issue_owner_repo
listlengths
2
2
issue_body
stringlengths
0
261k
โŒ€
issue_title
stringlengths
1
925
issue_comments_url
stringlengths
56
81
issue_comments_count
int64
0
2.5k
issue_created_at
stringlengths
20
20
issue_updated_at
stringlengths
20
20
issue_html_url
stringlengths
37
62
issue_github_id
int64
387k
2.46B
issue_number
int64
1
127k
[ "hwchase17", "langchain" ]
I keep getting this error every time I try to ask my data a question using the code from "[chat_vector_db.ipynb](https://github.com/hwchase17/langchain/blob/f356cca1f278ac73f8e59f49da39854e1e47a205/docs/modules/chat/examples/chat_vector_db.ipynb)" notebook, so how can I fix this and is this from my stored data and if it is how can I encode it, also I'm using the UnstructuredFileLoader for a text file: UnicodeEncodeError Traceback (most recent call last) Cell In[97], line 3 1 chat_history = [] 2 query = "who are you?" ----> 3 result = qa({"question": query, "chat_history": chat_history}) File [c:\Users\yousef\AppData\Local\Programs\Python\Python39\lib\site-packages\langchain\chains\base.py:116](file:///C:/Users/yousef/AppData/Local/Programs/Python/Python39/lib/site-packages/langchain/chains/base.py:116), in Chain.__call__(self, inputs, return_only_outputs) 114 except (KeyboardInterrupt, Exception) as e: 115 self.callback_manager.on_chain_error(e, verbose=self.verbose) --> 116 raise e 117 self.callback_manager.on_chain_end(outputs, verbose=self.verbose) 118 return self.prep_outputs(inputs, outputs, return_only_outputs) File [c:\Users\yousef\AppData\Local\Programs\Python\Python39\lib\site-packages\langchain\chains\base.py:113](file:///C:/Users/yousef/AppData/Local/Programs/Python/Python39/lib/site-packages/langchain/chains/base.py:113), in Chain.__call__(self, inputs, return_only_outputs) 107 self.callback_manager.on_chain_start( 108 {"name": self.__class__.__name__}, 109 inputs, 110 verbose=self.verbose, 111 ) 112 try: --> 113 outputs = self._call(inputs) 114 except (KeyboardInterrupt, Exception) as e: 115 self.callback_manager.on_chain_error(e, verbose=self.verbose) ... -> 1258 values[i] = one_value.encode('latin-1') 1259 elif isinstance(one_value, int): 1260 values[i] = str(one_value).encode('ascii') UnicodeEncodeError: 'latin-1' codec can't encode character '\u201c' in position 7: ordinal not in range(256)
UnicodeEncodeError Using Chat Vector and My Own Data
https://api.github.com/repos/langchain-ai/langchain/issues/2121/comments
8
2023-03-28T23:02:07Z
2023-09-26T16:12:59Z
https://github.com/langchain-ai/langchain/issues/2121
1,644,771,527
2,121
[ "hwchase17", "langchain" ]
OpenAI python client supports passing additional headers when invoking the following functions `openai.ChatCompletion.create` or `openai.Completion.create` For example: I can pass the headers as shown in the sample code below. ``` completion = openai.Completion.create(deployment_id=deployment_id, prompt=payload_dict['prompt'], stop=payload_dict['stop'], temperature=payload_dict['temperature'], headers=headers, max_tokens=1000) ``` Langchain does not surface the capability to pass the headers when we need to include custom HTTPS headers from the client. It would very useful to include this capability especially when you have custom authentication scheme where the model is exposed as an endpoint.
Unable to pass headers to Completion, ChatCompletion, Embedding endpoints
https://api.github.com/repos/langchain-ai/langchain/issues/2120/comments
4
2023-03-28T22:29:45Z
2023-09-27T16:11:24Z
https://github.com/langchain-ai/langchain/issues/2120
1,644,740,925
2,120
[ "hwchase17", "langchain" ]
I'm trying to save embeddings in Redis vectorstore and when I try to execute getting the following error. Any idea if this is a bug or if anything is wrong with my code? Any help is appreciated. langchain version - both 0.0.123 and 0.0.124 Python 3.8.2 File "/Users/aruna/PycharmProjects/redis-test/database.py", line 16, in init_redis_database rds = Redis.from_documents(docs, embeddings, redis_url="redis://localhost:6379", index_name='link') File "/Users/aruna/PycharmProjects/redis-test/venv/lib/python3.8/site-packages/langchain/vectorstores/base.py", line 116, in from_documents return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs) File "/Users/aruna/PycharmProjects/redis-test/venv/lib/python3.8/site-packages/langchain/vectorstores/redis.py", line 224, in from_texts if not _check_redis_module_exist(client, "search"): File "/Users/aruna/PycharmProjects/redis-test/venv/lib/python3.8/site-packages/langchain/vectorstores/redis.py", line 23, in _check_redis_module_exist return module in [m["name"] for m in client.info().get("modules", {"name": ""})] File "/Users/aruna/PycharmProjects/redis-test/venv/lib/python3.8/site-packages/langchain/vectorstores/redis.py", line 23, in <listcomp> return module in [m["name"] for m in client.info().get("modules", {"name": ""})] **TypeError: string indices must be integers** Sample code as follows. REDIS_URL = 'redis://localhost:6379' def init_redis_database(docs): embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY) rds = Redis.from_documents(docs, embeddings, redis_url=REDIS_URL, index_name='link')
Unable save embeddings in Redis vectorstore
https://api.github.com/repos/langchain-ai/langchain/issues/2113/comments
16
2023-03-28T20:22:00Z
2024-03-15T05:05:26Z
https://github.com/langchain-ai/langchain/issues/2113
1,644,606,036
2,113
[ "hwchase17", "langchain" ]
while using llama_index GPTSimpleVectorIndex I am reading a pdf file using SimpleDirectoryReader. I am unable to create index for the file and it is generating the below error: **INFO:openai:error_code=None error_message='Too many inputs for model None. The max number of inputs is 1. We hope to increase the number of inputs per request soon. Please contact us through an Azure support request at: https://go.microsoft.com/fwlink/?linkid=2213926 for further questions.' error_param=None error_type=invalid_request_error message='OpenAI API error received' stream_error=False** The code works for some files and fails for others with the above error. Please suggest what does it mean by **Too many inputs for model** that comes as a error only for some files.
openai:error_code=None error_message='Too many inputs for model None. The max number of inputs is 1.
https://api.github.com/repos/langchain-ai/langchain/issues/2096/comments
9
2023-03-28T14:48:14Z
2023-09-28T16:10:17Z
https://github.com/langchain-ai/langchain/issues/2096
1,644,118,649
2,096
[ "hwchase17", "langchain" ]
I need to supply a 'where' value to filter on metadata to Chromadb `similarity_search_with_score` function. I can't find a straightforward way to do it. Is there some way to do it when I kickoff my chain? Any hints, hacks, plans to support?
How to pass filter down to Chroma db when using ConversationalRetrievalChain
https://api.github.com/repos/langchain-ai/langchain/issues/2095/comments
23
2023-03-28T14:47:44Z
2024-01-01T09:39:52Z
https://github.com/langchain-ai/langchain/issues/2095
1,644,117,753
2,095
[ "hwchase17", "langchain" ]
Hi, There seems to be a bug when trying to load a serialize faiss index when using Azure through OpenAIEmbeddings. I get the following error: ```{python} AttributeError: Can't get attribute 'Document' on <module 'langchain.schema' from '/langchain/schema.py'> ```
Can't load faiss index when using Azure embeddings
https://api.github.com/repos/langchain-ai/langchain/issues/2094/comments
2
2023-03-28T14:23:38Z
2023-09-10T16:40:07Z
https://github.com/langchain-ai/langchain/issues/2094
1,644,073,204
2,094
[ "hwchase17", "langchain" ]
As the title says, there's a full implementation of ConversationalChatAgent which however is not in the __init__ file of agents, thus could not import it by `from langchain.agents import ConversationalChatAgent` I'm going to fix this right now.
ConversationalChatAgent is not in agent.__init__.py
https://api.github.com/repos/langchain-ai/langchain/issues/2093/comments
0
2023-03-28T13:43:34Z
2023-03-28T15:14:24Z
https://github.com/langchain-ai/langchain/issues/2093
1,643,984,599
2,093
[ "hwchase17", "langchain" ]
Hello i'm trying to provide a diifferent API key for each profile, but it seems that the last profile API key i set is the one used by all the profiles, is there a way to force use each profile its dedicated key?
Multiple openai keys
https://api.github.com/repos/langchain-ai/langchain/issues/2091/comments
9
2023-03-28T12:34:07Z
2023-10-28T16:07:45Z
https://github.com/langchain-ai/langchain/issues/2091
1,643,856,338
2,091
[ "hwchase17", "langchain" ]
I am using the latest version and i get this error message while only trying to: from langchain.chains.chat_index.prompts import CONDENSE_QUESTION_PROMPT --------------------------------------------------------------------------- ModuleNotFoundError Traceback (most recent call last) Cell In[5], line 3 1 from langchain.chains import LLMChain 2 from langchain.chains.question_answering import load_qa_chain ----> 3 from langchain.chains.chat_index.prompts import CONDENSE_QUESTION_PROMPT ModuleNotFoundError: No module named 'langchain.chains.chat_index'
On the latest version 0.0.123 i get No module named 'langchain.chains.chat_index'
https://api.github.com/repos/langchain-ai/langchain/issues/2090/comments
13
2023-03-28T09:35:57Z
2023-12-08T16:08:40Z
https://github.com/langchain-ai/langchain/issues/2090
1,643,564,375
2,090
[ "hwchase17", "langchain" ]
No module 'datasets' found in langchain.evaluation
ModuleNotFoundError: No module named 'datasets'
https://api.github.com/repos/langchain-ai/langchain/issues/2088/comments
2
2023-03-28T08:22:52Z
2023-06-16T15:37:47Z
https://github.com/langchain-ai/langchain/issues/2088
1,643,446,461
2,088
[ "hwchase17", "langchain" ]
I'm testing on windows where default encoding is cp1252 and not utf-8 and I still have encoding problems that cannot overcome.
Add optional encoding parameter on each Loader
https://api.github.com/repos/langchain-ai/langchain/issues/2087/comments
2
2023-03-28T08:10:59Z
2023-09-18T16:22:19Z
https://github.com/langchain-ai/langchain/issues/2087
1,643,429,036
2,087
[ "hwchase17", "langchain" ]
Was trying to follow the document to run summarization, here's my code: ```python from langchain.text_splitter import CharacterTextSplitter from langchain.chains.mapreduce import MapReduceChain from langchain.prompts import PromptTemplate llm = OpenAI(temperature=0, engine='text-davinci-003') text_splitter = CharacterTextSplitter() with open("./state_of_the_union.txt") as f: state_of_the_union = f.read() texts = text_splitter.split_text(state_of_the_union) from langchain.docstore.document import Document docs = [Document(page_content=t) for t in texts[:3]] from langchain.chains.summarize import load_summarize_chain chain = load_summarize_chain(llm, chain_type="map_reduce") chain.run(docs) ``` Got errors like below: <img width="1273" alt="image" src="https://user-images.githubusercontent.com/30015018/228138989-1808a102-4246-412b-a86a-388d60579543.png"> Any ideas how to fix this? langchain version is 0.0.123
load_summarize_chain cannot run
https://api.github.com/repos/langchain-ai/langchain/issues/2081/comments
4
2023-03-28T05:41:15Z
2023-04-14T11:41:02Z
https://github.com/langchain-ai/langchain/issues/2081
1,643,238,154
2,081
[ "hwchase17", "langchain" ]
Trying to run a simple script: ``` from langchain.llms import OpenAI llm = OpenAI(temperature=0.9) text = "What would be a good company name for a company that makes colorful socks?" print(llm(text)) ``` I'm running into this error: `ModuleNotFoundError: No module named 'langchain.llms'; 'langchain' is not a package` I've got a virtualenv installed with langchains downloaded. ```โ‡’ pip show langchain Name: langchain Version: 0.0.39 Summary: Building applications with LLMs through composability Home-page: https://www.github.com/hwchase17/langchain Author: Author-email: License: MIT Location: /Users/jkaye/dev/langchain-tutorial/venv/lib/python3.11/site-packages Requires: numpy, pydantic, PyYAML, requests, SQLAlchemy ``` ``` โ‡’ python --version Python 3.11.0 ``` I'm using zsh so I ran `pip install 'langchain[all]'`
'langchain' is not a package
https://api.github.com/repos/langchain-ai/langchain/issues/2079/comments
29
2023-03-28T04:42:16Z
2024-04-26T03:52:15Z
https://github.com/langchain-ai/langchain/issues/2079
1,643,187,784
2,079
[ "hwchase17", "langchain" ]
from langchain.document_loaders.csv_loader import CSVLoader loader = CSVLoader(file_path='docs/whats-new-latest.csv', csv_args={ 'fieldnames': ['Line of Business', 'Short Description' ] }) data = loader.load() print(data) /.pyenv/versions/3.9.2/envs/s4-hana-chatbot/lib/python3.9/site-packages/langchain/document_loaders/csv_loader.py", line 53, in <genexpr> content = "\n".join(f"{k.strip()}: {v.strip()}" for k, v in row.items()) AttributeError: 'NoneType' object has no attribute 'strip' Can anyone assist how to solve this?
'NoneType' object has no attribute 'strip'
https://api.github.com/repos/langchain-ai/langchain/issues/2074/comments
9
2023-03-28T03:06:17Z
2023-11-17T18:19:35Z
https://github.com/langchain-ai/langchain/issues/2074
1,643,123,069
2,074
[ "hwchase17", "langchain" ]
E.g. running ```python from langchain.agents import load_tools from langchain.agents import initialize_agent from langchain.llms import OpenAI llm = OpenAI(temperature=0) tools = load_tools(["llm-math"], llm=llm) agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True, return_intermediate_steps=True) agent.run("What is 2 raised to the 0.43 power?") ``` gives the error ``` 203 """Run the chain as text in, text out or multiple variables, text out.""" 204 if len(self.output_keys) != 1: --> 205 raise ValueError( 206 f"`run` not supported when there is not exactly " 207 f"one output key. Got {self.output_keys}." 208 ) 210 if args and not kwargs: 211 if len(args) != 1: ValueError: `run` not supported when there is not exactly one output key. Got ['output', 'intermediate_steps']. ``` Is this supposed to be called differently or how else can the intermediate outputs ("Observations") be retrieved?
