed in the future). Returns a tuple of (requirements, data generator). """ if compression != 'UN': raise ValueError('we do not support the compression argument yet') requirements = repo.requirements & repo.supportedformats requires = ','.join(sorted(requirements)) def gen(): yield 'HGS1' yield compression filecount, bytecount, it = generatev1(repo) repo.ui.status(_('writing %d bytes for %d files\n') % (bytecount, filecount)) yield struct.pack('>QQ', filecount, bytecount) yield struct.pack('>H', len(requires) + 1) yield requires + '\0' # This is where we'll add compression in the future. assert compression == 'UN' seen = 0 repo.ui.progress(_('bundle'), 0, total=bytecount, unit=_('bytes')) for chunk in it: seen += len(chunk) repo.ui.progress(_('bundle'), seen, total=bytecount, unit=_('bytes')) yield chunk repo.ui.progress(_('bundle'), None) return requirements, gen() def consumev1(repo, fp, filecount, bytecount): """Apply the contents from version 1 of a streaming clone file handle. This takes the output from "streamout" and applies it to the specified repository. Like "streamout," the status line added by the wire protocol is not handled by this function. """ with repo.lock(): repo.ui.status(_('%d files to transfer, %s of data\n') % (filecount, util.bytecount(bytecount))) handled_bytes = 0 repo.ui.progress(_('clone'), 0, total=bytecount, unit=_('bytes')) start = time.time() # TODO: get rid of (potential) inconsistency # # If transaction is started and any @filecache property is # changed at this point, it causes inconsistency between # in-memory cached property and streamclone-ed file on the # disk. Nested transaction prevents transaction scope "clone" # below from writing in-memory changes out at the end of it, # even though in-memory changes are discarded at the end of it # regardless of transaction nesting. # # But transaction nesting can't be simply prohibited, because # nesting occurs also in ordinary case (e.g. enabling # clonebundles). with
] for slackrtm in _slackrtms: segments.append(hangups.ChatMessageSegment('%s' % slackrtm.name)) segments.append(hangups.ChatMessageSegment('\n', hangups.SegmentType.LINE_BREAK)) bot.send_message_segments(event.conv, segments) def slack_channels(bot, event, *args): """list all slack channels available in specified slack team usage: /bot slack_channels <teamname>""" if len(args) != 1: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: You must specify a slack team name to list channels of', is_bold=True)]) return slackname = args[0] slackrtm = None for s in _slackrtms: if s.name == slackname: slackrtm = s break if not slackrtm: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: Could not find a configured slack team with name "%s", use /bot slacks to list all teams' % slackname, is_bold=True)]) return segments = [] segments.append(hangups.ChatMessageSegment('Slack channels in team %s:' % (slackname), is_bold=True)) segments.append(hangups.ChatMessageSegment('\n', hangups.SegmentType.LINE_BREAK)) slackrtm.update_channelinfos() for cid in slackrtm.channelinfos: if not slackrtm.channelinfos[cid]['is_archived']: segments.append(hangups.ChatMessageSegment('%s (%s)' % (slackrtm.channelinfos[cid]['name'], cid))) segments.append(hangups.ChatMessageSegment('\n', hangups.SegmentType.LINE_BREAK)) segments.append(hangups.ChatMessageSegment('private groups:', is_bold=True)) segments.append(hangups.ChatMessageSegment('\n', hangups.SegmentType.LINE_BREAK)) slackrtm.update_groupinfos() for gid in slackrtm.groupinfos: if not slackrtm.groupinfos[gid]['is_archived']: segments.append(hangups.ChatMessageSegment('%s (%s)' % (slackrtm.groupinfos[gid]['name'], gid))) segments.append(hangups.ChatMessageSegment('\n', hangups.SegmentType.LINE_BREAK)) bot.send_message_segments(event.conv, segments) def slack_users(bot, event, *args): """list all slack channels available in specified slack team usage: /bot slack_users <team> <channel>""" if len(args) >= 3: honame = ' '.join(args[2:]) else: if len(args) != 2: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: You must specify a slack team name and a channel', is_bold=True)]) return honame = bot.conversations.get_name(event.conv) slackname = args[0] slackrtm = None for s in _slackrtms: if s.name == slackname: slackrtm = s break if not slackrtm: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: Could not find a configured slack team with name "%s", use /bot slacks to list all teams' % slackname, is_bold=True)]) return slackrtm.update_channelinfos() channelid = args[1] channelname = slackrtm.get_groupname(channelid, slackrtm.get_channelname(channelid)) if not channelname: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: Could not find a channel with id "%s" in team "%s", use /bot slack_channels %s to list all teams' % (channelid, slackname, slackname), is_bold=True)]) return segments = [] segments.append(hangups.ChatMessageSegment('Slack users in channel %s:' % (channelname), is_bold=True)) segments.append(hangups.ChatMessageSegment('\n', hangups.SegmentType.LINE_BREAK)) users = slackrtm.get_channel_users(channelid) for username, realname in sorted(users.items()): segments.append(hangups.ChatMessageSegment('%s (%s)' % (realname, username))) segments.append(hangups.ChatMessageSegment('\n', hangups.SegmentType.LINE_BREAK)) bot.send_message_segments(event.conv, segments) def slack_listsyncs(bot, event, *args): """list current conversations we are syncing usage: /bot slack_listsyncs""" segments = [ hangups.ChatMessageSegment('list of currently synced conversations:', is_bold=True), hangups.ChatMessageSegment('\n', hangups.SegmentType.LINE_BREAK) ] for slackrtm in _slackrtms: for sync in slackrtm.syncs: hangoutname = 'unknown' for c in bot.list_conversations(): if c.id_ == sync.hangoutid: hangoutname = bot.conversations.get_name(c, truncate=False) break segments.extend( [ hangups.ChatMessageSegment( '%s:%s(%s) : %s(%s)' % ( slackrtm.name, slackrtm.get_channelname(sync.channelid), sync.channelid, hangoutname, sync.hangoutid ), is_bold=True ), hangups.ChatMessageSegment(' '), hangups.ChatMessageSegment(sync.getPrintableOptions(), is_italic=True), hangups.ChatMessageSegment('\n', hangups.SegmentType.LINE_BREAK), ] ) bot.send_message_segments(event.conv, segments) def slack_syncto(bot, event, *args): """start syncing the current hangout to a given slack team/channel usage: /bot slack_syncto <teamname> <channelid>""" if len(args) >= 3: honame = ' '.join(args[2:]) else: if len(args) != 2: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: You must specify a slack team name and a channel', is_bold=True)]) return honame = bot.conversations.get_name(event.conv) slackname = args[0] slackrtm = None for s in _slackrtms: if s.name == slackname: slackrtm = s break if not slackrtm: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: Could not find a configured slack team with name "%s", use /bot slacks to list all teams' % slackname, is_bold=True)]) return channelid = args[1] channelname = slackrtm.get_groupname(channelid, slackrtm.get_channelname(channelid)) if not channelname: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: Could not find a channel with id "%s" in team "%s", use /bot slack_channels %s to list all teams' % (channelid, slackname, slackname), is_bold=True)]) return try: slackrtm.syncto(channelid, event.conv.id_, honame) except AlreadySyncingError: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('Already syncing this Hangout to %s:%s.' % (slackname, channelname), is_bold=True)]) else: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('OK, I will now sync all messages in this Hangout to %s:%s.' % (slackname, channelname), is_bold=True)]) def slack_disconnect(bot, event, *args): """stop syncing the current hangout with given slack team and channel usage: /bot slack_disconnect <teamname> <channelid>""" if len(args) != 2: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: You must specify a slack team name and a channel', is_bold=True)]) return slackname = args[0] slackrtm = None for s in _slackrtms: if s.name == slackname: slackrtm = s break if not slackrtm: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: Could not find a configured slack team with name "%s", use /bot slacks to list all teams' % slackname, is_bold=True)]) return channelid = args[1] channelname = slackrtm.get_groupname(channelid, slackrtm.get_channelname(channelid)) if not channelname: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: Could not find a channel with id "%s" in team "%s", use /bot slack_channels %s to list all teams' % (channelid, slackname, slackname), is_bold=True)]) return try: slackrtm.disconnect(channelid, event.conv.id_) except NotSyncingError: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('This Hangout is NOT synced to %s:%s.' % (slackname, channelname), is_bold=True)]) else: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('OK, I will no longer sync messages in this Hangout to %s:%s.' % (slackname, channelname), is_bold=True)]) def slack_setsyncjoinmsgs(bot, event, *args): """enable or disable sending notifications any time someone joins/leaves/adds/invites/kicks usage: /bot slack_setsyncjoinmsgs <teamname> <channelid> {true|false}""" if len(args) != 3: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: You must specify a slack team name, a channel and "true" or "false"', is_bold=True)]) return slackname = args[0] slackrtm = None for s in _slackrtms: if s.name == slackname: slackrtm = s break if not slackrtm: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: Could not find a configured slack team with name "%s", use /bot slacks to list all teams' % slackname, is_bold=True)]) return channelid = args[1] channelname = slackrtm.get_groupname(channelid, slackrtm.get_channelname(channelid)) if not channelname: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: Could not find a channel with id "%s" in team "%s", use /bot slack_channels %s to list all teams' % (channelid, slackname, slackname), is_bold=True)]) return enable = args[2] if enable.lower() in ['true', 'on', 'y', 'yes']: enable = True elif enable.lower() in ['false', 'off', 'n', 'no']: enable = False else: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('sorry, but "%s" is not "true" or "false"' % enable, is_bold=True)]) return try: slackrtm.setsyncjoinmsgs(channelid, event.conv.id_, enable) except NotSyncingError: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('This Hangout is NOT synced to %s:%s.' % (slackname, channelname), is_bold=True)]) else: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('OK, I will %s sync join/leave messages in this Hangout with %s:%s.' % (('now' if enable else 'no longer'), slackname, channelname), is_bold=True)]) def slack_setimageupload(bot, event, *args): """enable/disable image upload between the synced conversations (default: enabled) usage: /bot slack_setimageupload <teamname> <channelid> {true|false}""" if len(args) != 3: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: You must specify a slack team name, a channel and "true" or "false"', is_bold=True)]) return slackname = args[0] slackrtm = None for s in _slackrtms: if s.name == slackname: slackrtm = s break if not slackrtm: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: Could not find a configured slack team with name "%s", use /bot slacks to list all teams' % slackname, is_bold=True)]) return channelid = args[1] channelname = slackrtm.get_groupname(channelid, slackrtm.get_channelname(channelid)) if not channelname: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: Could not find a channel with id "%s" in team "%s", use /bot slack_channels %s to list all teams' % (channelid, slackname, slackname), is_bold=True)]) return upload = args[2] if upload.lower() in ['true', 'on', 'y', 'yes']: upload = True elif upload.lower() in ['false', 'off', 'n', 'no']: upload = False else: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('sorry, but "%s" is not "true" or "false"' % upload, is_bold=True)]) return try: slackrtm.setimageupload(channelid, event.conv.id_, upload) except NotSyncingError: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('This Hangout is NOT synced to %s:%s.' % (slackname, channelname), is_bold=True)]) else: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('OK, I will %s upload images to this Hangout when shared in %s:%s.' % (('now' if upload else 'no longer'), slackname, channelname), is_bold=True)]) def slack_sethotag(bot, event, *args): """sets the identity of current hangout when syncing this conversation (default: title of this hangout when sync was set up, use 'none' to disable tagging) usage: /bot slack_hotag <teamname> <channelid> {<tag>|none}""" if len(args) < 3: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: You must specify a slack team name, a channel and a tag', is_bold=True)]) return slackname = args[0] slackrtm = None for s in _slackrtms: if s.name == slackname: slackrtm = s break if not slackrtm: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: Could not find a configured slack team with name "%s", use /bot slacks to list all teams' % slackname, is_bold=True)]) return channelid = args[1] channelname = slackrtm.get_groupname(channelid, slackrtm.get_channelname(channelid)) if not channelname: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('ERROR: Could not find a channel with id "%s" in team "%s", use /bot slack_channels %s to list all teams' % (channelid, slackname, slackname), is_bold=True)]) return hotag = ' '.join(args[2:]) if hotag == 'none': hotag = None oktext = 'NOT be tagged' else: oktext = 'be tagged with " (%s)"' % hotag try: slackrtm.sethotag(channelid, event.conv.id_, hotag) except NotSyncingError: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('This Hangout is NOT synced to %s:%s.' % (slackname, channelname), is_bold=True)]) else: bot.send_message_segments(event.conv, [hangups.ChatMessageSegment('OK, messages from this Hangout will %s in slack
import unittest from src.preprocess.pattern import NumberOfHoles, DefineLanguage_HoleReachabilitySolver, NtGraphBuilder from src.model.pattern import PatSequence, BuiltInPat, Nt, Repeat, Lit, LitKind, BuiltInPatKind, RepeatMatchMode, InHole, PatternAttribute from src.model.tlform import DefineLanguage, Module from src.context import CompilationContext from src.parser import parse_string from src.util import CompilationError def result(lang, nt): return lang.nts[nt].nt.getattribute(PatternAttribute.NumberOfHoles) class TestDefineLanguageHoleReachabilitySolver(unittest.TestCase): # (n ::= number) # (P ::= (E)) # (E ::= (E n) hole) # n = (zero, zero) P = (one one) E = (one one) def test_holereachability0(self): lang = DefineLanguage('Lang', [ DefineLanguage.NtDefinition(Nt('n', 'n'), [ BuiltInPat(BuiltInPatKind.Number, 'number', 'number'), ]), DefineLanguage.NtDefinition(Nt('P', 'P'), [ PatSequence([Nt('E', 'E_0')]), ]), DefineLanguage.NtDefinition(Nt('E', 'E'), [ PatSequence([Nt('E', 'E_2'), Nt('n', 'n_3')]), BuiltInPat(BuiltInPatKind.Hole, 'hole', 'hole'), ]), ]) graph = NtGraphBuilder(lang).run() DefineLanguage_HoleReachabilitySolver(lang, graph).run() self.assertEqual(result(lang, 'n'), (NumberOfHoles.Zero, NumberOfHoles.Zero)) self.assertEqual(result(lang, 'E'), (NumberOfHoles.One , NumberOfHoles.One )) self.assertEqual(result(lang, 'P'), (NumberOfHoles.One , NumberOfHoles.One )) # (P ::= (E)) # (E ::= P) # P = (zero, zero) E = (zero zero) def test_holereachability1(self): lang = DefineLanguage('Lang', [ DefineLanguage.NtDefinition(Nt('P', 'P'), [ PatSequence([Nt('E', 'E_0')]), ]), DefineLanguage.NtDefinition(Nt('E', 'E'), [ Nt('P', 'P_1'), ]), ]) graph = NtGraphBuilder(lang).run() DefineLanguage_HoleReachabilitySolver(lang, graph).run() self.assertEqual(result(lang, 'E'), (NumberOfHoles.Zero, NumberOfHoles.Zero)) self.assertEqual(result(lang, 'P'), (NumberOfHoles.Zero, NumberOfHoles.Zero)) # (n ::= number) (zero zero) # (P ::= (E)) (one one) # (E ::= P (E n) hole) (one one) # The algorithm does not deal with infinite cycles that well - for example we can have # term (((( (E) )))) that is infinite and thus ideally should match zero holes. # Since algorithm used to simply propagates holes throughout the graph, it does not take # into account inner-node cycles such as (E) -> (E n) -> (E). Perhaps for each edge in such # cycle we should enforce min value of Zero holes? # It might be fine for our purposes of checking in-hole patterns that involves checking # if given expression matches exactly one hole. def test_holereachability2(self): lang = DefineLanguage('Lang', [ DefineLanguage.NtDefinition(Nt('n', 'n'), [ BuiltInPat(BuiltInPatKind.Number, 'number', 'number'), ]), DefineLanguage.NtDefinition(Nt('P', 'P'), [ PatSequence([Nt('E', 'E_0')]), ]), DefineLanguage.NtDefinition(Nt('E', 'E'), [ Nt('P', 'P_1'), PatSequence([Nt('E', 'E_2'), Nt('n', 'n_3')]), BuiltInPat(BuiltInPatKind.Hole, 'hole', 'hole'), ]), ]) graph = NtGraphBuilder(lang).run() DefineLanguage_HoleReachabilitySolver(lang, graph).run() self.assertEqual(result(lang, 'n'), (NumberOfHoles.Zero, NumberOfHoles.Zero)) self.assertEqual(result(lang, 'E'), (NumberOfHoles.One , NumberOfHoles.One )) self.assertEqual(result(lang, 'P'), (NumberOfHoles.One , NumberOfHoles.One )) # (n ::= number) (zero zero) # (P ::= (E)) (one many) # (E ::= P (E n) (E E) hole) (one many) def test_holereachability3(self): lang = DefineLanguage('Lang', [ DefineLanguage.NtDefinition(Nt('n', 'n'), [ BuiltInPat(BuiltInPatKind.Number, 'number', 'number'), ]), DefineLanguage.NtDefinition(Nt('P', 'P'), [ PatSequence([Nt('E', 'E_0')]), ]), DefineLanguage.NtDefinition(Nt('E', 'E'), [ Nt('P', 'P_1'), PatSequence([Nt('E', 'E_3'), Nt('E', 'E_4')]), PatSequence([Nt('E', 'E_5'), Nt('n', 'n_6')]), BuiltInPat(BuiltInPatKind.Hole, 'hole', 'hole'), ]), ]) graph = NtGraphBuilder(lang).run() DefineLanguage_HoleReachabilitySolver(lang, graph).run() self.assertEqual(result(lang, 'n'), (NumberOfHoles.Zero, NumberOfHoles.Zero)) self.assertEqual(result(lang, 'E'), (NumberOfHoles.One , NumberOfHoles.Many)) self.assertEqual(result(lang, 'P'), (NumberOfHoles.One , NumberOfHoles.Many)) # (n ::= number) (zero zero) # (P ::= (E)) (zero many) # (E ::= P n (E n) (E E) hole) (zero many) zero because n def test_holereachability4(self): lang = DefineLanguage('Lang', [ DefineLanguage.NtDefinition(Nt('n', 'n'), [ BuiltInPat(BuiltInPatKind.Number, 'number', 'number'), ]), DefineLanguage.NtDefinition(Nt('P', 'P'), [ PatSequence([Nt('E', 'E_0')]), ]), DefineLanguage.NtDefinition(Nt('E', 'E'), [ Nt('P', 'P_1'), Nt('n', 'n_2'), PatSequence([Nt('E', 'E_3'), Nt('E', 'E_4')]), PatSequence([Nt('E', 'E_5'), Nt('n', 'n_6')]), BuiltInPat(BuiltInPatKind.Hole, 'hole', 'hole'), ]), ]) graph = NtGraphBuilder(lang).run() DefineLanguage_HoleReachabilitySolver(lang, graph).run() self.assertEqual(result(lang, 'n'), (NumberOfHoles.Zero, NumberOfHoles.Zero)) self.assertEqual(result(lang, 'E'), (NumberOfHoles.Zero, NumberOfHoles.Many)) self.assertEqual(result(lang, 'P'), (NumberOfHoles.Zero, NumberOfHoles.Many)) # (n ::= number) (zero zero) # (P ::= (E)) (zero many) # (E ::= P (E n) (hole ...)) (zero many) hole under ellipsis def test_holereachability5(self): lang = DefineLanguage('Lang', [ DefineLanguage.NtDefinition(Nt('n', 'n'), [ BuiltInPat(BuiltInPatKind.Number, 'number', 'number'), ]), DefineLanguage.NtDefinition(Nt('P', 'P'), [ PatSequence([Nt('E', 'E_0')]), ]), DefineLanguage.NtDefinition(Nt('E', 'E'), [ Nt('P', 'P_1'), PatSequence([Nt('E', 'E_5'), Nt('n', 'n_6')]), PatSequence([Repeat(BuiltInPat(BuiltInPatKind.Hole, 'hole', 'hole'))]), ]), ]) graph = NtGraphBuilder(lang).run() DefineLanguage_HoleReachabilitySolver(lang, graph).run() self.assertEqual(result(lang, 'n'), (NumberOfHoles.Zero, NumberOfHoles.Zero)) self.assertEqual(result(lang, 'E'), (NumberOfHoles.Zero, NumberOfHoles.Many)) self.assertEqual(result(lang, 'P'), (NumberOfHoles.Zero, NumberOfHoles.Many)) # (n ::= number) (zero zero) # (P ::= (E)) (one many) # (E ::= P (E hole)) (one many) (((...) hole) hole) def test_holereachability6(self): lang = DefineLanguage('Lang', [ DefineLanguage.NtDefinition(Nt('n', 'n'), [ BuiltInPat(BuiltInPatKind.Number, 'number', 'number'), ]), DefineLanguage.NtDefinition(Nt('P', 'P'), [ PatSequence([Nt('E', 'E_0')]), ]), DefineLanguage.NtDefinition(Nt('E', 'E'), [ Nt('P', 'P_1'), PatSequence([Nt('E', 'E_5'), BuiltInPat(BuiltInPatKind.Hole, 'hole', 'hole')]), ]), ]) graph = NtGraphBuilder(lang).run() DefineLanguage_HoleReachabilitySolver(lang, graph).run() self.assertEqual(result(lang, 'n'), (NumberOfHoles.Zero, NumberOfHoles.Zero)) self.assertEqual(result(lang, 'E'), (NumberOfHoles.Many, NumberOfHoles.Many)) self.assertEqual(result(lang, 'P'), (NumberOfHoles.Many, NumberOfHoles.Many)) # (n ::= number) (zero zero) # (P ::= (E)) (zero many) # (E ::= P n (E hole)) (zero many) because n def test_holereachability7(self): lang = DefineLanguage('Lang', [ DefineLanguage.NtDefinition(Nt('n', 'n'), [ BuiltInPat(BuiltInPatKind.Number, 'number', 'number'), ]), DefineLanguage.NtDefinition(Nt('P', 'P'), [ PatSequence([Nt('E', 'E_0')]), ]), DefineLanguage.NtDefinition(Nt('E', 'E'), [ Nt('P', 'P_1'), Nt('n', 'n_2'), PatSequence([Nt('E', 'E_5'), BuiltInPat(BuiltInPatKind.Hole, 'hole', 'hole')]), ]), ]) graph = NtGraphBuilder(lang).run() DefineLanguage_HoleReachabilitySolver(lang, graph).run() self.assertEqual(result(lang, 'n'), (NumberOfHoles.Zero, NumberOfHoles.Zero)) self.assertEqual(result(lang, 'E'), (NumberOfHoles.Zero, NumberOfHoles.Many)) self.assertEqual(result(lang, 'P'), (NumberOfHoles.Zero, NumberOfHoles.Many)) # (n ::= number) (zero zero) # (P ::= (E E)) (many many) # (E ::= P (E n) hole) (one many) def test_holereachability8(self): lang = DefineLanguage('Lang', [ DefineLanguage.NtDefinition(Nt('n', 'n'), [ BuiltInPat(BuiltInPatKind.Number, 'number', 'number'), ]), DefineLanguage.NtDefinition(Nt('P', 'P'), [ PatSequence([Nt('E', 'E_0'), Nt('E', 'E_1')]), ]), DefineLanguage.NtDefinition(Nt('E', 'E'), [ Nt('P', 'P_1'), PatSequence([Nt('E', 'E_5'), Nt('n', 'n_2')]), BuiltInPat(BuiltInPatKind.Hole, 'hole', 'hole'), ]), ]) graph = NtGraphBuilder(lang).run() DefineLanguage_HoleReachabilitySolver(lang, graph).run() self.assertEqual(result(lang, 'n'), (NumberOfHoles.Zero, NumberOfHoles.Zero)) self.assertEqual(result(lang, 'E'), (NumberOfHoles.One , NumberOfHoles.Many)) self.assertEqual(result(lang, 'P'), (NumberOfHoles.Many, NumberOfHoles.Many)) # (n ::= number) (zero zero) # (P ::= (E E) hole) (one many) # (E ::= P (E n)) (one many) def test_holereachability9(self): lang = DefineLanguage('Lang', [ DefineLanguage.NtDefinition(Nt('n', 'n'), [ BuiltInPat(BuiltInPatKind.Number, 'number', 'number'), ]), DefineLanguage.NtDefinition(Nt('P', 'P'), [ PatSequence([Nt('E', 'E_0'), Nt('E', 'E_1')]), BuiltInPat(BuiltInPatKind.Hole, 'hole', 'hole'), ]), DefineLanguage.NtDefinition(Nt('E', 'E'), [ Nt('P', 'P_1'), PatSequence([Nt('E', 'E_5'), Nt('n', 'n_2')]), ]), ]) graph = NtGraphBuilder(lang).run() DefineLanguage_HoleReachabilitySolver(lang, graph).run() self.assertEqual(result(lang, 'n'), (NumberOfHoles.Zero, NumberOfHoles.Zero)) self.assertEqual(result(lang, 'E'), (NumberOfHoles.One , NumberOfHoles.Many)) self.assertEqual(result(lang, 'P'), (NumberOfHoles.One , NumberOfHoles.Many)) # (n ::= number) (zero zero) # (Z ::= P) (zero many) # (P ::= (E)) (zero many) # (E ::= P ((Z) ... n) hole (zero many) because Z under ellipsis def test_holereachability10(self): lang = DefineLanguage('Lang', [ DefineLanguage.NtDefinition(Nt('n', 'n'), [ BuiltInPat(BuiltInPatKind.Number, 'number', 'number'), ]), DefineLanguage.NtDefinition(Nt('Z', 'Z'), [ Nt('P', 'P') ]), DefineLanguage.NtDefinition(Nt('P', 'P'), [ PatSequence([Nt('E', 'E_0')]), ]), DefineLanguage.NtDefinition(Nt('E', 'E'), [ Nt('P', 'P_1'), PatSequence([ Repeat(PatSequence([Nt('Z', 'Z'), ])), Nt('n', 'n_2'), ]), BuiltInPat(BuiltInPatKind.Hole, 'hole', 'hole'), ]), ]) graph = NtGraphBuilder(lang).run() DefineLanguage_HoleReachabilitySolver(lang, graph).run() self.assertEqual(result(lang, 'n'), (NumberOfHoles.Zero, NumberOfHoles.Zero)) self.assertEqual(result(lang, 'E'), (NumberOfHoles.Zero, NumberOfHoles.Many)) self.assertEqual(result(lang, 'P'), (NumberOfHoles.Zero, NumberOfHoles.Many)) self.assertEqual(result(lang, 'Z'), (NumberOfHoles.Zero, NumberOfHoles.Many)) # (n ::= number) (zero zero) # (P ::= (E)) (zero many) # (E ::= P ((P) ... ()) hole (zero many) def test_holereachability11(self): lang = DefineLanguage('Lang', [ DefineLanguage.NtDefinition(Nt('n', 'n'), [ BuiltInPat(BuiltInPatKind.Number, 'number', 'number'), ]), DefineLanguage.NtDefinition(Nt('P', 'P'), [ PatSequence([Nt('E', 'E_0')]), ]), DefineLanguage.NtDefinition(Nt('E', 'E'), [ Nt('P', 'P_1'), PatSequence([ Repeat(PatSequence([Nt('P', 'P'), ])), PatSequence([]), ]), BuiltInPat(BuiltInPatKind.Hole, 'hole', 'hole'), ]), ]) graph = NtGraphBuilder(lang).run() DefineLanguage_HoleReachabilitySolver(lang, graph).run() self.assertEqual(result(lang, 'n'), (NumberOfHoles.Zero, NumberOfHoles.Zero)) self.assertEqual(result(lang, 'E'), (NumberOfHoles.Zero, NumberOfHoles.Many)) self.assertEqual(result(lang, 'P'), (NumberOfHoles.Zero, NumberOfHoles.Many)) # (n ::= number) (zero zero) # (P ::= (E)) (zero many) # (E ::= P (in-hole P n) hole (zero many) # Think we should disallow in-hole patterns in language grammar definition. def test_holereachability12(self): lang = DefineLanguage('Lang', [ DefineLanguage.NtDefinition(Nt('n', 'n'), [ BuiltInPat(BuiltInPatKind.Number, 'number', 'number'), ]), DefineLanguage.NtDefinition(Nt('P', 'P'), [ PatSequence([Nt('E', 'E_0')]), ]), DefineLanguage.NtDefinition(Nt('E', 'E'), [ Nt('P', 'P_1'), InHole(Nt('P', 'P'), Nt('n', 'n')), BuiltInPat(BuiltInPatKind.Hole, 'hole', 'hole'), ]), ]) try: graph = NtGraphBuilder(lang).run() DefineLanguage_HoleReachabilitySolver(lang, graph).run() self.fail() except CompilationError as ex: self.assertEqual(str(ex), 'in-hole pattern in define-language') # (n ::= number) (zero zero) # (P ::= (E)) (zero many) # (E ::= P ((in-hole P n) ...) hole (zero many) # Think we should disallow in-hole patterns in language grammar definition. def test_holereachability13(self): lang = DefineLanguage('Lang', [ DefineLanguage.NtDefinition(Nt('n', 'n'), [ BuiltInPat(BuiltInPatKind.Number, 'number', 'number'), ]), DefineLanguage.NtDefinition(Nt('P', 'P'), [ PatSequence([Nt('E', 'E_0')]), ]), DefineLanguage.NtDefinition(Nt('E', 'E'), [ Nt('P', 'P_1'), PatSequence([Repeat(InHole(Nt('P', 'P'), Nt('n', 'n'))) ]), BuiltInPat(BuiltInPatKind.Hole, 'hole', 'hole'), ]), ]) try: graph = NtGraphBuilder(lang).run() DefineLanguage_HoleReachabilitySolver(lang, graph).run() self.fail() except CompilationError as ex: self.assertEqual(str(ex), 'in-hole pattern in define-language') # n ::number (zero, zero) # E ::= (E hole)(E E) n (zero, many) def test_holereachability14(self): lang = DefineLanguage('Lang', [ DefineLanguage.NtDefinition(Nt('n', 'n'), [ BuiltInPat(BuiltInPatKind.Number, 'number', 'number'), ]), DefineLanguage.NtDefinition(Nt('E', 'E'), [ PatSequence([Nt('E', 'E'), Nt('E', 'E') ]), PatSequence([Nt('E', 'E'), BuiltInPat(BuiltInPatKind.Hole, 'hole', 'hole') ]), Nt('n', 'n'), ]), ]) graph = NtGraphBuilder(lang).run() DefineLanguage_HoleReachabilitySolver(lang, graph).run() self.assertEqual(result(lang, 'n'), (NumberOfHoles.Zero, NumberOfHoles.Zero)) self.assertEqual(result(lang, 'E'), (NumberOfHoles.Zero, NumberOfHoles.Many))