`initialize_agent` does not work with `return_intermediate_steps=True`
https://api.github.com/repos/langchain-ai/langchain/issues/2068/comments
18
2023-03-28T00:50:15Z
2024-02-23T16:09:08Z
https://github.com/langchain-ai/langchain/issues/2068
1,643,029,722
2,068
[ "hwchase17", "langchain" ]
This definition: "purchase_order": """CREATE TABLE purchase_order ( id SERIAL NOT NULL, name VARCHAR NOT NULL, origin VARCHAR, partner_ref VARCHAR, date_order TIMESTAMP NOT NULL, date_approve DATE, partner_id INTEGER NOT NULL, state VARCHAR, notes TEXT, amount_untaxed NUMERIC, amount_tax NUMERIC, amount_total NUMERIC, user_id INTEGER, company_id INTEGER NOT NULL, create_uid INTEGER, create_date TIMESTAMP, write_uid INTEGER, write_date TIMESTAMP, CONSTRAINT PRIMARY KEY (id), CONSTRAINT FOREIGN KEY(company_id) REFERENCES res_company (id) , CONSTRAINT FOREIGN KEY(partner_id) REFERENCES res_partner (id) can be reduced to: "purchase_order": """TABLE purchase_order ( id SERIAL NN PK, name VC NN, origin VC, partner_ref VC, date_order TIMESTAMP, date_approve DATE, partner_id INT NN, state VC, notes TX, amount_untaxed NUM, amount_tax NUM, amount_total NUM, user_id INT, company_id INT NN, create_uid INT, create_date TIMESTAMP, write_uid INT, write_date TIMESTAMP, FK(company_id) REF res_company (id) , FK(partner_id) REF res_partner (id) and save a lot of space. If need we can add some instruction for the aliases such as: VC=VARCHAR, etc...
DB Tools - Table definitions cam be shortened with some asumptions in order to keep used token low.
https://api.github.com/repos/langchain-ai/langchain/issues/2067/comments
1
2023-03-28T00:36:30Z
2023-08-25T16:14:11Z
https://github.com/langchain-ai/langchain/issues/2067
1,643,021,881
2,067
[ "hwchase17", "langchain" ]
I tried to map my db that have a lot of views that can leverage the whoole work. But the initial check does not allow this, also by having custom_table_info that describe the view structure.
DB Tools - Allow to reference also views thru custom_table_info
https://api.github.com/repos/langchain-ai/langchain/issues/2066/comments
2
2023-03-28T00:31:19Z
2023-09-10T16:40:17Z
https://github.com/langchain-ai/langchain/issues/2066
1,643,018,821
2,066
[ "hwchase17", "langchain" ]
### Alpaca-LoRA [Alpaca-LoRA](https://github.com/tloen/alpaca-lora) and Stanford Alpaca are NLP models that use the GPT architecture, but there are some critical differences between them. Here are three: - **Training data**: Stanford Alpaca was trained on a larger dataset that includes a variety of sources, including webpages, books, and more. Alpaca-LoRA, on the other hand, was trained on a smaller dataset (but one that has been curated for quality) and uses low-rank adaptation (LoRA) to fine-tune the model for specific tasks. - **Model size**: Stanford Alpaca is a larger model, with versions ranging from 774M to 1.5B parameters. Alpaca-LoRA, on the other hand, provides a smaller, 7B parameter model that is specifically optimized for low-cost devices such as the Raspberry Pi. - **Pretrained models**: Both models offer pre-trained models that can be used out-of-the-box, but the available options are slightly different. Stanford Alpaca provides several models with different sizes and degrees of finetuning, while Alpaca-LoRA provides an Instruct model of similar quality to `text-davinci-003`. ### Similar To https://github.com/hwchase17/langchain/issues/1777 ### Resources - [alpaca.cpp](https://github.com/antimatter15/alpaca.cpp), a native client for running Alpaca models on the CPU - [Alpaca-LoRA-Serve](https://github.com/deep-diver/Alpaca-LoRA-Serve), a ChatGPT-style interface for Alpaca models - [AlpacaDataCleaned](https://github.com/gururise/AlpacaDataCleaned), a project to improve the quality of the Alpaca dataset - Various adapter weights (download at own risk): - 7B: - <https://huggingface.co/tloen/alpaca-lora-7b> - <https://huggingface.co/samwit/alpaca7B-lora> - ๐Ÿ‡ง๐Ÿ‡ทย <https://huggingface.co/22h/cabrita-lora-v0-1> - ๐Ÿ‡จ๐Ÿ‡ณย <https://huggingface.co/qychen/luotuo-lora-7b-0.1> - ๐Ÿ‡ฏ๐Ÿ‡ตย <https://huggingface.co/kunishou/Japanese-Alapaca-LoRA-7b-v0> - ๐Ÿ‡ซ๐Ÿ‡ทย <https://huggingface.co/bofenghuang/vigogne-lora-7b> - ๐Ÿ‡น๐Ÿ‡ญย <https://huggingface.co/Thaweewat/thai-buffala-lora-7b-v0-1> - ๐Ÿ‡ฉ๐Ÿ‡ชย <https://huggingface.co/thisserand/alpaca_lora_german> - ๐Ÿ‡ฎ๐Ÿ‡นย <https://huggingface.co/teelinsan/camoscio-7b-llama> - 13B: - <https://huggingface.co/chansung/alpaca-lora-13b> - <https://huggingface.co/mattreid/alpaca-lora-13b> - <https://huggingface.co/samwit/alpaca13B-lora> - ๐Ÿ‡ฏ๐Ÿ‡ตย <https://huggingface.co/kunishou/Japanese-Alapaca-LoRA-13b-v0> - ๐Ÿ‡ฐ๐Ÿ‡ทย <https://huggingface.co/chansung/koalpaca-lora-13b> - ๐Ÿ‡จ๐Ÿ‡ณย <https://huggingface.co/facat/alpaca-lora-cn-13b> - 30B: - <https://huggingface.co/baseten/alpaca-30b> - <https://huggingface.co/chansung/alpaca-lora-30b> - ๐Ÿ‡ฏ๐Ÿ‡ตย <https://huggingface.co/kunishou/Japanese-Alapaca-LoRA-30b-v0> - [alpaca-native](https://huggingface.co/chavinlo/alpaca-native), a replication using the original Alpaca code
Alpaca-LoRA
https://api.github.com/repos/langchain-ai/langchain/issues/2063/comments
4
2023-03-27T23:41:12Z
2023-09-29T16:09:41Z
https://github.com/langchain-ai/langchain/issues/2063
1,642,978,571
2,063
[ "hwchase17", "langchain" ]
![Screenshot 2023-03-28 at 1 11 56 AM](https://user-images.githubusercontent.com/110235735/228049214-1ebf8bac-e12e-44bb-a693-47e3578ce37a.png) Moreover, I cannot use multiple prompts using `ChatPromptTemplate.from_messages`
map_rerank custom prompts don't work with SystemMessagePromptTemplate
https://api.github.com/repos/langchain-ai/langchain/issues/2053/comments
1
2023-03-27T19:42:33Z
2023-08-21T16:07:44Z
https://github.com/langchain-ai/langchain/issues/2053
1,642,705,217
2,053
[ "hwchase17", "langchain" ]
I was reading this blog post: https://blog.langchain.dev/retrieval/ There is this link: > Other types of indexes, [like graphs](https://langchain.readthedocs.io/en/latest/modules/indexes/chain_examples/graph_qa.html), have piqued user's interests Currently goes to a RTD 404 page If I google for "langchain graph qa" the top result also goes to a 404 I can view a cached copy here https://webcache.googleusercontent.com/search?q=cache:obQTh41ZBRoJ:https://langchain.readthedocs.io/en/latest/modules/indexes/chain_examples/graph_qa.html&cd=1&hl=en&ct=clnk&gl=uk
Graph QA docs links are broken currently
https://api.github.com/repos/langchain-ai/langchain/issues/2049/comments
3
2023-03-27T16:37:18Z
2023-08-14T20:20:49Z
https://github.com/langchain-ai/langchain/issues/2049
1,642,438,709
2,049
[ "hwchase17", "langchain" ]
I understand that brace brackets "{ }" are used for the text replacement. I was wondering if we are able to use the brace brackets in our prompts where we want them to act as just text and do not want them to replace text, for example with c++ classes. ```c++ #include <string> class BankAccount { public: // Constructor to initialize the account BankAccount(const std::string& account_holder_name, const std::string& account_number, double initial_balance); // Method to deposit money into the account void deposit(double amount); // Method to withdraw money from the account bool withdraw(double amount); // Method to display account details void display_account_details() const; private: std::string account_holder_name_; std::string account_number_; double balance_; }; ```
How to use brace brackets
https://api.github.com/repos/langchain-ai/langchain/issues/2048/comments
2
2023-03-27T16:21:43Z
2023-10-24T07:51:46Z
https://github.com/langchain-ai/langchain/issues/2048
1,642,415,345
2,048
[ "hwchase17", "langchain" ]
Is there a way to redirect the verbose logs away from stdout? I'm working on a frontend app, and I'd like to collect the logs to display in the frontend, but couldn't find in the docs a way to capture them into a variable or similar.
Redirect vebose logs
https://api.github.com/repos/langchain-ai/langchain/issues/2045/comments
4
2023-03-27T15:27:23Z
2023-07-18T03:25:03Z
https://github.com/langchain-ai/langchain/issues/2045
1,642,322,662
2,045
[ "hwchase17", "langchain" ]
Many OpenAI plugin implementations are starting to use yaml for the api doc. ```python class AIPluginTool(BaseTool): api_spec: str def from_plugin_url(cls, url: str) -> "AIPluginTool": response = requests.get(url) if response.headers["Content-Type"] == "application/json": response_data = response.json() elif response.headers["Content-Type"] == "application/x-yaml": response_data = yaml.safe_load(response.text) else: raise ValueError("Unsupported content type") ... ```
Support also yaml files for the AIPluginTool
https://api.github.com/repos/langchain-ai/langchain/issues/2042/comments
1
2023-03-27T15:01:41Z
2023-03-28T07:54:03Z
https://github.com/langchain-ai/langchain/issues/2042
1,642,275,010
2,042
[ "hwchase17", "langchain" ]
Hey team, As you can in the `get_docs` method there is no option to provide kwargs arguments, even the top_k is not updating. Do I have to make any changes on how to pass this info, or will it get fixed.
kwargs for ConversationalRetrievalChain
https://api.github.com/repos/langchain-ai/langchain/issues/2038/comments
1
2023-03-27T13:41:57Z
2023-03-28T06:46:16Z
https://github.com/langchain-ai/langchain/issues/2038
1,642,090,994
2,038
[ "hwchase17", "langchain" ]
Since `llms.OpenAIChat` is deprecated and `chat_models.ChatOpenAI` is sugguested in latest releases, I think it is necessary to add `prefix_messages` to `ChatOpenAI`, just like it in `OpenAIChat` so that we can provide messages to this chat model, for example, provide a system message helps set the behavior of the assistant. ``` m = ChatOpenAI(prefix_messages=[SystemMessage(content='you are a helpful assistant')]) ```
Add prefix_messages property to ChatOpenAI
https://api.github.com/repos/langchain-ai/langchain/issues/2036/comments
4
2023-03-27T13:20:40Z
2023-03-30T06:43:02Z
https://github.com/langchain-ai/langchain/issues/2036
1,642,034,579
2,036
[ "hwchase17", "langchain" ]
Since `llms.OpenAIChat` is deprecated and `chat_models.ChatOpenAI` is sugguested in latest releases, I think it is necessary to add `prefix_messages` to `ChatOpenAI`, just like it in `OpenAIChat` so that we can provide messages to this chat model, for example, provide a system message helps set the behavior of the assistant.
Add prefix_messages property to ChatOpenAI
https://api.github.com/repos/langchain-ai/langchain/issues/2035/comments
0
2023-03-27T13:17:19Z
2023-03-27T13:24:21Z
https://github.com/langchain-ai/langchain/issues/2035
1,642,026,037
2,035
[ "hwchase17", "langchain" ]
Since `llms.OpenAIChat` is deprecated and `chat_models.ChatOpenAI` is sugguested in latest releases, I think it is necessary to add `prefix_messages` to `ChatOpenAI`, just like it in `OpenAIChat` so that we can provide messages to this chat model, for example, provide a system message helps set the behavior of the assistant.
Add prefix_messages property to ChatOpenAI
https://api.github.com/repos/langchain-ai/langchain/issues/2034/comments
0
2023-03-27T13:15:06Z
2023-03-27T13:24:10Z
https://github.com/langchain-ai/langchain/issues/2034
1,642,025,652
2,034
[ "hwchase17", "langchain" ]
Since `llms.OpenAIChat` is deprecated and `chat_models.ChatOpenAI` is sugguested in latest releases, I think it is necessary to add `prefix_messages` to `ChatOpenAI`, just like it in `OpenAIChat` so that we can provide messages to this chat model, for example, provide a system message helps set the behavior of the assistant.
Add prefix_messages property to ChatOpenAI
https://api.github.com/repos/langchain-ai/langchain/issues/2033/comments
0
2023-03-27T13:14:20Z
2023-03-27T13:24:01Z
https://github.com/langchain-ai/langchain/issues/2033
1,642,025,513
2,033
[ "hwchase17", "langchain" ]
Since `llms.OpenAIChat` is deprecated and `chat_models.ChatOpenAI` is sugguested in latest releases, I think it is necessary to add `prefix_messages` to `ChatOpenAI`, just like it in `OpenAIChat` so that we can provide messages to this chat model, for example, provide a system message helps set the behavior of the assistant.
Add prefix_messages property to ChatOpenAI
https://api.github.com/repos/langchain-ai/langchain/issues/2032/comments
0
2023-03-27T13:14:06Z
2023-03-27T13:23:42Z
https://github.com/langchain-ai/langchain/issues/2032
1,642,025,480
2,032
[ "hwchase17", "langchain" ]
Since `langchain.llms.OpenAIChat` is deprecated and `langchain.chat_models.ChatOpenAI` is suggested in the latest versions, but `ChatOpenAI` misses property `prefix_messages`, for example we can use this property to provide [a system message](https://platform.openai.com/docs/guides/chat/introduction) that helps set the behavior of the assistant.