import datetime from django.db import models from django.db.models import Q, QuerySet from .base import OCDBase, LinkBase, OCDIDField, RelatedBase, IdentifierBase from .division import Division from .jurisdiction import Jurisdiction from ... import common # abstract models class ContactDetailBase(RelatedBase): """ A base class for ContactDetail models. """ type = models.CharField( max_length=50, choices=common.CONTACT_TYPE_CHOICES, help_text="The type of Contact being defined.", ) value = models.CharField( max_length=300, help_text="The content of the Contact information like a phone number or email address.", ) note = models.CharField( max_length=300, blank=True, help_text="A short, optional note about the Contact value.", ) label = models.CharField( max_length=300, blank=True, help_text="A title for the content of the Contact." ) class Meta: abstract = True def __str__(self): return "{}: {}".format(self.get_type_display(), self.value) class OtherNameBase(RelatedBase): """ A base class for OtherName models. """ name = models.CharField( max_length=500, db_index=True, help_text="An alternative name." ) note = models.CharField( max_length=500, blank=True, help_text="A short, optional note about alternative name.", ) start_date = models.CharField( max_length=10, blank=True, help_text="An optional start date for usage of the alternative name " "in YYYY[-MM[-DD]] string format.", ) end_date = models.CharField( max_length=10, blank=True, help_text="An optional end date for usage of the alternative name in " "YYYY[-MM[-DD]] string format.", ) class Meta: abstract = True def __str__(self): return "{} ({})".format(self.name, self.note) # the actual models class Organization(OCDBase): """ A group of people, typically in a legislative or rule-making context. """ id = OCDIDField(ocd_type="organization") name = models.CharField(max_length=300, help_text="The name of the Organization.") image = models.URLField( blank=True, max_length=2000, help_text="A URL leading to an image that identifies the Organization visually.", ) parent = models.ForeignKey( "self", related_name="children", null=True, # parent can be deleted w/o affecting children on_delete=models.SET_NULL, help_text="A link to another Organization that serves as this Organization's parent.", ) jurisdiction = models.ForeignKey( Jurisdiction, related_name="organizations", null=True, # deletion of a jurisdiction should be hard on_delete=models.PROTECT, help_text="A link to the Jurisdiction that contains this Organization.", ) classification = models.CharField( max_length=100, blank=True, choices=common.ORGANIZATION_CLASSIFICATION_CHOICES, help_text="The type of Organization being defined.", ) founding_date = models.CharField( max_length=10, blank=True, help_text="The founding date of the Organization in YYYY[-MM[-DD]] string format.", ) dissolution_date = models.CharField( max_length=10, blank=True, help_text="The dissolution date of the Organization in YYYY[-MM[-DD]] string format.", ) def __str__(self): return self.name # Access all "ancestor" organizations def get_parents(self): org = self while True: org = org.parent # Django accesses parents lazily, so have to check if one actually exists if org: yield org else: break def get_current_members(self): """ return all Person objects w/ current memberships to org """ today = datetime.date.today().isoformat() return Person.objects.filter( Q(memberships__start_date="") | Q(memberships__start_date__lte=today), Q(memberships__end_date="") | Q(memberships__end_date__gte=today), memberships__organization_id=self.id, ) class Meta: db_table = "opencivicdata_organization" index_together = [ ["jurisdiction", "classification", "name"], ["classification", "name"], ] class OrganizationIdentifier(IdentifierBase): """ Upstream identifiers of an Organization. """ organization = models.ForeignKey( Organization, related_name="identifiers", help_text="Reference to the Organization identified by this alternative identifier.", on_delete=models.CASCADE, ) def __str__(self): tmpl = "%s identifies %s" return tmpl % (self.identifier, self.organization) class Meta: db_table = "opencivicdata_organizationidentifier" class OrganizationName(OtherNameBase): """ Alternate or former name for an Organization. """ organization = models.ForeignKey( Organization, related_name="other_names", help_text="A link to the Organization with this alternative name.", on_delete=models.CASCADE, ) class Meta: db_table = "opencivicdata_organizationname" class OrganizationContactDetail(ContactDetailBase): """ Contact information for an Organization. """ organization = models.ForeignKey( Organization, related_name="contact_details", help_text="A link to the Organization connected to this contact.", on_delete=models.CASCADE, ) class Meta: db_table = "opencivicdata_organizationcontactdetail" class OrganizationLink(LinkBase): """ URL for a document about an Organization. """ organization = models.ForeignKey( Organization, related_name="links", help_text="A reference to the Organization connected to this link.", on_delete=models.CASCADE, ) class Meta: db_table = "opencivicdata_organizationlink" class OrganizationSource(LinkBase): """ Source used in assembling an Organization. """ organization = models.ForeignKey( Organization, related_name="sources", help_text="A link to the Organization connected to this source.", on_delete=models.CASCADE, ) class Meta: db_table = "opencivicdata_organizationsource" class Post(OCDBase): """ A position in an organization that exists independently of the person holding it. """ id = OCDIDField(ocd_type="post") label = models.CharField(max_length=300, help_text="A label describing the Post.") role = models.CharField( max_length=300, blank=True, help_text="The function that the holder of the post fulfills.", ) organization = models.ForeignKey( Organization, related_name="posts", help_text="The Organization in which the post is held.", on_delete=models.CASCADE, ) division = models.ForeignKey( Division, related_name="posts", null=True, blank=True, default=None, help_text="The Division where the post exists.", # if the division goes away the post is just jurisdiction-less on_delete=models.SET_NULL, ) start_date = models.CharField( max_length=10, blank=True, help_text="An optional start date for the Post in YYYY[-MM[-DD]] string format.", ) end_date = models.CharField( max_length=10, blank=True, help_text="An optional end date for the Post in YYYY[-MM[-DD]] string format.", ) maximum_memberships = models.PositiveIntegerField( default=1, help_text="The maximum number of people who can hold this Post." ) class Meta: db_table = "opencivicdata_post" index_together = [["organization", "label"]] def __str__(self): return "{} - {} - {}".format(self.role, self.label, self.organization) class PostContactDetail(ContactDetailBase): """ Contact information for whoever currently occupies a Post. """ post = models.ForeignKey( Post, related_name="contact_details", help_text="A link to the Post connected to this contact.", on_delete=models.CASCADE, ) class Meta: db_table = "opencivicdata_postcontactdetail" class PostLink(LinkBase): """ URL for a document about a Post. """ post = models.ForeignKey( Post, related_name="links", on_delete=models.CASCADE, help_text="A reference to the Post connected to this link.", ) class Meta: db_table = "opencivicdata_postlink" class PersonQuerySet(QuerySet): def member_of(self, organization_name, current_only=True, post=None): filter_params = [] if current_only: today = datetime.date.today().isoformat() filter_params = [ Q(memberships__start_date="") | Q(memberships__start_date__lte=today), Q(memberships__end_date="") | Q(memberships__end_date__gte=today), ] if post: filter_params.append(Q(memberships__post__label=post)) if organization_name.startswith("ocd-organization/"): qs = self.filter( *filter_params, memberships__organization_id=organization_name ) else: qs = self.filter( *filter_params, memberships__organization__name=organization_name ) return qs class Person(OCDBase): """ An individual that has served in a political office. """ objects = PersonQuerySet.as_manager() id = OCDIDField(ocd_type="person") name = models.CharField( max_length=300, db_index=True, help_text="A Person's preferred full name." ) sort_name = models.CharField( max_length=100, default="", blank=True, help_text="A version of a Person's full name rearranged for alphabetical sorting.", ) family_name = models.CharField( max_length=100, blank=True, help_text="A Person's family name." ) given_name = models.CharField( max_length=100, blank=True, help_text="A Person's given name." ) image = models.URLField( blank=True, max_length=2000, help_text="A URL leading to an image that identifies the Person visually.", ) gender = models.CharField(max_length=100, blank=True, help_text="A Person's gender") summary = models.CharField( max_length=500, blank=True, help_text="A short, one-line account of a Person's life.", ) national_identity = models.CharField( max_length=300, blank=True, help_text="The nation a Person is identified with." ) biography = models.TextField( blank=True, help_text="An extended account of a Person's life." ) birth_date = models.CharField( max_length=10, blank=True, help_text="The date of a Person's birth in YYYY[-MM[-DD]] string format.", ) death_date = models.CharField( max_length=10, blank=True, help_text="The date of a Person's death in YYYY[-MM[-DD]] string format.", ) def __str__(self): return self.name def add_other_name(self, name, note=""): PersonName.objects.create(name=name, note=note, person_id=self.id) class Meta: db_table = "opencivicdata_person" verbose_name_plural = "people" class PersonIdentifier(IdentifierBase): """ Upstream identifier for a Person. """ person = models.ForeignKey( Person, related_name="identifiers", on_delete=models.CASCADE, help_text="A link to the Person connected to this alternative identifier.", ) class Meta: db_table = "opencivicdata_personidentifier" class PersonName(OtherNameBase): """ Alternate or former name of a Person. """ person = models.ForeignKey( Person, related_name="other_names", on_delete=models.CASCADE, help_text="A link to the Person connected to this alternative name.", ) class Meta: db_table = "opencivicdata_personname" class PersonContactDetail(ContactDetailBase): """ Contact information for a Person. """ person = models.ForeignKey( Person, related_name="contact_details", on_delete=models.CASCADE, help_text="A link to the Person connected to this contact.", ) class Meta: db_table = "opencivicdata_personcontactdetail" class PersonLink(LinkBase): """ URL for a document about a Person. """ person = models.ForeignKey( Person, related_name="links", on_delete=models.CASCADE, help_text="A reference to the Person connected to this link.", ) class Meta: db_table = "opencivicdata_personlink" class PersonSource(LinkBase): """ Source used in assembling a Person. """ person = models.ForeignKey( Person, related_name="sources", on_delete=models.CASCADE, help_text="A link to the Person connected to this source.", ) class Meta: db_table = "opencivicdata_personsource" class Membership(OCDBase): """ A relationship between a Person and an Organization, possibly including a Post. """ id = OCDIDField(ocd_type="membership") organization = models.ForeignKey( Organization, related_name="memberships", # memberships will go away if the org does on_delete=models.CASCADE, help_text="A link to the Organization in which the Person is a member.", ) person = models.ForeignKey( Person, related_name="memberships", null=True, # Membership will just unlink if the person goes away on_delete=models.SET_NULL, help_text="A link to the Person that is a member of the Organization.", ) person_name = models.CharField( max_length=300, blank=True, default="", help_text="The name of the Person that is a member of the Organization.", ) post = models.ForeignKey( Post, related_name="memberships", null=True, # Membership will just unlink if the post goes away on_delete=models.SET_NULL, help_text=" The Post held by the
number. :type i: int :returns: subsample satisfying the testing condition. :rtype: pandas.DataFrame ''' return smp[self._true_cond(smp, i)] def train_sample( self, smp, i, weights = None ): ''' :param smp: input sample. :type smp: pandas.DataFrame :param i: fold number. :type i: int :param weights: possible name of the column holding the weights. :type weights: str or None :returns: subsample satisfying the training condition. :rtype: pandas.DataFrame ''' c = self._false_cond(smp, i) out = smp[c] if weights is None: sw = None else: sw = self._handle_weights(out, weights) return out, sw class StdMVAmgr(MVAmgr): def __init__( self, classifier, features, sigtrainfrac = 0.75, bkgtrainfrac = 0.75 ): ''' Manager that uses the standard procedure of splitting the samples given the training and testing fractions. :param sigtrainfrac: fraction of signal events used for training. :type sigtrainfrac: float :param bkgtrainfrac: fraction of background events used for training. :type bkgtrainfrac: float .. seealso:: :meth:`MVAmgr.__init__`. ''' MVAmgr.__init__(self, classifier, features ) self.sigtrainfrac = sigtrainfrac self.bkgtrainfrac = bkgtrainfrac def apply( self, sample ): ''' Calculate the MVA method values for the given sample. :param sample: input sample to apply the MVA method. :type sample: pandas.DataFrame :returns: output of the probability and prediction functions. :rtype: pandas.DataFrame, pandas.DataFrame .. seealso:: :meth:`MVAmgr.apply`. ''' return self._process(self.mva, sample[self.features]) def fit( self, sig, bkg, is_sig, weights = None ): ''' Fit the MVA classifier to the given sample. :param sig: signal sample. :type sig: pandas.DataFrame :param bkg: background sample. :type bkg: pandas.DataFrame :param is_sig: signal flag. :type is_sig: str :param weights: possible name of the column holding the weights. :type weights: str or None :returns: training and testing data samples. :rtype: tuple(pandas.DataFrame, pandas.DataFrame) .. seealso:: :meth:`MVAmgr.fit`. ''' info('Divide data in train and test samples') info('Signal train fraction: {}'.format(self.sigtrainfrac), indent=1) train_sig, test_sig = train_test_split(sig, train_size=self.sigtrainfrac) info('Background train fraction: {}'.format(self.bkgtrainfrac), indent=1) train_bkg, test_bkg = train_test_split(bkg, train_size=self.bkgtrainfrac) if weights is not None: train_sig_wgts = self._handle_weights(train_sig, weights) train_bkg_wgts = self._handle_weights(train_bkg, weights) test_sig_wgts = self._handle_weights(test_sig, weights) test_bkg_wgts = self._handle_weights(test_bkg, weights) train_wgts = pandas.concat([train_sig_wgts, train_bkg_wgts], ignore_index=True, sort=False) test_wgts = pandas.concat([test_sig_wgts, test_bkg_wgts], ignore_index=True, sort=False) else: train_wgts = None test_wgts = None info('Merging training and test samples') train_data = pandas.concat([train_sig, train_bkg], ignore_index=True, sort=False) test_data = pandas.concat([test_sig, test_bkg], ignore_index=True, sort=False) self.mva = deepcopy(self._fit(train_data, is_sig, train_wgts)) if weights is not None: train_data[weights] = train_wgts test_data[weights] = test_wgts return train_data, test_data def _do_mva_study( sigsmp, bkgsmp, cfg, outdir, weights, is_sig ): ''' Do an MVA study. :param sigsmp: signal sample. :type sigsmp: pandas.DataFrame :param bkgsmp: background sample. :type bkgsmp: pandas.DataFrame :param cfg: configurable for the MVA manager. :type cfg: ConfMgr or dict :param outdir: output directory. By default is set to "mva_outputs". \ The full output directory is actually determined from the configuration \ ID of the study so, assuming the default value, it would be under \ "mva_outputs/mva_<configuration ID>". :type outdir: str :param weights: name of the column representing the weights of the \ samples. :type weights: str or None :param is_sig: name for the additional column holding the \ signal condition. :type is_sig: str ''' # Create the output directory _aux._makedirs(outdir) cfg_path = os.path.join(outdir, 'config.xml') # Path to the file storing the MVA function func_path = os.path.join(outdir, 'func.pkl') cfg['funcfile'] = func_path # Generating the XML file must be the last thing to do cfg.save(cfg_path) # Display the configuration to run print('''\ ************************* *** MVA configuration *** ************************* {} *************************\ '''.format(cfg), flush=True) # Add the signal flag info('Adding the signal flag') sigsmp = sigsmp.copy() sigsmp[is_sig] = __sig_flag__ bkgsmp = bkgsmp.copy() bkgsmp[is_sig] = __bkg_flag__ # Build the MVA manager mgr = cfg.proc_conf()[__manager_name__] # Train the MVA method info('Initialize training') train, test = mgr.fit(sigsmp, bkgsmp, is_sig, weights) # Save the output method(s) mgr.save(func_path) # Apply the MVA method info('Apply the trained MVA algorithm') for tp, smp in (('train', train), ('test', test)): d, p = mgr.apply_for_overtraining(tp, smp) smp[__mva_proba__] = d smp[__mva_pred__] = p info('Process finished!') return mgr, train, test def mva_study( signame, sigsmp, bkgname, bkgsmp, cfg, outdir = 'mva_outputs', weights = None, is_sig = __is_sig__, overwrite_if_exists = False, return_dir = False, extra_cfg = None ): ''' Main function to perform a MVA study. The results are stored in three different files: one storing the histograms and the ROC curve, another with the configuration used to run this function, and the last stores the proper class to store the MVA algorithm. :param signame: signal sample name. :type signame: str :param sigsmp: signal sample. :type sigsmp: pandas.DataFrame :param bkgname: background sample name. :type bkgname: str :param bkgsmp: background sample. :type bkgsmp: pandas.DataFrame :param cfg: configurable for the MVA manager. :type cfg: ConfMgr or dict :param outdir: output directory. By default is set to "mva_outputs". \ The full output directory is actually determined from the configuration \ ID of the study so, assuming the default value, it would be under \ "mva_outputs/mva_<configuration ID>". :type outdir: str :param weights: name of the column representing the weights of the \ samples. :type weights: str or None :param is_sig: name for the additional column holding the \ signal condition. :type is_sig: str :param overwrite_if_exists: if set to True, then the output directory will \ be recreated if it exists. Otherwise, it raises RuntimeError. :type overwrite_if_exists: bool :param return_dir: if set to True, the directory where the outputs are \ saved is also returned. :type return_dir: bool :param extra_cfg: additional configuration to be stored with the main manager. :type extra_cfg: dict :returns: MVA manager, training and testing samples it might also return \ the directory where the outputs are saved. :rtype: tuple(MVAmgr, pandas.DataFrame, pandas.DataFrame (, str)) :raises RuntimeError: if "overwrite_if_exists = False", and a the output \ directory already exists. Or if an attempt is made to overwrite a file \ with the name of the directory. ''' cfg = _preprocess_study_args(signame, bkgname, cfg, outdir, weights, extra_cfg) if os.path.exists(outdir): if overwrite_if_exists: if not os.path.isdir(outdir): raise RuntimeError('Attempt to overwrite a file with the name of the output directory') shutil.rmtree(outdir) else: raise RuntimeError('Output directory already exists; run with "overwrite_if_exists=True" to overwrite it') robjs = _do_mva_study(sigsmp, bkgsmp, cfg, outdir, weights, is_sig) if return_dir: robjs += (outdir,) return robjs def mva_study_with_id( signame, sigsmp, bkgname, bkgsmp, cfg, outdir = 'mva_outputs', weights = None, is_sig = __is_sig__, raise_if_matches = False, return_dir = False, return_cid = False, extra_cfg = None, ): ''' Main function to perform a MVA study. The results are stored in three different files: one storing the histograms and the ROC curve, another with the configuration used to run this function, and the last stores the proper class to store the MVA algorithm. :param signame: signal sample name. :type signame: str :param sigsmp: signal sample. :type sigsmp: pandas.DataFrame :param bkgname: background sample name. :type bkgname: str :param bkgsmp: background sample. :type bkgsmp: pandas.DataFrame :param cfg: configurable for the MVA manager. :type cfg: ConfMgr or dict :param outdir: output directory. By default is set to "mva_outputs". \ The full output directory is actually determined from the configuration \ ID of the study so, assuming the default value, it would be under \ "mva_outputs/mva_<configuration ID>". :type outdir: str :param weights: name of the column representing the weights of the \ samples. :type weights: str or None :param is_sig: name for the additional column holding the \ signal condition. :type is_sig: str :param raise_if_matches: if set to True, a LookupError will be raised \ if it is found a configuration matching the input. This is useful when \ running many configurations. For example, if one wants to skip those \ which have already been studied. :type raise_if_matches: bool :param return_dir: if set to True, the directory where the outputs are \ saved is also returned. :type return_dir: bool :param return_cid: if set to True, return also the configuration ID. :type return_cid: bool :param extra_cfg: additional configuration to be stored with the main manager. :type extra_cfg: dict :returns: MVA manager, training and testing samples it might also return \ the directory where the outputs are saved and the configuration