Add missing property prefix_messages for ChatOpenAI
https://api.github.com/repos/langchain-ai/langchain/issues/2031/comments
0
2023-03-27T13:07:57Z
2023-03-27T13:22:49Z
https://github.com/langchain-ai/langchain/issues/2031
1,642,024,275
2,031
[ "hwchase17", "langchain" ]
I just installed langchain and when I try to import WolframAlphaAPIWrapper using "from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper", this error message is returned. I checked site-packages to see if the utilities is there, these are the list of files and no utilities: VERSION chains formatting.py prompts sql_database.py __init__.py docstore input.py py.typed text_splitter.py __pycache__ embeddings llms python.py utils.py agents example_generator.py model_laboratory.py serpapi.py vectorstores
ModuleNotFoundError: No module named 'langchain.utilities'
https://api.github.com/repos/langchain-ai/langchain/issues/2029/comments
7
2023-03-27T11:19:48Z
2023-03-29T02:37:31Z
https://github.com/langchain-ai/langchain/issues/2029
1,641,927,118
2,029
[ "hwchase17", "langchain" ]
It looks like the result returned from the `predict` call to generate the query is returned surrounded by double quotes, so when passed to the db it's taken as a malformed query. Example (using a postgres db): ``` llm = ChatOpenAI(temperature=0, model_name="gpt-4") # type: ignore db = SQLDatabase.from_uri("<URI>") db_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True) print(db_chain.run("give me any row")) ``` Result: ``` Traceback (most recent call last): File "main.py", line 26, in <module> print(db_chain.run("give me any row")) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/lib/python3.11/site-packages/langchain/chains/base.py", line 213, in run return self(args[0])[self.output_keys[0]] ^^^^^^^^^^^^^ File "/opt/homebrew/lib/python3.11/site-packages/langchain/chains/base.py", line 116, in __call__ raise e File "/opt/homebrew/lib/python3.11/site-packages/langchain/chains/base.py", line 113, in __call__ outputs = self._call(inputs) ^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/lib/python3.11/site-packages/langchain/chains/sql_database/base.py", line 88, in _call result = self.database.run(sql_cmd) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/lib/python3.11/site-packages/langchain/sql_database.py", line 176, in run cursor = connection.execute(text(command)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/lib/python3.11/site-packages/sqlalchemy/engine/base.py", line 1380, in execute return meth(self, multiparams, params, _EMPTY_EXECUTION_OPTS) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/lib/python3.11/site-packages/sqlalchemy/sql/elements.py", line 334, in _execute_on_connection return connection._execute_clauseelement( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/lib/python3.11/site-packages/sqlalchemy/engine/base.py", line 1572, in _execute_clauseelement ret = self._execute_context( ^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/lib/python3.11/site-packages/sqlalchemy/engine/base.py", line 1943, in _execute_context self._handle_dbapi_exception( File "/opt/homebrew/lib/python3.11/site-packages/sqlalchemy/engine/base.py", line 2124, in _handle_dbapi_exception util.raise_( File "/opt/homebrew/lib/python3.11/site-packages/sqlalchemy/util/compat.py", line 211, in raise_ raise exception File "/opt/homebrew/lib/python3.11/site-packages/sqlalchemy/engine/base.py", line 1900, in _execute_context self.dialect.do_execute( File "/opt/homebrew/lib/python3.11/site-packages/sqlalchemy/engine/default.py", line 736, in do_execute cursor.execute(statement, parameters) sqlalchemy.exc.ProgrammingError: (psycopg2.errors.SyntaxError) syntax error at or near ""SELECT data FROM table LIMIT 5"" LINE 1: "SELECT data FROM table LIMIT 5" ```
SQLDatabaseChain malformed queries
https://api.github.com/repos/langchain-ai/langchain/issues/2027/comments
11
2023-03-27T10:15:28Z
2024-01-24T10:46:33Z
https://github.com/langchain-ai/langchain/issues/2027
1,641,823,337
2,027
[ "hwchase17", "langchain" ]
I am using `RecursiveCharacterTextSplitter` to split my documents for ingestion into a vector db. What is the intuition for selecting optimal chunk parameters? It seems to me that chunk_size influences the size of documents being retrieved. Does that mean I should select the largest possible chunk_size to ensure maximum context retrieved? What about chunk_overlap? This seems like a parameter that can be arbitrarily set i.e. select something that's not too big, not too small. Is that the right understanding?
Intuition for selecting optimal chunk_size and chunk_overlap for RecursiveCharacterTextSplitter
https://api.github.com/repos/langchain-ai/langchain/issues/2026/comments
13
2023-03-27T09:43:31Z
2024-04-04T16:06:31Z
https://github.com/langchain-ai/langchain/issues/2026
1,641,765,150
2,026
[ "hwchase17", "langchain" ]
openapi.json is so large for prompt token limit. and how to handle authorizations in the openai.json?
AIPluginTool submit long openapi.json in prompt exceeds the token limit
https://api.github.com/repos/langchain-ai/langchain/issues/2025/comments
1
2023-03-27T08:16:49Z
2023-08-21T16:07:49Z
https://github.com/langchain-ai/langchain/issues/2025
1,641,622,042
2,025
[ "hwchase17", "langchain" ]
II'm using some variable data in my prompt, and sending that prompt to ConversationChain and there I'm getting some validation error. what changes we can make it to work as expected? ![Screenshot (1225)](https://user-images.githubusercontent.com/46478199/227850617-e22658f1-5ebf-41d4-a672-209dd92f5674.png)
ConversationChain Validation Error
https://api.github.com/repos/langchain-ai/langchain/issues/2024/comments
6
2023-03-27T05:44:59Z
2023-09-26T16:13:24Z
https://github.com/langchain-ai/langchain/issues/2024
1,641,417,241
2,024
[ "hwchase17", "langchain" ]
I am building an agent which answer user questions and I have plugged it with two tool, the regular llm and search tool like this llm = OpenAI(temperature=0) search = GoogleSerperAPIWrapper() template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm_chain = LLMChain(llm=llm, prompt=prompt, verbose=True) tools = [ Tool( name = "Search", func=search.run, description="useful for when you need to answer questions about current events." ), Tool( name="LLM", func=llm_chain.run, description="useful for when you need to answer questions about anything in general." ) ] mrkl = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True) Now when I ask it a general question like "Who is Sachin", it still is trying to invoke the search action although the LLM can answer that question as it is not based on a recent event. How to make sure LLM answers any questions except questions on recent events to reduce the SERP usage ?
How to use Serp only for current events related searches and use GPT for regular info
https://api.github.com/repos/langchain-ai/langchain/issues/2023/comments
9
2023-03-27T05:38:09Z
2023-09-28T16:10:27Z
https://github.com/langchain-ai/langchain/issues/2023
1,641,412,258
2,023
[ "hwchase17", "langchain" ]
Trying to use `persist_directory` to have Chroma persist to disk: ```python index = VectorstoreIndexCreator(vectorstore_kwargs={"persist_directory": "db"}) ``` and it displays this warning message that implies it won't be persisted: ``` Using embedded DuckDB without persistence: data will be transient ``` However, it does create files to the `db` directory. The warning appears to originate from https://github.com/chroma-core/chroma/pull/204#issuecomment-1458243316. Do I have the setting correct?
Setting Chroma persist_directory says "Using embedded DuckDB without persistence"
https://api.github.com/repos/langchain-ai/langchain/issues/2022/comments
18
2023-03-27T05:29:14Z
2024-03-30T20:14:14Z
https://github.com/langchain-ai/langchain/issues/2022
1,641,406,148
2,022
[ "hwchase17", "langchain" ]
sqlalchemy in version 1.3.x, need to use select([]) way to query tables: related stackoverflow question: https://stackoverflow.com/questions/62565993/sqlalchemy-exc-argumenterror-columns-argument-to-select-must-be-a-python-list I will submit a PR to fix it
[bug]sqlalchemy 1.3.x compatibility issue
https://api.github.com/repos/langchain-ai/langchain/issues/2020/comments
0
2023-03-27T05:22:30Z
2023-03-28T06:45:52Z
https://github.com/langchain-ai/langchain/issues/2020
1,641,400,793
2,020
[ "hwchase17", "langchain" ]
If you want to create a Qdrant index and keep adding documents (i.e. adding new documents to existing qdrant), when your embedding is sentence transformers `qdrant_index.add_documents(docs)` gives error. Because the `embedding_function` which is `model.encode()` is returning either `numpy` or `tensor` array and has to be converted to `list[float]`. Therefore, this line `vectors=[self.embedding_function(text) for text in texts]` needs to updated to: `vectors=[self.embedding_function(text).tolist() for text in texts]` To allow updating the collection. https://github.com/hwchase17/langchain/blob/b83e8265102514d1722b2fb1aad29763c5cad62a/langchain/vectorstores/qdrant.py#L83
Updating the Qdrant index with new documents raises error
https://api.github.com/repos/langchain-ai/langchain/issues/2016/comments
5
2023-03-27T03:16:18Z
2023-09-18T17:19:58Z
https://github.com/langchain-ai/langchain/issues/2016
1,641,294,710
2,016
[ "hwchase17", "langchain" ]
It would be great to see integration with [OpenAssistant](https://github.com/LAION-AI/Open-Assistant) by @LAION-AI, which aims to become the [largest and most open alternative to ChatGPT](https://projects.laion.ai/Open-Assistant/blog/we-need-your-help#:~:text=largest%20and%20most%20open%20alternative%20to%20ChatGPT). > OpenAssistant is a chat-based assistant that understands tasks, can interact with third-party systems, and retrieve information dynamically to do so Here's the [Open Assistant architecture](https://projects.laion.ai/Open-Assistant/blog/2023-02-11-architecture): <img width="504" alt="screen" src="https://user-images.githubusercontent.com/6625584/227813941-3c77f348-8874-409a-9e8f-2ee1604a8611.png">
Open Assistant by LAION-AI
https://api.github.com/repos/langchain-ai/langchain/issues/2015/comments
2
2023-03-27T00:18:02Z
2023-09-28T16:10:32Z
https://github.com/langchain-ai/langchain/issues/2015
1,641,160,728
2,015
[ "hwchase17", "langchain" ]
When verbose=True and the agent executor is run, then in get_prompt_input_key() an error is raised: ```python raise ValueError(f"One input key expected got {prompt_input_keys}") ``` This is because there are two entries [verbose, input] not just one [input]. It may be that setting verbose=True is not relevant. However, if it is, then a possible solution is to change utils.py line 10: ```python if len(prompt_input_keys) != 1: ``` to ```python if ~len(prompt_input_keys) in [1,2]: ```
Error raised in utils.py get_prompt_input_key when AgentExecutor.run verbose=True
https://api.github.com/repos/langchain-ai/langchain/issues/2013/comments
3
2023-03-26T19:57:11Z
2023-10-21T16:10:16Z
https://github.com/langchain-ai/langchain/issues/2013
1,641,060,799
2,013
[ "hwchase17", "langchain" ]
In [here](https://python.langchain.com/en/latest/modules/indexes/vectorstore_examples/pinecone.html) - Pinecone.from_documents doesn't exist. In the code [here](https://github.com/hwchase17/langchain/blob/master/langchain/vectorstores/pinecone.py) it is from_texts
Pinecone in docs is outdated
https://api.github.com/repos/langchain-ai/langchain/issues/2009/comments
4
2023-03-26T18:02:47Z
2023-12-09T14:17:37Z
https://github.com/langchain-ai/langchain/issues/2009
1,641,013,216
2,009
[ "hwchase17", "langchain" ]
All "smart websites" will have AI-friendly API schemas, not just **robots.txt**. These websites will have JSON manifest files for LLMs (ex: **openai.yaml**) and LLM plugins (ex: **ai-plugin.json**). These JSON manifest files will allow LLM agents like ChatGPT to interact with websites without data scraping or parsing API docs. OpenAI uses JSON manifest files as part of its plugin system for ChatGPT[[2]](https://www.mlq.ai/introducing-chatgpt-plugins/)[[4]](https://openai.com/blog/chatgpt-plugins). A plugin consists of an API, an API schema (in OpenAPI JSON or YAML format), and a manifest that describes what the plugin can do for both humans and models, as well as other metadata[[2]](https://www.mlq.ai/introducing-chatgpt-plugins/). The manifest file links to the OpenAPI specification and includes plugin-specific metadata such as the name, description, and logo[[2]](https://www.mlq.ai/introducing-chatgpt-plugins/)[[4]](https://openai.com/blog/chatgpt-plugins). To create a plugin, the first step is to build an API[[1]](https://platform.openai.com/docs/plugins/getting-started/plugin-manifest). The API is then documented in the OpenAPI JSON or YAML format[[1]](https://platform.openai.com/docs/plugins/getting-started/plugin-manifest)[[2]](https://www.mlq.ai/introducing-chatgpt-plugins/). Finally, a JSON manifest file is created that defines relevant metadata for the plugin[[1]](https://platform.openai.com/docs/plugins/getting-started/plugin-manifest). The manifest file includes information such as the name, description, and API URL[[2]](https://www.mlq.ai/introducing-chatgpt-plugins/). Here's an example of [.well-known/ai-plugin.json](https://github.com/openai/chatgpt-retrieval-plugin/tree/main/.well-known) ``` { "schema_version": "v1", "name_for_model": "retrieval", "name_for_human": "Retrieval Plugin", "description_for_model": "Plugin for searching through the user's documents (such as files, emails, and more) to find answers to questions and retrieve relevant information. Use it whenever a user asks something that might be found in their personal information.", "description_for_human": "Search through your documents.", "auth": { "type": "user_http", "authorization_type": "bearer" }, "api": { "type": "openapi", "url": "https://your-app-url.com/.well-known/openapi.yaml", "has_user_authentication": false }, "logo_url": "https://your-app-url.com/.well-known/logo.png", "contact_email": "[email protected]", "legal_info_url": "[email protected]" } ``` Here's an example [.well-known/openai.yaml](https://github.com/openai/chatgpt-retrieval-plugin/blob/main/.well-known/openapi.yaml) ``` openapi: 3.0.2 info: title: Retrieval Plugin API description: A retrieval API for querying and filtering documents based on natural language queries and metadata version: 1.0.0 servers: - url: https://your-app-url.com paths: /query: post: summary: Query description: Accepts search query objects array each with query and optional filter. Break down complex questions into sub-questions. Refine results by criteria, e.g. time / source, don't do this often. Split queries if ResponseTooLargeError occurs. operationId: query_query_post requestBody: content: application/json: schema: $ref: "#/components/schemas/QueryRequest" required: true responses: "200": description: Successful Response content: application/json: schema: $ref: "#/components/schemas/QueryResponse" "422": description: Validation Error content: application/json: schema: $ref: "#/components/schemas/HTTPValidationError" security: - HTTPBearer: [] components: schemas: DocumentChunkMetadata: title: DocumentChunkMetadata type: object properties: source: $ref: "#/components/schemas/Source" source_id: title: Source Id type: string url: title: Url type: string created_at: title: Created At type: string author: title: Author type: string document_id: title: Document Id type: string DocumentChunkWithScore: title: DocumentChunkWithScore required: - text - metadata - score type: object properties: id: title: Id type: string text: title: Text type: string metadata: $ref: "#/components/schemas/DocumentChunkMetadata" embedding: title: Embedding type: array items: type: number score: title: Score type: number DocumentMetadataFilter: title: DocumentMetadataFilter type: object properties: document_id: title: Document Id type: string source: $ref: "#/components/schemas/Source" source_id: title: Source Id type: string author: title: Author type: string start_date: title: Start Date type: string end_date: title: End Date type: string HTTPValidationError: title: HTTPValidationError type: object properties: detail: title: Detail type: array items: $ref: "#/components/schemas/ValidationError" Query: title: Query required: - query type: object properties: query: title: Query type: string filter: $ref: "#/components/schemas/DocumentMetadataFilter" top_k: title: Top K type: integer default: 3 QueryRequest: title: QueryRequest required: - queries type: object properties: queries: title: Queries type: array items: $ref: "#/components/schemas/Query" QueryResponse: title: QueryResponse required: - results type: object properties: results: title: Results type: array items: $ref: "#/components/schemas/QueryResult" QueryResult: title: QueryResult required: - query - results type: object properties: query: title: Query type: string results: title: Results type: array items: $ref: "#/components/schemas/DocumentChunkWithScore" Source: title: Source enum: - email - file - chat type: string description: An enumeration. ValidationError: title: ValidationError required: - loc - msg - type type: object properties: loc: title: Location type: array items: anyOf: - type: string - type: integer msg: title: Message type: string type: title: Error Type type: string securitySchemes: HTTPBearer: type: http scheme: bearer ``` Here are five ways to implement JSON manifest files inside LangChain: 1. **Plugin chaining**: Allow users to enable and chain multiple ChatGPT plugins in LangChain using OpenAI's JSON manifest files for powerful, customized agents. 2. **Unified plugin management**: Develop a plugin management interface in LangChain that can parse OpenAI JSON manifest files, simplifying plugin integration. 3. **Context enrichment**: Enhance LangChain's context management by incorporating plugin information from OpenAI JSON manifest files, leading to context-aware responses. 4. **Dynamic plugin invocation**: Implement a mechanism for LangChain agents to call appropriate OpenAI plugin APIs based on user input and conversation context. 5. **Cross-platform plugin development**: Encourage creating cross-platform plugins compatible with both OpenAI's ChatGPT ecosystem and LangChain applications by standardizing JSON manifest files and OpenAPI specifications.
JSON Manifest Files
https://api.github.com/repos/langchain-ai/langchain/issues/2008/comments
1
2023-03-26T17:48:06Z
2023-09-10T16:40:23Z
https://github.com/langchain-ai/langchain/issues/2008
1,641,007,401
2,008
[ "hwchase17", "langchain" ]
I'd like to run query against `parquet` files with `duckdb`. I see some `duckdb` stuffs on the docs when I search it up, also there's this PR: https://github.com/hwchase17/langchain/pull/1991, which seems to be a nice addition. What are the missing pieces to make this work? One workaround I've found is turning the `parquet` files into a SQLite db, make an agent out of it, then proceed from there.
feat: parquet file support for SQL agent
https://api.github.com/repos/langchain-ai/langchain/issues/2002/comments
3
2023-03-26T05:28:21Z
2023-09-18T16:22:24Z
https://github.com/langchain-ai/langchain/issues/2002
1,640,778,468
2,002
[ "hwchase17", "langchain" ]
Hi! Thanks for creating langchain! I wanted to give its "agents" feature a try and quickly found an example of its shortcomings: ``` > Entering new AgentExecutor chain... I need to find out who the author of Moore's law is and if they are alive. Action: Search Action Input: "author of Moore's law" Observation: Gordon Moore Thought: I need to find out if Gordon Moore is alive. Action: Search Action Input: "Gordon Moore alive" Observation: March 24, 2023 Thought: I now know the final answer. Final Answer: Yes, Gordon Moore is alive. > Finished chain. ``` Not sure if it's something that can be fixed within langchain, but I figured I'd report it just in case.
Agent misbehaving: "is the author of Moore's law alive?"
https://api.github.com/repos/langchain-ai/langchain/issues/1994/comments
2
2023-03-25T18:46:50Z
2023-09-18T16:22:29Z
https://github.com/langchain-ai/langchain/issues/1994
1,640,621,419
1,994
[ "hwchase17", "langchain" ]
Am refereing to this documentaion [here](https://langchain.readthedocs.io/en/latest/modules/chat/examples/chat_vector_db.html) created a file test.py ``` from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.text_splitter import CharacterTextSplitter from langchain.chains import ConversationalRetrievalChain from langchain.chat_models import ChatOpenAI from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, AIMessagePromptTemplate, HumanMessagePromptTemplate, ) from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) from langchain.document_loaders import TextLoader loader = TextLoader('test.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=200, chunk_overlap=0) documents = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() vectorstore = Chroma.from_documents(documents, embeddings) system_template="""Use the following pieces of context to answer the users question. If you don't know the answer, just say that you don't know, don't try to make up an answer. ---------------- {context}""" messages = [ SystemMessagePromptTemplate.from_template(system_template), HumanMessagePromptTemplate.from_template("{question}") ] prompt = ChatPromptTemplate.from_messages(messages) qa = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0), vectorstore, qa_prompt=prompt) chat_history = [] query = "Who is the CEO?" result = qa({"question": query, "chat_history": chat_history}) print(result) ``` Which throws Traceback (most recent call last): File "test.py", line 44, in <module> qa = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0), vectorstore, qa_prompt=prompt) File "/home/prajin/works/ults/gpt/lamda-openai-chat-python/venv/lib/python3.8/site-packages/langchain/chains/conversational_retrieval/base.py", line 140, in from_llm return cls( File "pydantic/main.py", line 341, in pydantic.main.BaseModel.__init__ pydantic.error_wrappers.ValidationError: 1 validation error for ConversationalRetrievalChain retriever instance of BaseRetriever expected (type=type_error.arbitrary_type; expected_arbitrary_type=BaseRetriever)
pydantic.error_wrappers.ValidationError: 1 validation error
https://api.github.com/repos/langchain-ai/langchain/issues/1986/comments
4
2023-03-25T08:38:05Z
2023-10-31T08:02:38Z
https://github.com/langchain-ai/langchain/issues/1986
1,640,432,940
1,986
[ "hwchase17", "langchain" ]
Pls. add support for Kagi Summarizer https://blog.kagi.com/universal-summarizer#api
Add support for Kagi Summarizer API in Chains
https://api.github.com/repos/langchain-ai/langchain/issues/1983/comments
1
2023-03-25T05:01:52Z
2023-08-21T16:07:54Z
https://github.com/langchain-ai/langchain/issues/1983
1,640,380,648
1,983
[ "hwchase17", "langchain" ]
### Summary The QueryCheckerTool function currently creates an LLMChain object internally but does not provide a way to specify the `openai_api_key` manually via supplied arguments. This can cause issues for users who do not want to place their API key in environment variables. ### Steps to Reproduce Run this code ```python from langchain.agents import create_sql_agent from langchain.agents.agent_toolkits import SQLDatabaseToolkit from langchain.sql_database import SQLDatabase from langchain.llms.openai import OpenAI from langchain.agents import AgentExecutor import sqlite3 with sqlite3.connect("data.db") as conn: pass db = SQLDatabase.from_uri("sqlite:///data.db") toolkit = SQLDatabaseToolkit(db=db) llm = OpenAI(temperature=0, openai_api_key="your key here") agent_executor = create_sql_agent( llm=llm, toolkit=toolkit, verbose=True ) while True: prompt = input("> ") response = agent_executor.run(prompt) print(response) ``` ### Expected Behavior `create_sql_agent` should not require me to supply an OpenAI API key, nor should it require me to have this stored in an environment variable. ### Actual Behavior `create_sql_agent` generates an error when I call it without first setting the `OPENAI_API_KEY` environment variable. ### Obvious Solution `create_sql_agent` should supply its argument `llm` to functions it calls, obviously. In particular, this line https://github.com/hwchase17/langchain/blob/b83e8265102514d1722b2fb1aad29763c5cad62a/langchain/tools/sql_database/tool.py#L85 is the source of the error. ### Environment - LangChain version: 0.0.123 - Python version: 3.9.16 - Operating System: Windows 10
QueryCheckerTool creates LLMChain object, does not allow manual specification of openai_api_key
https://api.github.com/repos/langchain-ai/langchain/issues/1982/comments
2
2023-03-25T03:45:48Z
2023-03-26T04:37:50Z
https://github.com/langchain-ai/langchain/issues/1982
1,640,354,701
1,982
[ "hwchase17", "langchain" ]
Here's what i'm using atm... data: ``` { "num_tweets": 199, "total_impressions": 154586, "total_engagements": 0, "total_retweets": 4621, "total_likes": 4249, "average_impressions": 776.8140703517588, "average_engagements": 0.0, "average_retweets": 23.22110552763819, "average_likes": 21.35175879396985, "tweets": [ { "timestamp": "2023-03-24T02:02:49+00:00", "text": "RT : No show tonight sorry y\u2019all, business dinner went way long \ud83d\ude4f\ud83e\uddd1\u200d\ud83d\ude80\ud83e\udee1", "replies": 0, "impressions": 0, "retweets": 2, "quote_retweets": 0, "likes": 0 }, { "timestamp": "2023-03-23T09:59:45+00:00", "text": "", "replies": 0, "impressions": 296, "retweets": 0, "quote_retweets": 0, "likes": 1 }, ..... ``` ``` question = """You are a Solana NFT Expert, and a web3 social media guru, Analyze the data, and based on that, provide a detailed report, the report contains datapoints about the project's professionalism, social impact and reach, and the project's overall engagement with the community., with numbers to support the case, Number of followers Follower growth rate Number of retweets and likes per tweet Engagement rate per tweet Hashtag usage Quality of content Frequency of posting Tone and sentiment of tweets Provide a thorough analysis of each metric and support your findings with specific numbers and examples. Additionally, provide any insights or recommendations based on your analysis that could help improve the project's social media presence and impact. Please provide the report in Markdown format. """ model_name = "gpt-3.5-turbo" llm = ChatOpenAI(model_name=model_name, temperature=0.7) recursive_character_text_splitter = ( RecursiveCharacterTextSplitter.from_tiktoken_encoder( encoding_name="cl100k_base" if model_name == "gpt-3.5-turbo" else "p50k_base", chunk_size=4097 if model_name == "gpt-3.5-turbo" else llm.modelname_to_contextsize(model_name), chunk_overlap=0, ) ) text_chunks = recursive_character_text_splitter.split_text(open("twitter_profile.json").read()) documents = [Document(page_content=question + text_chunk) for text_chunk in text_chunks] # Summarize the document by summarizing each document chunk and then summarizing the combined summary chain = load_summarize_chain(llm, chain_type="map_reduce") chain.run(documents) ``` response ``` "The report analyzes the social media presence of a Solana NFT project, examining metrics such as follower count, engagement rate, hashtag usage, content quality, posting frequency, tone/sentiment, and growth rate. Specific numbers and examples are provided, and recommendations are given for improving the project's impact. The data includes tweets related to partnerships, revenue sharing, and a recent airdrop, with engagement metrics and impressions listed." ``` takes about 27 seconds I'm new to langchain, is there a better way to go about this? the responses seem undetailed and dull at the moment.
How to run gpt-3.5-turbo against my own data while using map_reduce?
https://api.github.com/repos/langchain-ai/langchain/issues/1980/comments
4
2023-03-25T00:34:20Z
2023-08-21T20:15:50Z
https://github.com/langchain-ai/langchain/issues/1980
1,640,254,185
1,980
[ "hwchase17", "langchain" ]
I am trying to use a Custom Prompt Template as an example_prompt to the FewShotPromptTemplate. Although, I am getting a 'key error' template issue. Does FewShotPromptTemplate support using Custom Prompt Template ? A snippet example for reference ``` from langchain import PromptTemplate, FewShotPromptTemplate class CustomPromptTemplate(StringPromptTemplate, BaseModel): @validator("input_variables") def validate_input_variables(cls, v): """ Validate that the input variables are correct. """ if len(v) != 1 or "function_name" not in v: raise ValueError("function_name must be the only input_variable.") return v def format(self, **kwargs) -> str: # Get the source code of the function source_code = get_source_code(kwargs["function_name"]) # Generate the prompt to be sent to the language model prompt = f""" Given the function name and source code, generate an English language explanation of the function. Function Name: {kwargs["function_name"].__name__} Source Code: {source_code} Explanation: """ return prompt def _prompt_type(self): return "function-explainer" fn_explainer = CustomPromptTemplate(input_variables=["function_name"]) few_shot_prompt = FewShotPromptTemplate( # These are the examples we want to insert into the prompt. examples=examples, # This is how we want to format the examples when we insert them into the prompt. example_prompt= fn_explainer, # The prefix is some text that goes before the examples in the prompt. # Usually, this consists of intructions. prefix="Give the antonym of every input", # The suffix is some text that goes after the examples in the prompt. # Usually, this is where the user input will go suffix="Word: {input}\nAntonym:", # The input variables are the variables that the overall prompt expects. input_variables=["input"], # The example_separator is the string we will use to join the prefix, examples, and suffix together with. example_separator="\n\n", ) ```
Using Custom Prompt with FewShotPromptTemplate
https://api.github.com/repos/langchain-ai/langchain/issues/1977/comments
5
2023-03-24T21:57:37Z
2024-02-14T16:14:33Z
https://github.com/langchain-ai/langchain/issues/1977
1,640,095,874
1,977
[ "hwchase17", "langchain" ]
* Allow users to choose the type in the schema (string | List[string]) * Allow users to get multiple json objects (get JSON array) in the response. I achieved it by replacing the {{ }} -> [[ ]] as follows: `prompt.replace("""{{ "ID": string // IDs which refers to the sentences. "Text": string // Sentences that contains the answer to the question. }}""", """[[ "ID": string // IDs which refers to the sentences. "Text": string // Sentences that contains the answer to the question. ]]""")` And got a list of json objects with this method.
StructuredOutputParser - Allow users to get multiple items from response.
https://api.github.com/repos/langchain-ai/langchain/issues/1976/comments
5
2023-03-24T20:27:06Z
2023-12-27T12:00:23Z
https://github.com/langchain-ai/langchain/issues/1976
1,639,991,330
1,976
[ "hwchase17", "langchain" ]
I think the sqlalchemy dependency in pyproject.toml still needs to be bumped. _Originally posted by @sliedes in https://github.com/hwchase17/langchain/issues/1272#issuecomment-1473683519_
sqlalchemy dependency in pyproject.toml still needs to be bumped to *
https://api.github.com/repos/langchain-ai/langchain/issues/1975/comments
5
2023-03-24T19:52:44Z
2023-09-27T16:12:00Z
https://github.com/langchain-ai/langchain/issues/1975
1,639,955,235
1,975
[ "hwchase17", "langchain" ]
The history part for summay of past conversation is always in English. How to change it please?