<reponame>kitteltom/probabilistic-energy-forecasting<filename>models/deep_ar.py import numpy as np import datetime as dt import time from tqdm import tqdm import os import torch from torch import nn from torch.utils.data import TensorDataset, DataLoader from models.forecast_model import ForecastModel from distributions.empirical import Empirical import utils class DeepAR(nn.Module, ForecastModel, Empirical): """ Implements the global probabilistic forecasting model called DeepAR (Salinas et. al., 2020). """ def __init__( self, y, t, u=None, ID='', seed=0, prediction_length=192, num_samples=100, embedding_dim=None, num_layers=3, num_cells=40, epochs=50, batch_size=512 ): nn.Module.__init__(self) ForecastModel.__init__(self, y, t, u, ID, seed=seed, global_model=True) # Fix the seed torch.manual_seed(seed) # Set the device self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f'Running on {self.device}.') self.seq_len = self.s_w + prediction_length self.seq_delta = self.s_d self.num_samples = num_samples self.embedding_dim = embedding_dim if embedding_dim is not None else int(np.sqrt(self.n)) self.num_layers = num_layers self.num_cells = num_cells self.epochs = epochs self.batch_size = batch_size self.lags_seq = [1, 2, 3, self.s_d - 1, self.s_d, self.s_d + 1, self.s_w - 1, self.s_w, self.s_w + 1] num_features = 6 + len(self.lags_seq) + self.embedding_dim if u is not None: num_features += u.shape[1] self.embedding = nn.Embedding(self.n, self.embedding_dim) self.lstm = nn.LSTM( input_size=num_features, hidden_size=num_cells, num_layers=num_layers, batch_first=True, # dropout=0.1 ) self.mu_fn = nn.Sequential( nn.Linear(num_cells, 1) ) self.sigma2_fn = nn.Sequential( nn.Linear(num_cells, 1), nn.Softplus() ) self.loss_fn = nn.GaussianNLLLoss() self.optimizer = torch.optim.Adam(self.parameters(), lr=1e-3) self.to(self.device) self.X_mean = 0 self.X_std = 1 self.samples_y = np.zeros((self.num_samples, 0, self.n)) # for i in range(self.n): # self.results[i]['samples_y'] = [] # Load a trained model if applicable self.model_path = os.path.join(self.get_out_dir(), '_state_dict_' + self.results[0]["ID"]) if os.path.exists(self.model_path): self.create_features(self.t, self.u, fit=True) self.load_state_dict(torch.load(self.model_path, map_location=self.device)) def __str__(self): return f'DeepAR{self.seed}' def forward(self, X, h=None): """ Forward function of the RNN. Includes an embedding, a LSTM and two separate affine output layers for the distribution parameters. """ embeds = self.embedding(X[:, :, -1].int()) X = torch.cat([X[:, :, :-1], embeds], dim=2) lstm_out, h = self.lstm(X, h) lstm_out = lstm_out.reshape(-1, self.num_cells) return self.mu_fn(lstm_out), self.sigma2_fn(lstm_out), h def create_features(self, t, u=None, fit=False): """ Creates a standardized feature vector consisting of time features and optionally covariates u. Note that fit must be set to True during training. """ seconds = t.map(dt.datetime.timestamp).to_numpy(float) day = 24 * 60 * 60 cos_d = np.cos((2 * np.pi / day) * seconds) sin_d = np.sin((2 * np.pi / day) * seconds) week = day * 7 cos_w = np.cos((2 * np.pi / week) * seconds) sin_w = np.sin((2 * np.pi / week) * seconds) year = day * 365.2425 cos_y = np.cos((2 * np.pi / year) * seconds) sin_y = np.sin((2 * np.pi / year) * seconds) X = np.vstack([cos_d, sin_d, cos_w, sin_w, cos_y, sin_y]).T if u is not None: X = np.hstack([X, u]) if fit: self.X_mean = np.mean(X, axis=0, keepdims=True) self.X_std = np.std(X, axis=0, keepdims=True) X = utils.standardize(X, self.X_mean, self.X_std) return self.tensor(X) def create_labels(self, y): """ Creates rescaled log observations as labels for training. """ y = utils.interpolate_nans(y) return self.tensor(np.log(y / self.y_mean).T[..., np.newaxis]) def create_input(self, t, u=None, y_lags=(), categories=None, fit=False, samples=False): """ Creates the input vector for the RNN consisting of time features, covariates, lagged log observations and time series dependent categorical features. """ X = self.create_features(t, u, fit=fit) if samples: X = X.repeat(self.num_samples, 1, 1) else: X = X.repeat(self.n, 1, 1) for y_lag in y_lags: X = torch.cat([X, y_lag], dim=2) categories = torch.unsqueeze( categories.repeat(len(t), self.num_samples if samples else 1).T, dim=2 ) X = torch.cat([X, categories], dim=2) return X def to_sequence(self, x): """ Creates training sequences of length self.seq_len by reshaping the array of input vectors x. """ num_seq_per_series = (x.shape[1] - self.seq_len + self.seq_delta) // self.seq_delta seq = torch.zeros(self.n, num_seq_per_series, self.seq_len, x.shape[2]) for i in range(num_seq_per_series): seq[:, i, :, :] = x[:, i * self.seq_delta:i * self.seq_delta + self.seq_len, :] return seq.reshape(-1, self.seq_len, x.shape[2]) @staticmethod def tensor(x): """ Numpy array -> torch tensor. """ return torch.from_numpy(x).float() @staticmethod def numpy(x): """ Torch tensor -> numpy array. """ return x.cpu().detach().numpy().astype(float).squeeze() def train_val_split(self): """ Splits the data into 20% validation and 80% training set for early stopping. """ split = int((len(self.t) * 0.2) // self.seq_delta) * self.seq_delta y_train, y_val = self.y[split:], self.y[:split] t_train, t_val = self.t[split:], self.t[:split] if self.u is not None: u_train, u_val = self.u[split:], self.u[:split] else: u_train, u_val = None, None return y_train, y_val, t_train, t_val, u_train, u_val def get_data_loader(self, y, t, u, fit=False): """ Returns a data loader for the observations y, timestamps t and covariates u. The functions creates labels and input vectors, transforms them to sequences and then converts them into a TensorDataset. """ y = self.create_labels(y) y_lags = [] for lag in self.lags_seq: y_lags.append(torch.hstack([y[:, :lag], y[:, :-lag]])) X = self.create_input( t, u, categories=self.tensor(np.arange(self.n)), y_lags=y_lags, fit=fit ) data = TensorDataset( self.to_sequence(X), self.to_sequence(y) ) return DataLoader(data, batch_size=self.batch_size, shuffle=fit) def fit(self): """ Trains the DeepAR model using backprop with the ADAM optimizer and Gaussian negative log likelihood loss. Performs early stopping by evaluating the loss on the validation set. """ super().fit() start_time = time.time() y_train, y_val, t_train, t_val, u_train, u_val = self.train_val_split() train_dataloader = self.get_data_loader(y_train, t_train, u_train, fit=True) val_dataloader = self.get_data_loader(y_val, t_val, u_val, fit=False) train_loss = np.zeros(self.epochs) val_loss = np.zeros(self.epochs) best_val_loss = 0 for epoch in range(self.epochs): # Train mode self.train() batch_cnt = 1 with tqdm(train_dataloader, miniters=int(np.sqrt(len(train_dataloader)))) as batches: for X, y in batches: X, y = X.to(self.device), y.to(self.device) batches.set_description(f'Epoch {epoch + 1:>2}', refresh=False) # Forward pass mu_y, sigma2_y, _ = self(X) loss = self.loss_fn(mu_y, y.reshape(-1, 1), sigma2_y) train_loss[epoch] += (loss.item() - train_loss[epoch]) / batch_cnt batch_cnt += 1 # Backprop self.optimizer.zero_grad() loss.backward() self.optimizer.step() batches.set_postfix(loss=train_loss[epoch], refresh=False) val_loss[epoch] = self.val(val_dataloader) # Early stopping if val_loss[epoch] < best_val_loss: best_val_loss = val_loss[epoch] # Save the trained model torch.save(self.state_dict(), self.model_path) # After training, load the best model self.load_state_dict(torch.load(self.model_path, map_location=self.device)) fit_time = time.time() - start_time for i in range(self.n): self.results[i]['fit_time'] = fit_time / self.n self.results[i]['train_loss'] = train_loss.tolist() self.results[i]['val_loss'] = val_loss.tolist() def val(self, val_dataloader): """ Computes the validation loss. """ # Eval mode self.eval() val_loss = 0 with torch.no_grad(): for X, y in val_dataloader: X, y = X.to(self.device), y.to(self.device) # Forward pass mu_y, sigma2_y, _ = self(X) loss = self.loss_fn(mu_y, y.reshape(-1, 1), sigma2_y) val_loss += loss.item() return val_loss / len(val_dataloader) def sample_per_sample(self, h, y, t, u): """ Computes forecast sample paths by recursively sampling from a Gaussian distribution with the forecast distribution parameters. Here, sample paths are generated for all time series in parallel. Sample path after sample path. """ prediction_length = len(t) samples_y = np.zeros((self.num_samples, prediction_length, self.n)) for sample in tqdm(range(self.num_samples), miniters=int(np.sqrt(self.num_samples))): h_tilde = ( h[0].detach().clone(), h[1].detach().clone() ) y_tilde = y.detach().clone() for step in range(prediction_length): y_lags = [] for lag in self.lags_seq: y_lags.append(torch.unsqueeze(y_tilde[:, -lag], dim=1)) X = self.create_input( t[step:step + 1], u[step:step + 1] if u is not None else None, categories=self.tensor(np.arange(self.n)), y_lags=y_lags ) mu_y, sigma2_y, h_tilde = self(X.to(self.device), h_tilde) y_tilde = torch.hstack([ y_tilde, torch.unsqueeze(torch.normal(mu_y, torch.sqrt(sigma2_y)), dim=1).cpu() ]) samples_y[sample] = np.exp(self.numpy(y_tilde[:, -prediction_length:]).T) * self.y_mean[np.newaxis] return samples_y def sample_per_time_series(self, h, y, t, u): """ Computes forecast sample paths by recursively sampling from a Gaussian distribution with the forecast distribution parameters. Here, the different sample paths are generated in parallel. Time series after time series. """ prediction_length = len(t) samples_y = np.zeros((self.num_samples, prediction_length, self.n)) for i in tqdm(range(self.n), miniters=int(np.sqrt(self.n))): h_tilde = ( h[0][:, i:i + 1].repeat(1, self.num_samples, 1), h[1][:, i:i + 1].repeat(1, self.num_samples, 1) ) y_tilde = y[i, -self.lags_seq[-1]:].repeat(self.num_samples, 1, 1) for step in range(prediction_length): y_lags = [] for lag in self.lags_seq: y_lags.append(torch.unsqueeze(y_tilde[:, -lag], dim=1)) X = self.create_input( t[step:step + 1], u[step:step + 1] if u is not None else None, categories=self.tensor(np.array(i)), y_lags=y_lags, samples=True ) mu_y, sigma2_y, h_tilde = self(X.to(self.device), h_tilde) y_tilde = torch.hstack([ y_tilde, torch.unsqueeze(torch.normal(mu_y, torch.sqrt(sigma2_y)), dim=1).cpu() ]) samples_y[:, :, i] = np.exp(self.numpy(y_tilde[:, -prediction_length:])) * self.y_mean[i] return samples_y def predict(self, t, u=None): """ Predicts the distribution of observations y by recursively computing sample paths for the timestamps t, optionally given covariates u. """ if super().predict(t, u): return start_time = time.time() conditioning_length = self.seq_len - len(t) y = self.create_labels(self.y[-(conditioning_length + self.lags_seq[-1]):]) y_lags = [] for lag in self.lags_seq: y_lags.append(y[:, -(conditioning_length + lag):-lag]) X = self.create_input( self.t[-conditioning_length:], self.u[-conditioning_length:] if u is not None else None, categories=self.tensor(np.arange(self.n)), y_lags=y_lags ) # Eval mode self.eval() with torch.no_grad(): _, _,
<filename>root/filter/image_filter.py #!/usr/bin/python import imageio import matplotlib.pyplot as plt import numpy as np from root.util import ImageUtil as util from PIL import Image _MIN_PIXEL = 0 _MAX_PIXEL = 255 class ImageFilter(): @staticmethod def isGrayScale(img): if len(img.shape) == 2: return True return False @staticmethod def isRGB(img): if len(img.shape) == 3: return True return False @staticmethod def read_image(image_path, type="RGB"): return imageio.imread(image_path, as_gray=False, pilmode=type) @staticmethod def save_image(name, image_as_byte): imageio.imwrite(name, image_as_byte) @staticmethod def normalize_image(img): min_input = img.min() max_input = img.max() min_output = _MIN_PIXEL max_output = _MAX_PIXEL return (img - min_input) * ((max_output - min_output) / (max_input - min_input) + min_output) @staticmethod def apply_negative(img): if len(img.shape) == 2: return _MAX_PIXEL - img else: i = img.copy() i[:,:,0] = _MAX_PIXEL - img[:,:,0] i[:,:,1]= _MAX_PIXEL - img[:,:,1] i[:,:,2] = _MAX_PIXEL - img[:,:,2] return i @staticmethod def apply_logarithmic(img,c = 0): max_obtained = np.max(img) if c == 0: c = (_MAX_PIXEL/np.log(1+_MAX_PIXEL)) log_img = c * np.log(img.astype(np.double)+1) return log_img.astype(np.uint8) @staticmethod def apply_gamma_correction(img, gamma): c = _MAX_PIXEL / (1+ _MAX_PIXEL)**gamma gamma_correction = c * (img**gamma) return gamma_correction @staticmethod def draw_histogram(img, img_name, color="black"): data = img.flatten() plt.hist(data, _MAX_PIXEL + 1, [0, 256], color=color, ec=color) plt.grid(axis='y', alpha=0.75) plt.xlabel('Pixel value') plt.ylabel('Amount') plt.savefig(img_name) plt.close() @staticmethod def histogram(image, bins=256): if len(image.shape) == 2: # Grayscale Image hist = np.zeros(bins, dtype=np.int) flat = np.asarray(image) flat = flat.flatten() for pxl in flat: hist[int(round(pxl,5))] += 1 return hist else: # RGB Image r, g, b = np.zeros(bins), np.zeros(bins), np.zeros(bins) for row in range(image.shape[0]): for col in range(image.shape[1]): r[image[row, col][0]] += 1 g[image[row, col][1]] += 1 b[image[row, col][2]] += 1 return (r, g, b) @staticmethod def apply_histogram_equalization(img): # Getting the pixel values of the image original = np.array(img) # Creating a new matrix for the image equalized_img = np.copy(original) # Getting unique pixels and frequency of the values from the image unique_pixels, pixels_frequency = np.unique( original, return_counts=True) # Image pixels divided by the size of the image pk = pixels_frequency / img.size pk_length = len(pk) # Getting the cummulative frequency of the unique pixel values sk = np.cumsum(pk) # Multiplying the cummulative frequency by the maximum value of the pixels mul = sk * np.max(original) roundVal = np.round(mul) if len(img.shape) == 2: # Mapping the pixels for the equalization for i in range(len(original)): for j in range(len(original[0])): equalized_img[i][j] = roundVal[np.where( unique_pixels == original[i][j])] else: R = ImageFilter.apply_histogram_equalization(img[:,:,0]) G = ImageFilter.apply_histogram_equalization(img[:,:,1]) B = ImageFilter.apply_histogram_equalization(img[:,:,2]) output = np.zeros((R.shape[0], R.shape[1], 3), dtype=np.uint8) output[:,:,0] = R output[:,:,1] = G output[:,:,2] = B equalized_img = output return equalized_img # @staticmethod # def equalize_hist(image, hist): # if len(image.shape) == 2: # Grayscale Image # hist = histogram(image) # x = iter(hist) # y = [next(x)] # for i in x: # y.append(y[-1] + i) # y = np.array(y) # y = ((y - y.min()) * 255) / (y.max() - y.min()) # y = y.astype(np.uint8) # cdf = y # img = (np.asarray(image)).flatten() # flat = np.zeros_like(img, dtype=np.uint8) # for i in range(len(flat)): # flat[i] = int(round(img[i],5)) # output = cdf[flat] # output = np.reshape(output, image.shape) # output[np.where(output > MAX_PIXEL)] = MAX_PIXEL # return output.astype(np.uint8) # else: # R = ImageFilter.equalize_hist(hist) # G = ImageFilter.equalize_hist(hist) # B = ImageFilter.equalize_hist(hist) # output = np.zeros((R.shape[0], R.shape[1], 3), dtype=np.uint8) # output[:,:,0] = R # output[:,:,1] = G # output[:,:,2] = B # obtained = output # return obtained @staticmethod def __get_neighbors_matrix(filter_size, i, j, data): mid_position = filter_size // 2 neighbors = [] for z in range(filter_size): if i + z - mid_position < 0 or i + z - mid_position > len(data) - 1: for c in range(filter_size): neighbors.append(0) elif j + z - mid_position < 0 or j + mid_position > len(data[0]) - 1: neighbors.append(0) else: for k in range(filter_size): neighbors.append(data[i + z - mid_position] [j + k - mid_position]) return neighbors @staticmethod def get_median(filter_size, i, j, data): mid_position = filter_size // 2 neighbors = ImageFilter.__get_neighbors_matrix(filter_size, i, j, data) neighbors.sort() return neighbors[len(neighbors) // 2] @staticmethod def apply_median(img, filter_size): filter_size = util.format_filter_size(filter_size) obtained, original = util.get_empty_image_with_same_dimensions( img) if len(img.shape) == 2: for i in range(len(original)): for j in range(len(original[0])): obtained[i][j] = ImageFilter.get_median( filter_size, i, j, original) else: R = ImageFilter.apply_median(img[:,:,0],filter_size) G = ImageFilter.apply_median(img[:,:,1],filter_size) B = ImageFilter.apply_median(img[:,:,2],filter_size) output = np.zeros((R.shape[0], R.shape[1], 3), dtype=np.uint8) output[:,:,0] = R output[:,:,1] = G output[:,:,2] = B obtained = output return obtained @staticmethod def apply_piecewise_linear(img, coordinates_x, coordinates_y): """Apply Piecewise Linear filter on an image basead on an group of coordinates. Parameters ---------- img : numpy array The target image where the filter would be applied coordinates_x : array The coordinates X from all points to the interpolated already in the desired order. coordinates_y : array The coordinates Y from all points to the interpolated already in the desired order. Returns ------- numpy array an array representing the obtained image after apply the filter """ x = np.array(range(0, _MAX_PIXEL + 1), dtype=np.uint8) interp = np.interp(x, coordinates_x, coordinates_y) obtained = img.copy() height, width = util.get_dimensions(obtained) if len(img.shape) == 2: for i in range(height): for j in range(width): index = int(np.round(obtained[i][j])) obtained[i][j] = interp[index] else: R = ImageFilter.apply_piecewise_linear(img[:,:,0],coordinates_x, coordinates_y) G = ImageFilter.apply_piecewise_linear(img[:,:,1],coordinates_x, coordinates_y) B = ImageFilter.apply_piecewise_linear(img[:,:,2],coordinates_x, coordinates_y) output = np.zeros((R.shape[0], R.shape[1], 3), dtype=np.uint8) output[:,:,0] = R output[:,:,1] = G output[:,:,2] = B obtained = output return obtained @staticmethod def apply_convolution(image, kernel): if len(image.shape) == 2: image_padded = np.zeros((image.shape[0] + 2, image.shape[1] + 2)) image_padded[1:-1, 1:-1] = image out = np.zeros_like(image) for x in range(image.shape[1]): for y in range(image.shape[0]): out[y, x] = (kernel * image_padded[y:y + 3, x:x + 3]).sum() else: R = ImageFilter.apply_convolution(image[:,:,0],kernel) G = ImageFilter.apply_convolution(image[:,:,1],kernel) B = ImageFilter.apply_convolution(image[:,:,2],kernel) output = np.zeros((R.shape[0], R.shape[1], 3), dtype=np.uint8) output[:,:,0] = R output[:,:,1] = G output[:,:,2] = B out = output return out # @staticmethod # def apply_convolution(img, filter_matrix): # obtained, original = util.get_empty_image_with_same_dimensions( # img) # height, width = util.get_dimensions(img) # #Se for grayscale # if len(img.shape) == 2: # for row in range(1, height - 1): # for col in range(1, width - 1): # value = filter_matrix * \ # img[(row - 1):(row + 2), (col - 1):(col + 2)] # max_obtained_value = max(0, value.sum()) # obtained[row, col] = min(max_obtained_value, _MAX_PIXEL) # else: # channel = img.shape[2] # for c in range (channel): # for row in range(1, height - 1): # for col in range(1, width - 1): # value = filter_matrix * \ # img[(row - 1):(row + 2), (col - 1):(col + 2),c] # max_obtained_value = max(0, value.sum()) # obtained[row, col,c] = min(max_obtained_value, _MAX_PIXEL) # return obtained @staticmethod def apply_laplacian(img): kernel = np.array([ [-1, -1, -1], [-1, 8, -1], [-1, -1, -1]]) obtained = ImageFilter.apply_convolution(img, kernel) norm_obtained = util.normalize_image(obtained) sharpened = img + norm_obtained norm_sharpened = util.normalize_image(sharpened) return norm_obtained, norm_sharpened @staticmethod def create_gaussian_kernel(filter_size, sigma): """ Creates a 2D gaussian kernel using filter_size and sigma """ filter_size = util.format_filter_size(filter_size) ax = np.linspace(-(filter_size - 1) / 2., (filter_size - 1) / 2., filter_size) xx, yy = np.meshgrid(ax, ax) kernel = np.exp(-0.5 * (np.square(xx) + np.square(yy)) / np.square(sigma)) return kernel / np.sum(kernel) @staticmethod def apply_gaussian(img, filter_size=3, sigma=1.): kernel = ImageFilter.create_gaussian_kernel(filter_size, sigma) return ImageFilter.apply_convolution(img, kernel) @staticmethod def apply_sobel(img): # Horizontal sobel matrix horizontal = np.array([ [-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) # Vertical sobel matrix vertical = np.array([ [-1, -2, -1], [0, 0, 0], [1, 2, 1]]) height, width = util.get_dimensions(img) # define images with 0s new_horizontal_image = np.zeros((height, width), np.uint8) new_vertical_image = np.zeros((height, width), np.uint8) new_gradient_image = np.zeros((height, width), np.uint8) if len(img.shape) == 2: # # define images with 0s # new_horizontal_image = np.zeros((height, width), np.uint8) # new_vertical_image = np.zeros((height, width), np.uint8) # new_gradient_image = np.zeros((height, width), np.uint8) for i in range(1, height - 1): for j in range(1, width - 1): horizontal_grad = ImageFilter.apply_gradient_core( horizontal, img, i, j) new_horizontal_image[i - 1, j - 1] = abs(horizontal_grad) vertical_grad = ImageFilter.apply_gradient_core( vertical, img, i, j) new_vertical_image[i - 1, j - 1] = abs(vertical_grad) # Edge Magnitude new_gradient_image[i - 1, j - 1] =
"""Functions to calculate the quidel sensor statistic.""" import numpy as np import pandas as pd def _prop_var(p, n): """ Calculate variance of proportion. var(X/n) = 1/(n^2)var(X) = (npq)/(n^2) = pq/n """ return p * (1 - p) / n def fill_dates(y_data, first_date, last_date): """ Ensure all dates are listed in the data, otherwise, add days with 0 counts. Args: y_data: dataframe with datetime index first_date: datetime.datetime first date to be included last_date: datetime.datetime last date to be inclluded Returns: dataframe containing all dates given """ cols = y_data.columns if first_date not in y_data.index: y_data = y_data.append(pd.DataFrame(dict.fromkeys(cols, 0.), columns=cols, index=[first_date])) if last_date not in y_data.index: y_data = y_data.append(pd.DataFrame(dict.fromkeys(cols, 0.), columns=cols, index=[last_date])) y_data.sort_index(inplace=True) y_data = y_data.asfreq('D', fill_value=0) y_data.fillna(0, inplace=True) return y_data def _slide_window_sum(arr, k): """ Sliding window sum, with fixed window size k. For indices 0:k, we DO compute a sum, using whatever points are available. Reference: https://stackoverflow.com/a/38507725 Args: arr: np.ndarray Array over which to calculate sliding window sum k: int Window size Returns: sarr: np.ndarray Array of same length of arr, holding the sliding window sum. """ if not isinstance(k, int): raise ValueError('k must be int.') temp = np.append(np.zeros(k - 1), arr) sarr = np.convolve(temp, np.ones(k, dtype=int), 'valid') return sarr def _geographical_pooling(tpooled_tests, tpooled_ptests, min_obs, max_borrow_obs): """ Calculate proportion of parent samples (tests) that must be "borrowed" to compute the statistic. If there are no samples available in the parent, the borrow_prop is 0. If the parent does not have enough samples, we return a borrow_prop of 1, and the fact that the pooled samples are insufficient are handled in the statistic fitting step. Args: tpooled_tests: np.ndarray[float] Number of tests after temporal pooling. There should be no np.nan here. tpooled_ptests: np.ndarray[float] Number of parent tests after temporal pooling. There should be no np.nan here. min_obs: int Minimum number of observations in order to compute a ratio max_borrow_obs: int Maximum number of observations can be borrowed in geographical pooling Returns: np.ndarray[float] Same length as tests; proportion of parent observations to borrow. """ if (np.any(np.isnan(tpooled_tests)) or np.any(np.isnan(tpooled_ptests))): print(tpooled_tests) print(tpooled_ptests) raise ValueError('[parent] tests should be non-negative ' 'with no np.nan') if max_borrow_obs > min_obs: raise ValueError('The maximum umber of observations can be borrowed ' 'in geographical pooling should be smaller than ' 'the minimum number of observations in order to ' 'compute a ratio') # STEP 1: "TOP UP" USING PARENT LOCATION # Number of observations we need to borrow to "top up" borrow_tests = np.maximum( np.minimum(min_obs - tpooled_tests, max_borrow_obs), 0) # There are many cases (a, b > 0): # Case 1: a / b => no problem # Case 2: a / 0 => np.inf => borrow_prop becomes 1 # Case 3: 0 / a => no problem # Case 4: 0 /0 => np.nan => 0 this can happen when a # region has enough observations but its parent has nothing. # We ignore RuntimeWarnings and handle them ourselves. # Reference: https://stackoverflow.com/a/29950752 with np.errstate(divide='ignore', invalid='ignore'): borrow_prop = borrow_tests / tpooled_ptests # If there's nothing to borrow, then ya can't borrow borrow_prop[np.isnan(borrow_prop)] = 0 # Can't borrow more than total no. observations. # Relies on the fact that np.inf > 1 borrow_prop[borrow_prop > 1] = 1 return borrow_prop def raw_positive_prop(positives, tests, min_obs): """ Calculate proportion of positive tests for a single location with no temporal smoothing. If on any day t, tests[t] < min_obs, then we report np.nan. The second and third returned np.ndarray are the standard errors, calculated using the binomial proportion variance _prop_var(); and the sample size. Args: positives: np.ndarray[float] Number of positive tests, ordered in time, where each array element represents a subsequent day. If there were no positive tests or there were no tests performed, this should be zero (never np.nan). tests: np.ndarray[float] Number of tests performed. If there were no tests performed, this should be zero (never np.nan). We should always have positive[t] <= tests[t] for all t. min_obs: int Minimum number of observations in order to compute a proportion. pool_days: int Will not be used, just to keep the format the same for raw and smoothed Returns: np.ndarray Proportion of positive tests on each day, with the same length as positives and tests. np.ndarray Standard errors, calculated using the usual binomial variance. Of the same length as above. np.ndarray Sample size used to compute estimates. """ positives = positives.astype(float) tests = tests.astype(float) if np.any(np.isnan(positives)) or np.any(np.isnan(tests)): print(positives, tests) raise ValueError('positives and tests should be non-negative ' 'with no np.nan') if np.any(positives > tests): raise ValueError('positives should not exceed tests') if min_obs <= 0: raise ValueError('min_obs should be positive') # nan out any days where there are insufficient observations # this also elegantly sidesteps 0/0 division. tests[tests < min_obs] = np.nan positive_prop = positives / tests se = np.sqrt(_prop_var(positive_prop, tests)) sample_size = tests return positive_prop, se, sample_size def smoothed_positive_prop(positives, tests, min_obs, max_borrow_obs, pool_days, parent_positives=None, parent_tests=None): """ Calculate the proportion of negative tests for a single location with temporal smoothing. For a given day t, if sum(tests[(t-pool_days+1):(t+1)]) < min_obs, then we 'borrow' min_obs - sum(tests[(t-pool_days+1):(t+1)]) observations from the parents over the same timespan. Importantly, it will make sure NOT to borrow observations that are _already_ in the current geographic partition being considered. If min_obs is specified but not satisfied over the pool_days, and parent arrays are not provided, then we report np.nan. The second and third returned np.ndarray are the standard errors, calculated using the binomial proportion variance _prop_var(); and the reported sample_size. Args: positives: np.ndarray[float] Number of positive tests, ordered in time, where each array element represents a subsequent day. If there were no positive tests or there were no tests performed, this should be zero (never np.nan). tests: np.ndarray[float] Number of tests performed. If there were no tests performed, this should be zero (never np.nan). We should always have positives[t] <= tests[t] for all t. min_obs: int Minimum number of observations in order to compute a proportion. max_borrow_obs: int Maximum number of observations can be borrowed in geographical pooling pool_days: int Number of days in the past (including today) over which to pool data. parent_positives: np.ndarray Like positives, but for the parent geographic partition (e.g., State) If this is None, then this shall have 0 positives uniformly. parent_tests: np.ndarray Like tests, but for the parent geographic partition (e.g., State) If this is None, then this shall have 0 tests uniformly. Returns: np.ndarray Proportion of positive tests after the pool_days pooling, with the same length as positives and tests. np.ndarray Standard errors, calculated using the usual binomial variance. Of the same length as above. np.ndarray Effective sample size (after temporal and geographic pooling). """ positives = positives.astype(float) tests = tests.astype(float) if (parent_positives is None) or (parent_tests is None): has_parent = False else: has_parent = True parent_positives = parent_positives.astype(float) parent_tests = parent_tests.astype(float) if np.any(np.isnan(positives)) or np.any(np.isnan(tests)): raise ValueError('positives and tests ' 'should be non-negative with no np.nan') if np.any(positives > tests): raise ValueError('positives should not exceed tests') if has_parent: if np.any(np.isnan(parent_positives)) or np.any(np.isnan(parent_tests)): raise ValueError('parent positives and parent tests ' 'should be non-negative with no np.nan') if np.any(parent_positives > parent_tests): raise ValueError('positives should not exceed tests') if min_obs <= 0: raise ValueError('min_obs should be positive') if (pool_days <= 0) or not isinstance(pool_days, int): raise ValueError('pool_days should be a positive int') # STEP 0: DO THE TEMPORAL POOLING tpooled_positives = _slide_window_sum(positives, pool_days) tpooled_tests = _slide_window_sum(tests, pool_days) if has_parent: tpooled_ppositives = _slide_window_sum(parent_positives, pool_days) tpooled_ptests = _slide_window_sum(parent_tests, pool_days) borrow_prop = _geographical_pooling(tpooled_tests, tpooled_ptests, min_obs, max_borrow_obs) pooled_positives = (tpooled_positives + borrow_prop * tpooled_ppositives) pooled_tests = (tpooled_tests + borrow_prop * tpooled_ptests) else: pooled_positives = tpooled_positives pooled_tests = tpooled_tests ## STEP 2: CALCULATE AS THOUGH THEY'RE RAW return raw_positive_prop(pooled_positives, pooled_tests, min_obs) def raw_tests_per_device(devices, tests, min_obs): """ Calculate the tests per device for a single geographic location, without any temporal smoothing. If on any day t, tests[t] < min_obs, then we report np.nan. The second and
determined from the relation `counts_total = counts_signal + counts_background` Note that if `background_variance=0`, it makes more sense to use `GammaUpperLimit`, which is equivalent but analytical rather than numerical. """ self.limit = limit self.confidence_level = confidence_level _d_unscaled = GeneralGammaDistributionPositive( scale_factor=1, counts_total=counts_total, counts_background=counts_background, counts_signal=counts_signal, background_variance=background_variance) limit_unscaled = _d_unscaled.ppf(self.confidence_level) # use the value of the limit to determine the scale factor scale_factor = self.limit / limit_unscaled super().__init__( scale_factor=scale_factor, counts_total=counts_total, counts_background=counts_background, counts_signal=counts_signal, background_variance=background_variance) def __repr__(self): return ('flavio.statistics.probability.GeneralGammaUpperLimit' '({}, {}, counts_total={}, counts_signal={}, ' 'background_variance={})').format(self.limit, self.confidence_level, self.counts_total, self.counts_signal, self.background_variance) class KernelDensityEstimate(NumericalDistribution): """Univariate kernel density estimate. Parameters: - `data`: 1D array - `kernel`: instance of `ProbabilityDistribution` used as smoothing kernel - `n_bins` (optional): number of bins used in the intermediate step. This normally does not have to be changed. """ def __init__(self, data, kernel, n_bins=None): self.data = data assert kernel.central_value == 0, "Kernel density must have zero central value" self.kernel = kernel self.n = len(data) if n_bins is None: self.n_bins = min(1000, self.n) else: self.n_bins = n_bins y, x_edges = np.histogram(data, bins=self.n_bins, density=True) x = (x_edges[:-1] + x_edges[1:])/2. self.y_raw = y self.raw_dist = NumericalDistribution(x, y) cdist = convolve_distributions([self.raw_dist, self.kernel], 'sum') super().__init__(cdist.x, cdist.y) def __repr__(self): return 'flavio.statistics.probability.KernelDensityEstimate' + \ '({}, {}, {})'.format(self.data, repr(self.kernel), self.n_bins) class GaussianKDE(KernelDensityEstimate): """Univariate Gaussian kernel density estimate. Parameters: - `data`: 1D array - `bandwidth` (optional): standard deviation of the Gaussian smoothing kernel. If not provided, Scott's rule is used to estimate it. - `n_bins` (optional): number of bins used in the intermediate step. This normally does not have to be changed. """ def __init__(self, data, bandwidth=None, n_bins=None): if bandwidth is None: self.bandwidth = len(data)**(-1/5.) * np.std(data) else: self.bandwidth = bandwidth super().__init__(data=data, kernel = NormalDistribution(0, self.bandwidth), n_bins=n_bins) def __repr__(self): return 'flavio.statistics.probability.GaussianKDE' + \ '({}, {}, {})'.format(self.data, self.bandwidth, self.n_bins) class MultivariateNormalDistribution(ProbabilityDistribution): """A multivariate normal distribution. Parameters: - central_value: the location vector - covariance: the covariance matrix - standard_deviation: the square root of the variance vector - correlation: the correlation matrix If the covariance matrix is not specified, standard_deviation and the correlation matrix have to be specified. Methods: - get_random(size=None): get `size` random numbers (default: a single one) - logpdf(x, exclude=None): get the logarithm of the probability density function. If an iterable of integers is given for `exclude`, the parameters at these positions will be removed from the covariance before evaluating the PDF, effectively ignoring certain dimensions. Properties: - error_left, error_right: both return the vector of standard deviations """ def __init__(self, central_value, covariance=None, standard_deviation=None, correlation=None): """Initialize PDF instance. Parameters: - central_value: vector of means, shape (n) - covariance: covariance matrix, shape (n,n) """ if covariance is not None: self.covariance = covariance self.standard_deviation = np.sqrt(np.diag(self.covariance)) self.correlation = self.covariance/np.outer(self.standard_deviation, self.standard_deviation) np.fill_diagonal(self.correlation, 1.) else: if standard_deviation is None: raise ValueError("You must specify either covariance or standard_deviation") self.standard_deviation = np.array(standard_deviation) if correlation is None: self.correlation = np.eye(len(self.standard_deviation)) else: if isinstance(correlation, (int, float)): # if it's a number, return delta_ij + (1-delta_ij)*x n_dim = len(central_value) self.correlation = np.eye(n_dim) + (np.ones((n_dim, n_dim))-np.eye(n_dim))*float(correlation) else: self.correlation = np.array(correlation) self.covariance = np.outer(self.standard_deviation, self.standard_deviation)*self.correlation super().__init__(central_value, support=np.array([ np.asarray(central_value) - 6*self.standard_deviation, np.asarray(central_value) + 6*self.standard_deviation ])) # to avoid ill-conditioned covariance matrices, all data are rescaled # by the inverse variances self.err = np.sqrt(np.diag(self.covariance)) self.scaled_covariance = self.covariance / np.outer(self.err, self.err) assert np.all(np.linalg.eigvals(self.scaled_covariance) > 0), "The covariance matrix is not positive definite!" + str(covariance) def __repr__(self): return 'flavio.statistics.probability.MultivariateNormalDistribution' + \ '({}, {})'.format(self.central_value, self.covariance) def get_random(self, size=None): """Get `size` random numbers (default: a single one)""" return np.random.multivariate_normal(self.central_value, self.covariance, size) def reduce_dimension(self, exclude=None): """Return a different instance where certain dimensions, specified by the iterable of integers `exclude`, are removed from the covariance. If `exclude` contains all indices but one, an instance of `NormalDistribution` will be returned. """ if not exclude: return self # if parameters are to be excluded, construct a # distribution with reduced mean vector and covariance matrix _cent_ex = np.delete(self.central_value, exclude) _cov_ex = np.delete( np.delete(self.covariance, exclude, axis=0), exclude, axis=1) if len(_cent_ex) == 1: # if only 1 dimension remains, can use a univariate Gaussian _dist_ex = NormalDistribution( central_value=_cent_ex[0], standard_deviation=np.sqrt(_cov_ex[0, 0])) else: # if more than 1 dimension remains, use a (smaller) # multivariate Gaussian _dist_ex = MultivariateNormalDistribution( central_value=_cent_ex, covariance=_cov_ex) return _dist_ex def logpdf(self, x, exclude=None): """Get the logarithm of the probability density function. Parameters: - x: vector; position at which PDF should be evaluated - exclude: optional; if an iterable of integers is given, the parameters at these positions will be removed from the covariance before evaluating the PDF, effectively ignoring certain dimensions. """ if exclude is not None: # if parameters are to be excluded, construct a temporary # distribution with reduced mean vector and covariance matrix # and call its logpdf method _dist_ex = self.reduce_dimension(exclude=exclude) return _dist_ex.logpdf(x) # undoing the rescaling of the covariance pdf_scaled = scipy.stats.multivariate_normal.logpdf( x / self.err, self.central_value / self.err, self.scaled_covariance) sign, logdet = np.linalg.slogdet(self.covariance) return pdf_scaled + (np.linalg.slogdet(self.scaled_covariance)[1] - np.linalg.slogdet(self.covariance)[1]) / 2. def get_error_left(self, nsigma=1): """Return the lower errors""" return nsigma * self.err def get_error_right(self, nsigma=1): """Return the upper errors""" return nsigma * self.err def get_cov_mat(self): """Return the covariance matrix""" return self.covariance class MultivariateNumericalDistribution(ProbabilityDistribution): """A multivariate distribution with PDF specified numerically.""" def __init__(self, xi, y, central_value=None): """Initialize a multivariate numerical distribution. Parameters: - `xi`: for an N-dimensional distribution, a list of N 1D arrays specifiying the grid in N dimensions. The 1D arrays must contain real, evenly spaced values in strictly ascending order (but the spacing can be different for different dimensions). Any of the 1D arrays can also be given alternatively as a list of two numbers, which will be assumed to be the upper and lower boundaries, while the spacing will be determined from the shape of `y`. - `y`: PDF values on the grid defined by the `xi`. If the N `xi` have length M1, ..., MN, `y` has dimension (M1, ..., MN). This is the same shape as the grid obtained from `numpy.meshgrid(*xi, indexing='ij')`. - central_value: if None (default), will be set to the mode of the distribution, i.e. the N-dimensional xi-vector where y is largest (by looking up the input arrays, i.e. without interpolation!) """ for x in xi: # check that grid spacings are even up to per mille precision d = np.diff(x) if abs(np.min(d)/np.max(d)-1) > 1e-3: raise ValueError("Grid must be evenly spaced per dimension") self.xi = [np.asarray(x) for x in xi] self.y = np.asarray(y) for i, x in enumerate(xi): if len(x) == 2: self.xi[i] = np.linspace(x[0], x[1], self.y.shape[i]) if central_value is not None: super().__init__(central_value=central_value, support=(np.asarray(self.xi).T[0], np.asarray(self.xi).T[-1])) else: # if no central value is specified, set it to the mode mode_index = (slice(None),) + np.unravel_index(self.y.argmax(), self.y.shape) mode = np.asarray(np.meshgrid(*self.xi, indexing='ij'))[mode_index] super().__init__(central_value=mode, support=None) _bin_volume = np.prod([x[1] - x[0] for x in self.xi]) self.y_norm = self.y / np.sum(self.y) / _bin_volume # normalize PDF to 1 # ignore warning from log(0)=-np.inf with np.errstate(divide='ignore', invalid='ignore'): # logy = np.nan_to_num(np.log(self.y_norm)) logy = np.log(self.y_norm) logy[np.isneginf(logy)] = -1e100 self.logpdf_interp = RegularGridInterpolator(self.xi, logy, fill_value=-np.inf, bounds_error=False) # the following is needed for get_random: initialize to None self._y_flat = None self._cdf_flat = None def __repr__(self): return 'flavio.statistics.probability.MultivariateNumericalDistribution' + \ '({}, {}, {})'.format([x.tolist() for x in self.xi], self.y.tolist(), list(self.central_value)) def get_random(self, size=None): """Draw a random number from the distribution. If size is not None but an integer N, return an array of N numbers. For the MultivariateNumericalDistribution, the PDF from which the random numbers are drawn is approximated to be piecewise constant in hypercubes around the points of the lattice spanned by the `xi`. A finer lattice spacing will lead to a smoother distribution of random numbers (but will also be slower). """ if size is None: return self._get_random() else: return np.array([self._get_random() for i in range(size)]) def _get_random(self): # if these have not been initialized, do it (once) if self._y_flat is None: # get a flattened array of the PDF self._y_flat = self.y.flatten() if self._cdf_flat is None: # get the (discrete) 1D CDF _cdf_flat = np.cumsum(self._y_flat) # normalize to 1 self._cdf_flat = _cdf_flat/_cdf_flat[-1]
<gh_stars>1-10 # !/usr/bin/env python # -*- coding:utf-8 _*- # @Author: swang # @Contact: <EMAIL> # @Project Name: keyword_spotting_system # @File: test.py # @Time: 2021/11/11/21:51 # @Software: PyCharm import os, sys CRT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(CRT_DIR) # print('sys.path:', sys.path) import time import json import numpy as np import threading import multiprocessing from pyaudio import PyAudio from collections import deque # , BlockingQueue from queue import Queue from SoundSourceLocalization.SSL_Settings import * from SoundSourceLocalization.mylib.utils import standard_normalizaion # from SoundSourceLocalization.lib.audiolib import normalize_single_channel_audio, audio_segmenter_4_numpy, \ # audio_energy_ratio_over_threshold, audio_energy_over_threshold, audiowrite, audioread import tensorflow.compat.v1 as tf from kws_streaming.layers import modes from kws_streaming.models import models from kws_streaming.models import utils from kws_streaming.train import inference from scipy.special import softmax as scipy_softmax WORD_QUEUE_MAX_LENGTH = None WORD_QUEUE = deque() # 最大长度将在KWS中获得检测步长后修正 WORD_QUEUE_UPDATA = False AUDIO_QUEUE = Queue() # (maxsize=3 * self.clip_duration_ms) # TODO 存在内存溢出风险 SSL_AUDIO = [] SSL_AUDIO_UPDATE = False class VoiceMenu(object): def __init__(self): # print('-' * 20, 'init VoiceMenu class', '-' * 20) super(VoiceMenu, self).__init__() self.keyword_ls = ['walker', 'voice', 'menu', 'redraw', 'the', 'map', 'charge', 'start', 'sleep', 'off', 'hand', 'operation', 'yes', 'no', ] self.walker_name = 'walker' self.menu_name = 'voice menu' self.command_ls = ['voice menu', 'redraw map', 'charge', 'start', 'sleep', 'voice menu off', 'hand operation', 'yes', 'no', ] self.affirm_ls = ['yes', 'no'] self.wait_action_ls = ['redraw map', 'charge', ] # 不考虑 voice menu self.instant_action_ls = ['start', 'sleep', 'voice menu off', 'hand operation', ] # 不考虑 voice menu self.excluded_ls = ['silence', 'unknown', ] self.action_ls = self.wait_action_ls + self.instant_action_ls self.wait_time = 10 # s 'inf' for waiting forever self.last_command = None self.last_command_time = None global MAX_COMMAND_SECONDS self.command_interval = MAX_COMMAND_SECONDS + 0.1 # s def detect_command(self, command_ls, wait_time): # menu_name is detected by default, even if it isn't in command_ls global WORD_QUEUE, WORD_QUEUE_UPDATA, WORD_QUEUE_MAX_LENGTH # command_ls = command_ls if ('voice menu off' in command_ls) else command_ls + ['voice menu off'] start_time = time.time() returnCommand = False waiting_off = False # 用来区分 'voice menu' 和 'voice menu off' while True: if (wait_time != 'inf') and (time.time() - start_time > wait_time): return None if not (WORD_QUEUE_UPDATA and (len(WORD_QUEUE) == WORD_QUEUE_MAX_LENGTH)): time.sleep(0.1) WORD_QUEUE_UPDATA = False word_ls = list(WORD_QUEUE) # 生成命令 command = self.convert_word_to_command(word_ls, command_ls) # 重复命令处理 if (command is not None) and (command != self.menu_name): if command != self.last_command: returnCommand = True else: assert self.last_command_time is not None, ('param {last_command_time} was not updated by mistake') if time.time() - self.last_command_time > self.command_interval: returnCommand = True else: continue elif command == self.menu_name: waiting_off = True elif command is None: if waiting_off: # 未等到off,已结束输入 returnCommand = True command = self.menu_name else: continue else: print('Warning: Bad case exists!') if returnCommand: self.last_command = command self.last_command_time = time.time() WORD_QUEUE.clear() print('command:', command) return command def convert_word_to_command(self, word_ls, command_ls): # TODO 待优化,考虑有序列表 # word_ls = [('voice', 0.9971545), ('voice', 0.99989796), ('voice', 0.99968916), ('voice', 0.983763), # ('menu', 0.86595213), ('menu', 0.9521046), ('menu', 0.82160306)] word_ls = [i for i in word_ls if ((i[0] not in self.excluded_ls) and (i[1] > 0.7))] if not len(word_ls): return None words, probs = list(zip(*word_ls)) words, probs = np.asarray(words), np.asarray(probs) uni_words = np.unique(words) uni_probs = [] for wd in uni_words: uni_probs.append(probs[words == wd].mean()) uni_probs = np.asarray(uni_probs) candi_cmd_ls = [] for cmd in command_ls: cmd_set = set(cmd.split(' ')) if cmd_set.issubset(uni_words): # 不考虑顺序 candi_cmd_ls.append(cmd) if ('voice menu off' in candi_cmd_ls) and ('voice menu' in candi_cmd_ls): candi_cmd_ls.remove('voice menu') if len(candi_cmd_ls) == 0: return None elif len(candi_cmd_ls) == 1: return candi_cmd_ls[0] else: # 从多个候选命令中挑出一个 cmd_prob_ls = [] for cmd in candi_cmd_ls: wds = cmd.split(' ') cmd_prob = [uni_probs[uni_words == wd] for wd in wds] cmd_prob_ls.append(np.mean(cmd_prob)) return candi_cmd_ls[np.argmax(cmd_prob_ls)] def broadcast(self, command, level=None): ''' Args: command: level: level of broadcasting 1: Sure to ... ; 2: Will ... automatically in half a minute. Say "No" or press the emergency button to cancel; 3: Complete ... ''' if command == None: print('Broadcast: Time out. And exit the voice menu automatically.') # elif command == self.walker_name: # print(f'Broadcast: walker_name (\'{self.walker_name}\') is detected.') elif command == self.menu_name: print('Broadcast: Voice menu started.') elif command in self.wait_action_ls: if level == 1: print(f'Broadcast: Sure to {command} ?') elif level == 2: print( f'Broadcast: Will {command} automatically in half a minute. \n\t\t\tSay "No" or press the emergency button to cancel?') elif level == 3: print(f'Broadcast: {command} was completed') else: print(f'Warning: Level ({level}) is illegal!') elif command in self.instant_action_ls: if level == 1: print(f'Broadcast: Sure to {command} ?') elif level == 2: print(f'Broadcast: {command} was completed') else: print(f'Warning: Level ({level}) is illegal!') else: print('-' * 20, f'Warning: Unknow command -> {command}!', '-' * 20) def run(self): # streaming KWS model detects keywords all the time while True: time.sleep(0.1) name = self.detect_command([self.menu_name, ], 'inf') if name != self.menu_name: # print(f'Warning: Will skip \'{name}\' while waiting for menu_name({self.menu_name})') continue while True: # voice menu started self.broadcast(self.menu_name, ) action = self.detect_command(self.action_ls + [self.menu_name], self.wait_time) if action == None: # 超时,返回监听 voice menu self.broadcast(action, ) break elif action == self.menu_name: continue elif action in self.instant_action_ls: self.broadcast(action, level=1) affirm = self.detect_command(self.affirm_ls + [self.menu_name], self.wait_time) if affirm == 'yes': self.broadcast(action, level=2) return action elif affirm in ['no', self.menu_name, None]: continue else: print(f'Warning: Error detection -> \'{affirm}\' \ while detecing affirm({self.affirm_ls + [self.menu_name]})') elif action in self.wait_action_ls: self.broadcast(action, level=1) affirm = self.detect_command(self.affirm_ls + [self.menu_name], self.wait_time) if affirm in ['no', self.menu_name, None]: continue elif affirm == 'yes': self.broadcast(action, level=2) reaffirm = self.detect_command(['no'] + [self.menu_name], self.wait_time) if reaffirm in ['no', self.menu_name]: continue elif reaffirm == None: self.broadcast(action, level=3) return action else: print(f'Warning: Error detection -> \'{reaffirm}\' while detecing reaffirm') else: print(f'Warning: Error detection -> \'{affirm}\' while detecing affirm({self.affirm_ls})') else: print(f'Warning: Error detection -> \'{action}\' while detecing action({self.action_ls})') def run_forever(self, ): while True: self.run() class KeyWordSpotting(object): def __init__(self, use_stream=False): # print('-' * 20, 'init KeyWordSpotting class', '-' * 20) super(KeyWordSpotting, self).