How to set the 'history' of ConversationSummaryBufferMemory in other language
https://api.github.com/repos/langchain-ai/langchain/issues/1973/comments
2
2023-03-24T17:24:27Z
2023-09-18T16:22:34Z
https://github.com/langchain-ai/langchain/issues/1973
1,639,777,702
1,973
[ "hwchase17", "langchain" ]
A couple problems: - `ChatOpenAI.get_num_tokens_from_messages()` takes a `model` parameter that is not included in the [base class method signature](https://github.com/hwchase17/langchain/blob/master/langchain/schema.py#L208). Instead, it should use `self.model_name`, similar to how the `BaseOpenAI.get_num_tokens()` does. - `ChatOpenAI.get_num_tokens_from_messages()` does not support GPT-4. See here for the updated formula: https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
ChatOpenAI.get_num_tokens_from_messages: use self.model_name and support GPT-4
https://api.github.com/repos/langchain-ai/langchain/issues/1972/comments
4
2023-03-24T16:47:58Z
2023-09-18T16:22:40Z
https://github.com/langchain-ai/langchain/issues/1972
1,639,724,669
1,972
[ "hwchase17", "langchain" ]
I try to set the "system" role maessage when using ConversationChain with ConversationSummaryBufferMemory(CSBM), but it is failed. When I change the ConversationSummaryBufferMemory to the ConversationBufferMemory, it become worked. But I'd like to use the auto summarize utilities when exceeding the maxLength by CSBM. Below is the error message: chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, MessagesPlaceholder(variable_name="history"),human_message_prompt]) from langchain.chains import ConversationChain conversation_with_summary = ConversationChain( llm=chat, memory=ConversationSummaryBufferMemory(llm=chat, max_token_limit=10), prompt=chat_prompt, verbose=True ) conversation_with_summary.predict(input="hello") ******************************************************************************* > Entering new ConversationChain chain... --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[125], line 34 24 conversation_with_summary = ConversationChain( 25 #llm=llm, 26 llm=chat, (...) 31 verbose=True 32 ) 33 #conversation_with_summary.predict(identity="ไฝ›็ฅ–",text="ไฝ ๅฅฝ") ---> 34 conversation_with_summary.predict(input="ไฝ ๅฅฝ") File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\langchain\chains\llm.py:151, in LLMChain.predict(self, **kwargs) 137 def predict(self, **kwargs: Any) -> str: 138 """Format prompt with kwargs and pass to LLM. 139 140 Args: (...) 149 completion = llm.predict(adjective="funny") 150 """ --> 151 return self(kwargs)[self.output_key] File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\langchain\chains\base.py:116, in Chain.__call__(self, inputs, return_only_outputs) 114 except (KeyboardInterrupt, Exception) as e: 115 self.callback_manager.on_chain_error(e, verbose=self.verbose) --> 116 raise e 117 self.callback_manager.on_chain_end(outputs, verbose=self.verbose) 118 return self.prep_outputs(inputs, outputs, return_only_outputs) File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\langchain\chains\base.py:113, in Chain.__call__(self, inputs, return_only_outputs) 107 self.callback_manager.on_chain_start( 108 {"name": self.__class__.__name__}, 109 inputs, 110 verbose=self.verbose, 111 ) 112 try: --> 113 outputs = self._call(inputs) 114 except (KeyboardInterrupt, Exception) as e: 115 self.callback_manager.on_chain_error(e, verbose=self.verbose) File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\langchain\chains\llm.py:57, in LLMChain._call(self, inputs) 56 def _call(self, inputs: Dict[str, Any]) -> Dict[str, str]: ---> 57 return self.apply([inputs])[0] File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\langchain\chains\llm.py:118, in LLMChain.apply(self, input_list) 116 def apply(self, input_list: List[Dict[str, Any]]) -> List[Dict[str, str]]: 117 """Utilize the LLM generate method for speed gains.""" --> 118 response = self.generate(input_list) 119 return self.create_outputs(response) File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\langchain\chains\llm.py:61, in LLMChain.generate(self, input_list) 59 def generate(self, input_list: List[Dict[str, Any]]) -> LLMResult: 60 """Generate LLM result from inputs.""" ---> 61 prompts, stop = self.prep_prompts(input_list) 62 return self.llm.generate_prompt(prompts, stop) File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\langchain\chains\llm.py:79, in LLMChain.prep_prompts(self, input_list) 77 for inputs in input_list: 78 selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} ---> 79 prompt = self.prompt.format_prompt(**selected_inputs) 80 _colored_text = get_colored_text(prompt.to_string(), "green") 81 _text = "Prompt after formatting:\n" + _colored_text File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\langchain\prompts\chat.py:173, in ChatPromptTemplate.format_prompt(self, **kwargs) 167 elif isinstance(message_template, BaseMessagePromptTemplate): 168 rel_params = { 169 k: v 170 for k, v in kwargs.items() 171 if k in message_template.input_variables 172 } --> 173 message = message_template.format_messages(**rel_params) 174 result.extend(message) 175 else: File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\langchain\prompts\chat.py:43, in MessagesPlaceholder.format_messages(self, **kwargs) 41 value = kwargs[self.variable_name] 42 if not isinstance(value, list): ---> 43 raise ValueError( 44 f"variable {self.variable_name} should be a list of base messages, " 45 f"got {value}" 46 ) 47 for v in value: 48 if not isinstance(v, BaseMessage): ValueError: variable history should be a list of base messages, got
how to use SystemMessagePromptTemplate with ConversationSummaryBufferMemory please?
https://api.github.com/repos/langchain-ai/langchain/issues/1971/comments
4
2023-03-24T16:39:01Z
2023-09-28T16:10:42Z
https://github.com/langchain-ai/langchain/issues/1971
1,639,712,764
1,971
[ "hwchase17", "langchain" ]
I am reaching out to inquire about the possibility of implementing a `caching system` for popular prompts as vectors. As you may know, constantly re-embedding questions can be `costly` and `time-consuming`, especially for larger datasets. Therefore, I was wondering if there are any plans to create a sub package that would allow users to store and reuse embeddings of commonly used questions. This would not only decrease the cost of re-embedding but also improve the overall efficiency of the system. I would greatly appreciate it if you could let me know if this is something that may be considered in the future. Thank you for your time and consideration.
Proposal to Implement Caching of Popular Prompts as Vectors
https://api.github.com/repos/langchain-ai/langchain/issues/1968/comments
7
2023-03-24T14:22:18Z
2023-09-18T16:22:44Z
https://github.com/langchain-ai/langchain/issues/1968
1,639,490,018
1,968
[ "hwchase17", "langchain" ]
I am reaching out to inquire about the possibility of implementing a `caching system` for popular prompts as vectors. As you may know, constantly re-embedding questions can be `costly` and `time-consuming`, especially for larger datasets. Therefore, I was wondering if there are any plans to create a sub package that would allow users to store and reuse embeddings of commonly used questions. This would not only decrease the cost of re-embedding but also improve the overall efficiency of the system. I would greatly appreciate it if you could let me know if this is something that may be considered in the future. Thank you for your time and consideration.
Proposal to Implement Caching of Popular Prompts as Vectors
https://api.github.com/repos/langchain-ai/langchain/issues/1967/comments
3
2023-03-24T14:21:57Z
2023-10-23T02:26:40Z
https://github.com/langchain-ai/langchain/issues/1967
1,639,489,619
1,967
[ "hwchase17", "langchain" ]
I am reaching out to inquire about the possibility of implementing a `caching system` for popular prompts as vectors. As you may know, constantly re-embedding questions can be `costly` and `time-consuming`, especially for larger datasets. Therefore, I was wondering if there are any plans to create a sub package that would allow users to store and reuse embeddings of commonly used questions. This would not only decrease the cost of re-embedding but also improve the overall efficiency of the system. I would greatly appreciate it if you could let me know if this is something that may be considered in the future. Thank you for your time and consideration.
Proposal to Implement Caching of Popular Prompts as Vectors
https://api.github.com/repos/langchain-ai/langchain/issues/1966/comments
1
2023-03-24T14:21:38Z
2023-08-21T16:07:59Z
https://github.com/langchain-ai/langchain/issues/1966
1,639,489,505
1,966
[ "hwchase17", "langchain" ]
Say I query my vector database with a minimum distance threshold and no documents ("sources") are returned, how can I stop ChatVectorDBChain from answering the question without using prompts? I observe that even though it finds no sources, it will answer based on chat history or overwrite the prompt instructions. I would like to have a deterministic switch like: ```python if no_documents: raise ValueError() ``` and then catch this error to print some message and continue.
Is there a non-prompt way to stop ChatVectorDBChain from answering when no vectors are found?
https://api.github.com/repos/langchain-ai/langchain/issues/1963/comments
3
2023-03-24T10:23:54Z
2023-09-25T16:15:24Z
https://github.com/langchain-ai/langchain/issues/1963
1,639,119,073
1,963
[ "hwchase17", "langchain" ]
I am trying to load load video and came across below issue. I am using langchain version 0.0.121 ![image](https://user-images.githubusercontent.com/99241695/227492256-c22f93e2-9666-4971-b0a9-0eba7b3dfc8e.png)
AttributeError: type object 'YoutubeLoader' has no attribute 'from_youtube_url'
https://api.github.com/repos/langchain-ai/langchain/issues/1962/comments
5
2023-03-24T10:08:17Z
2023-04-12T04:13:00Z
https://github.com/langchain-ai/langchain/issues/1962
1,639,095,508
1,962
[ "hwchase17", "langchain" ]
The score is useful for a lot of things. It'd be great if VectorStore exported the abstract methods so a VectorStore dependency can be injected.
`*_with_score` methods should be part of VectorStore
https://api.github.com/repos/langchain-ai/langchain/issues/1959/comments
1
2023-03-24T08:17:09Z
2023-09-10T16:40:38Z
https://github.com/langchain-ai/langchain/issues/1959
1,638,930,794
1,959
[ "hwchase17", "langchain" ]
null
How to work with multiple csv files in the same agent session ? is there any option to call agent with multiple csv files, so that the model can interact multiple files and answer us.
https://api.github.com/repos/langchain-ai/langchain/issues/1958/comments
12
2023-03-24T07:46:39Z
2023-05-25T21:23:12Z
https://github.com/langchain-ai/langchain/issues/1958
1,638,890,881
1,958
[ "hwchase17", "langchain" ]
## Summary I'm seeing this `ImportError`ย on my Mac M1 when trying to use Chroma ``` (mach-o file, but is an incompatible architecture (have (x86_64), need (arm64e))) ``` Any ideas? ## Traceback ``` Traceback (most recent call last): File "/Users/homanp/Library/Caches/com.vercel.fun/runtimes/python3/../python/bootstrap.py", line 147, in <module> lambda_runtime_main() File "/Users/homanp/Library/Caches/com.vercel.fun/runtimes/python3/../python/bootstrap.py", line 127, in lambda_runtime_main fn = lambda_runtime_get_handler() File "/Users/homanp/Library/Caches/com.vercel.fun/runtimes/python3/../python/bootstrap.py", line 113, in lambda_runtime_get_handler mod = importlib.import_module(module_name) File "/opt/homebrew/Cellar/[email protected]/3.9.5/Frameworks/Python.framework/Versions/3.9/lib/python3.9/importlib/__init__.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 1030, in _gcd_import File "<frozen importlib._bootstrap>", line 1007, in _find_and_load File "<frozen importlib._bootstrap>", line 986, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 680, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 855, in exec_module File "<frozen importlib._bootstrap>", line 228, in _call_with_frames_removed File "/var/folders/b5/g5rvd57j2wq3nysn1n8h66yr0000gn/T/zeit-fun-6d31861b417ef/vc__handler__python.py", line 12, in <module> __vc_spec.loader.exec_module(__vc_module) File "<frozen importlib._bootstrap_external>", line 855, in exec_module File "<frozen importlib._bootstrap>", line 228, in _call_with_frames_removed File "/private/var/folders/b5/g5rvd57j2wq3nysn1n8h66yr0000gn/T/zeit-fun-6d31861b417ef/./api/index.py", line 13, in <module> index = VectorstoreIndexCreator().from_loaders([loader]) File "/var/folders/b5/g5rvd57j2wq3nysn1n8h66yr0000gn/T/zeit-fun-6d31861b417ef/langchain/indexes/vectorstore.py", line 71, in from_loaders vectorstore = self.vectorstore_cls.from_documents( File "/var/folders/b5/g5rvd57j2wq3nysn1n8h66yr0000gn/T/zeit-fun-6d31861b417ef/langchain/vectorstores/chroma.py", line 268, in from_documents return cls.from_texts( File "/var/folders/b5/g5rvd57j2wq3nysn1n8h66yr0000gn/T/zeit-fun-6d31861b417ef/langchain/vectorstores/chroma.py", line 231, in from_texts chroma_collection = cls( File "/var/folders/b5/g5rvd57j2wq3nysn1n8h66yr0000gn/T/zeit-fun-6d31861b417ef/langchain/vectorstores/chroma.py", line 78, in __init__ self._client = chromadb.Client(self._client_settings) File "/Users/homanp/Projects/VERCEL_LANGCHAIN_ENV/lib/python3.9/site-packages/chromadb/__init__.py", line 68, in Client return chromadb.api.local.LocalAPI(settings, get_db(settings)) File "/Users/homanp/Projects/VERCEL_LANGCHAIN_ENV/lib/python3.9/site-packages/chromadb/__init__.py", line 41, in get_db import chromadb.db.duckdb File "/Users/homanp/Projects/VERCEL_LANGCHAIN_ENV/lib/python3.9/site-packages/chromadb/db/duckdb.py", line 3, in <module> from chromadb.db.index.hnswlib import Hnswlib File "/Users/homanp/Projects/VERCEL_LANGCHAIN_ENV/lib/python3.9/site-packages/chromadb/db/index/hnswlib.py", line 8, in <module> import hnswlib ```
`ImportError` ChromaDB
https://api.github.com/repos/langchain-ai/langchain/issues/1957/comments
16
2023-03-24T07:42:33Z
2023-11-10T16:10:52Z
https://github.com/langchain-ai/langchain/issues/1957
1,638,886,467
1,957
[ "hwchase17", "langchain" ]
I worked on this version: git rev-parse HEAD: 9555bbd5bb3397e66d279d802576b4c65123b484 I plan to add a ParaChain class in the Chains module. At present, it seems that only serial calls are supported, but in some scenarios, we need it work in parallel, and support the combination of parallel chains and serial chains to achieve a better effect, and I hope that in the future, I can introduce FSM into it. I was about to start this part of the work, when I was reading the source code of the SequentialChain class, I found that there was a section in the validate_chains function that identified the intersection variable of memory and input, but only from the perspective of looking at the code, it seemed that there was a bug, but I did It has not been verified by test_case(because there are too many homework at present), I want to start a discussion here first, whether it is a known bug or my understanding is wrong. the code section: ``` @root_validator(pre=True) def validate_chains(cls, values: Dict) -> Dict: """Validate that the correct inputs exist for all chains.""" chains = values["chains"] input_variables = values["input_variables"] memory_keys = list() if "memory" in values and values["memory"] is not None: """Validate that prompt input variables are consistent.""" memory_keys = values["memory"].memory_variables if any(input_variables) in memory_keys: overlapping_keys = input_variables & memory_keys raise ValueError( f"The the input key(s) {''.join(overlapping_keys)} are found " f"in the Memory keys ({memory_keys}) - please use input and " f"memory keys that don't overlap." ) ``` At first: ** if any(input_variables) in memory_keys:** any() function return a bool value. what's mean of bool in a List[str]? Second: **overlapping_keys = input_variables & memory_keys** maybe **overlapping_keys = set(input_variables) & set(memory_keys)** I love LangChain. Awesome & impressive library
Bug:: SequentialChain root_validator::validate_chain. judgment logic of overlapping_keys
https://api.github.com/repos/langchain-ai/langchain/issues/1953/comments
2
2023-03-24T04:52:12Z
2023-09-10T16:40:43Z
https://github.com/langchain-ai/langchain/issues/1953
1,638,714,871
1,953
[ "hwchase17", "langchain" ]
Summary: the Chroma vectorstore search does not return top-scored embeds. The issue appears only when the number of documents in the vector store exceeds a certain threshold (I have ~4000 chunks). I could not determine when it breaks exactly. I loaded my documents, chunked them, and then indexed into a vectorstore: ``` embeddings = OpenAIEmbeddings() docsearch = Chroma.from_documents(all_docs, embeddings) ``` Then I tried to search this vector store: ``` text = "my search text" list(score for doc, score in docsearch.similarity_search_with_score(text)) ``` Output: ``` [0.3361772298812866, 0.3575538694858551, 0.360953152179718, 0.36677438020706177] ``` Search **did not return the expected document** from the embed (within a list of 4 items returned by default). Then I performed another test forcing to return all scores and **got the expected result**. `list(score for doc, score in docsearch.similarity_search_with_score(text, len(all_docs))[:4])` Output: ``` [0.31715911626815796, 0.3361772298812866, 0.3575538694858551, 0.360953152179718] ``` You can clearly see that the top scores are different. Any help is appreciated.
Chroma vectorstore search does not return top-scored embeds
https://api.github.com/repos/langchain-ai/langchain/issues/1946/comments
17
2023-03-24T00:47:14Z
2024-07-12T14:58:40Z
https://github.com/langchain-ai/langchain/issues/1946
1,638,542,872
1,946
[ "hwchase17", "langchain" ]
Currently, there is no way to pass in headers to UnstructuredURLLoader, e.g. for `"User-Agent"`. There should be. Upstream issue: https://github.com/Unstructured-IO/unstructured/issues/396
Ability to pass in headers to UnstructuredURLLoader
https://api.github.com/repos/langchain-ai/langchain/issues/1944/comments
0
2023-03-23T23:08:43Z
2023-03-29T04:32:13Z
https://github.com/langchain-ai/langchain/issues/1944
1,638,464,544
1,944
[ "hwchase17", "langchain" ]
Problem since update 0.0.120, when using a AzureChatOpenAI model instance of gpt-35-turbo you get a "Resource not found error" tried with both load_qa_with_sources_chain and MapReduceChain.from_params Here is a sample error trace from right after I call the chain() instance: ``` File "/anaconda/envs/exp_env/lib/python3.10/site-packages/langchain/chains/base.py", line 213, in run return self(args[0])[self.output_keys[0]] File "/anaconda/envs/exp_env/lib/python3.10/site-packages/langchain/chains/base.py", line 116, in __call__ raise e File "/anaconda/envs/exp_env/lib/python3.10/site-packages/langchain/chains/base.py", line 113, in __call__ outputs = self._call(inputs) File "/anaconda/envs/exp_env/lib/python3.10/site-packages/langchain/chains/mapreduce.py", line 73, in _call outputs, _ = self.combine_documents_chain.combine_docs(docs) File "/anaconda/envs/exp_env/lib/python3.10/site-packages/langchain/chains/combine_documents/map_reduce.py", line 139, in combine_docs results = self.llm_chain.apply( File "/anaconda/envs/exp_env/lib/python3.10/site-packages/langchain/chains/llm.py", line 118, in apply response = self.generate(input_list) File "/anaconda/envs/exp_env/lib/python3.10/site-packages/langchain/chains/llm.py", line 62, in generate return self.llm.generate_prompt(prompts, stop) File "/anaconda/envs/exp_env/lib/python3.10/site-packages/langchain/chat_models/base.py", line 79, in generate_prompt raise e File "/anaconda/envs/exp_env/lib/python3.10/site-packages/langchain/chat_models/base.py", line 76, in generate_prompt output = self.generate(prompt_messages, stop=stop) File "/anaconda/envs/exp_env/lib/python3.10/site-packages/langchain/chat_models/base.py", line 53, in generate results = [self._generate(m, stop=stop) for m in messages] File "/anaconda/envs/exp_env/lib/python3.10/site-packages/langchain/chat_models/base.py", line 53, in <listcomp> results = [self._generate(m, stop=stop) for m in messages] File "/anaconda/envs/exp_env/lib/python3.10/site-packages/langchain/chat_models/openai.py", line 264, in _generate response = self.completion_with_retry(messages=message_dicts, **params) File "/anaconda/envs/exp_env/lib/python3.10/site-packages/langchain/chat_models/openai.py", line 226, in completion_with_retry return _completion_with_retry(**kwargs) File "/anaconda/envs/exp_env/lib/python3.10/site-packages/tenacity/__init__.py", line 289, in wrapped_f return self(f, *args, **kw) File "/anaconda/envs/exp_env/lib/python3.10/site-packages/tenacity/__init__.py", line 379, in __call__ do = self.iter(retry_state=retry_state) File "/anaconda/envs/exp_env/lib/python3.10/site-packages/tenacity/__init__.py", line 314, in iter return fut.result() File "/anaconda/envs/exp_env/lib/python3.10/concurrent/futures/_base.py", line 451, in result return self.__get_result() File "/anaconda/envs/exp_env/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result raise self._exception File "/anaconda/envs/exp_env/lib/python3.10/site-packages/tenacity/__init__.py", line 382, in __call__ result = fn(*args, **kwargs) File "/anaconda/envs/exp_env/lib/python3.10/site-packages/langchain/chat_models/openai.py", line 224, in _completion_with_retry return self.client.create(**kwargs) File "/anaconda/envs/exp_env/lib/python3.10/site-packages/openai/api_resources/chat_completion.py", line 25, in create return super().create(*args, **kwargs) File "/anaconda/envs/exp_env/lib/python3.10/site-packages/openai/api_resources/abstract/engine_api_resource.py", line 153, in create response, _, api_key = requestor.request( File "/anaconda/envs/exp_env/lib/python3.10/site-packages/openai/api_requestor.py", line 226, in request resp, got_stream = self._interpret_response(result, stream) File "/anaconda/envs/exp_env/lib/python3.10/site-packages/openai/api_requestor.py", line 619, in _interpret_response self._interpret_response_line( File "/anaconda/envs/exp_env/lib/python3.10/site-packages/openai/api_requestor.py", line 679, in _interpret_response_line raise self.handle_error_response( openai.error.InvalidRequestError: Resource not found ```
Resource not found error when using AzureChatOpenAI gpt-35-turbo
https://api.github.com/repos/langchain-ai/langchain/issues/1942/comments
1
2023-03-23T22:17:32Z
2023-03-23T22:34:53Z
https://github.com/langchain-ai/langchain/issues/1942
1,638,418,561
1,942
[ "hwchase17", "langchain" ]
When presented with intalling chatgpt-wrapper, I have the issue "C:\Users\BigB\Documents\Yeet>pip install git+https://github.com/mmabrouk/chatgpt-wrapper Collecting git+https://github.com/mmabrouk/chatgpt-wrapper Cloning https://github.com/mmabrouk/chatgpt-wrapper to c:\users\refddfea~1\appdata\local\temp\pip-req-build-h89ta3sh Running command git clone --filter=blob:none -q https://github.com/mmabrouk/chatgpt-wrapper 'C:\Users\RCfDfEA~1\AppData\Local\Temp\pip-req-build-h89ta3sh' Resolved https://github.com/mmabrouk/chatgpt-wrapper to commit df1725d7fbbff27e36bc22e4eb73cf5fea887dc1 Preparing metadata (setup.py) ... done Requirement already satisfied: email-validator in c:\users\redfdeaffdspc\appdata\local\programs\python\python36\lib\site-packages (from chatGPT==0.6.5) (1.3.1) Requirement already satisfied: Flask in c:\users\refdfdeafdspc\appdata\local\programs\python\python36\lib\site-packages (from chatGPT==0.6.5) (2.0.3) Requirement already satisfied: Jinja2 in c:\users\reddefadspc\appdata\local\programs\python\python36\lib\site-packages (from chatGPT==0.6.5) (3.0.3) ERROR: Could not find a version that satisfies the requirement langchain>=0.0.115 (from chatgpt) (from versions: 0.0.1, 0.0.2, 0.0.3, 0.0.4, 0.0.5, 0.0.6, 0.0.7, 0.0.8, 0.0.9, 0.0.10, 0.0.11, 0.0.12, 0.0.13, 0.0.14, 0.0.15, 0.0.16, 0.0.17, 0.0.18, 0.0.19, 0.0.20, 0.0.21, 0.0.22, 0.0.23, 0.0.24, 0.0.25, 0.0.26, 0.0.27) ERROR: No matching distribution found for langchain>=0.0.115".
Issue when trying to install chatgpt-wrapper with this module.
https://api.github.com/repos/langchain-ai/langchain/issues/1941/comments
2
2023-03-23T21:08:08Z
2023-09-18T16:22:50Z
https://github.com/langchain-ai/langchain/issues/1941
1,638,329,189
1,941
[ "hwchase17", "langchain" ]
I'm wondering how does [ChatGPT plugin](https://platform.openai.com/docs/plugins/) work under-the-hood? Are they using the same techique as Langchain agent? Basically sending prompt and manually parse out the result -> and feed result back to another plugin in subsequential steps if necessary. Or is it using a superior technique than LangChain agent? I can't find a mention of LangChain in their doc. Any thoughts are welcome!
ChatGPT Plugins vs. LangChain agent
https://api.github.com/repos/langchain-ai/langchain/issues/1940/comments
17
2023-03-23T20:57:52Z
2023-09-29T16:09:47Z
https://github.com/langchain-ai/langchain/issues/1940
1,638,313,085
1,940
[ "hwchase17", "langchain" ]
As reported by Kranos in Discord, there is no a way to robustly iterate through a list of URL's with UnstructuredURLLoader. The workaround for now is to create a UnstructuredURLLoader object per url and do the following: ``` Yep, exactly my problem - I had a load of URLs loaded into a pandas dataframe I was iterating through. I basically added the following at the end of the loop to keep things ticking over and ignoring any errors: # Manage any errors except (NameError, ValueError, KeyError, OSError, TypeError): # Pass the error pass ``` UnstructuredURLLoader should likely do this by default, or provide a `strict` option to exit on any failures.
UnstructuredURLLoader does not gracefully handle failures given a list of URL's
https://api.github.com/repos/langchain-ai/langchain/issues/1939/comments
0
2023-03-23T20:15:27Z
2023-03-28T05:26:22Z
https://github.com/langchain-ai/langchain/issues/1939
1,638,238,132
1,939
[ "hwchase17", "langchain" ]
When feeding the map_reduce summarization chain with a single document, the doc is run through an unnecessary map step before running a combine prompt on it. The combine prompt would imo be sufficient to avoid summarizing a single summary which then is very lossy. Great project, hope this thrives!
Improvement: MapReduce summarization chains executes a map step on a single document
https://api.github.com/repos/langchain-ai/langchain/issues/1937/comments
7
2023-03-23T18:46:21Z
2023-09-18T16:28:44Z
https://github.com/langchain-ai/langchain/issues/1937
1,638,109,379
1,937
[ "hwchase17", "langchain" ]
UJsing py 3.11 (works in py 3.10) with latest (0.4.36) version. Traceback: ``` File "C:\Users\diman\mambaforge\envs\py311\Lib\site-packages\streamlit\runtime\scriptrunner\script_runner.py", line 565, in _run_script exec(code, module.__dict__) File "D:\dev\openai-pr-summarization\main.py", line 9, in <module> from engine.llama import LlamaEngine File "D:\dev\openai-pr-summarization\engine\llama.py", line 3, in <module> from llama_index import GPTSimpleVectorIndex, Document File "C:\Users\diman\mambaforge\envs\py311\Lib\site-packages\llama_index\__init__.py", line 18, in <module> from llama_index.indices.common.struct_store.base import SQLDocumentContextBuilder File "C:\Users\diman\mambaforge\envs\py311\Lib\site-packages\llama_index\indices\__init__.py", line 4, in <module> from llama_index.indices.keyword_table.base import GPTKeywordTableIndex File "C:\Users\diman\mambaforge\envs\py311\Lib\site-packages\llama_index\indices\keyword_table\__init__.py", line 4, in <module> from llama_index.indices.keyword_table.base import GPTKeywordTableIndex File "C:\Users\diman\mambaforge\envs\py311\Lib\site-packages\llama_index\indices\keyword_table\base.py", line 16, in <module> from llama_index.indices.base import DOCUMENTS_INPUT, BaseGPTIndex File "C:\Users\diman\mambaforge\envs\py311\Lib\site-packages\llama_index\indices\base.py", line 23, in <module> from llama_index.indices.prompt_helper import PromptHelper File "C:\Users\diman\mambaforge\envs\py311\Lib\site-packages\llama_index\indices\prompt_helper.py", line 12, in <module> from llama_index.langchain_helpers.chain_wrapper import LLMPredictor File "C:\Users\diman\mambaforge\envs\py311\Lib\site-packages\llama_index\langchain_helpers\chain_wrapper.py", line 6, in <module> from llama_index.llm_predictor.base import ( # noqa: F401 File "C:\Users\diman\mambaforge\envs\py311\Lib\site-packages\llama_index\llm_predictor\__init__.py", line 4, in <module> from llama_index.llm_predictor.base import LLMPredictor File "C:\Users\diman\mambaforge\envs\py311\Lib\site-packages\llama_index\llm_predictor\base.py", line 15, in <module> from llama_index.prompts.base import Prompt File "C:\Users\diman\mambaforge\envs\py311\Lib\site-packages\llama_index\prompts\__init__.py", line 3, in <module> from llama_index.prompts.base import Prompt File "C:\Users\diman\mambaforge\envs\py311\Lib\site-packages\llama_index\prompts\base.py", line 11, in <module> from llama_index.output_parsers.base import BaseOutputParser File "C:\Users\diman\mambaforge\envs\py311\Lib\site-packages\llama_index\output_parsers\__init__.py", line 4, in <module> from llama_index.output_parsers.langchain import LangchainOutputParser File "C:\Users\diman\mambaforge\envs\py311\Lib\site-packages\llama_index\output_parsers\langchain.py", line 6, in <module> from langchain.schema import BaseOutputParser as LCOutputParser ```
cannot import name 'BaseOutputParser' from 'langchain.schema'
https://api.github.com/repos/langchain-ai/langchain/issues/1936/comments
8
2023-03-23T17:59:56Z
2023-09-28T16:10:53Z
https://github.com/langchain-ai/langchain/issues/1936
1,638,029,215
1,936
[ "hwchase17", "langchain" ]
I tried creating a pandas dataframe agent (using create_dataframe_agent) with ChatOpenAI from promptlayer or otherwise just plain version (ChatOpenAI) as the LLM! But langchain isn't able to parse the LLM's output code. If I modify some regular expression manually, it works (but again fails if the code is a single line, etc.). Basically the regex and parsing logic for figuring out Action, Action_input for chat models needs to be changed. This probably means lot of other existing chains with ChatOpenAI as LLM are up for a toss! Code: ``` chat = PromptLayerChatOpenAI(pl_tags=["langchain"]) df_agent = create_pandas_dataframe_agent(chat, haplo_insuf, verbose=True) df_agent.run("find the maximum number of employees working in any company based on the range. a-b means minimum a, maximum b!") ```` Output: ``` Entering new AgentExecutor chain... Thought: We need to extract the minimum and maximum number of employees from the "df" dataframe and find the maximum value. Action: python_repl_ast Action Input:```max_emp = df['# Employees'].str.split('-', expand=True).astype(int).max(axis=1)max_emp.max()``` Observation: invalid syntax (<unknown>, line 2) Thought:There seems to be a syntax error in the code. Let me fix it. Action: python_repl_ast Action Input:```max_emp = df['# Employees'].str.split('-', expand=True).astype(int).max(axis=1)max_emp.max()``` Observation: invalid syntax (<unknown>, line 2) Thought:... ```
ChatOpenAI isn't compatible with create_pandas_dataframe_agent
https://api.github.com/repos/langchain-ai/langchain/issues/1931/comments
10
2023-03-23T15:52:32Z
2023-07-06T19:34:35Z
https://github.com/langchain-ai/langchain/issues/1931
1,637,808,698
1,931
[ "hwchase17", "langchain" ]
After sending several requests to OpenAI, it always encounter request timeouts, accompanied by long periods of waiting. Env: OS: Ubuntu 22 Python: 3.10 langchain: 0.0.117 ## Request time out ```shell WARNING:/home/soda/.local/lib/python3.10/site-packages/langchain/chat_models/openai.py:Retrying langchain.chat_models.openai.acompletion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised Timeout: Request timed out. ``` ![image](https://user-images.githubusercontent.com/95118515/227238679-f954691a-6689-4afc-9401-ef68b3135885.png) ## TimeoutError from None ```shell answer, _ = await self.combine_documents_chain.acombine_docs(docs, question=question) File "/home/soda/.local/lib/python3.10/site-packages/langchain/chains/combine_documents/stuff.py", line 97, in acombine_docs return await self.llm_chain.apredict(**inputs), {} File "/home/soda/.local/lib/python3.10/site-packages/langchain/chains/llm.py", line 167, in apredict return (await self.acall(kwargs))[self.output_key] File "/home/soda/.local/lib/python3.10/site-packages/langchain/chains/base.py", line 154, in acall raise e File "/home/soda/.local/lib/python3.10/site-packages/langchain/chains/base.py", line 148, in acall outputs = await self._acall(inputs) File "/home/soda/.local/lib/python3.10/site-packages/langchain/chains/llm.py", line 135, in _acall return (await self.aapply([inputs]))[0] File "/home/soda/.local/lib/python3.10/site-packages/langchain/chains/llm.py", line 123, in aapply response = await self.agenerate(input_list) File "/home/soda/.local/lib/python3.10/site-packages/langchain/chains/llm.py", line 67, in agenerate return await self.llm.agenerate_prompt(prompts, stop) File "/home/soda/.local/lib/python3.10/site-packages/langchain/chat_models/base.py", line 103, in agenerate_prompt raise e File "/home/soda/.local/lib/python3.10/site-packages/langchain/chat_models/base.py", line 97, in agenerate_prompt output = await self.agenerate(prompt_messages, stop=stop) File "/home/soda/.local/lib/python3.10/site-packages/langchain/chat_models/base.py", line 62, in agenerate results = [await self._agenerate(m, stop=stop) for m in messages] File "/home/soda/.local/lib/python3.10/site-packages/langchain/chat_models/base.py", line 62, in <listcomp> results = [await self._agenerate(m, stop=stop) for m in messages] File "/home/soda/.local/lib/python3.10/site-packages/langchain/chat_models/openai.py", line 286, in _agenerate async for stream_resp in await acompletion_with_retry( File "/home/soda/.local/lib/python3.10/site-packages/openai/api_resources/abstract/engine_api_resource.py", line 230, in <genexpr> return ( File "/home/soda/.local/lib/python3.10/site-packages/openai/api_requestor.py", line 319, in wrap_resp async for r in resp: File "/home/soda/.local/lib/python3.10/site-packages/openai/api_requestor.py", line 633, in <genexpr> return ( File "/home/soda/.local/lib/python3.10/site-packages/openai/api_requestor.py", line 114, in parse_stream_async async for line in rbody: File "/home/soda/.local/lib/python3.10/site-packages/aiohttp/streams.py", line 35, in __anext__ rv = await self.read_func() File "/home/soda/.local/lib/python3.10/site-packages/aiohttp/streams.py", line 311, in readline return await self.readuntil() File "/home/soda/.local/lib/python3.10/site-packages/aiohttp/streams.py", line 343, in readuntil await self._wait("readuntil") File "/home/soda/.local/lib/python3.10/site-packages/aiohttp/streams.py", line 303, in _wait with self._timer: File "/home/soda/.local/lib/python3.10/site-packages/aiohttp/helpers.py", line 721, in __exit__ raise asyncio.TimeoutError from None ``` Have other people encountered similar errors?