__init__() self.use_stream = use_stream assert self.use_stream == False # 暂时不考虑流式模型 self.model_name = 'ds_tc_resnet_cpu_causal_20211231-200734' self.model_dir = os.path.abspath(os.path.join(CRT_DIR, '../model', self.model_name, )) self.flags_path = os.path.join(self.model_dir, 'flags.json') self.flags = self.__load__flags__() self.flags.batch_size = 1 print('-' * 20, 'Loading KWS non_stream_model...', '-' * 20, ) self.non_stream_model = self.__load_non_stream_model__(weights_name='last_weights') if self.use_stream: # TODO 保存流式模型,直接加载?而非每次都要转换,还挺耗时的 self.stream_model = self.__convert_2_stream_model__() self.labels = np.array(['silence', 'unknown', ] + self.flags.wanted_words.split(',')) self.walker_name = self.labels[2] print('-' * 20, 'KWS labels:', ' '.join(self.labels), '-' * 20) print('-' * 20, 'KWS walker_name:', self.walker_name, '-' * 20) self.clip_duration_ms = int(self.flags.clip_duration_ms) assert self.clip_duration_ms == int(CLIP_MS) if self.use_stream: self.window_stride_ms = int(self.flags.window_stride_ms) else: self.window_stride_ms = WINDOW_STRIDE_MS global WORD_QUEUE, WORD_QUEUE_MAX_LENGTH WORD_QUEUE_MAX_LENGTH = MAX_COMMAND_SECONDS * 1000 // self.window_stride_ms WORD_QUEUE = deque(maxlen=WORD_QUEUE_MAX_LENGTH) def __load__flags__(self, ): with open(self.flags_path, 'r') as load_f: flags_json = json.load(load_f) class DictStruct(object): def __init__(self, **entries): self.__dict__.update(entries) self.flags = DictStruct(**flags_json) return self.flags def __load_non_stream_model__(self, weights_name): tf.reset_default_graph() config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) tf.keras.backend.set_session(sess) # self.audio_processor = input_data.AudioProcessor(self.flags) tf.keras.backend.set_learning_phase(0) # tf.disable_eager_execution() # print('tf.keras.backend.image_data_format():', tf.keras.backend.image_data_format()) tf.keras.backend.set_image_data_format('channels_last') non_stream_model = models.MODELS[self.flags.model_name](self.flags) weight_path = os.path.join(self.model_dir, weights_name, ) non_stream_model.load_weights(weight_path).expect_partial() # non_stream_model.summary() # tf.keras.utils.plot_model( # non_stream_model, # show_shapes=True, # show_layer_names=True, # expand_nested=True, # to_file=os.path.join('./', self.model_name + '_non_stream.png'), ) # return non_stream_model def __convert_2_stream_model__(self, ): print('tf stream model state internal without state resetting between testing sequences') self.flags.data_shape = modes.get_input_data_shape(self.flags, modes.Modes.STREAM_INTERNAL_STATE_INFERENCE) stream_model = utils.to_streaming_inference( self.non_stream_model, self.flags, modes.Modes.STREAM_INTERNAL_STATE_INFERENCE) # stream_model.summary() # tf.keras.utils.plot_model( # stream_model, # show_shapes=True, # show_layer_names=True, # expand_nested=True, # to_file=os.path.join('./', self.model_name + '_stream.png'), # ) return stream_model def predict(self, x, use_stream=None): use_stream = self.use_stream if (use_stream is None) else use_stream if use_stream: y_pred = inference.run_stream_inference_classification(self.flags, self.stream_model, x) else: y_pred = self.non_stream_model.predict(x) y_pred = scipy_softmax(y_pred, axis=-1) label = np.argmax(y_pred, axis=-1) return label, y_pred[:, label].squeeze(axis=0) def run(self, ): global WORD_QUEUE, WORD_QUEUE_UPDATA, AUDIO_QUEUE, SSL_AUDIO, SSL_AUDIO_UPDATE if not self.use_stream: local_audio_frames = deque(maxlen=self.clip_duration_ms) while True: for i in range(self.window_stride_ms): local_audio_frames.append(AUDIO_QUEUE.get(block=True, timeout=None)) if len(local_audio_frames) != self.clip_duration_ms: continue ################################ predict ######################################## audio = np.concatenate(local_audio_frames, axis=1) # audio = normalize_single_channel_to_target_level(audio, ) x = np.array(audio[0], dtype=np.float64)[np.newaxis, :] y, prob = self.predict(x, use_stream=self.use_stream) y, prob = self.labels[y[0]], prob[0] WORD_QUEUE.append((y, prob)) WORD_QUEUE_UPDATA = True # if (y not in ['silence', 'unknown', ]) and prob > 0.70: # # print('y & prob:', y, round(prob, 3), end='\t') # print(y, round(prob, 3), end='\t') if y == self.walker_name: # 监听到 walker_name,将音频传给声源定位模块 print(f'KWS: walker_name (\'{self.walker_name}\') is detected.') SSL_AUDIO = (audio, y, prob) # (音频,文本,概率) SSL_AUDIO_UPDATE =
types.CodeType = compile(code, f.__code__.co_filename, "exec") for const in compiled.co_consts: if ( isinstance(const, types.CodeType) and const.co_name == f.__code__.co_name ): f.__code__ = const break @functools.wraps(f) def instrumented_f(*args, **kwargs): with self.tracing_enabled(tracing_enabled_file=f_defined_file): return f(*args, **kwargs) return instrumented_f def __call__(self, code: Union[str, ast.Module, ast.stmt, Callable]): if isinstance(code, (str, ast.AST)): return self.exec(code, num_extra_lookback_frames=1) else: return self.instrumented(code) def __getitem__(self, code: Union[str, ast.Module, ast.stmt, Callable]): return self(code) def enter_tracing_hook(self) -> None: pass def exit_tracing_hook(self) -> None: pass def _static_init_module_impl(self, node: ast.Module) -> None: self.current_module[0] = node self.static_init_module(node) def static_init_module(self, node: ast.Module) -> None: pass def _make_tracing_context_cleanup_callback(self): orig_num_sandbox_calls_seen = self._num_sandbox_calls_seen orig_hard_disabled = self._is_tracing_hard_disabled orig_exec_saved_thunk = getattr(builtins, EXEC_SAVED_THUNK, None) orig_sandbox_fname = self._current_sandbox_fname orig_tracing_enabled_files = self._tracing_enabled_files def cleanup(should_push: bool, will_enable_tracing: bool) -> None: self._tracing_enabled_files = orig_tracing_enabled_files self._current_sandbox_fname = orig_sandbox_fname self._is_tracing_hard_disabled = orig_hard_disabled self._num_sandbox_calls_seen = orig_num_sandbox_calls_seen if should_push: del _TRACER_STACK[-1] if will_enable_tracing: self._disable_tracing(check_enabled=False) if should_push: self.exit_tracing_hook() if len(_TRACER_STACK) == 0: for extra_builtin in { EMIT_EVENT, EXEC_SAVED_THUNK, TRACE_LAMBDA, TRACING_ENABLED, } | self.guards: if hasattr(builtins, extra_builtin): delattr(builtins, extra_builtin) elif orig_exec_saved_thunk is not None: setattr(builtins, EXEC_SAVED_THUNK, orig_exec_saved_thunk) return cleanup @contextmanager def tracing_context( self, disabled: bool = False, tracing_enabled_file: Optional[str] = None ) -> Generator[None, None, None]: cleanup_callback = None try: cleanup_callback = self.tracing_non_context( disabled=disabled, tracing_enabled_file=tracing_enabled_file ) yield finally: if cleanup_callback is not None: cleanup_callback() def tracing_non_context( self, disabled: bool = False, tracing_enabled_file: Optional[str] = None ) -> Callable: cleanup_callback_impl = self._make_tracing_context_cleanup_callback() do_patch_meta_path = False should_push = self not in _TRACER_STACK self._is_tracing_hard_disabled = disabled will_enable_tracing = ( not self._is_tracing_hard_disabled and not self._is_tracing_enabled ) def first_cleanup_callback(): return cleanup_callback_impl(should_push, will_enable_tracing) all_cleanup_callbacks = [first_cleanup_callback] def cleanup_callback(): for cleanup in reversed(all_cleanup_callbacks): cleanup() if tracing_enabled_file is not None: self._current_sandbox_fname = tracing_enabled_file self._tracing_enabled_files = self._tracing_enabled_files | { tracing_enabled_file } if getattr(builtins, EMIT_EVENT, None) is not _emit_event: setattr(builtins, EMIT_EVENT, _emit_event) for guard in self.guards: self.deactivate_guard(guard) if not hasattr(builtins, TRACING_ENABLED): setattr(builtins, TRACING_ENABLED, False) setattr(builtins, EXEC_SAVED_THUNK, self.exec_saved_thunk) setattr(builtins, TRACE_LAMBDA, self.trace_lambda) if len(_TRACER_STACK) == 0: do_patch_meta_path = True if should_push: _TRACER_STACK.append(self) # type: ignore do_patch_sys_settrace = self.has_sys_trace_events and will_enable_tracing if do_patch_meta_path: all_cleanup_callbacks.append(patch_meta_path_non_context(_TRACER_STACK)) if do_patch_sys_settrace: all_cleanup_callbacks.append(self._patch_sys_settrace_non_context()) if will_enable_tracing: self._enable_tracing() if should_push: self.enter_tracing_hook() return cleanup_callback def preprocess(self, code: str, rewriter: AstRewriter) -> str: for augmenter in self.make_syntax_augmenters(rewriter): code = augmenter(code) return code def parse(self, code: str, mode="exec") -> Union[ast.Module, ast.Expression]: rewriter = self.make_ast_rewriter() for tracer in _TRACER_STACK: code = tracer.preprocess(code, rewriter) return rewriter.visit(ast.parse(code, mode=mode)) def exec_raw( self, code: Union[ast.Module, ast.Expression, str], global_env: dict, local_env: dict, filename: str = SANDBOX_FNAME, instrument: bool = True, do_eval: bool = False, ) -> Any: with self.tracing_context( disabled=self._is_tracing_hard_disabled, tracing_enabled_file=filename, ) if instrument else suppress(): if isinstance(code, str): code = textwrap.dedent(code).strip() code = self.parse(code) if instrument: code = self.make_ast_rewriter().visit(code) code_obj = compile(code, filename, "eval" if do_eval else "exec") if do_eval: self._num_sandbox_calls_seen = 2 return eval(code_obj, global_env, local_env) else: return exec(code_obj, global_env, local_env) @staticmethod def _get_environments( global_env: Optional[dict], local_env: Optional[dict], num_extra_lookback_frames: int, ) -> Tuple[dict, dict]: frame = None if global_env is None or local_env is None: frame = sys._getframe().f_back for _ in range(num_extra_lookback_frames): frame = frame.f_back if global_env is None: global_env = frame.f_globals if local_env is None: local_env = frame.f_locals return global_env, local_env def eval( self, code: Union[str, ast.expr, ast.Expression], global_env: Optional[dict] = None, local_env: Optional[dict] = None, *, instrument: bool = True, filename: str = SANDBOX_FNAME, num_extra_lookback_frames: int = 0, ) -> Any: global_env, local_env = self._get_environments( global_env, local_env, num_extra_lookback_frames + 1 ) with self.tracing_context( disabled=self._is_tracing_hard_disabled, tracing_enabled_file=filename, ) if instrument else suppress(): visited = False if isinstance(code, str): if instrument: visited = True code = cast(ast.Expression, self.parse(code, mode="eval")) else: code = cast(ast.Expression, ast.parse(code, mode="eval")) if not isinstance(code, ast.Expression): code = ast.Expression(code) if instrument and not visited: code = self.make_ast_rewriter().visit(code) return self.exec_raw( code, # type: ignore global_env=global_env, local_env=local_env, filename=filename, instrument=False, do_eval=True, ) def exec( self, code: Union[str, ast.Module, ast.stmt], global_env: Optional[dict] = None, local_env: Optional[dict] = None, *, instrument: bool = True, filename: str = SANDBOX_FNAME, num_extra_lookback_frames: int = 0, ) -> Dict[str, Any]: global_env, local_env = self._get_environments( global_env, local_env, num_extra_lookback_frames + 1 ) # pytest inserts variables prepended with "@"; we don't want these args_to_use = [ k for k in local_env.keys() if not k.startswith("@") and k != "__" ] if len(args_to_use) > 0: sandbox_args = ", ".join(["*"] + args_to_use + ["**__"]) else: sandbox_args = "**__" env_name = "__Xix_pyccolo_local_env" fun_name = "__Xix_pyccolo_sandbox" sandboxed_code: Union[ast.Module, str] = textwrap.dedent( f""" {env_name} = dict(locals()) def {fun_name}({sandbox_args}): return locals() {env_name} = {fun_name}(**{env_name}) {env_name}.pop("__", None) {env_name}.pop("builtins", None) """ ).strip() sandboxed_code = ast.parse(cast(str, sandboxed_code), filename, "exec") with self.tracing_context( disabled=self._is_tracing_hard_disabled, tracing_enabled_file=filename, ) if instrument else suppress(): visited = False if isinstance(code, str): code = textwrap.dedent(code).strip() if instrument: visited = True code = cast(ast.Module, self.parse(code)) else: code = cast(ast.Module, ast.parse(code)) if not isinstance(code, ast.Module): assert isinstance(code, ast.stmt) code = ast.Module([code]) if instrument and not visited: code = self.make_ast_rewriter().visit(code) # prepend the stuff before "return locals()" fundef: ast.FunctionDef = cast(ast.FunctionDef, sandboxed_code.body[1]) if isinstance(code, ast.Module): code_body: List[ast.stmt] = code.body else: assert isinstance(code, ast.stmt) code_body = [code] fundef.body = code_body + fundef.body self.exec_raw( sandboxed_code, global_env=global_env, local_env=local_env, filename=filename, instrument=False, ) return local_env.pop(env_name) def trace_lambda(self, lam): # for now, this is primarily so that we can distinguish between # lambdas that we generate vs that user generates code: CodeType = lam.__code__ assert code.co_name == "<lambda>" if sys.version_info >= (3, 8): lam.__code__ = code.replace(co_name="<traced_lambda>") else: # replace(...) not available for older python but CodeType # constructor is stable at least lam.__code__ = CodeType( code.co_argcount, code.co_kwonlyargcount, code.co_nlocals, code.co_stacksize, code.co_flags, code.co_code, code.co_consts, code.co_names, code.co_varnames, code.co_filename, "<traced_lambda>", code.co_firstlineno, code.co_lnotab, code.co_freevars, code.co_cellvars, ) return lam def exec_saved_thunk(self): assert self._saved_thunk is not None thunk, self._saved_thunk = self._saved_thunk, None if thunk is not Pass: return self.exec(thunk, instrument=False, num_extra_lookback_frames=1) def execute(self, *args, **kwargs): return self.exec(*args, **kwargs) def _should_attempt_to_reenable_tracing(self, frame: FrameType) -> bool: return NotImplemented def _sys_tracer(self, frame: FrameType, evt: str, arg: Any, **__): if not self._file_passes_filter_impl(evt, frame.f_code.co_filename): return None if evt == "call" and frame.f_code.co_filename == self.defined_file: func_name = frame.f_code.co_name if func_name == self.allow_reentrant_events.__name__: return None elif func_name in self._handler_names and not self.allow_reentrant_events(): return None if self._has_fancy_sys_tracing and evt == "call": if TraceEvent.line not in self.events_with_registered_handlers: frame.f_trace_lines = False # type: ignore if TraceEvent.opcode in self.events_with_registered_handlers: frame.f_trace_opcodes = True # type: ignore return self._emit_event(evt, None, frame, ret=arg) if TYPE_CHECKING: TracerT = TypeVar("TracerT", bound="_InternalBaseTracer") @classmethod def instance(cls: Type[TracerT], *args, **kwargs) -> TracerT: ... @classmethod def clear_instance(cls) -> None: ... def register_handler( event: Union[ Union[TraceEvent, Type[ast.AST]], Tuple[Union[TraceEvent, Type[ast.AST]], ...] ], when: Optional[Union[Callable[..., bool], Predicate]] = None, reentrant: bool = False, use_raw_node_id: bool = False, guard: Optional[Callable[[ast.AST], str]] = None, ): events = event if isinstance(event, tuple) else (event,) when = Predicate.TRUE if when is None else when if isinstance(when, Predicate): pred: Predicate = when else: pred = Predicate(when, use_raw_node_id=use_raw_node_id) # type: ignore pred.use_raw_node_id = use_raw_node_id if TraceEvent.opcode in events and sys.version_info < (3, 7): raise ValueError("can't trace opcodes on Python < 3.7") def _inner_registrar(handler): for evt in events: handler_spec = HandlerSpec(handler, use_raw_node_id, reentrant, pred, guard) _InternalBaseTracer.EVENT_HANDLERS_PENDING_REGISTRATION[ AST_TO_EVENT_MAPPING[evt] if type(evt) is type and issubclass(evt, ast.AST) else evt ].append(handler_spec) _InternalBaseTracer.handler_spec_by_id[id(handler_spec)] = handler_spec return handler return _inner_registrar def __event_call__(self, handler=None, **kwargs): if handler is None: def _register_func(_handler): return register_handler(self, **kwargs)(_handler) return _register_func else: if len(kwargs) > 0: raise ValueError( "keyword arguments not supported for simple handler registration" ) return register_handler(self)(handler) TraceEvent.__call__ = __event_call__ # type: ignore def register_raw_handler( event: Union[ Union[TraceEvent, Type[ast.AST]], Tuple[Union[TraceEvent, Type[ast.AST]], ...] ], **kwargs, ): return register_handler(event, use_raw_node_id=True, **kwargs) def skip_when_tracing_disabled(handler): @functools.wraps(handler) def skipping_handler(self, *args, **kwargs): if not self._is_tracing_enabled: return return handler(self, *args, **kwargs) return skipping_handler def register_universal_handler(handler): return register_handler(tuple(evt for evt in TraceEvent))(handler) class BaseTracer(_InternalBaseTracer): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._saved_slice: Optional[Any] = None @register_raw_handler( ( TraceEvent.before_subscript_load, TraceEvent.before_subscript_store, TraceEvent.before_subscript_del, ), reentrant=True, ) def _save_slice_for_later(self, *_, attr_or_subscript: Any, **__): self._saved_slice = attr_or_subscript @register_raw_handler(TraceEvent._load_saved_slice, reentrant=True) def _load_saved_slice(self, *_, **__): ret = self._saved_slice self._saved_slice = None return ret @classmethod def is_outer_stmt(cls, node_or_id, exclude_outer_stmt_types=None): node_id = node_or_id if isinstance(node_or_id, int) else id(node_or_id) containing_stmt = cls.containing_stmt_by_id.get(node_id, None) parent_stmt = cls.parent_stmt_by_id.get( node_id if containing_stmt is None else id(containing_stmt), None ) outer_stmts_to_consider = tuple( {ast.If, ast.Try, ast.With, ast.AsyncWith} - (exclude_outer_stmt_types or set()) ) while parent_stmt is not None and isinstance(
# -*- coding: utf-8 -*- from applications.opentree.modules.opentreewebapputil import( get_opentree_services_method_urls, extract_nexson_from_http_call, fetch_github_app_auth_token, get_maintenance_info) # N.B. This module is shared with tree-browser app, which is aliased as # 'opentree'. Any name changes will be needed here as well! from peyotl.manip import merge_otus_and_trees, iter_trees import requests from pprint import pprint import json #import pdb # this file is released under public domain and you can use without limitations import re ######################################################################### ## This is a samples controller ## - index is the default action of any application ## - user is required for authentication and authorization ## - download is for downloading files uploaded in the db (does streaming) ## - call exposes all registered services (none by default) ######################################################################### def index(): """ Show an introduction page for visitors, or personalized curation dashboard for a logged-in user. """ #response.flash = T("Welcome to web2py!") view_dict = get_opentree_services_method_urls(request) view_dict['maintenance_info'] = get_maintenance_info(request) if False: ## auth.is_logged_in(): # user is logged in, bounce to their personal dashboard redirect(URL('dashboard')) else: # anonymous visitor, show a general info page return view_dict def collections(): """ Show a filtered list of all tree collections in the system. TODO: move to collection/index? """ view_dict = get_opentree_services_method_urls(request) view_dict['maintenance_info'] = get_maintenance_info(request) return view_dict def error(): view_dict = get_opentree_services_method_urls(request) return view_dict @auth.requires_login() def dashboard(): return dict(message="My Curation Activity") def user(): """ exposes: http://..../[app]/default/user/login http://..../[app]/default/user/logout http://..../[app]/default/user/register http://..../[app]/default/user/profile http://..../[app]/default/user/retrieve_password http://..../[app]/default/user/change_password use @auth.requires_login() @auth.requires_membership('group name') @auth.requires_permission('read','table name',record_id) to decorate functions that need access control """ return dict(form=auth()) def profile(): """ shows a personalized profile for any user (default = the current logged-in user) http://..../{app}/default/profile/[username] """ view_dict = get_opentree_services_method_urls(request) view_dict['maintenance_info'] = get_maintenance_info(request) # if the URL has a [username], try to load their information if len(request.args) > 0: # try to load a profile for the specified userid, using the GitHub API specified_userid = request.args[0] view_dict['userid'] = specified_userid view_dict['active_user_found'] = False # fetch the JSON for this user's activities json_response = _fetch_github_api(verb='GET', url='/users/{0}'.format(specified_userid)) error_msg = json_response.get('message', None) view_dict['error_msg'] = error_msg if error_msg: # pass error to the page for display print("ERROR FETCHING INFO FOR USERID: ", specified_userid) print(error_msg) view_dict['user_info'] = None view_dict['opentree_activity'] = None else: # pass user info to the page for display view_dict['user_info'] = json_response activity = _get_opentree_activity( userid=specified_userid, username=view_dict['user_info'].get('name', specified_userid) ) if activity: view_dict['active_user_found'] = True else: view_dict['active_user_found'] = False view_dict['error_msg'] = 'Not active in OpenTree' view_dict['opentree_activity'] = activity view_dict['is_current_user_profile'] = False if view_dict['active_user_found'] == True and auth.is_logged_in(): current_userid = auth.user and auth.user.github_login or None if specified_userid == current_userid: view_dict['is_current_user_profile'] = True return view_dict else: # No userid was provided in the URL. Instead, we should try to bounce to the # current user's profile if they're logged in (or try to force a login). if auth.is_logged_in(): current_userid = auth.user and auth.user.github_login or None # redirect to the fully expanded profile URL expanded_url = URL('curator', 'default', 'profile', args=(current_userid,), vars=request.vars) redirect(expanded_url) else: # try to force a login and return here redirect(URL('curator', 'user', 'login', vars=dict(_next=URL(args=request.args, vars=request.vars)))) def _fetch_github_api(verb='GET', url=None, data=None): # Wrapper for all (synchronous) calls to GitHub APIs # 'verb' should be GET or POST (when in doubt, send GET headers below) # 'url' should be root-relative (assume GitHub API) # 'data' could be passed via GET [TODO] or POST GH_BASE_URL = 'https://api.github.com' # if the current user is logged in, use their auth token instead USER_AUTH_TOKEN = auth.user and auth.user.github_auth_token or None # Specify the media-type from GitHub, to freeze v3 API responses and get # the comment body as markdown (vs. plaintext or HTML) PREFERRED_MEDIA_TYPE = 'application/vnd.github.v3.raw+json, application/vnd.github.machine-man-preview+json' # to get markdown AND html body, use 'application/vnd.github.v3.full+json' if USER_AUTH_TOKEN: auth_header_value = 'token %s' % USER_AUTH_TOKEN else: GITHUB_APP_INSTALLATION_TOKEN = fetch_github_app_auth_token(request) auth_header_value = 'token %s' % GITHUB_APP_INSTALLATION_TOKEN GH_DATETIME_FORMAT = '%Y-%m-%dT%H:%M:%SZ' GH_GET_HEADERS = {'Authorization': auth_header_value, 'Accept': PREFERRED_MEDIA_TYPE} GH_POST_HEADERS = {'Authorization': auth_header_value, 'Content-Type': 'application/json', 'Accept': PREFERRED_MEDIA_TYPE} url = '{0}{1}'.format(GH_BASE_URL, url) if verb == 'POST': resp = requests.post( url, headers=GH_POST_HEADERS) else: resp = requests.get( url, headers=GH_GET_HEADERS) # Assume we always return JSON, even if it's an error message return resp.json() def _get_opentree_activity( userid=None, username=None ): # Fetch information about a user's studies, comments, and collections in the # OpenTree project. If a dict was