Frequent Request timed out
https://api.github.com/repos/langchain-ai/langchain/issues/1929/comments
5
2023-03-23T14:44:31Z
2023-06-07T03:02:27Z
https://github.com/langchain-ai/langchain/issues/1929
1,637,686,943
1,929
[ "hwchase17", "langchain" ]
Right now to create an agent that has memory, we do `memory = ConversationBufferMemory(memory_key=str('chat_history'))` Then pass it to the agent `agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory)` However, the memory will be gone if the server restarts. I learned that memory can be dumped as json, but to avoid losing messages, we have to dump to json every time a message comes in, which is not a good solution. Can we add support for storing conversation buffer memory in redis and when constructing the agent pass the redis instance to the agent executor? Let me know if there is an existing solution for this. Appreciate the help!
Support Save and Retrieve Memory from Redis
https://api.github.com/repos/langchain-ai/langchain/issues/1927/comments
2
2023-03-23T13:47:03Z
2023-04-07T19:55:27Z
https://github.com/langchain-ai/langchain/issues/1927
1,637,579,089
1,927
[ "hwchase17", "langchain" ]
HI, I am getting an error "InvalidRequestError: Resource not found" while using Chat model using VectorDBQA chain. This issue is coming up after v0.0.120 release and I was not getting this in the previous version which I used which was v0.0.118. I am using Chatmodel from Azure through AzureChatOpenAI and embeddings through Azure`s model.
Getting an error InvalidRequestError: Resource not found in VectorDBQA
https://api.github.com/repos/langchain-ai/langchain/issues/1923/comments
10
2023-03-23T11:37:04Z
2023-11-03T07:22:09Z
https://github.com/langchain-ai/langchain/issues/1923
1,637,360,666
1,923
[ "hwchase17", "langchain" ]
Have we considered using Ruff in this repo instead of flake8? Ruff is a lot faster and used by many popular Python repos. https://github.com/charliermarsh/ruff
Ruff instead of flake8?
https://api.github.com/repos/langchain-ai/langchain/issues/1919/comments
2
2023-03-23T06:36:12Z
2023-03-23T06:51:45Z
https://github.com/langchain-ai/langchain/issues/1919
1,636,937,677
1,919
[ "hwchase17", "langchain" ]
Add optional parameters (like a `siterestrict`) to GoogleSearchAPIWrapper. https://developers.google.com/custom-search/v1/site_restricted_api
Support for Google's Custom Search Site Restricted JSON API
https://api.github.com/repos/langchain-ai/langchain/issues/1915/comments
0
2023-03-23T04:53:09Z
2023-03-28T04:24:27Z
https://github.com/langchain-ai/langchain/issues/1915
1,636,847,361
1,915
[ "hwchase17", "langchain" ]
How to add a json example into the prompt template. Currently, it errors. Here is one example prompt human_template = """Summarize user's order into the json format keys:"name","size", "topping", "ice", "sugar", "special_instruction". Here are two examples of the order JSON object: { "name": "Jasmine Green Tea/Milk Tea", "quantity": 2, "size": "Large", "ice": "25%", "sugar": "100%", "toppings": "Pearl, Green Bean, Grass Jelly" }, { "name": "Popcorn Chicken", "quantity": 1, "special_instruction": "Make it spicy" } {extra_store_instruction} """ I will get this error: File "/home/ubuntu/.local/lib/python3.10/site-packages/langchain/prompts/chat.py", line 67, in from_template prompt = PromptTemplate.from_template(template) File "/home/ubuntu/.local/lib/python3.10/site-packages/langchain/prompts/prompt.py", line 130, in from_template return cls(input_variables=list(sorted(input_variables)), template=template) File "pydantic/main.py", line 341, in pydantic.main.BaseModel.__init__ pydantic.error_wrappers.ValidationError: 1 validation error for PromptTemplate __root__ Invalid format specifier (type=value_error)
how to escape {} for the PromptTemplate
https://api.github.com/repos/langchain-ai/langchain/issues/1914/comments
9
2023-03-23T04:16:24Z
2024-05-10T06:08:49Z
https://github.com/langchain-ai/langchain/issues/1914
1,636,824,214
1,914
[ "hwchase17", "langchain" ]
I just upgraded to the most recent version of langchain (0.0.119) and I get the following error when I try to import langchain in python. Here's the error message: > --> 111 class SelfHostedHuggingFaceLLM(SelfHostedPipeline, BaseModel): 112 Wrapper around HuggingFace Pipeline API to run on self-hosted remote hardware. 113 114 Supported hardware includes auto-launched instances on AWS, GCP, Azure, 149 model_load_fn=get_pipeline, model_id="gpt2", hardware=gpu) 150 152 model_id: str = DEFAULT_MODEL_ID File ~/.local/lib/python3.9/site-packages/pydantic/main.py:254, in pydantic.main.ModelMetaclass.__new__() File ~/.local/lib/python3.9/site-packages/pydantic/utils.py:144, in pydantic.utils.validate_field_name() NameError: Field name inference_fn shadows a BaseModel attribute; use a different field name with alias=inference_fn > Any help will be appreciated. Thanks in advance
import langchain (0.0.119) does not work
https://api.github.com/repos/langchain-ai/langchain/issues/1913/comments
4
2023-03-23T03:40:53Z
2023-09-25T16:15:39Z
https://github.com/langchain-ai/langchain/issues/1913
1,636,797,392
1,913
[ "hwchase17", "langchain" ]
Code to create a ConstitutionalChain from an LLM: ``` @classmethod def from_llm( cls, llm: BaseLanguageModel, chain: LLMChain, critique_prompt: BasePromptTemplate = CRITIQUE_PROMPT, revision_prompt: BasePromptTemplate = REVISION_PROMPT, **kwargs: Any, ) -> "ConstitutionalChain": """Create a chain from an LLM.""" critique_chain = LLMChain(llm=llm, prompt=critique_prompt) revision_chain = LLMChain(llm=llm, prompt=revision_prompt) return cls( chain=chain, critique_chain=critique_chain, revision_chain=revision_chain, **kwargs, ) ``` It requires an LLMChain. SimpleSequentialChain doesn't inherit from LLMChain. It inherits from Chain. ``` class SimpleSequentialChain(Chain, BaseModel): """Simple chain where the outputs of one step feed directly into next.""" chains: List[Chain] strip_outputs: bool = False input_key: str = "input" #: :meta private: output_key: str = "output" #: :meta private: ``` Therefore we cannot pass a SimpleSequentialChain to the ConstitutionalChain. This disrupts the workflow where we create a pipeline and want to pass it to a constitutional chain for checks. I would be happy to submit a PR to fix this : ) Presumably there should be no issue as a ConstitutionalChain shouldn't require anything more than a run method from the input chain, as it contains it's own LLM and prompts (in the form of principles).
ConstitutionalChain cannot be composed with SimpleSequentialChain
https://api.github.com/repos/langchain-ai/langchain/issues/1904/comments
4
2023-03-23T00:35:35Z
2024-01-10T19:17:00Z
https://github.com/langchain-ai/langchain/issues/1904
1,636,674,948
1,904
[ "hwchase17", "langchain" ]
When we use `OpenSearchVectorSearch` to index documents into Opensearch, there is no way to decide the index name. There is `index_name` argument in `OpenSearchVectorSearch` however this is ignored when we call `OpenSearchVectorSearch.from_documents()` method. In the method index name is set randomly with uuid [see here](https://github.com/hwchase17/langchain/blob/f155d9d3ec194146c28710f43c5cd9da3f709447/langchain/vectorstores/opensearch_vector_search.py#L366)
OpenSearch index_name is not deterministic
https://api.github.com/repos/langchain-ai/langchain/issues/1900/comments
1
2023-03-22T22:59:59Z
2023-03-23T10:10:01Z
https://github.com/langchain-ai/langchain/issues/1900
1,636,610,281
1,900
[ "hwchase17", "langchain" ]
It seems this can already calculate costs, can it throw errors/warnings if usage exceeds a certain pre-configured amount? That way people won't accidentally spend $500 if they miscalculate, etc.
Add a way to configure soft/hard caps on $ spent on APIs
https://api.github.com/repos/langchain-ai/langchain/issues/1899/comments
2
2023-03-22T22:13:30Z
2023-09-10T16:40:53Z
https://github.com/langchain-ai/langchain/issues/1899
1,636,565,917
1,899
[ "hwchase17", "langchain" ]
I'm on Windows 10 and one of the examples from the Documentation [Load a prompt template from LangChainHub](https://langchain.readthedocs.io/en/latest/modules/prompts/getting_started.html#:~:text=such%20as%20Mako.-,Load%20a%20prompt%20template%20from%20LangChainHub,-%23) has the following code: ```python from langchain.prompts import load_prompt prompt = load_prompt("lc://prompts/conversation/prompt.json") prompt.format(history="", input="What is 1 + 1?") ``` Which in Windows produces the following error: ```console (venv) PS D:\Usuarios\Dev01\Documents\GitHub\almohada\chat> python prompts.py Traceback (most recent call last): File "D:\Usuarios\Dev01\Documents\GitHub\almohada\chat\prompts.py", line 58, in <module> prompt = load_prompt("lc://prompts/conversation/prompt.json") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\Usuarios\Dev01\Documents\GitHub\almohada\chat\venv\Lib\site-packages\langchain\prompts\loading.py", line 120, in load_prompt if hub_result := try_load_from_hub( ^^^^^^^^^^^^^^^^^^ File "D:\Usuarios\Dev01\Documents\GitHub\almohada\chat\venv\Lib\site-packages\langchain\utilities\loading.py", line 44, in try_load_from_hub raise ValueError(f"Could not find file at {full_url}") ValueError: Could not find file at https://raw.githubusercontent.com/hwchase17/langchain-hub/master/prompts\conversation\prompt.json ``` This is caused by line 41 in `utilities/loading.py` ```python full_url = urljoin(URL_BASE.format(ref=ref), str(remote_path)) ``` I have not tested this on another OS but in my mind the fix it's the following: ```python def try_load_from_hub( path: Union[str, Path], loader: Callable[[str], T], valid_prefix: str, valid_suffixes: Set[str], **kwargs: Any, ) -> Optional[T]: """Load configuration from hub. Returns None if path is not a hub path.""" if not isinstance(path, str) or not (match := HUB_PATH_RE.match(path)): return None ref, remote_path_str = match.groups() ref = ref[1:] if ref else DEFAULT_REF remote_path = Path(remote_path_str) if remote_path.parts[0] != valid_prefix: return None if remote_path.suffix[1:] not in valid_suffixes: raise ValueError("Unsupported file type.") full_url = urljoin(URL_BASE.format(ref=ref), remote_path_str) # here, instead of stringifying the remote_path just use the one extracted in the line above r = requests.get(full_url, timeout=5) if r.status_code != 200: raise ValueError(f"Could not find file at {full_url}") with tempfile.TemporaryDirectory() as tmpdirname: file = Path(tmpdirname) / remote_path.name with open(file, "wb") as f: f.write(r.content) return loader(str(file), **kwargs) ``` I'd feedback on the solution. Since I can't test on all possible environments I'm not 100% sure about it
Error try_load_from_hub could not find file
https://api.github.com/repos/langchain-ai/langchain/issues/1897/comments
4
2023-03-22T20:51:53Z
2023-08-14T16:58:59Z
https://github.com/langchain-ai/langchain/issues/1897
1,636,480,289
1,897
[ "hwchase17", "langchain" ]
ImportError: cannot import name 'BaseOutputParser' from 'langchain.output_parsers'
Import Error
https://api.github.com/repos/langchain-ai/langchain/issues/1896/comments
1
2023-03-22T18:58:13Z
2023-03-23T14:24:41Z
https://github.com/langchain-ai/langchain/issues/1896
1,636,338,302
1,896
[ "hwchase17", "langchain" ]
With a Postgres database, I've found I need to add the schema to [line 69](https://github.com/hwchase17/langchain/blob/ce5d97bcb3e263f6aa69da6c334e35e20bf4db11/langchain/sql_database.py#L69): `self._metadata.reflect(bind=self._engine, schema=self._schema)`
SQLDatabase does not handle schema correctly
https://api.github.com/repos/langchain-ai/langchain/issues/1894/comments
1
2023-03-22T17:34:41Z
2023-08-21T16:08:15Z
https://github.com/langchain-ai/langchain/issues/1894
1,636,218,153
1,894
[ "hwchase17", "langchain" ]
This is the message ![image](https://user-images.githubusercontent.com/10646838/226973055-168f1120-93e2-4648-88a8-1c8a04f71796.png)
pip install -U langchain is the best thing that you can do before you start your day
https://api.github.com/repos/langchain-ai/langchain/issues/1892/comments
7
2023-03-22T16:30:44Z
2024-03-17T09:26:09Z
https://github.com/langchain-ai/langchain/issues/1892
1,636,122,407
1,892
[ "hwchase17", "langchain" ]
null
Support for Google BARD API?
https://api.github.com/repos/langchain-ai/langchain/issues/1889/comments
17
2023-03-22T15:46:42Z
2024-08-09T09:57:05Z
https://github.com/langchain-ai/langchain/issues/1889
1,636,046,362
1,889
[ "hwchase17", "langchain" ]
It looks like Llama uses an unsupported embedding scheme: https://nn.labml.ai/transformers/rope/index.html I'm opening this thread so we can have a conversation about how to support these embeddings within langchain. I'm happy to help, but my knowledge is limited.