provided, add this information to it; else # bundle up the information and return it directly if not userid: return None activity_found = False activity = { 'curator_since': None, 'comments':[], 'issues': [], 'added_studies':[], 'curated_studies': [], 'curated_studies_in_synthesis': [], 'added_collections':[], 'curated_collections':[] } method_dict = get_opentree_services_method_urls(request) # Use GitHub API to gather comments from this user, as shown in # https://github.com/OpenTreeOfLife/feedback/issues/created_by/jimallman # N.B. that this is limited to 100 most recent items! all_comments = _fetch_github_api(verb='GET', url='/repos/OpenTreeOfLife/feedback/issues/comments?per_page=100') for comment in all_comments: if comment.get('user', None): comment_author = comment.get('user').get('login') if comment_author == userid: activity.get('comments').append( comment ) activity_found = True # Again, for all feedback issues created by them # N.B. that this is probably limited to 100 most recent items! created_issues = _fetch_github_api(verb='GET', url='/repos/OpenTreeOfLife/feedback/issues?state=all&creator={0}&per_page=100'.format(userid)) activity['issues'] = created_issues if len(created_issues) > 0: activity_found = True # fetch a list of all studies that contribute to synthesis fetch_url = method_dict['getSynthesisSourceList_url'] if fetch_url.startswith('//'): # Prepend scheme to a scheme-relative URL fetch_url = "https:%s" % fetch_url # as usual, this needs to be a POST (pass empty fetch_args) source_data = requests.post( url=fetch_url, headers={"Content-Type": "application/json"}, data=json.dumps({'include_source_list':True}) ).json() source_id_map = source_data.get('source_id_map') # N.B. We can ignore the munged ids in source_data['source_list'] contributing_study_info = { } # build a dict with unique study IDs as keys, commit SHAs as values for source_id, source_details in source_id_map.iteritems(): if 'taxonomy' in source_details: continue study_id = source_details.get('study_id') commit_SHA_in_synthesis = source_details.get('git_sha') contributing_study_info[ study_id ] = commit_SHA_in_synthesis # Use oti to gather studies curated and created by this user. fetch_url = method_dict['findAllStudies_url'] if fetch_url.startswith('//'): # Prepend scheme to a scheme-relative URL fetch_url = "https:%s" % fetch_url all_studies = requests.post( url=fetch_url, headers={"Content-Type": "application/json"}, data=json.dumps({'verbose':True}) # include curator list ).json().get('matched_studies', [ ]) for study in all_studies: study_curators = study['ot:curatorName'] # TODO: improve oti to handle multiple curator names! if type(study_curators) is not list: study_curators = [study_curators] # NB - If there's no "display name" defined, look for their userid if (username or userid) in study_curators: activity_found = True activity['curated_studies'].append(study) # first curator name is its original contributor if study_curators[0] == (username or userid): activity['added_studies'].append(study) # does this contribute to synthesis? if contributing_study_info.has_key( study['ot:studyId'] ): activity['curated_studies_in_synthesis'].append(study) # Use oti to gather collections curated and created by this user. fetch_url = method_dict['findAllTreeCollections_url'] if fetch_url.startswith('//'): # Prepend scheme to a scheme-relative URL fetch_url = "https:%s" % fetch_url all_collections = requests.get(url=fetch_url).json() for collection in all_collections: # gather all participants and check against their GitHub userids if userid == collection.get('creator', {}).get('login', None): activity_found = True activity['added_collections'].append(collection) contributor_ids = [c.get('login', None) for c in collection.get('contributors', [ ])] if userid in contributor_ids: activity_found = True activity['curated_collections'].append(collection) if activity_found: try: # search the repo stats (for each phylesystem shard!) for their earliest contribution earliest_activity_date = None # TODO: make this today? or tomorrow? MAXTIME? fetch_url = method_dict['phylesystem_config_url'] if fetch_url.startswith('//'): # Prepend scheme to a scheme-relative URL fetch_url = "https:%s" % fetch_url phylesystem_config = requests.get( url=fetch_url ).json() shard_list = phylesystem_config['shards'] # if GitHub is rebuilding stats cache for any shard, poke them all but ignore dates rebuilding_cache = False for shard in shard_list: shard_name = shard['name'] shard_contributors = _fetch_github_api(verb='GET', url='/repos/OpenTreeOfLife/{0}/stats/contributors'.format(shard_name)) if type(shard_contributors) is not list: # Flag this, but try to fetch remaining shards (to nudge the cache) rebuilding_cache = True else: for contrib_info in shard_contributors: if contrib_info['author']['login'] == userid: # look for the earliest week here for week in contrib_info['weeks']: if earliest_activity_date: earliest_activity_date = min(earliest_activity_date, week['w']) else: earliest_activity_date = week['w'] break # skip any remaining records if rebuilding_cache: activity['curator_since'] = 'Generating data, please try again in a moment...' elif not earliest_activity_date: activity['curator_since'] = 'This user has not curated any studies.' else: # show a very approximate date (stats are just weekly) from datetime import datetime d = datetime.fromtimestamp(earliest_activity_date) activity['curator_since'] = d.strftime("%B %Y") except: # probably JSONDecodeError due to misconfiguration of the
''' ## NAME: ProteinAnalysis.py ## LANGUAGE & VERSION: python 3.8.5 ## AUTHORS: <NAME> <<EMAIL>> <NAME> <<EMAIL>> ## DATE: November, 2021. ## DESCRIPTION & LOGIC: This script uses BioPython tools numpy, pandas, seaborn, matplotlib and argparse to run a functional protein analysis between a protein query and series of proteins. In order to asses functional relatedness to a query protein from the analyzed. ## USAGE: ProteinAnalysis.py python 3.8.5 ## ARGUMENTS & HELP: Protein functional analysis and comparison options: -h, --help show this help message and exit --int_matx_df Prints intersection-matrix dataframe --means_df Prints means vector as dataframe. --best Prints best match protein. --heatmap Prints intersection-matrix heatmap. -i INPUT [INPUT ...], --input INPUT [INPUT ...] List of the proteins files paths, separated by whitespace and comma -d DISULFIDE, --disulfide DISULFIDE Distance between S-S atoms. Write -1 to use the default value: 8 -a ALPHA, --alpha ALPHA Sequence pattern to search alpha helices. Use default to search standard pattern -b BETA, --beta BETA Sequence pattern to search beta sheets. Use default to search standard pattern -m MOTIF [MOTIF ...], --motif MOTIF [MOTIF ...] Motif to search and minimal length of the motif sequence ## INPUT - OUTPUT: Input: List of protein files to be analyzed (-i,), distance between S-S atoms (-d), sequence pattern to search alpha helices (-a), sequence pattern to search beta sheets (-b), motif to search and minimal length of the motif (-m) Output: Prints motifs found. Prints functional analysis stadistics, depending on the analysis argument given (see ARGUMENTS & HELP). Saves my_protein object as an instance of ProtAnalysis class. ## EXAMPLES: Input: (From Terminal) python3 ProteinAnalysis.py -i 1kcw.pdb 1fat.pdb 3jbz.pdb 1kbe.pdb 4g68.pdb 1hp8.pdb -d 2 -a default -b default -int_matx_df -means_df -best -heatmap Query protein name as key (str): 1kbe Output: (Std output) {'name': '1kcw', 'num_bonds': 1, 'di_bonds': [[155, 181, 1.9980831, <Model id=0>, <Chain id=A>]]} {'name': '1kcw', 'num_helix': 4, 'helix_seqs': [[['RIYHSHIDAPKD', 'KEKEKHIDRE', 'KVDKDNEDFQE', 'KVNKDDEEFIE'], <Model id=0>, <Chain id=A>]]} (...) {'name': '1hp8', 'num_bonds': 0, 'num_helix': 0, 'num_sheets': 1} Proteins to be analyzed: [{'name': '1kcw', 'num_bonds': 1, 'num_helix': 4, 'num_sheets': 61}, {'name': '1fat', 'num_bonds': 0, 'num_helix': 4, 'num_sheets': 60}, {'name': '3jbz', 'num_bonds': 0, 'num_helix': 5, 'num_sheets': 58}, {'name': '1kbe', 'num_bonds': 0, 'num_helix': 0, 'num_sheets': 3}, {'name': '4g68', 'num_bonds': 0, 'num_helix': 3, 'num_sheets': 81}, {'name': '1hp8', 'num_bonds': 0, 'num_helix': 0, 'num_sheets': 1}] Valid protein names are: ['1kcw', '1fat', '3jbz', '1kbe', '4g68', '1hp8'] Query protein name as key (str): 1kbe -------- Starting analysis -------- Intersection matrix as np.array: [[0. 0.04918033] [0. 0.05 ] [0. 0.05172414] [0. 0. ] [0. 0.03703704] [0. 0.33333333]] Intersection matrix's row means as np.array: [0.02459016 0.025 0.02586207 0. 0.01851852 0.16666667] Intersection matrix as dataframe: num_helix num_sheets 1kcw 0.0 0.049180 1fat 0.0 0.050000 3jbz 0.0 0.051724 1kbe 0.0 0.000000 4g68 0.0 0.037037 1hp8 0.0 0.333333 Intersection matrix means vector as dataframe: 1kbe 1kcw 0.024590 1fat 0.025000 3jbz 0.025862 1kbe 0.000000 4g68 0.018519 1hp8 0.166667 Printing best match... Best match 1kbe 1hp8 0.166667 Printing heatmap... -------- Analysis compleyed -------- ## SOFTWARE REQUIREMENTS: python3 argparse numpy pandas seaborn matplotlib.pyplot motifs.py ## FUNCTIONS: There are 8 functions, each one is necesary for a step in the analysis. Their documentation is in their docstrings. Many other functions are imported in motifs from <motifs.py> ## EXTRA COMMENTS: This script imports the module motifs.py ## LAST MODIFICATION: <NAME> & <NAME>: November, 2021. [Creation] ## SOURCE: GitHub: https://github.com/phabel-LD/python_classII/ https://github.com/daianna21/python_class/ ''' ################################################################## # Libraries ################################################################## import argparse import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import motifs as mo ################################################################## # Functions ################################################################## # Dictionary of single letter code of aa necesaary for further analysis aa_code = {'CYS': 'C', 'ASP': 'D', 'SER': 'S', 'GLN': 'Q', 'LYS': 'K', 'ILE': 'I', 'PRO': 'P', 'THR': 'T', 'PHE': 'F', 'ASN': 'N', 'GLY': 'G', 'HIS': 'H', 'LEU': 'L', 'ARG': 'R', 'TRP': 'W', 'ALA': 'A', 'VAL':'V', 'GLU': 'E', 'TYR': 'Y', 'MET': 'M'} def comparison_intersection(protein_A, protein_B): ''' This function makes the intersection comparsion between two proteins. Parameters: protein_A (dict): Dictionary with info from the first protein, including motif frequences. protein_B (dict): Dictionary with info from the first protein, including motif frequences. Return: intersections (np.array): Array with intersection matrix. ''' motifs_A = np.array(protein_A.keys()) values_A = np.array(list(protein_A.values())[2:]) motifs_B = np.array(protein_B.keys()) values_B = np.array(list(protein_B.values())[2:]) # Start Vector pairwise comparison intersections = [] for index in range(0, len(values_A)): # Avoid division by 0. if max(values_A[index], values_B[index]) == 0: intersection = 0 else: intersection = min(values_A[index], values_B[index])/ max(values_A[index], values_B[index]) intersections.append(intersection) # Intersection vector is ready intersections = np.array(intersections) return(intersections) def comparison_mean(protein_A, protein_B): ''' This function makes the comparison mean from the instersection analysis of two proteins Parameters: protein_A (dict): Dictionary with info from the first protein, including motif frequences. protein_B (dict): Dictionary with info from the first protein, including motif frequences. Return: mean (np.array): Mean intersection value. ''' intersections = comparison_intersection(protein_A, protein_B) # Mean intersection value as numpy array for further analysis mean = np.mean(intersections) return(mean) def intersections_matrix(proteins, query_prot): ''' This function makes the intersection matrix (generalized comparisson) between a query protein and a list of proteins. Parameters: proteins (list): A list of dictionaries, each with info. of a protein. query_prot (dict): A dictionary with the info. of protein to be analyzed. Return: comparison_matrix (np.array): Comparison matrix with intersection values. ''' # Initialize matrix comparison_matrix = [] # Analyze every query protein for index in range(0, len(proteins)): if (proteins[index] == query_prot): intersection = np.zeros(len(comparison_intersection(proteins[index], query_prot))) else: intersection = comparison_intersection(proteins[index], query_prot) comparison_matrix.append(intersection) # Create numpy array for further analysis comparison_matrix = np.array(comparison_matrix) return(comparison_matrix) def intersections_means(proteins, query_prot): ''' This function takes the row means from an intersection matrix. Parameters: proteins (list): A list of dictionaries, each with info. of a protein. query_prot (dict): A dictionary with the info. of protein to be analyzed. Return: means (np.array): Array of 1D with the row means. ''' # Get matrix matrix = intersections_matrix(proteins, query_prot) # Get rows means means = np.mean(matrix, axis = 1) return(means) def plot_heatmap(proteins, query_prot): ''' This function plots a heatmap from the info of an intersection matrix, onced applied. Parameters: proteins (list): A list of dictionaries, each with info. of a protein. query_prot (dict): A dictionary with the info. of protein to be analyzed. Return: None ''' # Get matrix matrix = intersections_matrix(proteins, query_prot) # Get x labels: motifs x = [ motif for motif in list(query_prot.keys())[2:] ] # Get y labels: proteins y = [prot["name"] for prot in proteins] # Get name of analyzed protein query_name = query_prot["name"] # Create Heatmap & plot heatmap_matrix = sns.heatmap(matrix, cmap="YlGnBu", xticklabels = x, yticklabels = y) plt.title(f"{query_name} functional analysis") plt.xlabel("Motifs") plt.ylabel("Proteins") plt.show() return def get_means_df(proteins, query_prot): ''' This function takes the mean array from a intersection matrix an creates a dataframe Parameters: proteins (list): A list of dictionaries, each with info. of a protein. query_prot (dict): A dictionary with the info. of protein to be analyzed. Return: means_df (pd.dataframe): Dataframe with the row means. ''' # Get means means = intersections_means(proteins, query_prot) # Create dataframe means_df = pd.DataFrame(means.T, columns = [query_prot["name"]]) # Upgrae header and indexes old_index = [x for x in means_df.index] new_index = [prot["name"] for prot in proteins] means_df = means_df.rename(index=dict(zip(old_index, new_index))) return(means_df) def intersect_matrix_df(proteins, query_prot): ''' This function makes the intersection matrix (generalized comparisson) between a query protein and a list of proteins and create a dataframe from it. Parameters: proteins (list): A list of dictionaries, each with info. of a protein. query_prot (dict): A dictionary with the info. of protein to be analyzed. Return: intersection_df (pd.dataframe): Dataframe of the comparison matrix. ''' # Get intersection matrix matrix = intersections_matrix(proteins, query_prot) # Rename columns according to motif names x = [ motif for motif in list(query_prot.keys())[2:] ] # Create dataframe intersection_df = pd.DataFrame(matrix, columns = x ) # Upgrade indexes old_index = [x for x in intersection_df.index] new_index = [prot["name"] for prot in proteins] intersection_df = intersection_df.rename(index=dict(zip(old_index, new_index))) return(intersection_df) def print_best_match(proteins, query_prot): ''' This function determines the analyzed protein's best match as the protein with the highest
Disconnected_Boiler_BG_capacity_heating_W = 0 Disconnected_Boiler_NG_share_heating = 0 Disconnected_Boiler_NG_capacity_heating_W = 0 Disconnected_FC_share_heating = 0 Disconnected_FC_capacity_heating_W = 0 Disconnected_GHP_share_heating = 0 Disconnected_GHP_capacity_heating_W = 0 Disconnected_VCC_to_AHU_share_cooling = 0 Disconnected_VCC_to_AHU_capacity_cooling_W = 0 Disconnected_VCC_to_ARU_share_cooling = 0 Disconnected_VCC_to_ARU_capacity_cooling_W = 0 Disconnected_VCC_to_SCU_share_cooling = 0 Disconnected_VCC_to_SCU_capacity_cooling_W = 0 Disconnected_VCC_to_AHU_ARU_share_cooling = 0 Disconnected_VCC_to_AHU_ARU_capacity_cooling_W = 0 Disconnected_VCC_to_AHU_SCU_share_cooling = 0 Disconnected_VCC_to_AHU_SCU_capacity_cooling_W = 0 Disconnected_VCC_to_ARU_SCU_share_cooling = 0 Disconnected_VCC_to_ARU_SCU_capacity_cooling_W = 0 Disconnected_VCC_to_AHU_ARU_SCU_share_cooling = 0 Disconnected_VCC_to_AHU_ARU_SCU_capacity_cooling_W = 0 Disconnected_single_effect_ACH_to_AHU_share_FP_cooling = 0 Disconnected_single_effect_ACH_to_AHU_capacity_FP_cooling_W = 0 Disconnected_single_effect_ACH_to_AHU_share_ET_cooling = 0 Disconnected_single_effect_ACH_to_AHU_capacity_ET_cooling_W = 0 Disconnected_single_effect_ACH_to_ARU_share_FP_cooling = 0 Disconnected_single_effect_ACH_to_ARU_capacity_FP_cooling_W = 0 Disconnected_single_effect_ACH_to_ARU_share_ET_cooling = 0 Disconnected_single_effect_ACH_to_ARU_capacity_ET_cooling_W = 0 Disconnected_single_effect_ACH_to_SCU_share_FP_cooling = 0 Disconnected_single_effect_ACH_to_SCU_capacity_FP_cooling_W = 0 Disconnected_single_effect_ACH_to_SCU_share_ET_cooling = 0 Disconnected_single_effect_ACH_to_SCU_capacity_ET_cooling_W = 0 Disconnected_single_effect_ACH_to_AHU_ARU_share_FP_cooling = 0 Disconnected_single_effect_ACH_to_AHU_ARU_capacity_FP_cooling_W = 0 Disconnected_single_effect_ACH_to_AHU_ARU_share_ET_cooling = 0 Disconnected_single_effect_ACH_to_AHU_ARU_capacity_ET_cooling_W = 0 Disconnected_single_effect_ACH_to_AHU_SCU_share_FP_cooling = 0 Disconnected_single_effect_ACH_to_AHU_SCU_capacity_FP_cooling_W = 0 Disconnected_single_effect_ACH_to_AHU_SCU_share_ET_cooling = 0 Disconnected_single_effect_ACH_to_AHU_SCU_capacity_ET_cooling_W = 0 Disconnected_single_effect_ACH_to_ARU_SCU_share_FP_cooling = 0 Disconnected_single_effect_ACH_to_ARU_SCU_capacity_FP_cooling_W = 0 Disconnected_single_effect_ACH_to_ARU_SCU_share_ET_cooling = 0 Disconnected_single_effect_ACH_to_ARU_SCU_capacity_ET_cooling_W = 0 Disconnected_single_effect_ACH_to_AHU_ARU_SCU_share_FP_cooling = 0 Disconnected_single_effect_ACH_to_AHU_ARU_SCU_capacity_FP_cooling_W = 0 Disconnected_single_effect_ACH_to_AHU_ARU_SCU_share_ET_cooling = 0 Disconnected_single_effect_ACH_to_AHU_ARU_SCU_capacity_ET_cooling_W = 0 Disconnected_direct_expansion_to_AHU_share_cooling = 0 Disconnected_direct_expansion_to_AHU_capacity_cooling_W = 0 Disconnected_direct_expansion_to_ARU_share_cooling = 0 Disconnected_direct_expansion_to_ARU_capacity_cooling_W = 0 Disconnected_direct_expansion_to_SCU_share_cooling = 0 Disconnected_direct_expansion_to_SCU_capacity_cooling_W = 0 Disconnected_direct_expansion_to_AHU_SCU_share_cooling = 0 Disconnected_direct_expansion_to_AHU_SCU_capacity_cooling_W = 0 Disconnected_direct_expansion_to_AHU_ARU_share_cooling = 0 Disconnected_direct_expansion_to_AHU_ARU_capacity_cooling_W = 0 Disconnected_direct_expansion_to_ARU_SCU_share_cooling = 0 Disconnected_direct_expansion_to_ARU_SCU_capacity_cooling_W = 0 Disconnected_direct_expansion_to_AHU_ARU_SCU_share_cooling = 0 Disconnected_direct_expansion_to_AHU_ARU_SCU_capacity_cooling_W = 0 if network[i] == "0": if config.optimization.isheating: df = pd.read_csv(locator.get_optimization_disconnected_folder_building_result_heating(building_names[i])) dfBest = df[df["Best configuration"] == 1] Disconnected_Boiler_BG_share_heating = dfBest["BoilerBG Share"].iloc[0] Disconnected_Boiler_NG_share_heating = dfBest["BoilerNG Share"].iloc[0] Disconnected_FC_share_heating = dfBest["FC Share"].iloc[0] Disconnected_GHP_share_heating = dfBest["GHP Share"].iloc[0] if Disconnected_Boiler_BG_share_heating == 1: Disconnected_Boiler_BG_capacity_heating_W = dfBest["Nominal Power"].iloc[0] if Disconnected_Boiler_NG_share_heating == 1: Disconnected_Boiler_NG_capacity_heating_W = dfBest["Nominal Power"].iloc[0] if Disconnected_FC_share_heating == 1: Disconnected_FC_capacity_heating_W = dfBest["Nominal Power"].iloc[0] if Disconnected_GHP_share_heating == 1: Disconnected_GHP_capacity_heating_W = dfBest["Nominal Power"].iloc[0] if (Disconnected_FC_share_heating == 0 and Disconnected_Boiler_BG_share_heating == 0 and Disconnected_GHP_share_heating != 0 and Disconnected_Boiler_NG_share_heating != 0): Disconnected_Boiler_NG_capacity_heating_W = dfBest["Nominal Power"].iloc[0] / Disconnected_Boiler_NG_share_heating Disconnected_GHP_capacity_heating_W = dfBest["Nominal Power"].iloc[0] / Disconnected_GHP_share_heating disconnected_capacity = dict(building_name=building_names[i], Disconnected_Boiler_BG_share=Disconnected_Boiler_BG_share_heating, Disconnected_Boiler_BG_capacity_W=Disconnected_Boiler_BG_capacity_heating_W, Disconnected_Boiler_NG_share=Disconnected_Boiler_NG_share_heating, Disconnected_Boiler_NG_capacity_W=Disconnected_Boiler_NG_capacity_heating_W, Disconnected_FC_share=Disconnected_FC_share_heating, Disconnected_FC_capacity_W=Disconnected_FC_capacity_heating_W, Disconnected_GHP_share=Disconnected_GHP_share_heating, Disconnected_GHP_capacity_W=Disconnected_GHP_capacity_heating_W, Disconnected_VCC_to_AHU_share_cooling=Disconnected_VCC_to_AHU_share_cooling, Disconnected_VCC_to_AHU_capacity_cooling_W=Disconnected_VCC_to_AHU_capacity_cooling_W, Disconnected_VCC_to_ARU_share_cooling=Disconnected_VCC_to_ARU_share_cooling, Disconnected_VCC_to_ARU_capacity_cooling_W=Disconnected_VCC_to_ARU_capacity_cooling_W, Disconnected_VCC_to_SCU_share_cooling=Disconnected_VCC_to_SCU_share_cooling, Disconnected_VCC_to_SCU_capacity_cooling_W=Disconnected_VCC_to_SCU_capacity_cooling_W, Disconnected_VCC_to_AHU_ARU_share_cooling=Disconnected_VCC_to_AHU_ARU_share_cooling, Disconnected_VCC_to_AHU_ARU_capacity_cooling_W=Disconnected_VCC_to_AHU_ARU_capacity_cooling_W, Disconnected_VCC_to_AHU_SCU_share_cooling=Disconnected_VCC_to_AHU_SCU_share_cooling, Disconnected_VCC_to_AHU_SCU_capacity_cooling_W=Disconnected_VCC_to_AHU_SCU_capacity_cooling_W, Disconnected_VCC_to_ARU_SCU_share_cooling=Disconnected_VCC_to_ARU_SCU_share_cooling, Disconnected_VCC_to_ARU_SCU_capacity_cooling_W=Disconnected_VCC_to_ARU_SCU_capacity_cooling_W, Disconnected_VCC_to_AHU_ARU_SCU_share_cooling=Disconnected_VCC_to_AHU_ARU_SCU_share_cooling, Disconnected_VCC_to_AHU_ARU_SCU_capacity_cooling_W=Disconnected_VCC_to_AHU_ARU_SCU_capacity_cooling_W, Disconnected_single_effect_ACH_to_AHU_share_FP_cooling=Disconnected_single_effect_ACH_to_AHU_share_FP_cooling, Disconnected_single_effect_ACH_to_AHU_capacity_FP_cooling_W=Disconnected_single_effect_ACH_to_AHU_capacity_FP_cooling_W, Disconnected_single_effect_ACH_to_AHU_share_ET_cooling=Disconnected_single_effect_ACH_to_AHU_share_ET_cooling, Disconnected_single_effect_ACH_to_AHU_capacity_ET_cooling_W=Disconnected_single_effect_ACH_to_AHU_capacity_ET_cooling_W, Disconnected_single_effect_ACH_to_ARU_share_FP_cooling=Disconnected_single_effect_ACH_to_ARU_share_FP_cooling, Disconnected_single_effect_ACH_to_ARU_capacity_FP_cooling_W=Disconnected_single_effect_ACH_to_ARU_capacity_FP_cooling_W, Disconnected_single_effect_ACH_to_ARU_share_ET_cooling=Disconnected_single_effect_ACH_to_ARU_share_ET_cooling, Disconnected_single_effect_ACH_to_ARU_capacity_ET_cooling_W=Disconnected_single_effect_ACH_to_ARU_capacity_ET_cooling_W, Disconnected_single_effect_ACH_to_SCU_share_FP_cooling=Disconnected_single_effect_ACH_to_SCU_share_FP_cooling, Disconnected_single_effect_ACH_to_SCU_capacity_FP_cooling_W=Disconnected_single_effect_ACH_to_SCU_capacity_FP_cooling_W, Disconnected_single_effect_ACH_to_SCU_share_ET_cooling=Disconnected_single_effect_ACH_to_SCU_share_ET_cooling, Disconnected_single_effect_ACH_to_SCU_capacity_ET_cooling_W=Disconnected_single_effect_ACH_to_SCU_capacity_ET_cooling_W, Disconnected_single_effect_ACH_to_AHU_ARU_share_FP_cooling=Disconnected_single_effect_ACH_to_AHU_ARU_share_FP_cooling, Disconnected_single_effect_ACH_to_AHU_ARU_capacity_FP_cooling_W=Disconnected_single_effect_ACH_to_AHU_ARU_capacity_FP_cooling_W, Disconnected_single_effect_ACH_to_AHU_ARU_share_ET_cooling=Disconnected_single_effect_ACH_to_AHU_ARU_share_ET_cooling, Disconnected_single_effect_ACH_to_AHU_ARU_capacity_ET_cooling_W=Disconnected_single_effect_ACH_to_AHU_ARU_capacity_ET_cooling_W, Disconnected_single_effect_ACH_to_AHU_SCU_share_FP_cooling=Disconnected_single_effect_ACH_to_AHU_SCU_share_FP_cooling, Disconnected_single_effect_ACH_to_AHU_SCU_capacity_FP_cooling_W=Disconnected_single_effect_ACH_to_AHU_SCU_capacity_FP_cooling_W, Disconnected_single_effect_ACH_to_AHU_SCU_share_ET_cooling=Disconnected_single_effect_ACH_to_AHU_SCU_share_ET_cooling, Disconnected_single_effect_ACH_to_AHU_SCU_capacity_ET_cooling_W=Disconnected_single_effect_ACH_to_AHU_SCU_capacity_ET_cooling_W, Disconnected_single_effect_ACH_to_ARU_SCU_share_FP_cooling=Disconnected_single_effect_ACH_to_ARU_SCU_share_FP_cooling, Disconnected_single_effect_ACH_to_ARU_SCU_capacity_FP_cooling_W=Disconnected_single_effect_ACH_to_ARU_SCU_capacity_FP_cooling_W, Disconnected_single_effect_ACH_to_ARU_SCU_share_ET_cooling=Disconnected_single_effect_ACH_to_ARU_SCU_share_ET_cooling, Disconnected_single_effect_ACH_to_ARU_SCU_capacity_ET_cooling_W=Disconnected_single_effect_ACH_to_ARU_SCU_capacity_ET_cooling_W, Disconnected_single_effect_ACH_to_AHU_ARU_SCU_share_FP_cooling=Disconnected_single_effect_ACH_to_AHU_ARU_SCU_share_FP_cooling, Disconnected_single_effect_ACH_to_AHU_ARU_SCU_capacity_FP_cooling_W=Disconnected_single_effect_ACH_to_AHU_ARU_SCU_capacity_FP_cooling_W, Disconnected_single_effect_ACH_to_AHU_ARU_SCU_share_ET_cooling=Disconnected_single_effect_ACH_to_AHU_ARU_SCU_share_ET_cooling, Disconnected_single_effect_ACH_to_AHU_ARU_SCU_capacity_ET_cooling_W=Disconnected_single_effect_ACH_to_AHU_ARU_SCU_capacity_ET_cooling_W, Disconnected_direct_expansion_to_AHU_share_cooling=Disconnected_direct_expansion_to_AHU_share_cooling, Disconnected_direct_expansion_to_AHU_capacity_cooling_W=Disconnected_direct_expansion_to_AHU_capacity_cooling_W, Disconnected_direct_expansion_to_ARU_share_cooling=Disconnected_direct_expansion_to_ARU_share_cooling, Disconnected_direct_expansion_to_ARU_capacity_cooling_W=Disconnected_direct_expansion_to_ARU_capacity_cooling_W, Disconnected_direct_expansion_to_SCU_share_cooling=Disconnected_direct_expansion_to_SCU_share_cooling, Disconnected_direct_expansion_to_SCU_capacity_cooling_W=Disconnected_direct_expansion_to_SCU_capacity_cooling_W, Disconnected_direct_expansion_to_AHU_SCU_share_cooling=Disconnected_direct_expansion_to_AHU_SCU_share_cooling, Disconnected_direct_expansion_to_AHU_SCU_capacity_cooling_W=Disconnected_direct_expansion_to_AHU_SCU_capacity_cooling_W, Disconnected_direct_expansion_to_AHU_ARU_share_cooling=Disconnected_direct_expansion_to_AHU_ARU_share_cooling, Disconnected_direct_expansion_to_AHU_ARU_capacity_cooling_W=Disconnected_direct_expansion_to_AHU_ARU_capacity_cooling_W, Disconnected_direct_expansion_to_ARU_SCU_share_cooling=Disconnected_direct_expansion_to_ARU_SCU_share_cooling, Disconnected_direct_expansion_to_ARU_SCU_capacity_cooling_W=Disconnected_direct_expansion_to_ARU_SCU_capacity_cooling_W, Disconnected_direct_expansion_to_AHU_ARU_SCU_share_cooling=Disconnected_direct_expansion_to_AHU_ARU_SCU_share_cooling, Disconnected_direct_expansion_to_AHU_ARU_SCU_capacity_cooling_W=Disconnected_direct_expansion_to_AHU_ARU_SCU_capacity_cooling_W) elif