Support for Rotary Embeddings for Llama
https://api.github.com/repos/langchain-ai/langchain/issues/1885/comments
3
2023-03-22T15:04:00Z
2023-09-18T16:22:55Z
https://github.com/langchain-ai/langchain/issues/1885
1,635,952,857
1,885
[ "hwchase17", "langchain" ]
### Describe the bug in `WandbCallbackHandler.on_chain_start` (row 533 in wandb_callback.py), the name of the input key is hardcoded set to "input" and the name of the output key is hard-coded "output", so if the chain uses any other name for the input key, this results in `KyeError`. <!--- A minimal code snippet between the quotes below --> ```python ``` <!--- A full traceback of the exception in the quotes below --> ```shell Traceback (most recent call last): File "/Applications/PyCharm.app/Contents/plugins/python/helpers/pydev/pydevd.py", line 1448, in _exec pydev_imports.execfile(file, globals, locals) # execute the script File "/Applications/PyCharm.app/Contents/plugins/python/helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "use_wandb.py", line 21, in <module> res = intenter.get_intent(IntenterInput(query="hi there")) File "intenter.py", line 183, in get_intent result = self.full_chain(inputs.dict()) File ".venv/lib/python3.9/site-packages/langchain/chains/base.py", line 107, in __call__ self.callback_manager.on_chain_start( File "venv/lib/python3.9/site-packages/langchain/callbacks/base.py", line 184, in on_chain_start handler.on_chain_start(serialized, inputs, **kwargs) File ".venv/lib/python3.9/site-packages/langchain/callbacks/wandb_callback.py", line 533, in on_chain_start chain_input = inputs["input"] KeyError: 'input' python-BaseException ``` ### Additional Files _No response_ ### Environment WandB version: wandb==0.14.0 OS: macOS big sur Python version: 3.9.9 Versions of relevant libraries: langchain==0.0.118 ### Additional Context _No response_
Bug in WandbCallbackHandler
https://api.github.com/repos/langchain-ai/langchain/issues/1884/comments
3
2023-03-22T13:15:40Z
2023-09-10T16:40:58Z
https://github.com/langchain-ai/langchain/issues/1884
1,635,746,539
1,884
[ "hwchase17", "langchain" ]
Hi, I am a bit confused as to what is the best approach to implement the "chatting with a document store". There seem to be two approaches to do this: - ChatVectorDBChain -- https://github.com/mayooear/gpt4-pdf-chatbot-langchain - agent + ConversationBufferMemory -- https://github.com/jerryjliu/llama_index/blob/main/examples/chatbot/Chatbot_SEC.ipynb Is there an advantage to using ChatVectorDBChain? Thank you very much!
ChatVectorDBChain vs. agent + ConversationBufferMemory for chat
https://api.github.com/repos/langchain-ai/langchain/issues/1883/comments
5
2023-03-22T12:41:20Z
2023-10-29T16:07:28Z
https://github.com/langchain-ai/langchain/issues/1883
1,635,694,115
1,883
[ "hwchase17", "langchain" ]
``` Traceback (most recent call last): File "/Users/xingfanxia/projects/notion-qa/qa.py", line 25, in <module> result = chain({"question": args.question}) File "/opt/homebrew/lib/python3.10/site-packages/langchain/chains/base.py", line 116, in __call__ raise e File "/opt/homebrew/lib/python3.10/site-packages/langchain/chains/base.py", line 113, in __call__ outputs = self._call(inputs) File "/opt/homebrew/lib/python3.10/site-packages/langchain/chains/qa_with_sources/base.py", line 118, in _call answer, _ = self.combine_documents_chain.combine_docs(docs, **inputs) File "/opt/homebrew/lib/python3.10/site-packages/langchain/chains/combine_documents/map_reduce.py", line 143, in combine_docs return self._process_results(results, docs, token_max, **kwargs) File "/opt/homebrew/lib/python3.10/site-packages/langchain/chains/combine_documents/map_reduce.py", line 173, in _process_results num_tokens = length_func(result_docs, **kwargs) File "/opt/homebrew/lib/python3.10/site-packages/langchain/chains/combine_documents/stuff.py", line 83, in prompt_length return self.llm_chain.llm.get_num_tokens(prompt) File "/opt/homebrew/lib/python3.10/site-packages/langchain/chat_models/openai.py", line 331, in get_num_tokens enc = tiktoken.encoding_for_model(self.model_name) File "/opt/homebrew/lib/python3.10/site-packages/tiktoken/model.py", line 51, in encoding_for_model raise KeyError( KeyError: 'Could not automatically map gpt-3.5-turbo to a tokeniser. Please use `tiktok.get_encoding` to explicitly get the tokeniser you expect.' ```
Tiktoken version is too old for `gpt-3.5-turbo`
https://api.github.com/repos/langchain-ai/langchain/issues/1881/comments
11
2023-03-22T09:23:39Z
2023-10-18T05:27:58Z
https://github.com/langchain-ai/langchain/issues/1881
1,635,371,810
1,881
[ "hwchase17", "langchain" ]
As of the latest release, this is not accepted. ``` /opt/homebrew/lib/python3.10/site-packages/langchain/llms/openai.py:169: UserWarning: You are trying to use a chat model. This way of initializing it is no longer supported. Instead, please use: `from langchain.chat_models import ChatOpenAI` warnings.warn( ``` And will throw error when asked
Is it possible to use `gpt-3.5-turbo` for `VectorDBQAWithSourcesChain`
https://api.github.com/repos/langchain-ai/langchain/issues/1880/comments
4
2023-03-22T09:01:34Z
2023-03-24T04:55:20Z
https://github.com/langchain-ai/langchain/issues/1880
1,635,332,994
1,880
[ "hwchase17", "langchain" ]
Love Langchain library, so obsessed with it lately! I've using ChatVectorDBChain which retrieves answers from Pinecone vectorstore and it's been working very well. But one thing I noticed is that for normal `ConversationChain`, you can add `memory` argument, which provides nice user experience because it remembers the discussed entities. Question: can we add `memory` argument to `ChatVectorDBChain`? If it is already existed, could you point me whether below code is the right way to use it? Thanks again so much!!๐Ÿ˜Š ``` from langchain.chains import ChatVectorDBChain from langchain.memory import ConversationEntityMemory chat_with_sources = ChatVectorDBChain.from_llm( llm=llm, chain_type="stuff", vectorstore=vectorstore, return_source_documents=True #memory=ConversationEntityMemory(llm=llm, k=5) ) ```
Entity memory + ChatVectorDB ?
https://api.github.com/repos/langchain-ai/langchain/issues/1876/comments
6
2023-03-22T06:25:42Z
2023-09-20T18:16:25Z
https://github.com/langchain-ai/langchain/issues/1876
1,635,138,622
1,876
[ "hwchase17", "langchain" ]
We should add human input as a tool. Human is AGI and can step in when the model is confused or lost, or need some help.
Use human input as a tool
https://api.github.com/repos/langchain-ai/langchain/issues/1871/comments
7
2023-03-22T00:23:26Z
2024-07-26T22:26:55Z
https://github.com/langchain-ai/langchain/issues/1871
1,634,874,206
1,871
[ "hwchase17", "langchain" ]
If I have a context (document) to answer questions from, is there a way to send multiple messages to openai using langchain API? I would like to get a list back where each item corresponds to answer for each question. Thanks, Ravi
Sending multiple questions in one API call and get responses for each
https://api.github.com/repos/langchain-ai/langchain/issues/1870/comments
2
2023-03-22T00:08:09Z
2023-09-18T16:22:59Z
https://github.com/langchain-ai/langchain/issues/1870
1,634,864,043
1,870
[ "hwchase17", "langchain" ]
Are you considering to add ability to use ensembling during document search?
Use ensemble of indicies on document search
https://api.github.com/repos/langchain-ai/langchain/issues/1868/comments
1
2023-03-21T22:25:49Z
2023-08-21T16:08:19Z
https://github.com/langchain-ai/langchain/issues/1868
1,634,779,399
1,868
[ "hwchase17", "langchain" ]
The current constructor for ElasticVectorSearch does not support connecting to Elastic Cloud. ``` >>> db = ElasticVectorSearch.from_documents(docs, embeddings, ... cloud_id = CLOUD_ID, ... basic_auth=(USER_NAME, PASSWORD))Traceback (most recent call last): File "<stdin>", line 1, in <module> File "c:\Users\bcollingsworth\code\langchain_testing\.venv\lib\site-packages\langchain\vectorstores\base.py", line 113, in from_documents return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs) File "c:\Users\bcollingsworth\code\langchain_testing\.venv\lib\site-packages\langchain\vectorstores\elastic_vector_search.py", line 161, in from_texts elasticsearch_url = get_from_dict_or_env( File "c:\Users\bcollingsworth\code\langchain_testing\.venv\lib\site-packages\langchain\utils.py", line 17, in get_from_dict_or_env raise ValueError( ValueError: Did not find elasticsearch_url, please add an environment variable `ELASTICSEARCH_URL` which contains it, or pass `elasticsearch_url` as a named parameter. ``` It looks like the current implementation would only support an instance of Elastic Search on localhost without security enabled, which is not recommended. I can connect with the elasticsearch python client like this: ``` from elasticsearch import Elasticsearch es = Elasticsearch(cloud_id=CLOUD_ID, http_auth=(USER_NAME, PASSWORD)) es.info() ``` See the documentation at [Connecting to Elastic Cloud](https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/connecting.html#connect-ec) An alternative constructor to the ElasticVectorSearch that takes a elasticsearch client instance, index name and embedding object would allow the user to deal with all the possible authentication set ups before using langchain.
ElasticVectorSearch constructor to support Elastic Cloud
https://api.github.com/repos/langchain-ai/langchain/issues/1865/comments
6
2023-03-21T20:56:51Z
2023-09-19T15:17:29Z
https://github.com/langchain-ai/langchain/issues/1865
1,634,676,623
1,865
[ "hwchase17", "langchain" ]
How can we load directly xlsx file in langchain just like CSV loader? I could not be able to find in the documentation
Xlsx loader
https://api.github.com/repos/langchain-ai/langchain/issues/1862/comments
7
2023-03-21T17:25:01Z
2023-12-02T16:10:07Z
https://github.com/langchain-ai/langchain/issues/1862
1,634,398,916
1,862
[ "hwchase17", "langchain" ]
Hey all, Gor from [Aim](http://github.com/aimhubio/aim) here ๐Ÿ‘‹ First of all thanks for this awesome project! After playing with LangChain, I found that Aim // LangChain integration can be extremely helpful with tracing and deep exploration of prompts... at scale... with just a few steps. โฌ‡๏ธ ## How can Aim trace and enhance prompts observability? ### Prompts comparison It would be great to be able to compare different prompt templates. Here is an example view where it is possible to explore and compare outputs of different prompts: ![prompt_comparison](https://user-images.githubusercontent.com/13848158/226687693-305a89e7-134f-4e6f-9eb3-3ebe6e679ff5.png) Querying, grouping, coloring included! ### Prompts exploration We are also planning to integrate [ICE](https://github.com/oughtinc/ice) (or an alternative) for an upgraded experience to analyze an individual session: ![image](https://user-images.githubusercontent.com/13848158/226649329-633d865f-b8f3-49e3-be2d-a6fabcc65167.png) --- The integration might be helpful both for prompt engineering and prompt monitoring in production. Please consider this as an early iteration. Thoughts and feedbacks are highly appreciated. ๐Ÿ™Œ I believe this will be a great addition to both of the tools and will be beneficial for the community! Would be super happy to tell more about our roadmap and learn if there is a space for integrations and collaboration. Happy to jump on a quick call or open a shared channel on slack/discord. <details> <summary> Prompts tracking </summary> </br> Aim provides a generic interface to track and store strings with an additional context. And it is super easy to integrate with any python script or tool. It is as simple as calling: ```py aim_run.track(input_text, name="inputs", context={'function': ..., 'kwargs': ..., 'tags': ...}) ``` ...or both inputs and outputs: ```py aim_run.track([input_text, output_text], name="inputs", context={'function': ..., 'kwargs': ..., 'tags': ...}) ``` ...or inputs, outputs and intermediate results: ```py aim_run.track([input_text, intermediate_res_1, intermediate_res_2, output_text], name="inputs", context={'function': ..., 'kwargs': ..., 'tags': ...}) ``` ...or even arbitrary py objects: ```py aim_run.track({ "prompt": input_text, "intermediate_res_1": Image(intermediate_res_1), # tracking images ... # tracking any other python objects }], name="inputs", context={'function': ..., 'kwargs': ..., 'tags': ...}) ``` </details> <details> <summary> More details </summary> </br> Aim is fully open source, it tracks and stores data at a local .aim repository. Aim has builtin tools - explorers, which enable in-depth exploration and comparison of any type of metadata. With the upcoming releases it is also going to enable building fully customizable dashboards. Particularly targeting prompt engineering use-cases. Aim repo: http://github.com/aimhubio/aim Aim docs: http://aimstack.readthedocs.io </details> @hwchase17
Prompts tracing and visualization with Aim (Aim // LangChain integration)
https://api.github.com/repos/langchain-ai/langchain/issues/1861/comments
1
2023-03-21T17:11:07Z
2023-09-18T16:23:05Z
https://github.com/langchain-ai/langchain/issues/1861
1,634,374,448
1,861