config.optimization.iscooling: df = pd.read_csv(locator.get_optimization_disconnected_folder_building_result_cooling(building_names[i], cooling_all_units)) dfBest = df[df["Best configuration"] == 1] Disconnected_single_effect_ACH_to_AHU_ARU_SCU_share_FP_cooling = dfBest["single effect ACH to AHU_ARU_SCU Share (FP)"].iloc[0] Disconnected_single_effect_ACH_to_SCU_share_FP_cooling = dfBest["single effect ACH to SCU Share (FP)"].iloc[0] Disconnected_single_effect_ACH_to_AHU_ARU_SCU_share_ET_cooling = dfBest["single effect ACH to AHU_ARU_SCU Share (ET)"].iloc[0] Disconnected_direct_expansion_to_AHU_ARU_SCU_share_cooling = dfBest["DX to AHU_ARU_SCU Share"].iloc[0] Disconnected_VCC_to_AHU_ARU_share_cooling = dfBest["VCC to AHU_ARU Share"].iloc[0] Disconnected_VCC_to_AHU_ARU_SCU_share_cooling = dfBest["VCC to AHU_ARU_SCU Share"].iloc[0] Disconnected_VCC_to_SCU_share_cooling = dfBest["VCC to SCU Share"].iloc[0] if Disconnected_single_effect_ACH_to_AHU_ARU_SCU_share_FP_cooling == 1: Disconnected_single_effect_ACH_to_AHU_ARU_SCU_capacity_FP_cooling_W = dfBest["Nominal Power single effect ACH to AHU_ARU_SCU (FP) [W]"].iloc[0] if Disconnected_single_effect_ACH_to_SCU_share_FP_cooling == 1: Disconnected_single_effect_ACH_to_SCU_capacity_FP_cooling_W = dfBest["Nominal Power single effect ACH to SCU (FP) [W]"].iloc[0] if Disconnected_single_effect_ACH_to_AHU_ARU_SCU_share_ET_cooling == 1: Disconnected_single_effect_ACH_to_AHU_ARU_SCU_capacity_ET_cooling_W = dfBest["Nominal Power single effect ACH to AHU_ARU_SCU (ET) [W]"].iloc[0] if Disconnected_direct_expansion_to_AHU_ARU_SCU_share_cooling == 1: Disconnected_direct_expansion_to_AHU_ARU_SCU_capacity_cooling_W = dfBest["Nominal Power DX to AHU_ARU_SCU [W]"].iloc[0] if Disconnected_VCC_to_AHU_ARU_share_cooling == 1: Disconnected_VCC_to_AHU_ARU_capacity_cooling_W = dfBest["Nominal Power VCC to AHU_ARU [W]"].iloc[0] if Disconnected_VCC_to_AHU_ARU_SCU_share_cooling == 1: Disconnected_VCC_to_AHU_ARU_SCU_capacity_cooling_W = dfBest["Nominal Power VCC to AHU_ARU_SCU [W]"].iloc[0] if Disconnected_VCC_to_SCU_share_cooling == 1: Disconnected_VCC_to_SCU_capacity_cooling_W = dfBest["Nominal Power VCC to SCU [W]"].iloc[0] disconnected_capacity = dict(building_name=building_names[i], Disconnected_Boiler_BG_share=Disconnected_Boiler_BG_share_heating, Disconnected_Boiler_BG_capacity_W=Disconnected_Boiler_BG_capacity_heating_W, Disconnected_Boiler_NG_share=Disconnected_Boiler_NG_share_heating, Disconnected_Boiler_NG_capacity_W=Disconnected_Boiler_NG_capacity_heating_W, Disconnected_FC_share=Disconnected_FC_share_heating, Disconnected_FC_capacity_W=Disconnected_FC_capacity_heating_W, Disconnected_GHP_share=Disconnected_GHP_share_heating, Disconnected_GHP_capacity_W=Disconnected_GHP_capacity_heating_W, Disconnected_VCC_to_AHU_share_cooling=Disconnected_VCC_to_AHU_share_cooling, Disconnected_VCC_to_AHU_capacity_cooling_W=Disconnected_VCC_to_AHU_capacity_cooling_W, Disconnected_VCC_to_ARU_share_cooling=Disconnected_VCC_to_ARU_share_cooling, Disconnected_VCC_to_ARU_capacity_cooling_W=Disconnected_VCC_to_ARU_capacity_cooling_W, Disconnected_VCC_to_SCU_share_cooling=Disconnected_VCC_to_SCU_share_cooling, Disconnected_VCC_to_SCU_capacity_cooling_W=Disconnected_VCC_to_SCU_capacity_cooling_W, Disconnected_VCC_to_AHU_ARU_share_cooling=Disconnected_VCC_to_AHU_ARU_share_cooling, Disconnected_VCC_to_AHU_ARU_capacity_cooling_W=Disconnected_VCC_to_AHU_ARU_capacity_cooling_W, Disconnected_VCC_to_AHU_SCU_share_cooling=Disconnected_VCC_to_AHU_SCU_share_cooling, Disconnected_VCC_to_AHU_SCU_capacity_cooling_W=Disconnected_VCC_to_AHU_SCU_capacity_cooling_W, Disconnected_VCC_to_ARU_SCU_share_cooling=Disconnected_VCC_to_ARU_SCU_share_cooling, Disconnected_VCC_to_ARU_SCU_capacity_cooling_W=Disconnected_VCC_to_ARU_SCU_capacity_cooling_W, Disconnected_VCC_to_AHU_ARU_SCU_share_cooling=Disconnected_VCC_to_AHU_ARU_SCU_share_cooling, Disconnected_VCC_to_AHU_ARU_SCU_capacity_cooling_W=Disconnected_VCC_to_AHU_ARU_SCU_capacity_cooling_W, Disconnected_single_effect_ACH_to_AHU_share_FP_cooling=Disconnected_single_effect_ACH_to_AHU_share_FP_cooling, Disconnected_single_effect_ACH_to_AHU_capacity_FP_cooling_W=Disconnected_single_effect_ACH_to_AHU_capacity_FP_cooling_W, Disconnected_single_effect_ACH_to_AHU_share_ET_cooling=Disconnected_single_effect_ACH_to_AHU_share_ET_cooling, Disconnected_single_effect_ACH_to_AHU_capacity_ET_cooling_W=Disconnected_single_effect_ACH_to_AHU_capacity_ET_cooling_W, Disconnected_single_effect_ACH_to_ARU_share_FP_cooling=Disconnected_single_effect_ACH_to_ARU_share_FP_cooling, Disconnected_single_effect_ACH_to_ARU_capacity_FP_cooling_W=Disconnected_single_effect_ACH_to_ARU_capacity_FP_cooling_W, Disconnected_single_effect_ACH_to_ARU_share_ET_cooling=Disconnected_single_effect_ACH_to_ARU_share_ET_cooling, Disconnected_single_effect_ACH_to_ARU_capacity_ET_cooling_W=Disconnected_single_effect_ACH_to_ARU_capacity_ET_cooling_W, Disconnected_single_effect_ACH_to_SCU_share_FP_cooling=Disconnected_single_effect_ACH_to_SCU_share_FP_cooling, Disconnected_single_effect_ACH_to_SCU_capacity_FP_cooling_W=Disconnected_single_effect_ACH_to_SCU_capacity_FP_cooling_W, Disconnected_single_effect_ACH_to_SCU_share_ET_cooling=Disconnected_single_effect_ACH_to_SCU_share_ET_cooling, Disconnected_single_effect_ACH_to_SCU_capacity_ET_cooling_W=Disconnected_single_effect_ACH_to_SCU_capacity_ET_cooling_W, Disconnected_single_effect_ACH_to_AHU_ARU_share_FP_cooling=Disconnected_single_effect_ACH_to_AHU_ARU_share_FP_cooling, Disconnected_single_effect_ACH_to_AHU_ARU_capacity_FP_cooling_W=Disconnected_single_effect_ACH_to_AHU_ARU_capacity_FP_cooling_W, Disconnected_single_effect_ACH_to_AHU_ARU_share_ET_cooling=Disconnected_single_effect_ACH_to_AHU_ARU_share_ET_cooling, Disconnected_single_effect_ACH_to_AHU_ARU_capacity_ET_cooling_W=Disconnected_single_effect_ACH_to_AHU_ARU_capacity_ET_cooling_W, Disconnected_single_effect_ACH_to_AHU_SCU_share_FP_cooling=Disconnected_single_effect_ACH_to_AHU_SCU_share_FP_cooling, Disconnected_single_effect_ACH_to_AHU_SCU_capacity_FP_cooling_W=Disconnected_single_effect_ACH_to_AHU_SCU_capacity_FP_cooling_W, Disconnected_single_effect_ACH_to_AHU_SCU_share_ET_cooling=Disconnected_single_effect_ACH_to_AHU_SCU_share_ET_cooling, Disconnected_single_effect_ACH_to_AHU_SCU_capacity_ET_cooling_W=Disconnected_single_effect_ACH_to_AHU_SCU_capacity_ET_cooling_W, Disconnected_single_effect_ACH_to_ARU_SCU_share_FP_cooling=Disconnected_single_effect_ACH_to_ARU_SCU_share_FP_cooling, Disconnected_single_effect_ACH_to_ARU_SCU_capacity_FP_cooling_W=Disconnected_single_effect_ACH_to_ARU_SCU_capacity_FP_cooling_W, Disconnected_single_effect_ACH_to_ARU_SCU_share_ET_cooling=Disconnected_single_effect_ACH_to_ARU_SCU_share_ET_cooling, Disconnected_single_effect_ACH_to_ARU_SCU_capacity_ET_cooling_W=Disconnected_single_effect_ACH_to_ARU_SCU_capacity_ET_cooling_W, Disconnected_single_effect_ACH_to_AHU_ARU_SCU_share_FP_cooling=Disconnected_single_effect_ACH_to_AHU_ARU_SCU_share_FP_cooling, Disconnected_single_effect_ACH_to_AHU_ARU_SCU_capacity_FP_cooling_W=Disconnected_single_effect_ACH_to_AHU_ARU_SCU_capacity_FP_cooling_W, Disconnected_single_effect_ACH_to_AHU_ARU_SCU_share_ET_cooling=Disconnected_single_effect_ACH_to_AHU_ARU_SCU_share_ET_cooling, Disconnected_single_effect_ACH_to_AHU_ARU_SCU_capacity_ET_cooling_W=Disconnected_single_effect_ACH_to_AHU_ARU_SCU_capacity_ET_cooling_W, Disconnected_direct_expansion_to_AHU_share_cooling=Disconnected_direct_expansion_to_AHU_share_cooling, Disconnected_direct_expansion_to_AHU_capacity_cooling_W=Disconnected_direct_expansion_to_AHU_capacity_cooling_W, Disconnected_direct_expansion_to_ARU_share_cooling=Disconnected_direct_expansion_to_ARU_share_cooling, Disconnected_direct_expansion_to_ARU_capacity_cooling_W=Disconnected_direct_expansion_to_ARU_capacity_cooling_W, Disconnected_direct_expansion_to_SCU_share_cooling=Disconnected_direct_expansion_to_SCU_share_cooling, Disconnected_direct_expansion_to_SCU_capacity_cooling_W=Disconnected_direct_expansion_to_SCU_capacity_cooling_W, Disconnected_direct_expansion_to_AHU_SCU_share_cooling=Disconnected_direct_expansion_to_AHU_SCU_share_cooling, Disconnected_direct_expansion_to_AHU_SCU_capacity_cooling_W=Disconnected_direct_expansion_to_AHU_SCU_capacity_cooling_W, Disconnected_direct_expansion_to_AHU_ARU_share_cooling=Disconnected_direct_expansion_to_AHU_ARU_share_cooling, Disconnected_direct_expansion_to_AHU_ARU_capacity_cooling_W=Disconnected_direct_expansion_to_AHU_ARU_capacity_cooling_W, Disconnected_direct_expansion_to_ARU_SCU_share_cooling=Disconnected_direct_expansion_to_ARU_SCU_share_cooling, Disconnected_direct_expansion_to_ARU_SCU_capacity_cooling_W=Disconnected_direct_expansion_to_ARU_SCU_capacity_cooling_W, Disconnected_direct_expansion_to_AHU_ARU_SCU_share_cooling=Disconnected_direct_expansion_to_AHU_ARU_SCU_share_cooling, Disconnected_direct_expansion_to_AHU_ARU_SCU_capacity_cooling_W=Disconnected_direct_expansion_to_AHU_ARU_SCU_capacity_cooling_W) else: raise ValueError("the region is not specified correctly") else: DCN_unit_configuration = saved_dataframe_for_each_generation['DCN unit configuration'][index] if DCN_unit_configuration == 1: # corresponds to AHU in the central plant, so remaining load need to be provided by decentralized plant decentralized_configuration = 'ARU_SCU' df = pd.read_csv( locator.get_optimization_disconnected_folder_building_result_cooling(building_names[i], decentralized_configuration)) dfBest = df[df["Best configuration"] == 1] Disconnected_direct_expansion_to_ARU_SCU_share_cooling = dfBest["DX to ARU_SCU Share"].iloc[0] Disconnected_single_effect_ACH_to_ARU_SCU_share_FP_cooling = dfBest["single effect ACH to ARU_SCU Share (FP)"].iloc[0] Disconnected_single_effect_ACH_to_ARU_SCU_share_ET_cooling = dfBest["single effect ACH to ARU_SCU Share (ET)"].iloc[0] Disconnected_VCC_to_ARU_SCU_share_cooling = dfBest["VCC to ARU_SCU Share"].iloc[0] if Disconnected_single_effect_ACH_to_ARU_SCU_share_FP_cooling == 1: Disconnected_single_effect_ACH_to_ARU_SCU_capacity_FP_cooling_W = dfBest["Nominal Power single effect ACH to ARU_SCU (FP) [W]"].iloc[0] if Disconnected_single_effect_ACH_to_ARU_SCU_share_ET_cooling == 1: Disconnected_single_effect_ACH_to_ARU_SCU_capacity_ET_cooling_W = dfBest["Nominal Power single effect ACH to ARU_SCU (ET) [W]"].iloc[0] if Disconnected_direct_expansion_to_ARU_SCU_share_cooling == 1: Disconnected_direct_expansion_to_ARU_SCU_capacity_cooling_W = dfBest["Nominal Power DX to ARU_SCU [W]"].iloc[0] if Disconnected_VCC_to_ARU_SCU_share_cooling == 1: Disconnected_VCC_to_ARU_SCU_capacity_cooling_W = dfBest["Nominal Power VCC to ARU_SCU [W]"].iloc[0] if DCN_unit_configuration == 2: # corresponds to ARU in the central plant, so remaining load need to be provided by decentralized plant decentralized_configuration = 'AHU_SCU' df = pd.read_csv( locator.get_optimization_disconnected_folder_building_result_cooling(building_names[i], decentralized_configuration)) dfBest = df[df["Best configuration"] == 1] Disconnected_direct_expansion_to_AHU_SCU_share_cooling = dfBest["DX to AHU_SCU Share"].iloc[0] Disconnected_single_effect_ACH_to_AHU_SCU_share_FP_cooling = dfBest["single effect ACH to AHU_SCU Share (FP)"].iloc[0] Disconnected_single_effect_ACH_to_AHU_SCU_share_ET_cooling = dfBest["single effect ACH to AHU_SCU Share (ET)"].iloc[0] Disconnected_VCC_to_ARU_SCU_share_cooling = dfBest["VCC to AHU_SCU Share"].iloc[0] if Disconnected_single_effect_ACH_to_AHU_SCU_share_FP_cooling == 1: Disconnected_single_effect_ACH_to_AHU_SCU_capacity_FP_cooling_W = dfBest["Nominal Power single effect ACH to AHU_SCU (FP) [W]"].iloc[0] if Disconnected_single_effect_ACH_to_AHU_SCU_share_ET_cooling == 1: Disconnected_single_effect_ACH_to_AHU_SCU_capacity_ET_cooling_W = dfBest["Nominal Power single effect ACH to AHU_SCU (ET) [W]"].iloc[0] if Disconnected_direct_expansion_to_AHU_SCU_share_cooling == 1: Disconnected_direct_expansion_to_AHU_SCU_capacity_cooling_W = dfBest["Nominal Power DX to AHU_SCU [W]"].iloc[0] if Disconnected_VCC_to_AHU_SCU_share_cooling == 1: Disconnected_VCC_to_AHU_SCU_capacity_cooling_W = dfBest["Nominal Power VCC to AHU_SCU [W]"].iloc[0] if DCN_unit_configuration == 3: # corresponds to SCU in the central plant, so remaining load need to be provided by decentralized plant decentralized_configuration = 'AHU_ARU' df = pd.read_csv(locator.get_optimization_disconnected_folder_building_result_cooling(building_names[i], decentralized_configuration)) dfBest = df[df["Best configuration"] == 1] Disconnected_direct_expansion_to_AHU_ARU_share_cooling = dfBest["DX to AHU_ARU Share"].iloc[0] Disconnected_single_effect_ACH_to_AHU_ARU_share_FP_cooling = \ dfBest["single effect ACH to AHU_ARU Share (FP)"].iloc[0] Disconnected_single_effect_ACH_to_AHU_ARU_share_ET_cooling = \ dfBest["single effect ACH to AHU_ARU Share (ET)"].iloc[0] Disconnected_VCC_to_AHU_ARU_share_cooling = dfBest["VCC to AHU_ARU Share"].iloc[0] if Disconnected_single_effect_ACH_to_AHU_ARU_share_FP_cooling == 1: Disconnected_single_effect_ACH_to_AHU_ARU_capacity_FP_cooling_W = \ dfBest["Nominal Power single effect ACH to AHU_ARU (FP) [W]"].iloc[0] if Disconnected_single_effect_ACH_to_AHU_ARU_share_ET_cooling == 1: Disconnected_single_effect_ACH_to_AHU_ARU_capacity_ET_cooling_W = \ dfBest["Nominal Power single effect ACH to AHU_ARU (ET) [W]"].iloc[0] if Disconnected_direct_expansion_to_AHU_ARU_share_cooling == 1: Disconnected_direct_expansion_to_AHU_ARU_capacity_cooling_W = \ dfBest["Nominal Power DX to AHU_ARU [W]"].iloc[0] if Disconnected_VCC_to_AHU_ARU_share_cooling == 1: Disconnected_VCC_to_AHU_ARU_capacity_cooling_W = \ dfBest["Nominal Power VCC to AHU_ARU [W]"].iloc[0] if DCN_unit_configuration == 4: # corresponds to AHU + ARU in the central plant, so remaining load need to be provided by decentralized plant decentralized_configuration = 'SCU' df = pd.read_csv(locator.get_optimization_disconnected_folder_building_result_cooling(building_names[i], decentralized_configuration)) dfBest = df[df["Best configuration"] == 1] Disconnected_direct_expansion_to_SCU_share_cooling = dfBest["DX to SCU Share"].iloc[0] Disconnected_single_effect_ACH_to_SCU_share_FP_cooling = \ dfBest["single effect ACH to SCU Share (FP)"].iloc[0] Disconnected_single_effect_ACH_to_SCU_share_ET_cooling = \ dfBest["single effect ACH to SCU Share (ET)"].iloc[0] Disconnected_VCC_to_SCU_share_cooling = dfBest["VCC to SCU Share"].iloc[0] if Disconnected_single_effect_ACH_to_SCU_share_FP_cooling == 1: Disconnected_single_effect_ACH_to_SCU_capacity_FP_cooling_W = \ dfBest["Nominal Power single effect ACH to SCU (FP) [W]"].iloc[0] if Disconnected_single_effect_ACH_to_SCU_share_ET_cooling == 1: Disconnected_single_effect_ACH_to_SCU_capacity_ET_cooling_W = \ dfBest["Nominal Power single effect ACH to SCU (ET) [W]"].iloc[0] if Disconnected_direct_expansion_to_SCU_share_cooling == 1: Disconnected_direct_expansion_to_SCU_capacity_cooling_W = \ dfBest["Nominal Power DX to SCU [W]"].iloc[0] if Disconnected_VCC_to_SCU_share_cooling == 1: Disconnected_VCC_to_SCU_capacity_cooling_W = \ dfBest["Nominal Power VCC to SCU [W]"].iloc[0] if DCN_unit_configuration == 5: # corresponds to AHU + SCU in the central plant, so remaining load need to be provided by decentralized plant decentralized_configuration = 'ARU' df = pd.read_csv(locator.get_optimization_disconnected_folder_building_result_cooling(building_names[i], decentralized_configuration)) dfBest = df[df["Best configuration"] == 1] Disconnected_direct_expansion_to_ARU_share_cooling = dfBest["DX to ARU Share"].iloc[0] Disconnected_single_effect_ACH_to_ARU_share_FP_cooling = \ dfBest["single effect ACH to ARU Share (FP)"].iloc[0] Disconnected_single_effect_ACH_to_ARU_share_ET_cooling = \ dfBest["single effect ACH to ARU Share (ET)"].iloc[0] Disconnected_VCC_to_ARU_share_cooling = dfBest["VCC to ARU Share"].iloc[0] if Disconnected_single_effect_ACH_to_ARU_share_FP_cooling == 1: Disconnected_single_effect_ACH_to_ARU_capacity_FP_cooling_W = \ dfBest["Nominal Power single effect ACH to ARU (FP) [W]"].iloc[0] if Disconnected_single_effect_ACH_to_ARU_share_ET_cooling == 1: Disconnected_single_effect_ACH_to_ARU_capacity_ET_cooling_W = \ dfBest["Nominal Power single effect ACH to ARU (ET) [W]"].iloc[0] if Disconnected_direct_expansion_to_ARU_share_cooling == 1: Disconnected_direct_expansion_to_ARU_capacity_cooling_W = \ dfBest["Nominal Power DX to ARU [W]"].iloc[0] if Disconnected_VCC_to_ARU_share_cooling == 1: Disconnected_VCC_to_ARU_capacity_cooling_W = \ dfBest["Nominal Power VCC to ARU [W]"].iloc[0] if DCN_unit_configuration == 6: # corresponds to ARU + SCU in the central plant, so remaining load need to be provided by decentralized plant decentralized_configuration = 'AHU' df = pd.read_csv( locator.get_optimization_disconnected_folder_building_result_cooling(building_names[i], decentralized_configuration)) dfBest = df[df["Best configuration"] == 1] Disconnected_direct_expansion_to_AHU_share_cooling = dfBest["DX to AHU Share"].iloc[0] Disconnected_single_effect_ACH_to_AHU_share_FP_cooling = \ dfBest["single effect ACH to AHU Share (FP)"].iloc[0] Disconnected_single_effect_ACH_to_AHU_share_ET_cooling = \ dfBest["single effect ACH to AHU Share (ET)"].iloc[0] Disconnected_VCC_to_AHU_share_cooling = dfBest["VCC to AHU Share"].iloc[0] if Disconnected_single_effect_ACH_to_AHU_share_FP_cooling == 1: Disconnected_single_effect_ACH_to_AHU_capacity_FP_cooling_W = \
<reponame>NieR1711/Fire import discord from discord.ext import commands from discord.ext.commands import has_permissions, bot_has_permissions #from moviepy.editor import VideoFileClip, TextClip, CompositeVideoClip from fire.converters import Member, Role, TextChannel import aiosqlite3 import functools import datetime import asyncio import typing import asyncpg import json import os with open('config.json', 'r') as cfg: config = json.load(cfg) def isadmin(ctx): """Checks if the author is an admin""" if str(ctx.author.id) not in config['admins']: admin = False else: admin = True return admin class Premium(commands.Cog, name="Premium Commands"): def __init__(self, bot): self.bot = bot self.loop = bot.loop self.premiumGuilds = [] self.autoroles = {} # self.reactroles = {} self.joinroles = {} self.rolepersists = {} async def loadPremiumGuilds(self): self.premiumGuilds = [] query = 'SELECT * FROM premium;' guilds = await self.bot.db.fetch(query) for guild in guilds: self.premiumGuilds.append(guild['gid']) async def loadAutoroles(self): self.autoroles = {} query = 'SELECT * FROM settings;' settings = await self.bot.db.fetch(query) for s in settings: if s['autorole'] != 0: guild = s['gid'] self.autoroles[guild] = { "role": s['autorole'] } # async def loadReactroles(self): # self.reactroles = {} # query = 'SELECT * FROM settings;' # settings = await self.bot.db.fetch(query) # for s in settings: # if s['reactroleid'] != 0: # guild = s['gid'] # self.reactroles[guild] = { # "role": s['reactroleid'], # "message": s['reactrolemid'], # "emote": s['reactroleeid'] # } async def loadJoinRoles(self): self.joinroles = {} query = 'SELECT * FROM joinableranks;' ranks = await self.bot.db.fetch(query) for r in ranks: guild = r['gid'] if guild not in self.joinroles: self.joinroles[guild] = [] self.joinroles[guild].append(r['rid']) async def loadRolePersist(self): self.rolepersists = {} query = 'SELECT * FROM rolepersist;' persists = await self.bot.db.fetch(query) for p in persists: guild = p['gid'] user = p['uid'] role = p['rid'] try: self.rolepersists[guild][user] = { "role": role } except KeyError: self.rolepersists[guild] = {} self.rolepersists[guild][user] = { "role": role } async def cog_check(self, ctx: commands.Context): """ Local check, makes all commands in this cog premium only """ if ctx.guild.id in self.premiumGuilds: return True if await self.bot.is_team_owner(ctx.author): return True else: return False async def member_guild_check(self, member: discord.Member): return True # """ # Check if the guild from a member is premium # """ # if member.guild.id in self.premiumGuilds: # return True # if await self.bot.is_team_owner(member): # return True # else: # return False @commands.Cog.listener() async def on_ready(self): await asyncio.sleep(10) await self.loadPremiumGuilds() await self.loadAutoroles() # await self.loadReactroles() await self.loadJoinRoles() await self.loadRolePersist() print('Premium functions loaded!') @commands.command(name='loadpremium', description='Load premium data', hidden=True) async def loadpremium(self, ctx): '''PFXloadpremium''' if await self.bot.is_team_owner(ctx.author): await self.loadPremiumGuilds() await self.loadAutoroles() # await self.loadReactroles() await self.loadJoinRoles() await self.loadRolePersist() await ctx.send('<a:fireSuccess:603214443442077708> Loaded data!') else: await ctx.send('no.') # def gencrabrave(self, t, filename): # clip = VideoFileClip("crabtemplate.mp4") # text = TextClip(t[0], fontsize=48, color='white', font='Verdana') # text2 = TextClip("____________________", fontsize=48, color='white', font='Verdana')\ # .set_position(("center", 210)).set_duration(15.4) # text = text.set_position(("center", 200)).set_duration(15.4) # text3 = TextClip(t[1], fontsize=48, color='white', font='Verdana')\ # .set_position(("center", 270)).set_duration(15.4) # # video = CompositeVideoClip([clip, text.crossfadein(1), text2.crossfadein(1), text3.crossfadein(1)]).set_duration(15.4) # # video.write_videofile(filename, preset='superfast', verbose=False) # clip.close() # video.close() # # @commands.command(name='crabrave', description='Make a Crab Rave meme!', hidden=True) # async def crabmeme(self, ctx, *, text: str): # '''Limited to owner only (for now, it may return) due to this command using like 90% CPU''' # if not await self.bot.is_team_owner(ctx.author): # return # if not '|' in text: # raise commands.ArgumentParsingError('Text should be separated by |') # if not text: # raise commands.MissingRequiredArgument('You need to provide text for the meme') # filename = str(ctx.author.id) + '.mp4' # t = text.upper().replace('| ', '|').split('|') # if len(t) != 2: # raise commands.ArgumentParsingError('Text should have 2 sections, separated by |') # if (not t[0] and not t[0].strip()) or (not t[1] and not t[1].strip()): # raise commands.ArgumentParsingError('Cannot use an empty string') # msg = await ctx.send('🦀 Generating Crab Rave 🦀') # await self.loop.run_in_executor(None, func=functools.partial(self.gencrabrave, t, filename)) # meme = discord.File(filename, 'crab.mp4') # await msg.delete() # await ctx.send(file=meme) # os.remove(filename) @commands.command(name='autorole', description='Automatically add a role to a user when they join') @has_permissions(manage_roles=True) @bot_has_permissions(manage_roles=True) @commands.guild_only() async def autorole(self, ctx, role: Role = None): '''PFXautorole [<role name/id/mention>]\nUse command without role argument to disable''' query = 'SELECT * FROM settings WHERE gid = $1;' guildsettings = await self.bot.db.fetch(query, ctx.guild.id) if guildsettings == []: # await self.bot.db.execute(f'INSERT INTO settings (\"gid\") VALUES ({ctx.guild.id});') # await self.bot.conn.commit() con = await self.bot.db.acquire() async with con.transaction(): query = 'INSERT INTO settings (\"gid\") VALUES ($1);' await self.bot.db.execute(query, ctx.guild.id) await self.bot.db.release(con) if not role: # await self.bot.db.execute(f'UPDATE settings SET autorole = 0 WHERE gid = {ctx.guild.id}') # await self.bot.conn.commit() con = await self.bot.db.acquire() async with con.transaction(): query = 'UPDATE settings SET autorole = 0 WHERE gid = $1;' await self.bot.db.execute(query, ctx.guild.id) await self.bot.db.release(con) try: self.autoroles[ctx.guild.id] = None except KeyError: pass return await ctx.send(f'<a:fireSuccess:603214443442077708> Successfully disabled auto-role in {discord.utils.escape_mentions(ctx.guild.name)}') else: roleid = role.id # await self.bot.db.execute(f'UPDATE settings SET autorole = {roleid} WHERE gid = {ctx.guild.id}') # await self.bot.conn.commit() con = await self.bot.db.acquire() async with con.transaction(): query = 'UPDATE settings SET autorole = $1 WHERE gid = $2' await self.bot.db.execute(query, roleid, ctx.guild.id) await self.bot.db.release(con) self.autoroles[ctx.guild.id] = { "role": roleid } return await ctx.send(f'<a:fireSuccess:603214443442077708> Successfully enabled auto-role in {discord.utils.escape_mentions(ctx.guild.name)}! All new members will recieve the {discord.utils.escape_mentions(role.name)} role.') # @commands.command(name='reactrole', description='Automatically add a role to a user when they react to a message') # @has_permissions(manage_roles=True) # @bot_has_permissions(manage_roles=True) # @commands.guild_only() # async def reactrole(self, ctx, role: Role = None, message: int = None, emote: typing.Union[int, str] = None): # '''PFXautorole [<role name/id/mention> <message id> <emote>]\nUse command without arguments to disable''' # query = 'SELECT * FROM settings WHERE gid = $1;' # guildsettings = await self.bot.db.fetch(query, ctx.guild.id) # if guildsettings == []: # # await self.bot.db.execute(f'INSERT INTO settings (\"gid\") VALUES ({ctx.guild.id});') # # await self.bot.conn.commit() # con = await self.bot.db.acquire() # async with con.transaction(): # query = 'INSERT INTO settings (\"gid\") VALUES ($1);' # await self.bot.db.execute(query, ctx.guild.id) # await self.bot.db.release(con) # if not role: # # await self.bot.db.execute(f'UPDATE settings SET (\"reactroleid\", \"reactrolemid\", \"reactroleeid\") = (0, 0, 0) WHERE gid = {ctx.guild.id}') # # await self.bot.conn.commit() # con = await self.bot.db.acquire() # async with con.transaction(): # query = 'UPDATE settings SET (\"reactroleid\", \"reactrolemid\", \"reactroleeid\") = (0, 0, 0) WHERE gid = $1;' # await self.bot.db.execute(query, ctx.guild.id) # await self.bot.db.release(con) # try: # self.reactroles[ctx.guild.id] = None # except KeyError: # pass # return await ctx.send(f'<a:fireSuccess:603214443442077708> Successfully disabled reaction role in {discord.utils.escape_mentions(ctx.guild.name)}') # else: # try: # msg = await ctx.channel.fetch_message(message) # except: # for channel in ctx.guild.text_channels: # perms = ctx.guild.me.permissions_in(channel) # try: # msg = await channel.fetch_message(message) # except: # continue # if not msg: # raise commands.ArgumentParsingError('Missing Message ID') # if not emote: # raise commands.ArgumentParsingError('Missing Emote') # roleid = role.id # messageid = msg.id # try: # emote = int(emote) # except Exception: # emote = str(emote) # if type(emote) == int: # emoteid = discord.utils.get(self.bot.emojis, id=emote) # if emoteid == None: # raise commands.ArgumentParsingError('Can\'t find emote from ID.') # else: # emote = emoteid # emoteid = emoteid.id # elif type(emote) == str: # emoteid = emote # # await self.bot.db.execute(f'UPDATE settings SET (\"reactroleid\", \"reactrolemid\", \"reactroleeid\") = ({roleid}, {messageid}, \"{emoteid}\") WHERE gid = {ctx.guild.id}') # # await self.bot.conn.commit() # con = await self.bot.db.acquire() # async with con.transaction(): # query = 'UPDATE settings SET (\"reactroleid\", \"reactrolemid\", \"reactroleeid\") = ($2, $3, $4) WHERE gid = $1;' # await self.bot.db.execute(query, ctx.guild.id, roleid, messageid, emoteid) # await self.bot.db.release(con) # await msg.add_reaction(emote) # self.reactroles[ctx.guild.id] = { # "role": roleid, # "message": messageid, # "emote": emoteid # } # return await ctx.send(f'<a:fireSuccess:603214443442077708> Successfully enabled reaction role in {discord.utils.escape_mentions(ctx.guild.name)}!') @commands.command(name='antiraid', description='Configure the channel for antiraid alerts') @commands.has_permissions(manage_channels=True) @commands.bot_has_permissions(ban_members=True) @commands.guild_only() async def antiraid(self, ctx, channel: TextChannel = None): if not channel: con = await self.bot.db.acquire() async with con.transaction(): mquery = 'UPDATE settings SET antiraid = $1 WHERE gid = $2;' await self.bot.db.execute(mquery, 0, ctx.guild.id) await self.bot.db.release(con) settings = self.bot.get_cog('Settings') await settings.loadSettings() return await ctx.send(f'I\'ve reset the antiraid alert channel.') else: con = await self.bot.db.acquire() async with con.transaction(): mquery = 'UPDATE settings SET antiraid = $1 WHERE gid = $2;' await self.bot.db.execute(mquery, channel.id, ctx.guild.id) await self.bot.db.release(con) settings = self.bot.get_cog('Settings') await settings.loadSettings() return await ctx.send(f'Antiraid alerts will now be sent in {channel.mention}') async def _setraidmsg(self, id: int, message: str): self.raidmsgs[id] = message await asyncio.sleep(300) self.raidmsgs[id] = None self.bot.dispatch('msgraid_attempt', self.bot.get_guild(id), self.msgraiders[id]) @commands.command(name='raidmsg', description='Set the raid message for the server. Anyone who says it will get banned') @commands.has_permissions(ban_members=True) @commands.bot_has_permissions(ban_members=True) async def raidmsg(self, ctx, *, msg: str): await ctx.message.delete() await ctx.send(f'Raid message set! Anyone who sends that message in the next 5 minutes will be added to the list.\nI will alert you in your raid alerts channel with the list of raiders :)') asyncio.get_event_loop().create_task(self._setraidmsg(ctx.guild.id, msg)) @commands.command(name='addrank', description='Add a role that users can join through the rank command.') @has_permissions(manage_roles=True) @bot_has_permissions(manage_roles=True) @commands.guild_only() async def addrank(self, ctx, *, role: Role): '''PFXaddrank <role>''' # await self.bot.db.execute(f'INSERT INTO joinableranks (\"gid\", \"rid\") VALUES ({ctx.guild.id}, {role.id});') # await self.bot.conn.commit() try: if role.id in self.joinroles[ctx.guild.id]: return await ctx.send('<a:fireFailed:603214400748257302> You cannot add an existing rank.') except Exception: pass con = await self.bot.db.acquire() async with con.transaction(): query = 'INSERT INTO joinableranks (\"gid\", \"rid\") VALUES ($1, $2);' await self.bot.db.execute(query, ctx.guild.id, role.id) await self.bot.db.release(con) try: self.joinroles[ctx.guild.id].append(role.id) except KeyError: self.joinroles[ctx.guild.id] = [] self.joinroles[ctx.guild.id].append(role.id) await ctx.send(f'<a:fireSuccess:603214443442077708> Successfully added the rank {discord.utils.escape_mentions(role.name)}!') logchannels = self.bot.get_cog("Settings").logchannels logid = logchannels[ctx.guild.id] if ctx.guild.id in logchannels else None if logid: logch = ctx.guild.get_channel(logid['modlogs']) if logch: embed = discord.Embed(color=discord.Color.green(), timestamp=datetime.datetime.utcnow()) embed.set_author(name=f'Rank Added | {role.name}', icon_url=str(ctx.guild.icon_url)) embed.add_field(name='User', value=ctx.author.mention, inline=False) embed.add_field(name='Role', value=f'{role.mention}', inline=False) embed.set_footer(text=f'User ID: {ctx.author.id} | Role ID: {role.id}') try: await logch.send(embed=embed) except Exception: pass return @commands.command(name='delrank', description='Remove a rank from the list of joinable roles.') @has_permissions(manage_roles=True) @bot_has_permissions(manage_roles=True) @commands.guild_only() async def delrank(self, ctx, *, role: Role): '''PFXdelrank <role>''' # await self.bot.db.execute(f'DELETE FROM joinableranks WHERE rid = {role.id};') # await self.bot.conn.commit() con = await self.bot.db.acquire() async with con.transaction(): query = 'DELETE FROM joinableranks WHERE rid = $1;' await self.bot.db.execute(query, role.id) await self.bot.db.release(con) try: self.joinroles[ctx.guild.id].remove(role.id) except KeyError: pass await ctx.send(f'<a:fireSuccess:603214443442077708> Successfully removed the rank {discord.utils.escape_mentions(role.name)}!') logchannels = self.bot.get_cog("Settings").logchannels logid = logchannels[ctx.guild.id] if ctx.guild.id in logchannels else None if logid: logch = ctx.guild.get_channel(logid['modlogs']) if logch: embed = discord.Embed(color=discord.Color.red(), timestamp=datetime.datetime.utcnow()) embed.set_author(name=f'Rank Removed | {role.name}', icon_url=str(ctx.guild.icon_url)) embed.add_field(name='User', value=ctx.author.mention, inline=False) embed.add_field(name='Role', value=f'{role.mention}', inline=False) embed.set_footer(text=f'User ID: {ctx.author.id} | Role ID: {role.id}') try: await logch.send(embed=embed) except Exception: pass return @commands.command(name='rank', description='List all available ranks and join a rank', aliases=['ranks']) @bot_has_permissions(manage_roles=True) @commands.guild_only() async def rank(self, ctx, *, role: Role = None): '''PFXrank [<rank>]''' if not role: try: ranks = self.joinroles[ctx.guild.id] except KeyError: return await ctx.send('<a:fireFailed:603214400748257302> Seems like there\'s no ranks set for this guild :c') roles = [] someremoved = 0 for rank in ranks: role = discord.utils.get(ctx.guild.roles, id=rank) if not role: # await self.bot.db.execute(f'DELETE FROM joinableranks WHERE rid = {rank};') # await self.bot.conn.commit() con = await self.bot.db.acquire() async with con.transaction(): query = 'DELETE
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals from os.path import join, basename, exists import six import numpy as np import utool as ut print, rrr, profile = ut.inject2(__name__) @six.add_metaclass(ut.ReloadingMetaclass) class DataSet(ut.NiceRepr): """ helper class for managing dataset paths and general metadata SeeAlso: python -m wbia_cnn.ingest_data --test-get_wbia_part_siam_dataset --show CommandLine: python -m wbia_cnn.dataset DataSet Example: >>> from wbia_cnn.ingest_data import * # NOQA >>> dataset = grab_mnist_category_dataset() >>> dataset.print_dir_structure() >>> # ---- >>> from wbia_cnn.models import MNISTModel >>> model = MNISTModel(batch_size=128, data_shape=(24, 24, 1), >>> output_dims=10, dataset_dpath=dataset.dataset_dpath) >>> model.print_structure() """ def __init__( dataset, cfgstr=None, training_dpath='.', data_shape=None, num_data=None, name=None, ext='.pkl', ): dataset.name = name dataset.cfgstr = cfgstr dataset.training_dpath = training_dpath assert data_shape is not None, 'must specify' dataset._ext = ext dataset._info = { 'num_data': num_data, 'data_shape': data_shape, 'num_labels': None, 'unique_labels': None, 'data_per_label': None, } # Dictionary for storing different data subsets dataset.fpath_dict = { 'full': { 'data': dataset.data_fpath, 'labels': dataset.labels_fpath, 'metadata': dataset.metadata_fpath, } } # Hacky dictionary for custom things # Probably should be refactored dataset._lazy_cache = ut.LazyDict() def __nice__(dataset): return '(' + dataset.dataset_id + ')' @property def hashid(dataset): if dataset.cfgstr is None: return '' else: return ut.hashstr27(dataset.cfgstr, hashlen=8) @property def dataset_id(dataset): shape_str = 'x'.join(ut.lmap(str, dataset._info['data_shape'])) num_data = dataset._info['num_data'] parts = [] if dataset.name is not None: parts.append(dataset.name) if num_data is not None: parts.append(str(num_data)) parts.append(shape_str) if dataset.hashid: parts.append(dataset.hashid) dsid = '_'.join(parts) return dsid @property def dataset_dpath(dataset): return join(dataset.training_dpath, dataset.dataset_id) @property def split_dpath(dataset): split_dpath = join(dataset.dataset_dpath, 'splits') return split_dpath @property def full_dpath(dataset): return join(dataset.dataset_dpath, 'full') @property def info_fpath(dataset): return join(dataset.full_dpath, '%s_info.json' % (dataset.hashid)) @property def data_fpath(dataset): return join(dataset.full_dpath, '%s_data%s' % (dataset.hashid, dataset._ext)) @property def labels_fpath(dataset): return join(dataset.full_dpath, '%s_labels%s' % (dataset.hashid, dataset._ext)) @property def metadata_fpath(dataset): return join(dataset.full_dpath, '%s_metadata%s' % (dataset.hashid, dataset._ext)) @classmethod def new_training_set(cls, **kwargs): dataset = cls(**kwargs) # Define auxillary data try: # dataset.build_auxillary_data() dataset.ensure_symlinked() dataset.save_alias(dataset.alias_key) except Exception as ex: ut.printex(ex, 'WARNING was not able to generate splis or save alias') return dataset def hasprop(dataset, key): return key in dataset._lazy_cache.keys() def getprop(dataset, key, *d): if len(d) == 0: return dataset._lazy_cache[key] else: assert len(d) == 1 if key in dataset._lazy_cache: return dataset._lazy_cache[key] else: return d[0] def setprop(dataset, key, val): dataset._lazy_cache[key] = val def subset(dataset, key): """ loads a test/train/valid/full data subset """ data = dataset.subset_data(key) labels = dataset.subset_labels(key) return data, labels def print_subset_info(dataset, key='full'): data, labels = dataset.subset(key) dataset.print_dataset_info(data, labels, key) @property def data_shape(dataset): data_shape = dataset._info['data_shape'] assert data_shape is not None, 'data_shape is unknown' return data_shape @property def unique_labels(dataset): unique_labels = dataset._info['unique_labels'] assert unique_labels is not None, 'unique_labels is unknown' return unique_labels @property def labels(dataset): return dataset.subset_labels() @property def data(dataset): return dataset.subset_data() @property def metadata(dataset): return dataset.subset_metadata() def asdict(dataset): # save all args passed into constructor as a dict key_list = ut.get_func_argspec(dataset.__init__).args[1:] data_dict = ut.dict_subset(dataset.__dict__, key_list) return data_dict @ut.memoize def subset_data(dataset, key='full'): data_fpath = dataset.fpath_dict[key]['data'] data = ut.load_data(data_fpath, verbose=True) if len(data.shape) == 3: # add channel dimension for implicit grayscale data.shape = data.shape + (1,) return data @ut.memoize def subset_labels(dataset, key='full'): labels_fpath = dataset.fpath_dict[key]['labels'] labels = ( None if labels_fpath is None else ut.load_data(labels_fpath, verbose=True) ) return labels @ut.memoize def subset_metadata(dataset, key='full'): metadata_fpath = dataset.fpath_dict[key].get('metadata', None) if metadata_fpath is not None: flat_metadata = ut.load_data(metadata_fpath, verbose=True) else: flat_metadata = None return flat_metadata def clear_cache(dataset, key=None): cached_func_list = [ dataset.subset_data, dataset.subset_labels, dataset.subset_metadata, ] if key is None: for cached_func in cached_func_list: cached_func.cache.clear() else: for cached_func in cached_func_list: if key in cached_func.cache: del cached_func.cache[key] @staticmethod def print_dataset_info(data, labels, key): labelhist = {key: len(val) for key, val in ut.group_items(labels, labels).items()} stats_dict = ut.get_stats(data.ravel()) ut.delete_keys(stats_dict, ['shape', 'nMax', 'nMin']) print('[dataset] Dataset Info: ') print('[dataset] * Data:') print('[dataset] %s_data(shape=%r, dtype=%r)' % (key, data.shape, data.dtype)) print( '[dataset] %s_memory(data) = %r' % ( key, ut.get_object_size_str(data), ) ) print( '[dataset] %s_stats(data) = %s' % ( key, ut.repr2(stats_dict, precision=2), ) ) print('[dataset] * Labels:') print( '[dataset] %s_labels(shape=%r, dtype=%r)' % (key, labels.shape, labels.dtype) ) print('[dataset] %s_label histogram = %s' % (key, ut.repr2(labelhist))) def interact(dataset, key='full', **kwargs): """ python -m wbia_cnn --tf netrun --db mnist --ensuredata --show --datatype=category python -m wbia_cnn --tf netrun --db PZ_MTEST --acfg ctrl --ensuredata --show """ from wbia_cnn import draw_results # interact_func = draw_results.interact_siamsese_data_patches interact_func = draw_results.interact_dataset # Automatically infer which lazy properties are needed for the # interaction. kwarg_items = ut.recursive_parse_kwargs(interact_func) kwarg_keys = ut.get_list_column(kwarg_items, 0) interact_kw = { key_: dataset.getprop(key_) for key_ in kwarg_keys if dataset.hasprop(key_) } interact_kw.update(**kwargs) # TODO : generalize data = dataset.subset_data(key) labels = dataset.subset_labels(key) metadata = dataset.subset_metadata(key) return interact_func( labels, data, metadata, dataset._info['data_per_label'], **interact_kw ) def view_directory(dataset): ut.view_directory(dataset.dataset_dpath) vd = view_directory def has_split(dataset, key): return key in dataset.fpath_dict def get_split_fmtstr(dataset, forward=False): # Parse direction parse_fmtstr = '{key}_{size:d}_{type_:w}{ext}' if forward: # hack, need to do actual parsing of the parser here def parse_inverse_format(parse_fmtstr): # if True: # hack impl return parse_fmtstr.replace(':w}', '}') # else: # # Try and make a better impl # nestings = ut.parse_nestings(parse_fmtstr, only_curl=True) # ut.recombine_nestings(nestings) # Generate direction fmtstr = parse_inverse_format(parse_fmtstr) else: fmtstr = parse_fmtstr return fmtstr def load_splitsets(dataset): import parse fpath_dict = {} fmtstr = dataset.get_split_fmtstr(forward=False) for fpath in ut.ls(dataset.split_dpath): parsed = parse.parse(fmtstr, basename(fpath)) if parsed is None: print('WARNING: invalid filename %r' % (fpath,)) continue key = parsed['key'] type_ = parsed['type_'] splitset = fpath_dict.get(key, {}) splitset[type_] = fpath fpath_dict[key] = splitset # check validity of loaded data for key, val in fpath_dict.items(): assert 'data' in val, 'subset missing data' dataset.fpath_dict.update(**fpath_dict) def load(dataset): dataset.ensure_dirs() dataset.ensure_symlinked() if not exists(dataset.info_fpath): raise IOError('dataset info manifest cache miss') else: dataset._info = ut.load_data(dataset.info_fpath) if not exists(dataset.data_fpath): raise IOError('dataset data cache miss') dataset.load_splitsets() # Hack if not exists(dataset.fpath_dict['full']['metadata']): dataset.fpath_dict['full']['metadata'] = None def save(dataset, data, labels, metadata=None, data_per_label=1): ut.save_data(dataset.data_fpath, data) ut.save_data(dataset.labels_fpath, labels) if metadata is not None: ut.save_data(dataset.metadata_fpath, metadata) else: dataset.fpath_dict['full']['metadata'] = None # cache the data because it is likely going to be used to define a # splitset dataset.subset_data.cache['full'] = data dataset.subset_labels.cache['full'] = labels dataset.subset_metadata.cache['full'] = metadata # Infer the rest of the required data info dataset._info['num_labels'] = len(labels) try: dataset._info['unique_labels'] = np.unique(labels) except ValueError: dataset._info['unique_labels'] = np.nan dataset._info['data_per_label'] = data_per_label ut.save_data(dataset.info_fpath, dataset._info) def add_split(dataset, key, idxs): print('[dataset] adding split %r' % (key,)) # Build subset filenames ut.ensuredir(dataset.split_dpath) ext = dataset._ext fmtdict = dict(key=key, ext=ext, size=len(idxs)) fmtstr = dataset.get_split_fmtstr(forward=True) splitset = { type_: join(dataset.split_dpath, fmtstr.format(type_=type_, **fmtdict)) for type_ in ['data', 'labels', 'metadata'] } # Partition data into the subset part_dict = { 'data': dataset.data.take(idxs, axis=0), 'labels': dataset.labels.take(idxs, axis=0), } if dataset.metadata is not None: taker = ut.partial(ut.take, index_list=idxs) part_dict['metadata'] = ut.map_dict_vals(taker, dataset.metadata) # Write splitset data to files for type_ in part_dict.keys(): ut.save_data(splitset[type_], part_dict[type_]) # Register filenames with dataset dataset.fpath_dict[key] = splitset def ensure_symlinked(dataset): """ Creates a symlink to the training path in the training junction """ junction_dpath = get_juction_dpath() dataset_dname = basename(dataset.dataset_dpath) dataset_dlink = join(junction_dpath, dataset_dname) if exists(dataset_dlink): ut.delete(dataset_dlink) ut.symlink(dataset.dataset_dpath, dataset_dlink) def ensure_dirs(dataset): ut.ensuredir(dataset.full_dpath) ut.ensuredir(dataset.split_dpath) def print_dir_structure(dataset): print(dataset.training_dpath) print(dataset.dataset_dpath) print(dataset.data_fpath) print(dataset.labels_fpath) print(dataset.metadata_fpath) print(dataset.info_fpath) print(dataset.full_dpath) print(dataset.split_dpath) def print_dir_tree(dataset): fpaths = ut.glob(dataset.dataset_dpath, '*', recursive=True) print('\n'.join(sorted(fpaths))) # def build_auxillary_data(dataset): # # Make test train validatation sets # data_fpath = dataset.data_fpath # labels_fpath = dataset.labels_fpath # metadata_fpath = dataset.metadata_fpath # data_per_label = dataset.data_per_label # split_names = ['train', 'test', 'valid'] # fractions = [.7, .2, .1] # named_split_fpath_dict = ondisk_data_split( # data_fpath, labels_fpath, metadata_fpath, # data_per_label, split_names, fractions, # ) # for key, val in named_split_fpath_dict.items(): # splitset = dataset.fpath_dict.get(key, {}) # splitset.update(**val) # dataset.fpath_dict[key] = splitset def get_alias_dict_fpath(): alias_fpath = join(get_juction_dpath(), 'alias_dict_v2.txt') return alias_fpath def get_juction_dpath(): r""" Returns: str: junction_dpath CommandLine: python -m wbia_cnn --tf get_juction_dpath --show Example: >>> # ENABLE_DOCTEST >>> from wbia_cnn.dataset import * # NOQA >>> junction_dpath = get_juction_dpath() >>> result = ('junction_dpath = %s' % (str(junction_dpath),)) >>> print(result) >>> ut.quit_if_noshow() >>> ut.vd(junction_dpath) """ junction_dpath = ut.ensure_app_resource_dir('wbia_cnn', 'training_junction') # Hacks to keep junction clean home_dlink = ut.truepath('~/training_junction') if not exists(home_dlink): ut.symlink(junction_dpath, home_dlink) ut.remove_broken_links(junction_dpath) return junction_dpath def stratified_shuffle_split(y, fractions, rng=None, class_weights=None): """ modified from sklearn to make n splits instaed of 2 """ n_samples = len(y) classes, y_indices = np.unique(y, return_inverse=True) n_classes = classes.shape[0] class_counts = np.bincount(y_indices) # TODO: weighted version # class_counts_ = np.array([sum([w.get(cx, 0) for w